A construction of certain 3-manifolds with orientation reversing involution

By Masako Kobayashi

(Received Aug. 11, 1986)
(Revised Oct. 1, 1986)

1. Introduction.

In his paper [4], Kawauchi proved that if a closed orientable 3-manifold M admits an orientation reversing involution, then the torsion part of the first integral homology group, Tor $H_{1}(M ; Z)$, is isomorphic to $A \oplus A$ or $Z_{2} \oplus A \oplus A$ where A is an abelian group of finite order. Moreover, for any given abelian group G with $\operatorname{Tor} G \cong A \oplus A$, there exists a closed orientable irreducible 3-manifold M admitting an orientation reversing involution with $H_{1}(M ; Z) \cong G$. And if M is a closed orientable 3 -manifold admitting an orientation reversing involution with $H_{1}(M ; Z) \cong Z_{2} \oplus A \oplus A$ where A is an abelian group of odd order, then M must be a connected sum of P^{3} and a certain manifold.

In this paper, for the remaining cases, we will prove the following theorems.
Theorem 1. For any abelian group G with $\operatorname{Tor} G \cong Z_{2} \oplus A \oplus A$ (possibly, $A=0)$ and $G / \operatorname{Tor} G \neq 0$, there exists a closed orientable irreducible 3-manifold M admitting an orientation reversing involution with $H_{1}(M ; Z) \cong G$.

Theorem 2. For any abelian group $G \cong Z_{2} \oplus A \oplus A$ where A is an abelian group of non zero even order, there exists a closed orientable irreducible 3-manifold M admitting an orientation reversing involution with $H_{1}(M ; Z) \cong G$.

We refer to [2] and [3] for general definitions and terminology.

2. Proof of Theorem 1 .

We identify a 3 -sphere S^{3} with $R^{3} \cup\{\infty\}$, and consider the antipodal map $\tau: S^{3} \rightarrow S^{3}$ by $\tau(x, y, z)=(-x,-y,-z) \tau(\infty)=(\infty)$.

Lemma 3. There exists a closed orientable irreducible 3-manifold M admitting an orientation reversing involution with $H_{1}(M ; Z) \cong Z \oplus Z_{2}$.

Proof. Consider a graph T in S^{3} as in Figure 1. We choose the graph T so that T contains the origin $0=(0,0,0)$ of S^{3} and T is invariant by τ, the

Figure 1.
antipodal map of S^{3}. Let $N(T)$ be a τ-invariant regular neighborhood of T and $M_{1}=\overline{S^{3}-N(T)}$. Note that $F=\partial M_{1}$ is a closed orientable surface of genus two. Let M_{2} be a quotient space of $F \times I$ by an identification map of $F \times\{1\} ;(x, 1) \sim$ ($\tau^{\prime}(x), 1$), where I denotes the unit interval $[0,1]$ and $\tau^{\prime}=\left.\tau\right|_{F}$. Then M_{2} is a twisted I-bundle over a closed non orientable surface, and M_{2} has a canonical involution induced by τ^{\prime}. Let $M=M_{1} \cup_{h} M_{2}$, where h is the identity map of $F=\partial M_{2}$ onto $F=\partial M_{1}$. Then M has an orientation reversing involution.

By the ordinary cut and paste argument (cf. [2]), if M_{1} and M_{2} are irreducible and ∂-irreducible, then M is irreducible.

Since M_{2} is a twisted I-bundle over a closed surface, M_{2} is irreducible and ∂-irreducible.

For M_{1}, suppose S is an embedded 2 -sphere in $M_{1}=\overline{S^{3}-N(T)}$. Then, we can regard S as an embedded 2 -sphere in S^{3} which does not meet T. By the Schönflies theorem, S bounds two 3 -balls in S^{3} and T is contained in one of these 3-balls. Hence S bounds another 3-ball in M_{1}. Hence, M_{1} is irreducible.

