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Let $k$ be a perfect valuation field and let $R$ be a local analytic k-algebra,
which is always assumed to be Cohen-Macaulay. In the present paper we are
interested in the category $C(R)$ of maximal Cohen-Macaulay modules. Hence the
objects in $C(R)$ are finitely generated modules $M$ with equality depth$(M)=\dim(R)$ .
We say that $C(R)$ is of finite representation type provided that there are only
finite number of isomorphic classes of indecomposable objects in $C(R)$ . Analytic
algebras with $C(R)$ of finite representation type are recently studied by various
authors and they actually become well-understandable objects in ring theory.
In fact, if $k$ is algebraically closed of characteristic $0$ , then a Gorenstein algebra
has $C(R)$ of finite representation type only when it is a simple hypersurface
singularity [10]. Moreover if $R$ has dimension 2, then the finiteness of re-
presentation type of $C(R)$ is equivalent to that $R$ is a quotient singularity.
See Artin-Verdier [1], Auslander [4] and Herzog [14]. In the case of dimension
1, such finiteness is characterized by the condition that $R$ dominates a simple
plane curve as is shown by Greuel-Knorrer [13]. See also Kn\"orrer [19] and
Kiyek. Steinke [20].

In this paper we will give a certain sufficient condition for $C(R)$ to be of
finite representation type in the case $R$ has only an isolated singularity. Pre-
cisely, if there is an upper bound for multiplicities of indecomposable modules
in $C(R)$ , then $C(R)$ is of finite representation type. See (1.4). This is, of course,
an analogous result to Brauer-Thrall conjecture or Roiter-Auslander theorem for
Artin rings. We will also show that the corresponding result of the Auslander-
Reiten theory for Artin algebras is valid for the category $C(R)$ . See Theorem
(1.1). It should be noted that these results will fail unless $R$ is an isolated
singularity. (Cf. (1.6).)

Precise statement of our main theorem will be given in Section 1 and the
subsequent sections will be devoted to a proof and an application of the theorem.

In Section 2 we will discuss a method which reduces some problems into

This research was partially supported by Grant-in-Aid for Scientific Research (No.

61540029), Ministry of Education, Science and Culture



720 Y. YOSHINO

Artinian case. The main tool in this section is the Noether different, by which
we can take a good system of parameters making this reduction effective.

In Section 3 we will give a proof of the theorem by using the results ob-
tained in Section 2. Roughly speaking, our method of proof is along the way
given by Yamagata [28] for Artinian case.

In Section 4 an application of Theorem (1.1) will be given, where we prove
the following: Let $R$ be a 2-dimensional normal Gorenstein local analytic
algebra over an algebraically closed field of characteristic $0$ . Assume that $R$ is
not a Klein singularity. Then, for any integer $n$ , there are infinitely many
classes of indecomposable reflexive modules of rank $n$ .

In APpendix we summarize some definitions and results from Auslander-
Reiten theory for $C(R)$ , where we will give a direct and easy proof of Auslander’s
theorem: $C(R)$ admits Auslander-Reiten sequences if and only if $R$ is an isolated
singularity. The author believes that, for commutative algebraists, this aP-
pendix would be a good introduction to the Auslander-Reiten theory for the
category $C(R)$ .

\S 1. The main theorem.

Let $k$ be a valuation field, $i$ . $e$ . there is a mapping $v$ from $k$ to $R^{+}$ satisfy-
ing $v(O)=0,$ $v(ab)=v(a)v(b)$ and $v(a+b)\leqq v(a)+v(b)$ for any $a,$ $b\in k$ . The con-
vergent power series ring $k\{x_{1}, x_{2}, \cdots , x_{n}\}$ over $k$ is a k-algebra consisting of
power series $\sum a_{i_{1}i_{2}\cdots i_{n}}x_{1}^{i_{1}}x_{2}^{t_{2}}\cdots x_{n}^{i_{n}}$ with the property that there are positive real
numbers $r_{1},$

$\cdots$ , $r_{n}$ and $M$ satisfying $v(a_{i_{1}i_{2}\cdots i_{n}})r_{1}^{i_{1}}r_{2}^{i_{2}}\cdots r_{n}^{i_{n}}\leqq M$ for any $i_{1},$ $i_{2},$
$\cdots,$

$i_{n}$ .
Note that if the valuation is trivial, then $k\{x_{1}, x_{2}, \cdots , x_{n}\}$ will be a formal
power series ring over $k$ . A local analytic k-algebra is a commutative local
ring which is module-finite over a convergent power series ring over $k$ . In
the rest of this paper we always assume that $k$ is a perfect field and a local
analytic k-algebra $R$ is Cohen-Macaulay with the maximal ideal $\mathfrak{m}$ .

