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1. Introduction.

The purpose of this paper is to present some results related to the Teichm\"uller

spaces. Let $\Gamma$ be a Fuchsian group acting on the upper half plane $U=\{{\rm Im} z>0\}$ .
Then the Teichm\"uller space $T(\Gamma)$ is represented as a bounded domain in the
Banach space $B(U^{*}, \Gamma)$ of bounded quadratic differentials for $\Gamma$ in the lower
half plane $U^{*}$ (Bers [1]). We consider the function $\varphi_{\alpha}(z)=\alpha z^{-2},$ $\alpha\in C$ , defined
in $U^{*}$ . Let $F_{a}$ be a solution of the differential equation $\{f, z\}=\varphi_{a}(z)$ , where
$\{f, z\}=(f’/f’)’-(1/2)(f’/f’)^{2}$ denotes the Schwarzian derivative of $f$. Then it
is known that $F_{\alpha}$ is univalent in $U^{*}$ if and only if $\alpha$ belongs to the set $V=$

$\{\alpha=(1-re^{2i\theta})/2;r\leqq 4\cos^{2}\theta, 0\leqq\theta<\pi\}([4,5])$ . Since it has such a simple form,
the function $\varphi_{a},$

$\alpha\in V$, cannot belong to $T(\Gamma)$ unless $\Gamma$ is one of some elementary
groups (see Section 4). However if we are allowed to vary $\Gamma$ in its quasicon-
formal equivalence class, we obtain the following result:

THEOREM A. Let $Q_{U}(\Gamma)$ be the set of all quasiconformal automorphisms of
$U$ compatjble with $\Gamma$ . If $\Gamma$ contains a hyPerbolic element, then for each $\alpha\in V$

there exzsts a sequence $w_{n},$ $n=1,2,$ $\cdots$ , in $Q_{U}(\Gamma)$ wzth an element $\varphi_{n}\in T(w_{n}\circ\Gamma$

$\circ w_{\overline{n}}^{1})$ such that $\varphi_{n}$ converges normally (uniformly on every compact subsets of $U^{*}$ )

to $\varphi_{\alpha}$ in $U^{*}$ .

The motivation of this theorem originates from a problem related to the
outradii of Teichm\"uller spaces. By a theorem of Nehari [8] the outradius $o(\Gamma)$

of $T(\Gamma)$ does not exceed 6. The following theorem shows that this value 6 is
sharp within the range of the quasiconformal equivalence class.

THEOREM B. Set $\mathcal{O}(\Gamma)=\sup\{o(w\circ\Gamma\circ w^{-1}); w\in Q_{U}(\Gamma)\}$ . Then the equality
$O(\Gamma)=6$ holds if $0<\dim T(\Gamma)$ .

Actually if $\Gamma$ is of the second kind, Theorem $B$ is trivially deduced from
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the equality $o(\Gamma)=6$ , which is established by Sekigawa and Yamamoto $[12, 13]$ .
However for any finitely generated Fuchsian group $\Gamma$ of the first kind, $o(\Gamma)$ is
strictly less than 6 (Sekigawa [11]). Chu showed in [2] an example of a
sequence $\Gamma_{n},$ $n=1,2,$ $\cdots$ , of finitely generated Fuchsian groups of the first kind
such that $o(\Gamma_{n})$ converges to 6, but the topological structure of the surface
$U/\Gamma_{n}$ becomes more and more complicated as $n$ increases. We remark that
Theorem $B$ gives an amelioration of Chu’s result, namely,

COROLLARY. Let $\sigma=(g;\nu_{1}, \cdots , \nu_{n})(g\geqq 0,2\leqq\nu_{1}\leqq\cdots\leqq\nu_{n}\leqq\infty)$ be a signature
(for the definition, see $e.g$ . $[6$ , p. 57]) satisfyng (i) $2g-2+ \sum_{j=1}^{n}(1-1/\nu_{j})>0$ , and
(ii) $3g-3+n>0$ , then

$\sup$ { $o(\Gamma);\Gamma$ is a Fuchsian group with the signature $\sigma$ } $=6$ .
Note that the condition (ii) implies that $T(\Gamma)$ is not a single point. Since

two Fuchsian groups with the same signature are quasiconformally equivalent
to each other, thus this corollary follows.