Suppose D is a properly embedded essential disk in M_{1}. Remove $D \times[-1,1]$, the regular neighborhood of D, from M_{1}, and we denote its closure by M_{1}^{\prime}. If both M_{1}^{\prime} and $\partial M_{1}^{\prime}=(D \times\{-1,1\}) \cup(F-\partial D \times(-1,1))$ are connected, then M_{1}^{\prime} is a submanifold of S^{3} and its boundary is a torus. Hence we may assume that M_{1}^{\prime} is a non trivial knot exterior or a solid torus. Since we obtain M_{1} by attaching a 1 -handle to M_{1}^{\prime}, we have $\pi_{1}\left(M_{1}\right) \cong H * Z$ (a free product), where H is a knot group or Z. If M_{1}^{\prime} is connected but ∂M_{1}^{\prime} is not, ∂M_{1}^{\prime} consists of two tori, since ∂D is essential on F. Then $\operatorname{rank} H_{1}\left(\partial M_{1}^{\prime} ; Z\right)=4$, and $\operatorname{rank} H_{1}\left(M_{1}^{\prime} ; Z\right)$ $\geqq \operatorname{rank} H_{1}\left(\partial M_{1}^{\prime} ; Z\right) / 2=2$. Since we obtain M_{1} by attaching a 1 -handle to M_{1}^{\prime}, we must have $\operatorname{rank} H_{1}\left(M_{1} ; Z\right) \geqq 3$. But, we can see from Figure 1 that $\operatorname{rank} H_{1}\left(M_{1} ; Z\right)=2$. It is impossible. If M_{1}^{\prime} is disconnected, let N_{1} and N_{2} be the connected component of M_{1}^{\prime}, then N_{i} is a submanifold of S^{3} and ∂N_{i} is a torus. Hence N_{i} is a non trivial knot exterior or a solid torus. Since M_{1} is a
boundary sum of N_{1} and N_{2}, we may assume $\pi_{1}\left(M_{1}\right) \cong H_{1} * H_{2}$, where H_{i} is a knot group or $Z(i=1,2)$.

Hence, if there exists an essential disk in M_{1}, we must have $\pi_{1}\left(M_{1}\right) \cong H_{1} * H_{2}$, where H_{i} is a knot group. (We may regard Z as the fundamental group of a trivial knot exterior.) We will see Alexander matrices of $H_{1} * H_{2}$ (cf. [1], [5]). Consider any epimorphism ϕ from $H_{1} * H_{2}$ to an infinite cyclic group 〈t: >. Then $\phi \mid H_{i}(i=1,2)$ is a homomorphism from H_{i} onto a subgroup $\left\langle t^{\alpha_{i}}\right.$: > of $\left\langle t\right.$: >, where at least one of α_{i} is non zero. An Alexander matrix of $H_{1} * H_{2}$ must be the block sum of Alexander matrices of H_{1} and H_{2}. Hence the k-th Alexander polynomials $\Delta_{k}(k=0,1,2)$ of $H_{1} * H_{2}$ must satisfy the conditions: $\Delta_{0}=0, \Delta_{1}=0$ and $\Delta_{2}=\Delta_{1}^{1} \times \Delta_{1}^{2}$, where Δ_{1}^{i} is the first Alexander polynomial of H_{i}. Note that, since H_{i} is a knot group, Δ_{1}^{i} is a polynomial in the group ring of $\left\langle t^{\alpha_{i}}\right.$: > such that $\Delta_{1}^{i}\left(t^{\alpha_{i}}\right) \doteq \Delta_{1}^{i}\left(\left(t^{\alpha_{i}}\right)^{-1}\right)$ (i. e. $\left.\Delta_{1}^{i}\left(t^{\alpha_{i}}\right)=t^{u_{i}} \Delta_{1}^{i}\left(t^{\alpha_{i}}\right)^{-1}\right)$ for some $\left.u_{i} \in Z\right)$. Hence we must have $\Delta_{2}(t) \doteq \Delta_{2}\left(t^{-1}\right)$.