For a local analytic k-algebra $R$ we denote the category of maximal Cohen-
Macaulay (abbr. MCM) modules over $R$ by $C(R)$ which is a full subcategory of
the category of all finitely generated R-modules. Recall that the objects in
$C(R)$ are finite R-modules $M$ with equality depth$(M)=\dim(R)$ . Since $R$ is a
Hensel ring, a module $M$ in $C(R)$ is indecomposable if and only if $End_{R}(M)$ is
local. In particular, the category $C(R)$ admits the Krull-Schmidt theorem. $C(R)$

is said to be of finite representation type if there are only a finite number of
isomorphic classes of indecomposable objects in $C(R)$ . We are mainly concerned
witb this Property of $C(R)$ in this paper.

For a finitely generated R-module $M$ and for a large integer $n$ it is known
that the length of $M/\mathfrak{m}^{n}M$ is a polynomial in $n$ of degree $\dim(M)$ and the co-
efficient of $n^{\dim(R)}$ is in the form $e(M)/\dim(R)!$ with $e(M)$ an integer. This
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number $e(M)$ is called the multiplicity of $M$ with respect to the maximal ideal
$\mathfrak{m}$ . Note that, if $R$ is an integral domain, then one has the equality: $e(M)=$

$e(R)\cdot rank(M)$ . Also note that, if $M$ is an MCM module and if $\mathfrak{X}=\{x_{1}, x_{2}, \cdots, x_{d}\}$

is a system of parameters for $R$ , then it holds that $e(M)\leqq 1ength(M/\mathfrak{X}M)\leqq$

$n^{d}e(M)$ where $n$ is the least integer with $\mathfrak{m}^{n}\subset \mathfrak{X}R$ . For more detail see Nagata
[22].

Let $\Gamma$ denote the AR-graph for the category $C(R)$ . See Appendix for the
definition and the properties of AR-graphs. A subgraph $\Gamma’$ of $\Gamma$ is said to be
of bounded multiplicity type if there is a bound for multiplicities of indecom-
posable MCM modules corresponding to vertices in $\Gamma’$ . Note that, if $R$ is an
integral domain, then this is the case only when there is a bound for ranks of
such modules. Also note that, for a system of parameters $\mathfrak{X}=\{x_{1}, x_{2}, \cdots , x_{d}\}$ ,
$\Gamma’$ is of bounded multiplicity type if and only if there is a bound for lengths
of $M/XM$ for $M$ belonging to $\Gamma’$ . It is obvious that any finite subgraph of $\Gamma$

is of bounded multiplicity type.
We are now ready to state our main theorem.

THEOREM (1.1). Let $\Gamma^{o}$ be a connected compOnent of $\Gamma$. Assume that $R$ has
only an isolated srngulanty and assume that $\Gamma^{o}$ is of bounded $multipli\alpha ty$ type.
Then $\Gamma=\Gamma^{O}$ and $\Gamma$ is a finite graph. In Particular, $C(R)$ is offinite represmta-
tion type.

REMARK (1.2). Replacing analytic algebras, the category of MCM modules
and multiplicities respectively by (noncommutative) Artin algebras, the category
of finitely generated modules and lengths, then the corresponding result to (1.1)

is known as one of the main results of Auslander-Reiten theory. See Auslander-
Reiten [7] or Ringel [24].

As corollaries of this theorem we obtain the following.

COROLLARY (1.3). Let $R$ be an isolated singularity. If $\Gamma$ has a finite con-
nected component $\Gamma^{o}$ , then $\Gamma=\Gamma^{o}$ and hence $C(R)$ is of finite representation
type.

COROLLARY (1.4) (Brauer-Thrall type theorem). Let $R$ be an isolated sin-
gulanty as above. If there is a bound for $multipli\alpha ties$ of indecomposable MCM
modules over $R$ , then $C(R)$ is of fimte representation type.

REMARK (1.5). The corresponding result to (1.4) for (noncommutative)

Artin algebras is known as Brauer-Thrall conjecture or Roiter-Auslander theorem.
Cf. Auslander [2], Ringel [24] and Roiter [25].

Our theorem will not be valid unless $R$ is an isolated singularity. We give
an example in the following which makes Corollary (1.4) fail.
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EXAMPLE (1.6). Let $R=k\{x, y\}/(x^{2})$ and let $I_{n}$ be an ideal of $R$ generated
by $\{x, y^{n}\}$ for any integer $n>0$ and set $I_{0}=R$ and $I_{\infty}=xR$ . Then $\{I_{n}|0\leqq n\leqq\infty\}$

is the complete list of non-isomorphic indecomposable MCM modules over $R$ .
In particular $C(R)$ is not of finite representation type. On the other hand,
$e(I_{n})=2$ for any $n$ .