The author owes much to Prof. H. Yamamoto with whom he has discussed
the subject matter during his preparation of this paper. The author also ex-
press his deepest gratitude to Prof. Y. Kusunoki for his continual encourage-
ment and useful suggestions.

2. Preliminaries.

In the following $D$ denotes the unit disk $\Delta=\{|z|<1\}$ or the upper half plane
$U$, and $D^{*}$ denotes the exterior of $\overline{D}$ in the Riemann sphere $\hat{C}$ . Let $\Gamma$ be a
Fuchsian group acting discontinuously on $D$ and hence also on $D^{*}$ . We denote
by $B(D^{*}, \Gamma)$ the space of bounded quadratic differentials for $\Gamma$ in $D^{*}$ . In other
words a holomorphic function $\varphi$ in $D^{*}$ belongs to $B(D^{*}, \Gamma)$ if and only if (i)
$\varphi(\gamma z)\gamma’(z)^{2}=\varphi(z)$ for all $\gamma\in\Gamma$ and all $z\in D^{*}$ , and (ii) the norm is finite, $i$ . $e.,$ $\Vert\varphi\Vert_{D^{*}}$

$= \sup_{z\in D*}\lambda(z)^{-2}|\varphi(z)|<\infty$ , where $\lambda(z)$ is the density of the hyPerbolic metric on $D^{*}$

which has constant (Gaussian) curvature $-4$ . Then $\lambda(z)=(|z|^{2}-1)^{-1}$ for $D^{*}=\Delta^{*}$ ,
and $\lambda(z)=(-2{\rm Im} z)^{-1}$ for $D^{*}=U^{*}$ . A quasiconformal automorphism $w$ of $\hat{C}$ is
said to be compatible with $\Gamma$ if $w\circ\gamma\circ w^{-1}$ is a Mobius transformation for each
$\gamma\in\Gamma$ . Then the Teichm\"uller space $T_{D^{*}}(\Gamma)$ is the set of all $\varphi$ of $B(D^{*}, \Gamma)$ with
the following property: There is a quasiconformal automorphism $w_{\varphi}$ of $\hat{C}$ com-
Patible with $\Gamma$ such that $w_{\varphi}$ is conformal in $D^{*}$ and its Schwarzian derivative
$\{w_{\varphi}|_{D}., z\}$ coincides with $\varphi$ . If $\Gamma$ is the trivial group {id}, we abbreviate
$T_{D*}(\{id\})$ to $T_{D*}(1)$ and call it the universal Teichm\"uller space. Then for any
$\Gamma$, $T_{D}.(\Gamma)$ is included in $T_{D}.(1)$ . Suppose that $\Gamma$ acts on $U$. By using the
M\"obius transformation $h(z)=-i(z-1)/(z+1)$ we define the mapping $h^{*}$ which
takes $\varphi$ of $B(U^{*}, \Gamma)$ into $(\varphi\circ h)h’(z)^{2}$ of $B(\Delta^{*}, h^{-1}\circ\Gamma\circ h)$ . Then we can see that
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$h^{*}$ is an isometry of $B(U^{*}, \Gamma)$ onto $B(\Delta^{*}, h^{-1}\circ\Gamma oh)$ and that $h^{*}T_{U*}(\Gamma)=$

$T_{\Delta*}(h^{-1}\circ\Gamma\circ h)$ . By this mapping $h^{*}$ we may identify these two Teichm\"uller

spaces and in the following argument we shall replace the notations $T_{D*}(\Gamma)$ and
$\Vert\varphi\Vert_{D*}$ by $T(\Gamma)$ and $\Vert\varphi\Vert$ respectively, when the domain $D$ is not specified and
no confusion will arise. The outradius $o(\Gamma)$ of $T(\Gamma)$ is defined to be sup{ $\Vert\varphi\Vert$ ;
$\varphi\in T(\Gamma)\}$ . By a theorem of Nehari [8] the inequality $o(\Gamma)\leqq 6$ holds.