We may choose the generators of $\pi_{1}\left(M_{1}\right)$ as indicated in Figure 1 , then we have

$$
\pi_{1}\left(M_{1}\right) \cong\left\langle a, b, c: b^{-1} a c a^{-1}[c a] b[a c]=1\right\rangle .
$$

Let ϕ be an epimorphism from $\pi_{1}\left(M_{1}\right)$ to $\langle t:\rangle$ defined by

$$
\phi(a)=t^{2}, \quad \phi(b)=t \quad \text { and } \quad \phi(c)=1
$$

By the Fox calculus ([1], [5]), we have an Alexander matrix of $\pi_{1}\left(M_{1}\right)$;

$$
\left(\begin{array}{lll}
0 & 0 & t^{2}-1+t^{-1}
\end{array}\right)
$$

and the Alexander polynomials;

$$
\Delta_{0}=0, \quad \Delta_{1}=0 \quad \text { and } \quad \Delta_{2}=t^{2}-1+t^{-1}
$$

It contradicts $\Delta_{2}(t) \doteq \Delta_{2}\left(t^{-1}\right)$. Hence, M_{1} is ∂-irreducible.
We will see $H_{1}(M ; Z)$. We choose the generators for $H_{1}\left(M_{1} ; Z\right), H_{1}\left(M_{2} ; Z\right)$ and $H_{1}(F ; Z)$ represented by curves indicated in Figure 2. Then we have

$$
\begin{aligned}
& H_{1}\left(M_{1} ; Z\right) \cong\left\langle a_{1}, a_{2}:\right\rangle, \quad H_{1}\left(M_{2} ; Z\right) \cong\langle x, y, z: 2 z=0\rangle \\
& \text { and } H_{1}(F ; Z) \cong\left\langle m_{1}, m_{2}, l_{1}, l_{2}:\right\rangle
\end{aligned}
$$

as abelian group presentations. By the homomorphism i_{1} (or i_{2}) induced by the inclusion map from F to M_{1} (or M_{2}, respectively), the generators of $H_{1}(F ; Z)$ are mapped as follows;

$$
\begin{aligned}
& i_{1}\left(m_{1}\right)=a_{1}, \quad i_{1}\left(m_{2}\right)=a_{2}, \quad i_{1}\left(l_{1}\right)=0, \quad i_{1}\left(l_{2}\right)=0, \\
& i_{2}\left(m_{1}\right)=x, \quad i_{2}\left(m_{2}\right)=-x, \quad i_{2}\left(l_{1}\right)=y \quad \text { and } \quad i_{2}\left(l_{2}\right)=y .
\end{aligned}
$$

with $\underset{z}{\longrightarrow}$ by \sim

$$
F \times\{1\} / \sim \subset M_{2}
$$

Figure 2.

Hence we have

$$
\begin{aligned}
H_{1}(M ; Z) & \cong\left\langle a_{1}, a_{2}, x, y, z: 2 z=0, a_{1}=x, a_{2}=-x, y=0\right\rangle \\
& \cong\langle x, z: 2 z=0\rangle \\
& \cong Z \oplus Z_{2}
\end{aligned}
$$

This completes the proof.
Let $J, J^{\prime} \subset S^{s}$ be τ-invariant non trivial knots such that J contains the fixed points of τ, and J^{\prime} does not contain them. Let $M_{3}=\overline{S^{3}-N(J)}$ and $M_{4}=\overline{S^{3}-N\left(J^{\prime}\right)}$, where $N(J)$ and $N\left(J^{\prime}\right)$ are τ-invariant regular neighborhoods of J and J^{\prime}. We may assume that $N\left(J^{\prime}\right)$ does not contain the fixed points of τ.

Note that we can construct a homology 3-sphere M_{5} with $\pi_{1}\left(M_{5}\right)$ infinite, by $M_{5}=M_{3} \cup_{h} M_{4}$, where h is a homeomorphism of ∂M_{4} onto ∂M_{3} which carries a preferred longitude of $\partial N\left(J^{\prime}\right)$ to a meridian of $\partial N(J)$. Then, M_{5} admits an orientation reversing involution induced by τ on M_{3} and M_{4}.