PROOF. Let $T=k\{y\}$ . Then $R$ is a finite T-algebra and any MCM module
is free over $T$. Thus giving an MCM module $M$ over $R$ is equivalent to giving
a T-algebra map $f_{H}$ from $R$ into a matrix algebra over $T$ and this is also
equivalent to giving a square matrix $A_{M}$ with elements in $T$ and with $A_{H}^{2}=0$

(by taking $f_{H}(x)=A_{H}$). It can be also shown that two MCM modules $M$ and $N$

are R-isomorphic if and only if $A_{K}=PA_{N}P^{-1}$ for some invertible matrix with
elements in $T$. Thus the classification of all MCM modules over $R$ is the same
as the classification of square-zero matrices over $T$ up to equivalence. Since $T$

is a discrete valuation ring, it is easily seen that any square-zero matrix is
equivalent to a matrix of the following form;

$(\begin{array}{lllllllll}0 \cdots\vdots 0*0 \cdots \cdots \cdots \cdots \cdots 0\vdots \vdots 0* \vdots 0 \vdots \vdots \ddots \cdots \cdots 00 \cdots 00 \vdots 00 \cdots * \cdots \cdots \cdots 0\vdots \vdots \vdots * \vdots\vdots \vdots \vdots 0 \vdots\vdots \vdots \vdots . \vdots 0 \vdots 00 \cdots \cdots \cdots \cdots \cdots 0\end{array})$

.
It is therefore easy to see that an MCM module $M$ is indecomposable if and only
if $A_{M}$ is equivalent to one of the following matrices;

(0), $(\begin{array}{ll}0 10 0\end{array})$ or $(\begin{array}{ll}0 y^{n}0 0\end{array})$ for some integer $n>0$ .

These matrices correspond to $I_{\infty},$ $I_{0}$ and $I_{n}$ respectively.

\S 2. Noether different and MCM modules.

As in the previous section $k$ always denotes a perfect valuation field and $R$

is a local analytic k-algebra which is Cohen-Macaulay. Taking a system of
parameters $\mathfrak{X}=\{x_{1}, x_{2}, \cdots , x_{d}\}$ for $R$ , we can form a convergent power series
ring $T=k\{x_{1}, x_{2}, \cdots , x_{d}\}$ where $d$ is the dimension of $R$ . Note that $R$ is
always module-finite over $T$ and hence it is T-free, for $R$ being Cohen-Macaulay.

Now let $R^{e}$ be the enveloping algebra $R\otimes_{T}R$ of $R$ over $T$ and let $\mu:R^{e}arrow R$

be the multiplication mapping. The Noether different $\mathfrak{N}_{T}^{R}$ of $R$ over $T$ is de-
fined as follows;
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$\mathfrak{N}_{T}^{R}=\mu(Ann_{Re}(Ker(\mu)))$ .
If $R$ is reduced (and Cohen-Macaulay) then $\mathfrak{N}_{T}^{R}$ coincides with the Dedekind
different $\mathcal{D}_{T}^{R}$ which is defined as follows;

$\mathcal{D}_{T}^{R}=\{f(Sp)\in R|f\in Hom_{R}(Hom_{T}(R, T), R)\}$ ,

where Sp denotes the trace map of the total quotient ring $Q(R)$ of $R$ over the
quotient field $Q(T)$ of $T$. This is also equal to the inverse ideal of $c_{T}^{R}=$

$\{x\in Q(R)|Sp(xR)\subset T\}$ . For more detail see Scheja-Storch [27]. We say that a
sytem of parameters $\mathfrak{X}$ is separable if the extension $Q(R)/Q(T)$ is separable.
If this is the case, then it is known that Of is an ideal of pure height 1 (purity

of branch locus), in particular it is non-trivial. Thus we have

(2.1) If $R$ is a Cohen-Macaulay local analytic k-algebra which is reduced and
if $\mathfrak{X}=\{x_{1}, x_{2}, \cdots , x_{d}\}$ is a separable system of parameters for $R$ , then $\mathfrak{N}_{T}^{R}$ is an
ideal of Pure height 1 where $T=k\{x_{1}, x_{2}, \cdots , x_{d}\}$ .

We also note here that there always exists a separable system of parameters
for a reduced analytic algebra $R$ , for $k$ is perfect. See Scheja-Storch [26].

The following is one of the most important property of Noether differents.

(2.2) Let $R$ be a T-algebra as above and let $M$ be any $R^{e}$-module ($i.e.$ R-
bimodule with $T$ acting centrally). Then $\mathfrak{N}_{T}^{R}$ annihilates the i-th Hochschild co-
homology $H_{T}^{i}(R, M)$ for $i>0$ . (For the Hochschild cohomology see Hochschild [16]

or Pierce [23].)

As a special case of this we see the following.

(2.3) $\mathfrak{N}_{T}^{R}$ defines the ramification locus of $Spec(R)$ over $Spec(T)$ . I. $e$ . for a
prime ideal $P$ of $R,$ $R_{P}$ is ramified over $T_{P\cap T}$ if and only if $P$ contains $\mathfrak{N}_{T}^{R}$ .