3. Behaviour of quadratic differentials.

Let $\Gamma$ be a Fuchsian group acting on $D$ ( $=U$ or $\Delta$). We denote by $Q_{D}(\Gamma)$

the set of all quasiconformal automorphisms $w$ of $D$ compatible with $\Gamma$ , that is,
$w\circ\Gamma\circ w^{-1}$ is also a Fuchsian group acting on $D$ . The quotient space $R_{\Gamma}=D/\Gamma$

is a Riemann surface with the hyperbolic metric induced by that on $D$ .
In the following we set $D=U$ and assume that $\Gamma$ contains at least one

hyperbolic element $\gamma$ . We consider a sequence $w_{n},$ $n=1,2,$ $\cdots$ , in $Q_{U}(\Gamma)$ with the
following property:

(3.1) $\gamma_{n}=w_{n}\circ\gamma\circ w_{n}^{-1}$ is of the form $zarrow\lambda_{n}z$ , where $\lambda_{n}>1$ , and $\lambda_{n}arrow 1$ as $narrow\infty$ .
An example of such a sequence is obtained by the method described in the proof
of Theorem 11 in Bers’s paper [1], namely by squeezing a simple closed curve
on $R_{\Gamma}$ . In that paper Bers considered only finitely generated groups, but the
extremal length method which he employed there is applicable to infinitely
generated ones. (See also the proof of Theorem 3 in [1].)

Let $w_{n},$ $n=1,2,$ $\cdots$ , be a sequence in $Q_{U}(\Gamma)$ with the property (3.1). We
choose an element $\varphi_{n}$ from each $T(\Gamma_{n})$ , where $\Gamma_{n}=w_{n}\circ\Gamma\circ w_{n}^{-1}$ . The Nehari
theorem yields the inequality $|\varphi_{n}(z)|\leqq 3/2({\rm Im} z)^{2}$ in $U^{*}$ . Hence the $\varphi_{n}’ s$ are
locally uniformly bounded in $D^{*}$ and then form a normal family. Let $V$ be the
set $\{\alpha=(1-re^{2i\theta})/2;r\leqq 4\cos^{2}\theta, 0\leqq\theta<\pi\}$ .

PROPOSITION 3.1. Let $\{\varphi_{n_{\nu}}\}_{\nu=1}^{\infty}$ be a subsequence of $\{\varphi_{n}\}_{n\approx 1}^{\infty}$ which converges
normally to a function $\varphi_{\infty}$ in $U^{*}$ . Then $\varphi_{\infty}(z)=\alpha z^{-2}$ for some $\alpha\in V$.

PROOF. For convenience we replace the notations $\Gamma_{n_{\nu}},$ $\{\varphi_{n_{\nu}}\}$ by $\Gamma_{n},$ $\{\varphi_{n}\}$

respectively. We set $\varphi_{n}(z)=z^{-2}P_{n}(z)$ for $n=1,2,$ $\cdots$ ; and $n=\infty$ . Then obviously
$P_{n},$ $n=1,2,$ $\cdots$ , converges normally to $P_{\infty}$ in $U^{*}$ . To show that $P_{\infty}$ is constant
in $U^{*}$ , we have only to show that $P_{\infty}$ is constant along the negative imaginary
axis $I$ . Recall that under the condition (3.1) $\Gamma_{n}$ contains an element of the form
$\gamma_{n}(z)=\lambda_{n}z$ . By substituting $\gamma_{n}$ for $\gamma$ in the equality $\varphi_{n}(\gamma z)\gamma’(z)^{2}=\varphi_{n}(z)$ , which
holds for all $\gamma\in\Gamma_{n}$ , we obtain that $P_{n}(\lambda_{n}z)=P_{n}(z)$ . Set $z=-i$ and take an
arbitrary point $w=-ri$ on $I$ . Let $\epsilon>0$ be given. By the equicontinuity of the
family $\{P_{n}\}$ , we can choose $\delta>0$ so that $|P_{n}(\zeta)-P_{n}(w)|<\epsilon$ holds for each $n$