PROOF OF THEOREM 1. Let $G \cong(\oplus) Z) \oplus Z_{2} \oplus Z_{p_{1}} \oplus Z_{p_{2}} \oplus \cdots \oplus Z_{p_{r}} \oplus Z_{p_{1}} \oplus Z_{p_{2}}$ $\bigoplus \cdots \bigoplus Z_{p_{r}}\left(s \geqq 1, r \geqq 0, p_{1}, p_{2}, \cdots, p_{r} \in Z\right)$. Let $K_{1}, K_{2}, \cdots, K_{s-1}, L_{1}, L_{2}, \cdots, L_{r}$
$\subset M_{4} \subset M_{5}$ be $r+s-1$ knots and $T \subset M_{4} \subset M_{5}$ the graph same as in the proof of Lemma 3 which satisfy the following conditions;
(1) K_{1}, \cdots, K_{s-1} and T are τ-invariant,
(2) $K_{1}, \cdots, K_{s-1}, L_{1}, \cdots, L_{r}, \tau\left(L_{1}\right), \cdots, \tau\left(L_{r}\right)$ and T are mutually disjoint,
(3) $\left[K_{i}\right] \neq 1,\left[L_{i}\right] \neq 1,[T] \neq 1$ in $\pi_{1}\left(M_{5}\right)$,
(4) each two of $K_{1}, \cdots, K_{s-1}, L_{1}, \cdots, L_{r}, \tau\left(L_{1}\right), \cdots, \tau\left(L_{r}\right)$ and T have the linking number 0 in M_{5}, and
(5) none of knots contains the fixed point of τ.

For example we can choose such knots and graph as Figure 3. Remove a small τ-invariant regular open neighborhood of $\bigcup_{i=1}^{s-1} K_{i} \cup \bigcup_{j=1}^{\tau}\left(L_{j} \cup \tau\left(L_{j}\right)\right) \cup T$ from M_{5}, and attach $s-1$ copies of $M_{4}=\overline{S^{3}-N\left(J^{\prime}\right)}, 2 r$ copies of a non trivial knot exterior

Figure 3.
$\overline{S^{3}-N(L)}$ and a twisted I-bundle as follows;
(1) $\partial N(T)$ is identified with the boundary of a twisted I-bundle as in the proof of Lemma 3,
(2) $\partial N\left(K_{i}\right)(i=1, \cdots, s-1)$ is identified with a copy of $\partial M_{4}=\partial N\left(J^{\prime}\right)$ so that a preferred longitude is a preferred longitude of $\partial N\left(J^{\prime}\right)$,
(3) $\partial N\left(L_{i}\right)(i=1, \cdots, r)$ is identified with a copy of $\partial\left(\overline{S^{3}-N(L)}\right)=\partial N(L)$ so that a preferred longitude of $\partial N\left(L_{i}\right)$ is a curve linking with $L p_{i}$-times in S^{3}, and
(4) $\partial N\left(\tau\left(L_{i}\right)\right)(i=1, \cdots, r)$ is identified with a copy of $\partial\left(\overline{S^{3}-N(L)}\right)=\partial N(L)$ so that the attaching homeomorphism commutes with τ.

We call the resulting manifold M. We can see that M has the required first integral homology group. The irreducibility of M follows from the irre-
ducibility and ∂-irreducibility of each part of M. Note that every non trivial knot exterior is irreducible and ∂-irreducible.

This completes the proof.

3. Proof of Theorem 2.

Lemma 4. There exists a closed orientable irreducible 3-manifold M admitting an orientation reversing involution with $H_{1}(M ; Z) \cong Z_{2} \oplus Z_{2 n} \oplus Z_{2 n}(n \in Z)$.