From these observations we have the following

LEMMA (2.4). Let $\{P_{1}, P_{2}, \cdots , P_{n}\}$ be a set of pnme ideals of $R$ with the
pr0perty that each $R_{P_{i}}$ ($i=1,2,$ $\cdots$ , n) is a regular local ring of same dimension
$t$ . Then there is a system of parameters $\{x_{1}, x_{2}, \cdots , x_{d}\}$ for $R$ such that
$\mathfrak{N}_{ktx_{1}.x_{2}\ldots..x_{d}1}^{R}$ is not contained in any $P_{i}$ $(i=1,2, \cdots , n)$ .

PROOF. Let $S$ denote the set $R- \bigcup_{i}P_{i}$ which is multiplicatively closed in $R$ .
Note that $S^{-1}R$ is a semi-local ring with maximal ideals $P_{i}(S^{-1}R)$ , $1\leqq i\leqq n$ .
Since $R_{P_{i}}=(S^{-1}R)_{P_{i}(S^{-1}R)}$ is a regular local ring of dimension $t$ , one can choose
a set of elements $\{x_{1}, x_{2}, \cdots , x_{t}\}$ in $R$ which forms a regular system of para-
meters for each $R_{P_{i}},$ $1\leqq i\leqq n$ . Thus $(x_{1}, x_{2}, \cdots , x_{t})R_{p_{i}}=P_{i}R_{P_{i}}$ for any $i$ . Since
$R/(x_{1}, x_{2}, \cdots , x_{t})R$ is a reduced analytic algebra over $k$ and since $k$ is perfect,
there is a separable system of parameters $\{x_{t+1}, x_{t+2}, \cdots, x_{d}\}$ for $R/(x_{1}, x_{2}, \cdots, x_{t})R$ .



724 Y. YOSHINO

Consider the power series ring $T=k\{x_{1}, x_{2}, \cdots , x_{d}\}$ . Note that $(x_{1}, x_{2}, \cdots , x_{t})T$

$=P_{i}\cap T$ for any $i(1\leqq i\leqq n)$ , which we denote by $p$ . Then it is easy to show
that each $R_{P_{i}}(1\leqq i\leqq n)$ is unramified over $T_{p}$ , for $R_{P_{i}}/pR_{P_{i}}$ is a separable ex-
tension of $T_{p}/pT_{p}$ . Thus by (2.3) we conclude that $P_{i}$ does not contain $\mathfrak{N}_{T}^{R}$ .

Now we define an ideal of $R$ which seems to be a good invariant of an
analytic algebra $R$ .

DEFINITION (2.5). $\mathfrak{N}^{R}=\sum \mathfrak{N}_{k1x_{1}.x,,\cdots,x_{d^{I}}}^{R}$ where $\{x_{1}, x_{2}, \cdots , x_{d}\}$ ranges through
all systems of parameters for $R$ .

As a corollary of Lemma (2.4) we see that $\mathfrak{N}^{R}$ has the following property.

COROLLARY (2.6). $\mathfrak{N}^{R}$ defines the singular locus of $Spec(R)$ , that is, for a
Prime ideal $P$ of $R,$ $R_{P}$ is regular if and only if $P$ does not contain $\mathfrak{N}^{R}$ .

PROOF. If $P$ does not contain $\mathfrak{N}^{R}$ , then $P$ does not contain $\mathfrak{N}_{T}^{R}$ for some
$T=k\{x_{1}, x_{2}, \cdots , x_{d}\}$ . Thus $R_{P}$ is unramifie over $T_{P\cap T}$ by (2.3), which implies
that $R_{P}$ is regular. On the other hand, assume that $R_{P}$ is regular. Then by
(2.4) $P$ does not contain $\mathfrak{N}_{T}^{R}$ for some $T=k\{x_{1}, x_{2}, \cdots , x_{d}\}$ , in particular, it does
not contain $\mathfrak{N}^{R}$ .

REMARK (2.7). If $R=T[x]/(f(x))$ , then it is known that $\mathfrak{N}_{T}^{R}$ is an ideal
generated by the derivative $f’(x)$ . Thus in the case $R$ is a hypersurface
$k\{x_{1}, x_{2}, \cdots , x_{d+1}\}/(f),$ $\mathfrak{N}^{R}$ is generated by derivatives $\partial f/\partial x_{i}$ , $1\leqq i\leqq d+1$ . By
this fact we are able to see the assumption that $k$ is a perfect field is indispens-
able in Corollary (2.6). For example, if there is an element $a$ in $k$ which is
not in $k^{p}$ where $P$ is the characteristic of $k$ , then consider a k-algebra $R=$

$k\{x, y\}/(x^{p}+ay^{p})$ . In this example, $R$ is an integral domain of dimension 1,
hence an isolated singularity, though $\mathfrak{N}^{R}=0$ .

COROLLARY (2.8). If $R$ has only an isolated singularity, then one can choose
a system of Parameters $\mathfrak{X}=\{x_{1}, \chi_{2}\cdots , x_{d}\}$ for $R$ which satisfies the condition;

$(2.8.*)$ for any $i(1\leqq i\leqq d)$ there is a regular subring $T_{i}$ of $R$ on which $R$ is finite
and $x_{l}$ belongs to the Noether different $\mathfrak{N}_{\tau_{i}}^{R}$ .