whenever $|\zeta-w|<\delta$ . Since $\lambda_{n}$ converges to 1, if $N$ is taken to be sufficiently
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large, then every set $\{\lambda_{n}^{\nu}z;\nu=0, \pm 1, \pm 2, \}$ for $n>N$ intersects the $\delta$-neigh-
bourhood of $w$ , and so $|P_{n}(w)-P_{n}(z)|=|P_{n}(w)-P_{n}(\lambda_{n}^{v_{n}}z)|<\epsilon$ holds for a suitable
choice of integer $\nu_{n}$ . Hence the inequality

$|P_{\infty}(w)-P_{\infty}(z)|<|P_{\infty}(w)-P_{n}(w)|+|P_{n}(z)-P_{\infty}(z)|+\epsilon$

holds and by letting $narrow\infty$ it follows that $|P_{\infty}(w)-P_{\infty}(z)|<\epsilon$ . Since $\epsilon$ is arbitrary,
the equality $P_{\infty}(w)=P_{\infty}(z)$ follows. Thus $P_{\infty}$ is constant along $I$ , and hence so
is it in $U^{*}$ . Set $P_{\infty}\equiv\alpha$ . Then $\varphi_{n}$ converges normally to $\alpha z^{-2}$ in $U^{*}$ .

Next, to show that $\alpha$ belongs to $V$, we use the mapping $h^{*}$ defined in the
previous section, which maps $T_{U*}(\Gamma_{n})$ onto $T_{\Delta*}(h^{-1}\circ\Gamma_{n}\circ h)$ for each $n$ . Set $\psi_{n}$

$=h^{*}\varphi_{n}$ . Then $\psi_{n}$ converges normally to $\psi_{\infty}(z)=4\alpha(z^{2}-1)^{-2}$ in $\Delta^{*}$ (with respect
to the spherical metric of $\hat{C}$ ). Due to the fact which is proved in [4], we need
only to show that a solution of the differential equation $\{f, z\}=\psi_{\infty}(z)$ is uni-
valent in $\Delta^{*}$ . Let $F_{n}$ be the solution of the equation $\{F_{n}, z\}=\psi_{n}(z)$ such that
$F_{n}(z)=z+O(|z|^{-1})$ as $|z|arrow\infty$ . Since $\psi_{n}$ belongs to $T_{\Delta*}(h^{-1}\circ\Gamma_{n}\circ h),$ $F_{n}$ is univalent
in $\Delta^{*}$ for all $n$ . Then by taking a subsequence if necessary we may assume
that $F_{n}$ converges to a univalent function $F_{\infty}$ in $\Delta^{*}$ ([9, Theorem 1.7]). By the
classical Cauchy’s integral formula, the k-th derivative $F_{n}^{(k)}$ of $F_{n}$ (in particular
for $k=1,2,3$) converges normally to $F_{\infty}^{(k)}$ , and so $\{F_{n}, z\}$ converges normally to
$\{F_{\infty}, z\}$ . Hence the univalent function $F_{\infty}$ satisfies the equation $\{F_{\infty}, z\}=\psi_{\infty}(z)$ .
Now we complete the proof of the proposition.