Proof. Let $B_{i}(i=1,2,3)$ be a 3 -ball and τ_{i} an orientation reversing involution of B_{i} with one fixed point. Let $D_{i} \subset \partial B_{i}$ be a 2 -disk such that $D_{i} \cap \tau_{i}\left(D_{i}\right)=\varnothing(i=1,2,3)$, and $D_{2}^{\prime} \subset \partial B_{2}$ a 2-disk such that $D_{2}, \tau_{2}\left(D_{2}\right), D_{2}^{\prime}$ and $\tau\left(D_{2}^{\prime}\right)$ are mutually disjoint. We will attach four 1-handles to them, one from D_{1} to D_{2}, one from $\tau_{1}\left(D_{1}\right)$ to $\tau_{2}\left(D_{2}\right)$, one from D_{2}^{\prime} to D_{3}, and one from $\tau_{2}\left(D_{2}^{\prime}\right)$ to $\tau_{3}\left(D_{3}\right)$. We call the resulting manifold $M_{6} . M_{6}$ is topologically a handlebody of genus two and admitting an orientation reversing involution τ which extends τ_{1}, τ_{2} and τ_{3}. Let α and β be generators of $H_{1}\left(M_{6} ; Z\right)$ as in Figure 4. We choose knots K_{1} and K_{2} which satisfy the following conditions;
(1) K_{1} is τ-invariant and contains two of fixed points,
(2) K_{2} does not contain any fixed point,
(3) $\left[K_{1}\right]=\alpha \in H_{1}\left(M_{6} ; Z\right)$ and $\left[K_{2}\right]=\beta \in H_{1}\left(M_{6} ; Z\right)$, and
(4) K_{1}, K_{2} and $\tau\left(K_{2}\right)$ are mutually disjoint
(see Figure 4). Note that $\left[\tau\left(K_{2}\right)\right]=-\beta \in H_{1}\left(M_{6} ; Z\right)$.

Figure 4.
Remove a small τ-invariant regular open neighborhood of $K_{1} \cup K_{2} \cup \tau\left(K_{2}\right)$ from M_{6}. For K_{1}, consider $M_{4}=\overline{S^{3}-N\left(J^{\prime}\right)}$ (the same M_{4} as in the section 2) and
identify $\partial N\left(K_{1}\right)$ with $\partial N\left(J^{\prime}\right)$ so that a preferred longitude of $\partial N\left(J^{\prime}\right)$ is a meridian of $\partial N\left(K_{1}\right)$. For K_{2} and $\tau\left(K_{2}\right)$, consider two copies of a non trivial knot exterior $\overline{S^{3}-N(L)}$. Identify $\partial N\left(K_{2}\right)$ and $\partial N\left(\tau\left(K_{2}\right)\right)$ with two copies of $\partial N(L)$ so that a preferred longitude of one copy of $\partial N(L)$ is a curve C on $\partial N\left(K_{2}\right)$ with $[C]=n \gamma_{1}+\beta \in H_{1}\left(\overline{M_{6}-N\left(K_{2}\right) \cup N\left(\tau\left(K_{2}\right)\right)} ; Z\right)$, and a preferred longitude of another copy is a curve C^{\prime} on $\partial N\left(\tau\left(K_{2}\right)\right)$ with $\left[C^{\prime}\right]=n \gamma_{2}-\beta \in$ $H_{1}\left(\overline{M_{6}-N\left(K_{2}\right) \cup N\left(\tau\left(K_{2}\right)\right)} ; Z\right)$, where γ_{1} and γ_{2} are new generators created by removing $N\left(K_{2}\right)$ and $N\left(\tau\left(K_{2}\right)\right)$ from M_{6} (see Figure 4). We call the resulting manifold M_{7}. Then we have

$$
H_{1}\left(M_{7} ; Z\right) \cong\left\langle\alpha, \beta, \gamma_{1}, \gamma_{2}: \quad n \gamma_{1}+\beta=0, n \gamma_{2}-\beta=0\right\rangle .
$$

By this construction, we can see that M_{7} has an orientation reversing involution which is an extension of τ on M_{6} and S^{3}.

Let $F=\partial M_{7}$ (an orientable closed surface of genus two) and M_{8} a quotient space of $F \times I$ by an identification map of $F \times\{1\} ;(x, 1) \sim\left(\tau^{\prime}(x), 1\right)$, where $\tau^{\prime}=\left.\tau\right|_{F}$. Then M_{8} is a twisted I-bundle over a non orientable closed surface, and M_{8} has a canonical involution induced by τ^{\prime}.

Let $M=M_{7} \cup_{h} M_{8}$ where h is the identity map of the boundary F, then M has an orientation reversing involution.

We can see $H_{1}(M ; Z)$ by using $\partial M_{7}=\partial M_{8}=F$ and the inclusion maps i_{1} and i_{2} as in the proof of Lemma 3. We choose the generators for $H_{1}\left(M_{8} ; Z\right)$ and $H_{1}(F ; Z)$ represented by curves indicated in Figure 5.