PROOF. By the induction on $j(1\leqq j\leqq d)$ , one can choose a part of system
of parameters $\{x_{1}, x_{2}, \cdots , x_{j}\}$ for $R$ , such that $x_{i}$ belongs to $\mathfrak{N}_{\tau_{i}}^{R}$ for some $T_{i}$

$(1\leqq i\leqq j)$ . This is obvious if $j=1$ since $\mathfrak{N}_{T}^{R}$ is an ideal of pure height 1 for
some regular subring $T$ of $R$ . For $2\leqq j<d$ , assume that $\{x_{1}, x_{2}, \cdots x_{j-1}\}$ are
already chosen. Then by (2.4) there is some $T_{j}$ with the property that $\mathfrak{N}_{T_{j}}^{R}$ is
not contained in any minimal prime ideals of $(x_{1}, x_{2}, \cdots , x_{j-1})R$ . Thus there is
an elelment $x_{j}$ in $\mathfrak{N}_{\tau_{j}}^{R}$ , such that, $\{x_{1}, x_{2}, \cdots , x_{j}\}$ form a subsystem of parameters
for $R$ .
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Such a system of parameters satisfying the condition $(2.8.*)$ will play a cen-
tral role in the rest of this paper. The following proposition will be a key for
using these parameters.

PROPOSITION (2.9). Let $\mathfrak{X}=\{x_{1}, x_{2}, \cdots , x_{d}\}$ be a system of parameiers for
$R$ satisfying the condition $(2.8.*)$ and let $M,$ $N$ be MCM modules over R. $We$

denote by $\mathfrak{X}^{(n)}$ the ideal of $R$ generated by $\{x_{1}^{n}, x_{2}^{n}, \cdots , x_{d}^{n}\}$ . Then for any R-
homomorphism $\varphi$ from $M/\mathfrak{X}^{(2)}M$ to $N/\mathfrak{X}^{(2)}N$, there exists an $R$-homomorPhism
$\psi$ from $M$ to $N$ such that $\varphi\otimes R/\mathfrak{X}R=\psi\otimes R/\mathfrak{X}R$ .

PROOF. By the induction on $i(0\leqq i\leqq d)$ we prove the following

(2.9.i) there is an R-homomorphism $\varphi_{i}$ from $M/(x_{1}^{2}, \cdots , x_{i}^{2})MtoN/(x_{1}^{2}, \cdots , x_{i}^{2})N$

such that $\varphi_{i}\otimes R/\mathfrak{X}R=\varphi\otimes R/\mathfrak{X}R$ .

$\varphi_{d}=\varphi$ is given and there is nothing to prove for $i=d$ . Assume that $\varphi_{i+1}$ is
already constructed $(0\leqq i\leqq d-1)$ . It is enough to show the existence of $\varphi_{t}$ from
$M/(x_{1}^{2}, \cdots , x_{i}^{2})M$ to $N/(x_{1}^{2}, \cdots , x_{i}^{2})N$ satisfying $\varphi_{i}\otimes R/(x_{1}^{2}, \cdots , x_{i}^{2}, x_{i+1})R=\varphi_{i+1}\otimes$

$R/(x_{1}^{2}, \cdots, x_{i}^{2}, x_{i+1})$ . For the simplicity we denote an ideal generated by $\{x_{1}^{2}, \cdots , x_{i}^{2}\}$

(respectively $\{x_{1}^{2},$ $\cdots$ , $x_{i}^{2},$ $x_{i+1}\}$ ) by $\mathcal{Y}_{i}$ (respectively $\mathcal{Z}_{i}$). Since $N$ is an MCM
module over $R$ , we have the commutative diagram with exact rows;

$x_{i+1}^{2}$

$0arrow N/\mathcal{Y}_{i}^{N}arrow N/\mathcal{Y}_{i}^{N}arrow N/\mathcal{Y}_{i+1}Narrow 0$

$0arrow N/\mathcal{Y}_{i}Nx_{i+1}\downarrowarrow N/\mathcal{Y}_{i}Nx_{i+1}\Vertarrow N/\mathcal{Z}_{i}N\downarrowarrow 0$

.
Applying the functor $Hom_{\tau_{i+1}}(M, )$ to this diagram where $T_{i+1}$ being as in $(2.8.*)$ ,
we obtain the following diagram;

$0arrow Hom_{T_{i+1}}(M, N/\mathcal{Y}_{i}N)arrow Hom_{\tau_{i+1}}(M, N/\mathcal{Y}_{i}N)arrow Hom_{T_{l+1}}(M, N/\mathcal{Y}_{i+1}N)arrow 0$