PROOF OF THEOREM A. First let $\alpha$ be an interior point of the set $V$. Let
$\{w_{n}\}$ be a sequence in $Q_{U}(\Gamma)$ with the property (3.1). Then the Fuchsian group

$\Gamma_{n}=w_{n}\circ\Gamma\circ w_{n}^{-1}$ contains the element $\gamma_{n}(z)=\lambda_{n}z$ with $\text{\‘{A}}_{n}arrow 1$ as $narrow\infty$ . Here we
may assume that $\gamma_{n}$ is Primitive in $\Gamma_{n},$ $i$ . $e.$ , if $\gamma_{n}=\gamma^{\nu}$ for an element $\gamma$ of $\Gamma_{n}$ ,
then $\nu=\pm 1$ . Let $K_{n}$ be the subgroup of $\Gamma_{n}$ which consists of all elements
keeping the imaginary axis invariant. Then $K_{n}$ is either the cyclic group $\langle\gamma_{n}\rangle$

generated by $\gamma_{n}$ or an extension of $\langle\gamma_{n}\rangle$ of index 2. For the latter case, by a
conjugation of $\Gamma_{n}$ by a Mobius transformation of the form $zarrow\tau z(\tau>0)$ we may
assume that the elliptic transformation $\eta(z)=1/z$ belongs to $K_{n}$ . We may
assume that $\gamma_{n}$ represents a simple closed geodesic on $R_{\Gamma_{n}}=U/\Gamma_{n}$ or on a two
sheeted covering of $R_{\Gamma_{n}}$ . Then the collar lemma (see $e$ . $g$ . $[3]$ ) provides the sector
$S_{n}=\{z\in U;\theta_{n}<\arg z<\pi-\theta_{n}\}$ , where $\log([cosec]\theta_{n}+\cot\theta_{n})=(2\sinh(\log\sqrt{\lambda_{n}}))^{-1}$ ,
with the following property: $\gamma S_{n}=S_{n}$ for $\gamma\in K_{n}$ and $\gamma S_{n}\cap S_{n}=\emptyset$ otherwise.
Note that $\theta_{n}arrow 0$ as $narrow\infty$ .

For a technical reason we change the context of our argument to the unit
disk $\Delta$ . To this end, we use the Mobius transformation $h(z)=i(1-z)/(1+z)$ and
set $G_{n}=h^{-1}\circ\Gamma_{n}\circ h,$ $H_{n}=h^{-1}\circ K_{n}\circ h$ and $T_{n}=h^{-1}S_{n}$ . Then $G_{n}$ acts discontinuously
on $\Delta\cup\Delta^{*}$ . The subregion $T_{n}$ of $\Delta$ is symmetric about the interval $-1<x<1$ ,
and bounded by the two circular arcs which meet each other at $\pm 1$ with the
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angle $\pi-2\theta_{n}$ . The group $H_{n}$ coincides with the stabilizer $(G_{n})_{T_{n}}=\{g\in G_{n}$ ;
$gT_{n}=T_{n}\}$ of $T_{n}$ . Furthermore $H_{n}$ consists of the transformations

$z arrow\frac{(1+\lambda_{n}^{\nu})z+(1-\lambda_{n}^{\nu})}{(1-\lambda_{n}^{\nu})z+(1+\lambda_{n}^{\nu})}$ , $\nu=0,$ $\pm 1,$ $\pm 2,$ $\cdots$

and (if $H_{n}$ contains elliptic elements)

$z arrow\frac{(1+\lambda_{n}^{\nu})z-(1-\lambda_{n}^{\nu})}{(1-\lambda_{n}^{\nu})z-(1+\lambda_{n}^{\nu})}$ , $\nu=0,$ $\pm 1,$ $\pm 2,$ $\cdots$

since $h^{-1_{\circ}}\eta\circ h$ belongs to $H_{n}$ .
As the point at infinity $\infty$ belongs to $\Delta^{*}$ , in the following we use the

spherical metric of $\hat{C}$ when we consider the convergence of functions. To com-
plete the proof it suffices to choose $\psi_{n}$ from $T(G_{n}),$ $n=1,2,$ $\cdots$ , so that $\psi_{n}$ con-
verges to $4\alpha(z^{2}-1)^{-2}$ in $\Delta^{*}$ . Set $\delta=(1-2\alpha)^{1/2}$ with ${\rm Re}\delta>0$ . Then with the
assumption that $\alpha$ is in the interior of $V$, we have that $|\delta-1|<1$ . Following
Kalme [5] we define a continuous mapping $W_{\alpha}$ : $\hat{C}arrow\hat{C}$ by using the above
Mobius transformation $h$ as follows:

(3.2)$W_{a}(z)=\{\begin{array}{l}-2i\delta(-i)^{\delta}/(h(z)\overline{h(z)}^{\delta-1}-(-i)^{\delta}) for z\in\overline{\Delta}, -2i\delta(-i)^{\delta}/(h(z)^{\delta}-(-i)^{\delta}) for z\in\Delta^{*},\end{array}$

where we choose an arbitrary, but fixed branch of $z^{\delta}$ in $U^{*}$ . The mapping $W_{\alpha}$

is conformal in $\Delta^{*}$ , satisfies that $W_{a}(z)=z+O(|z|^{-1})$ as $|z|arrow\infty$ , and in $\Delta$ has the
Beltrami coefficient $\mu_{a}(z)=(W_{\alpha})_{\overline{z}}/(W_{a})_{z}=(\delta-1)(1-z^{2})/(1-\overline{z}^{2})$ . Thus $W_{\alpha}$ is a
quasiconformal automorphism of $\hat{C}$ . Furthermore $\{W_{\alpha}|_{\Delta*}, z\}=4\alpha(z^{2}-1)^{-2}$ . We
remark that

(3.3) $\mu_{\alpha}(g(z))\overline{g’(z)}/g’(z)=\mu_{a}(z)$

holds for all $g\in H_{n}$ . Next we construct a sequence of Beltrami coefficients
$\mu_{n},$ $n=1,2,$ $\cdots$ , defined in $\Delta$ with the following properties:

(3.4) $\Vert\mu_{n}\Vert_{\infty}=|\delta-1|$ , and $\mu_{n}$ converges to $\mu_{\alpha}$ almost everywhere in $\Delta$ , and

(3.5) $\mu_{n}(g(z))\overline{g’(z)}/g’(z)=\mu_{n}(z)$ for all $g\in G_{n}$ .
To do this, let $\{g_{i}\}_{i=0}^{\infty}(g_{0}=id)$ be the set of representatives of the left cosets
$G_{n}/H_{n}$ . Then by using the function $\mu_{\alpha}$ we set

(3.6)$\mu_{n}(z)=\{\begin{array}{l}\mu_{a}(w)g_{i}’(w)/g_{i}’(w) for z=g_{i}(w), w\in T_{n}, 0 for z\in\Delta-U_{t=0}^{\infty}g_{i}(T_{n}).\end{array}$

Since $g_{i}T_{n}\cap g_{j}T_{n}=\emptyset$ for $i\neq j,$ $\mu_{n}$ is well defined. By (3.3), (3.6) and the fact
that $H_{n}=(G_{n})_{T_{n}}$ , we can see easily that $\mu_{n}$ satisfies both the statements (3.4)

and (3.5). The Lebesgue measure of $\Delta-T_{n}$ diminishes as $narrow\infty$ and eventually
becomes $0$ . Hence $\mu_{n}$ converges to $\mu_{a}$ in measure and then a subsequence
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$4\alpha_{n_{j}},$ $j=1,2,$ $\cdots$ , converges to $\mu_{\alpha}$ almost everywhere in $\Delta$ ([10, pp. 91-92]). By
replacing the notation $\{\mu_{n_{j}}\}$ by $\{\mu_{n}\}$ we obtain the desired sequence.