Dotted lines are identified with arrowed lines by \sim.

$$
F \times\{1\} / \sim \subset M_{8}
$$

$$
F=\partial M_{7}=\partial M_{8}
$$

Figure 5.
Then we have

$$
\begin{aligned}
& H_{1}\left(M_{8} ; Z\right) \cong\langle x, y, z: 2 x+2 y+2 z=0\rangle \text { and } \\
& H_{1}(F ; Z) \cong\left\langle m_{1}, m_{2}, l_{1}, l_{2}:\right\rangle .
\end{aligned}
$$

It is easy to check that

$$
\begin{aligned}
& i_{1}\left(m_{1}\right)=\gamma_{1}+\gamma_{2}, \quad i_{1}\left(m_{2}\right)=0, \quad i_{1}\left(l_{1}\right)=\beta, \quad i_{1}\left(l_{2}\right)=\alpha, \quad i_{2}\left(m_{1}\right)=2 x, \\
& i_{2}\left(m_{2}\right)=2 z, \quad i_{2}\left(l_{1}\right)=x+y+2 z \quad \text { and } \quad i_{2}\left(l_{2}\right)=2 x+y+z .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& H_{1}(M ; Z) \cong\left\langle\alpha, \beta, \gamma_{1}, \gamma_{2}, x, y, z: \quad n \gamma_{1}+\beta=0, n \gamma_{2}-\beta=0,2 x+2 y+2 z=0,\right. \\
&\left.\quad \gamma_{1}+\gamma_{2}=2 x, 2 z=0, \beta=x+y+2 z, \alpha=2 x+y+z\right\rangle \\
& \cong\left\langle\gamma_{2}, x, z: \quad 2 n \gamma_{2}=0,2 n x=0,2 z=0\right\rangle \\
& \cong Z_{2} \oplus Z_{2 n} \oplus Z_{2 n} .
\end{aligned}
$$

For the irreducibility of M, as in the proof of Lemma 3, we only prove the irreducibility and ∂-irreducibility of each part of M. A non trivial knot exterior and a twisted I-bundle over a closed surface clearly have these properties. Hence we shall prove it for $\overline{M_{6}-N\left(K_{1}\right) \cup N\left(K_{2}\right) \cup N\left(\tau\left(K_{2}\right)\right)}$, denote by M_{6}^{\prime}.

Suppose S is an essential 2 -sphere in M_{6}^{\prime}, then S is also a 2 -sphere in the handlebody M_{6}. Since a handlebody is irreducible, S bounds a 3-ball B in M_{6}. Hence B contains at least one of K_{1}, K_{2} or $\tau\left(K_{2}\right)$. Since K_{1}, K_{2} and $\tau\left(K_{2}\right)$ are not contractible in the handlebody, it is impossible. Hence M_{6}^{\prime} is irreducible.

Suppose D is an essential 2 -disk in M_{6}^{\prime}. Since K_{1}, K_{2} and $\tau\left(K_{2}\right)$ are not contractible in the handlebody $M_{6}, \partial D$ is not on either $\partial N\left(K_{1}\right), \partial N\left(K_{2}\right)$ or $\partial N\left(\tau\left(K_{2}\right)\right)$. Hence ∂D is on ∂M_{6}, and we may regard that D is a proper 2-disk in M_{6}. If D did not separate M_{6}, then D must cut a curve representing the generators of $\pi_{1}\left(M_{6}\right)$. But we choose K_{1}, K_{2} and $\tau\left(K_{2}\right)$ to be such curves. Hence it is impossible. If ∂D was trivial in $\pi_{1}\left(\partial M_{6}\right)$, then D with a disk on ∂M_{6} bounds a 3-ball, and this 3-ball must contain K_{1}, K_{2} or $\tau\left(K_{2}\right)$. But it is impossible, because K_{1}, K_{2} and $\tau\left(K_{2}\right)$ are not contractible in M_{6}. The remaining possibility is the case when D separates M_{6} into M^{\prime} and $M^{\prime \prime}$, and ∂D is non trivial in $\pi_{1}\left(\partial M_{6}\right)$. In this case, D represents the amalgamating subgroup of $\pi_{1}\left(M_{6}\right) \cong Z * Z$, hence $\pi_{1}\left(M^{\prime}\right) \cong \pi_{1}\left(M^{\prime \prime}\right) \cong Z$. Note that the knots K_{1} and K_{2} are chosen to be generators of $\pi_{1}\left(M_{6}\right) \cong Z * Z \cong\langle\alpha, \beta$: \rangle and $\left[\tau\left(K_{2}\right)\right]=\beta^{-1} \in \pi_{1}\left(M_{6}\right)$ (now, we consider α and β in Figure 4 are the generators of $\pi_{1}\left(M_{6}\right)$, ignoring the base point). Hence K_{2} and $\tau\left(K_{2}\right)$ are homotopic without meeting D, so without meeting K_{1}. But it is impossible. Hence M is ∂-irreducible.