$\downarrow x_{i+1}$ $\Vert$ $\downarrow$

$0arrow Hom_{\tau_{i+1}}(M, N/\mathcal{Y}_{i}N)arrow Hom_{\tau_{l+1}}(M, N/\mathcal{Y}_{i}N)arrow Hom_{T_{i+1}}(M, N/\mathcal{Z}_{i}N)arrow 0$

where the rows are exact, since $M$ is a free $T_{i+1}$-module. Note that these rows
are also exact sequences of R-bimodules. (The left (resp. right) action of $R$ on
$Hom(M, N’)$ is given as the one induced from the action on $N’$ (resp. $M$ ) $.$ )

Noting that $H_{\tau_{i+1}}^{0}(R, Hom_{T_{i+1}}(M, N’))=Hom_{R}(M, N’)$ for any R-modules $M$ and
$N’$ , we now get the commutative diagram with exact rows by taking Hochschild
cohomology functor;

$0arrow Hom_{R}(M, N/q_{i}N)arrow Hom_{R}(M, N/1j_{i}N)arrow Hom_{R}(M, N/\mathcal{Y}_{i+1}N)arrow H_{T}^{1}:+1(R, Hom_{T_{i+1}}(M, N/\eta_{i}N))$

$0arrow Hom_{R}(MN/cy_{\mathfrak{t}}N)arrow Hom_{R}(M, N/y_{i}N)arrow Hom_{R}(M,N/\mathcal{Z}_{i}N)\downarrow,\Vert\downarrowarrow H_{r_{i+1}}^{I}(R, Hom_{r_{\mathfrak{t}+1}}(M, N/y_{i}N))\downarrow x_{i+1}$

.
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By (2.2) and by our choice of $x_{i+1}$ and $T_{i+1}$ in $(2.8.*)$ we show that $x_{i+1}$ on the
right vertical arrow induces the trivial map. Therefore an easy diagram chas-
ing shows that for any $\varphi_{i}$ in $Hom_{R}(M, N/\mathcal{Y}_{i+1}N)$ there is $\varphi_{i+1}$ in $Hom_{R}(M, N/\mathcal{Y}_{i}N)$

such that $\varphi_{i}\otimes R/\mathcal{Z}_{i}R=\varphi_{i+1}\otimes R/\mathcal{Z}_{i}R$ . This completes the proof of the proposi-
tion.

As a direct consequence of Proposition (2.9) we obtain the following

PROPOSITION (2.10). Let $\mathfrak{X}=\{x_{1}, x_{2}, \cdots , x_{d}\}$ be a system of parameters for $R$

which satisfies the con&tion $(2.8.*)$ and let $M$ be an MCM module over R. Then
$M$ is an indecomposable R-module if and only if $M/\mathfrak{X}^{(2)}M$ is indecompOsable.

PROOF. If $M$ is decomposable, then it is obviously true that $M/\mathfrak{X}^{(2)}M$ is
also decomposable. Conversely assume that $M$ is indecomposable. Take an
idempotent $e$ in $End_{R}(M/\mathfrak{X}^{(2)}M)$ . We want to prove that either $e=1$ or $0$ .
There is a commutative diagram of natural ring homomorphisms;

Now we denote by $A$ the image of $\alpha$ which is also local, for it is a homomorphic
image of the local algebra End$(M)$ . It then follows from Proposition (2.9) that
$\beta(e)$ belongs to $A$ . Since $e^{2}=e,$ $\beta(e)$ is also an idempotent of $A$ , hence either
$\beta(e)=1$ or $0$ . If $\beta(e)=0$ , then $e(M/\mathfrak{X}^{(2)}M)\subset \mathfrak{X}(M/\mathfrak{X}^{(2)}M)$ hence $e=0$ , for $e^{2}=e$ .
If $\beta(e)=1$ , then $\beta(1-e)=0$ hence by the above $e=1$ .

We also obtain from (2.9) the following

PROPOSITION (2.11). Let $\mathfrak{X}=\{x_{1}, x_{2}, \cdots , x_{d}\}$ be as in (2.10) and let $s:0arrow N$

$arrow Earrow Marrow Oqp$ be an exact sequence in the category $C(R)$ . Denote by $\tilde{s}$ the sequence
obtained from $s$ by temonng $R/\mathfrak{X}^{(2)}R.\cdot$

$S$ :
$0arrow N/\mathfrak{X}^{(2)}Narrow^{q^{\tilde}}E/\mathfrak{X}^{(2)}Earrow^{p^{\tilde}}M/\mathfrak{X}^{(2)}Marrow 0$ .

(Note that $\hat{s}$ is also exact, for $\mathfrak{X}$ is a regular sequence on $M.$ ) If $g$ is sPlit, then
so is $s$ .