Let $W_{n}$ be the quasiconformal automorphism of $\hat{C}$ such that $(W_{n})_{\overline{z}}=\mu_{n}(W_{n})_{z}$

in $\Delta,$ $(W_{n})_{\overline{z}}=0$ in $\Delta$ “ and $W_{n}(z)=z+O(|z|^{-1})$ as $|z|arrow\infty$ . Under this normaliza-
tion at $z=\infty$ , for each $R>1,$ $|W_{n}(z)|\leqq 2R$ for $|z|<R$ holds, since $W_{n}$ is con-
formal in $\Delta^{*}$ ([9, Corollary 1.3]). Then it follows that the family $\{W_{n}\}$ of
$(1+|\delta-1|)/(1-|\delta-1|)$ -quasiconformal automorphisms is normal. By abuse of
language a uniformly convergent subsequence is denoted again by $\{W_{n}\}$ . By
the normalization $W_{n}(z)=z+O(|z|^{-1})$ as $|z|arrow\infty$ , the limit function $W_{\infty}$ is not
constant and hence a quasiconformal automorphism of $\hat{C}([7$ , p. 29, Theorem
5.2]). Then we obtain that $W_{\infty}=W_{\alpha}$ in $\hat{C}$ , because both functions satisfy the
same Beltrami equation and the normalization condition at $\infty([7$ , p. 187, Theorem
5.2]). In particular the conformal mapping $W_{n}|_{\Delta*}$ converges uniformly to $W_{a}|_{\Delta*}$

in $\Delta^{*}$ , and therefore $\psi_{n}=\{W_{n}|_{\Delta*}, z\}$ converges normally to $4\alpha(z^{2}-1)^{-2}$ in $\Delta^{*}$ .
Finally from (3.5) it follows that $\psi_{n}$ belongs to $T(G_{n})$ . Thus we proved the
theorem for $\alpha$ which is in the interior of $V$.

We assume next that $\alpha$ is on the boundary of $V$. We denote by $F_{\alpha}^{*}$ the
conformal mapping in $\Delta^{*}$ defined by the second expression in (3.2) for $\delta=(1-$

$2\alpha)^{1/2}$ . Set $\alpha_{k}=(1-(1/k))\alpha(k=1, 2, )$ . Then $\alpha_{k}$ belongs to the interior of $V$,
and so we can construct as above a sequence $W_{n,k},$ $n=1,2,$ $\cdots$ , of quasicon-
formal automorphisms of $\hat{C}$ compatible with $G_{n}$ which converge uniformly to
$W_{\alpha_{k}}$ . On the other hand, $W_{a_{k}}|_{\Delta*}$ converges uniformly to $F_{a}^{*}$ in $\Delta^{*}$ . Hence by
a suitable choice of sufficiently large $n(k),$ $k=1,2,$ $\cdots$ , the sequence $W_{n(k).k}|_{\Delta*}$

converges uniformly to $F_{a}^{*}$ in $\Delta^{*}$ . Then $\psi_{n(k),k}=\{W_{n(k).k}, z\}$ converges normally
to $\{F_{\alpha}^{*}, z\}=4\alpha(z^{2}-1)^{-2}$ in $\Delta^{*}$ . We have already seen that $\psi_{n(k),k}$ belongs to
$T(G_{n(k)})$ . Thus we complete the proof of Theorem A.

4. A remark on Theorem A.

The question naturally arises whether or not in the statement of Theorem
A the sequence $\{\varphi_{n}\}$ can be chosen so that $\varphi_{n}$ converges to $\varphi_{\alpha}$ in cl $T(1)$ , the
closure of $T(1)$ in the Banach space $B$( $U^{*}$ , {id}). This is true if $\Gamma$ is either a
cyclic group $\langle\gamma\rangle$ generated by a hyperbolic transformation $\gamma(z)=\lambda z,$ $\lambda>1$ , or an
extension of $\langle\gamma\rangle$ of index 2. Indeed in these cases we can see that $\varphi_{\alpha},$

$\alpha\in V$,
belongs to the closure of $T(\Gamma)$ in $B(U^{*}, \Gamma)$ by considering the mapping $W_{\alpha}\circ h^{-1}$ ,
where $W_{\alpha}$ and $h$ are as in the previous section. However in general we can
give a negative answer to this question.