This completes the proof.
Proof of Theorem 2. Let $G \cong Z_{2} \oplus Z_{2 n} \oplus Z_{2 n} \oplus Z_{p_{1}} \oplus Z_{p_{2}} \oplus \cdots \oplus Z_{p_{r}} \oplus Z_{p_{1}} \oplus$ $Z_{p_{2}} \oplus \cdots \oplus Z_{p_{r}}\left(r \geqq 0, n, p_{1}, p_{2}, \cdots, p_{r} \in Z\right)$. We consider knots $L_{1}, L_{2}, \cdots, L_{r}$ and L^{\prime} in M_{5} (M_{5} is the homology 3-sphere in the section 2), such that L^{\prime} is τ invariant, $L_{1}, L_{2}, \cdots, L_{r}, \tau\left(L_{1}\right), \tau\left(L_{2}\right), \cdots, \tau\left(L_{r}\right)$ and L^{\prime} are mutually disjoint,
and $\left[L_{i}\right] \neq 1,[L] \neq 1$ in $\pi_{1}\left(M_{5}\right)(i=1,2, \cdots, r)$. We will do like as in the proof of Theorem 1. Remove a small τ-invariant regular neighborhood of $\bigcup_{i=1}^{r}\left(L_{i} \cup \tau\left(L_{i}\right)\right) \cup L^{\prime}$ from M_{5}, and attach $2 r$ copies of a non trivial knot exterior to $\partial N\left(L_{i}\right)$ and $\partial N\left(\tau\left(L_{i}\right)\right)(i=1,2, \cdots, r)$ for the required torsion of G. We call the resulting manifold M_{9}.

We will construct the same manifold as in the proof of Lemma 4, but for $\partial N\left(K_{1}\right)\left(\subset M_{6}\right)$, we will attach M_{9} so that a preferred longitude of $\partial N\left(L^{\prime}\right)=\partial M_{9}$ is a meridian of $\partial N\left(K_{1}\right)$.

By this construction, the resulting manifold has the required first integral homology group. And the irreducibility of the manifold follows from the irreducibility and the ∂-irreducibility of each part.

This completes the proof.
Acknowledgement. The author is very grateful to Prof. A. Kawauchi for suggesting the question. She is also very grateful to Prof. Y. Nakanishi and Prof. M. Sakuma for valuable advice and kindness. She would like to express her hearty thanks to Prof. F. Hosokawa for introducing her to the study of low dimensional topology.

References

[1] R.H. Crowell and R.H. Fox, Introduction to knot theory, Ginn and Company, BostonNew York, 1963.
[2] J. Hempel, 3-manifolds, Ann. of Math. Studies, 86, Princeton University Press, Princeton N. J., 1976.
[3] W. Jaco, Lectures on three-manifold topology, Regional Conference Series in Math., 43, Amer. Math. Soc., Providence, Rhode Island, 1980.
[4] A. Kawauchi, On 3-manifolds admitting orientation-reversing involutions, J. Math. Soc. Japan, 33 (1981), 571-589.
[5] S. Suzuki, Alexander ideals of graphs in the 3-sphere, Tokyo J. Math., 7 (1984), 233-247.

Masako Kobayashi
Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-ku, Osaka 558 Japan