PROOF. Assume $s\sim$ is split, that is, there is $f$ in $Hom_{R}(M/\mathfrak{X}^{(2)}M, E/\mathfrak{X}^{(2)}E)$

such that $\tilde{p}\cdot f$ is the identity on $M/\mathfrak{X}^{(2)}M$. Proposition (2.9) shows that there
is $g$ in $Hom_{R}(M, E)$ such that $g\otimes R/\mathfrak{X}R=f\otimes R/\mathfrak{X}R$ . Thus $(P\cdot g)\otimes R/\mathfrak{X}R=$

$(p\otimes R/\mathfrak{X}R)\cdot(g\otimes R/\mathfrak{X}R)$ is the identity mapping on $M/\mathfrak{X}M$. In particular we
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see by Nakayama lemma that $P\cdot g$ is an epimorphism, then it must be an auto-
morphism on $M$. This shows $s$ being a split sequence.

The next proposition will be useful later.

PROPOSITION (2.12). Let $\mathfrak{X}=\{x_{1}, x_{2}, \cdots, x_{d}\}$ be as in (2.9) and let $M,$ $N$ be
in&compOsable MCM modules over R. If $M/\mathfrak{X}^{(2)}M$ is isomorphjc to $N/\mathfrak{X}^{(2)}N$,

then $M$ is isomorphic to $N$.
PROOF. Let $f$ be an isomorphism from $M/\mathfrak{X}^{(2)}M$ onto $N/\mathfrak{X}^{(2)}N$. Then by

(2.9) we have a homomorphism $f$ from $M$ to $N$ such that $f\otimes R/\mathfrak{X}R=\tilde{f}\otimes R/\mathfrak{X}R$ .
In particular $f$ is epimorphic by Nakayama lemma. Thus we obtain an exact
sequence; $0arrow Ker(f)arrow M^{f}arrow Narrow 0$ , where it is easily seen that $Ker(f)$ is also an
MCM module. Tensoring $R/\mathfrak{X}R$ with this sequence we have an exact sequence;

$0arrow Ker(f)\otimes R/\mathcal{X}Rarrow M\otimes R/\mathfrak{X}Rarrow^{f\emptyset R/\mathcal{X}R}N\otimes R/\mathfrak{X}Rarrow 0$ .
Since $f\otimes R/\mathfrak{X}R$ is an isomorphism, we see that $Ker(f)\otimes R/\mathfrak{X}R=0$ , hence
$Ker(f)=0$ again by Nakayama lemma. Thus $f$ gives an isomorphism between
$M$ and $N$.

REMARK (2.13). The above proof also shows the following: If $f$ is an R-
homomorphism between MCM modules $M$ and $N$, and if $f\otimes R/\mathfrak{X}^{(2)}R$ gives an
isomorphism, then $f$ is also an isomorphism.

\S 3. Proof of the main theorem.

In this section we prove our main theorem (1.1). For this purpose we need
some lemmas which modify the ones in [2] or [28]. We begin with the following

LEMMA (3.1) (Harada-Sai lemma for MCM modules). Let $M_{i},$ $0\leqq i\leqq 2^{n}$ , be
indecomposable MCM modules over $R$ and let $\mathfrak{X}=\{x_{1}, x_{2}, \cdots , x_{d}\}$ be a system of
Parameters which satisfies the condition $(2.8.*)$ . Let $f_{i}$ : $M_{i-1}arrow M_{i},$ $1\leqq i\leqq 2^{n}$ , be non-
$isomorpl\dot{u}chomom\sigma rpt\dot{u}sms$ . Assume that 1ength $(M_{i}/\mathfrak{X}^{(2)}M_{i})\leqq n$ for $0\leqq i\leqq 2^{n}$ .
Then we have

$(f_{2n}\cdots f_{2}\cdot f_{1})\otimes R/\mathfrak{X}^{(2)}R=0$ .

PROOF. We denote $M/\mathfrak{X}^{(2)}M,$ $f\otimes R/\mathfrak{X}^{(2)}R$ respectively by $\tilde{M},\tilde{f}$. Then by
(2.10) and (2.13) $\tilde{R}$-modules $\tilde{M}_{i}$ and $R$-homomorphisms $\tilde{f}_{i}$ satisfy the following
conditions;

(a) $\tilde{M}_{i},$ $0\leqq i\leqq 2^{n}$ , are indecomposable,
(b) 1ength $(\tilde{M}_{\mathfrak{t}})\leqq n$ for all $i$ , and
(c) $\tilde{f}_{i},$ $1\leqq i\leqq 2^{n}$ , are all non-isomorphic.

Then Harada-Sai lemma ([18; Lemma 12] or [24]) shows that the composition
$\tilde{f}_{2n}\cdots f_{2}\cdot f_{1}$ is trivial, which proves the lemma.
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In the case that we are given a sequence of irreducible maps;

$(*)$
$M_{0}arrow^{f_{1}}M_{1}arrow^{f_{2}}M_{2}arrow\cdotsarrow M_{n}f_{n}$

with all $M_{i}$ indecomposable MCM modules, then we will call this a chain of
irreducible morphisms of length $n$ . (For the defintion of irreducible maps, see
(A.15).) A chain $(*)$ of irreducible morphisms is said to be non-trivial with
respect to a system of parameters $\mathfrak{X}=\{x_{1}, x_{2}, \cdots , x_{d}\}$ provided that $(f_{n}\cdot f_{n-1}\cdots f_{1})$

$\otimes R/\mathfrak{X}R$ is a nontrivial homomorphism. The following is the corresponding
result to [24; 2.1. lemma].