PROPOSITION 4.1. In the statement of Theorem $A$ , supp0se that $\Gamma$ is neither
a hyperb0lic cyclic group $\langle\gamma\rangle$ nor an extension of $\langle\gamma\rangle$ of index 2. Then for each
$\alpha\neq 0$ and for any choice of a normally cmvergent sequence $\{\varphi_{n}\}$ to $\varphi_{a},$ $\varphi_{n}$ does
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not converge to $\varphi_{a}$ in cl $T(1)$ .

PROOF. From the assumption it follows that $\Gamma$ and hence $\Gamma_{n}(=w_{n}\circ\Gamma\circ w_{n}^{-1})$

are not elementary groups. Then the limit set of $\Gamma_{n}$ consists of infinitely many
points and in particular there are infinitely many hyperbolic fixed points of $\Gamma_{n}$ .
Since $\varphi_{n}$ converges to $\varphi_{\alpha}$ normally in $U^{*}$ , there is a number $N>0$ such that
the inequality $4({\rm Im} z_{0})^{2}|\varphi_{n}(z_{0})|>2|\alpha|>0$ holds for $z_{0}=-i$ whenever $n>N$. Let
$\eta$ be a hyperbolic element of $\Gamma_{n}$ whose attractive fixed point $q$ is neither $0$ nor
$\infty$ . Since $\varphi_{n}$ is a quadratic differential for $\Gamma_{n}$ , it follows that

(4.1) $4({\rm Im}\eta^{\nu}(z_{0}))^{2}|\varphi_{n}(\eta^{v}(z_{0}))-\varphi_{a}(\eta^{\nu}(z_{0}))|$

$\geqq 4({\rm Im} z_{0})^{2}|\varphi_{n}(z_{0})|-4|\alpha|({\rm Im}\eta^{\nu}(z_{0}))^{2}/|\eta^{\nu}(z_{0})|^{2}$ ,

for each integer $\nu$ . On the other hand $\eta^{\nu}(z_{0})$ converges to the real number
$q(\neq 0)$ as $\nuarrow\infty$ . Hence $({\rm Im}\eta^{\nu}(z_{0}))^{2}/|\eta^{\nu}(z_{0})|^{2}arrow 0$ as $\nuarrow+\infty$ . Thus by letting $\nuarrow$

$+\infty$ , we obtain with (4.1) that $\Vert\varphi_{n}-\varphi_{\alpha}\Vert\geqq 2|\alpha|$ for $n>N$. Hence $\varphi_{n}$ does not
converge to $\varphi_{\alpha}$ in cl $T(1)$ . Q. E. D.

5. Proof of Theorem B.

Now we shall give a proof of Theorem B. If $\Gamma$ contains no hyperbolic
elements, then $\Gamma$ is necessarily elementary, namely the limit set of $\Gamma$ consists
of at most two points. In this case, $\Gamma$ is of the second kind and then $o(\Gamma)=6$

follows from [13]. In particular we have that $O(\Gamma)=6$ . If $\Gamma$ contains a hy-
perbolic element, then by Theorem A we can choose a sequence $\{w_{n}\}_{n=1}^{\infty}$ in
$Q_{U}(\Gamma)$ and quadratic differentials $\varphi_{n}\in T(\Gamma_{n}),$ $\Gamma_{n}=w_{n}\circ\Gamma\circ w_{n}^{-1}$ , which converge
normally to $\varphi(z)=(-3/2)z^{-2}$ , since $-3/2\in V$. Note that the value $\Vert\varphi\Vert=6$ is
attained at each point on the negative imaginary axis. Hence it follows in
particular at $z_{0}=-i$ that

$4({\rm Im} z_{0})^{2}|\varphi_{n}(z_{0})|arrow 4({\rm Im} z_{0})^{2}|\varphi(z_{0})|=6$ .
On the other hand the Nehari theorem yields that $\Vert\varphi_{n}\Vert\leqq o(\Gamma_{n})\leqq 6$ . Therefore
$o(\Gamma_{n})$ converges to 6, and hence the equality $O(\Gamma)=6$ holds. Thus we complete
the proof of Theorem B.
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