LEMMA (3.2). Let $R$ be an isolated singularity and let $\mathfrak{X}=\{x_{1}, \chi_{2}\ldots , x_{d}\}$ be
a system of parameters for $R$ with the condition $(2.8.*)$ . Let $M,$ $N$ be indecom-
posable MCM modules over R. Assume that there is a morphjsm $\varphi$ from $M$ into
$N$ satisfying $\varphi\otimes R/\mathfrak{X}^{(2)}R\neq 0$ , and $al$so assume that there exests no chain of ir-
redztczble morPhisms from $M$ to $N$ of length $<n$ which is nontnvial with resPect
to $\mathfrak{X}^{(2)}$ . Then
(a) there exist a chain of irreductble morphisms;

$M=M_{0}arrow^{f_{1}}M_{1}arrow^{f_{2}}M_{2}arrow\cdotsarrow M_{n-1}arrow^{f_{n}}M_{n}$

and a morphism $g:M_{n}arrow N$ with $(g\cdot f_{n}\cdot f_{n-1}\cdots f_{1})\otimes R/\mathfrak{X}^{(2)}R\neq 0$

and

(b) there exist a chain of irreducrble morphjsms;

$N_{n}arrow N_{n-1}g_{n}arrow\ldotsarrow N_{1}arrow^{g_{1}}N_{0}=N$

and a morphism $f:Marrow N_{n}$ with $(g_{1}\cdot g_{2}\cdots g_{n}\cdot f)\otimes R/\mathfrak{X}^{(2)}R\neq 0$ .
PROOF. We only prove (b), for (a) would be obtained by the dual argument

of (b). The proof proceeds by induction on $n$ . For $n=0$ , there is nothin $g$ to
prove. Assume $n>0$ . Then by the induction hypothesis we have irreducible
morphisms $g_{l}$ : $N_{i}arrow N_{i-1},1\leqq i\leqq n-1$ , with $N_{0}=N$ and a morphism $f:Marrow N_{n-1}$

such that $(g_{1}\cdot g_{2}\cdots g_{n-1}\cdot f)\otimes R/\mathfrak{X}^{(2)}R\neq 0$ . Our assumption implies that $f$ can
never be an isomorphism. We consider two cases: First let $N_{n-1}$ be isomorphic
to $R$ . In this case by (A.19) we have an MCM module $L$ and a morphism $h$

from $L$ to $N_{n-1}$ such that $f$ can be factored through $h$ ;

$MN_{n-1}=R\underline{f}$

$\backslash ^{h’}$ $\nearrow^{h}$

$L$
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We decompose $L$ into a direct sum of indecomposable MCM modules $L_{i}$ , and
also decompose $h$ into a direct sum of $h_{i}$ , and $h’$ into a sum of $h_{i}’$ . Note that
$h_{l}$ are irreducible and $g= \sum h_{i}\cdot h_{i}’$ . Now, since $(g_{1}\cdot g_{2}\cdots g_{n-1}\cdot f)\otimes R/\mathfrak{X}^{(2)}R\neq 0$ ,
it follows that $(g_{1}\cdot g_{2}\cdots g_{n- 1}\cdot h_{i}\cdot h_{i}’)\otimes R/\mathfrak{X}^{(2)}R\neq 0$ for some $i$ . Letting $N_{n}=L_{i}$ and
$g_{n}=h_{i}$ , the lemma follows from this in this case.

In the second case assume that $N_{n-1}$ is not isomorphic to $R$ . Thus there
exists an AR-sequence; $0arrow L’arrow L^{h}arrow N_{n-1}arrow 0$ . (See Proposition (A.10).) Let $L=$

$\sum L_{i}$ with $L_{i}$ indecomposable, and let $h=(h_{i})$ . Again $h_{i}$ are irreducible. By
the property of AR-sequences one can lift $f$ to $L$ , thus $f$ will be factored again
in the form $f= \sum h_{i}\cdot h_{i}’$ . In the same way as above, one obtains $(g_{1}\cdot g_{2}\cdots g_{n-1}\cdot$

$h_{i}\cdot h_{i}’)\otimes R/\mathfrak{X}^{(2)}R\neq 0$ for some $i$ , and the proof is completed.

(3.3) Now we proceed to the proof of Theorem (1.1). Let $R$ be an isolated
singularity as in the theorem and let $\Gamma^{O}$ be a connected component of the AR-
graph $\Gamma$ . Assume that all indecomposable MCM modules in $\Gamma^{Q}$ are of multi-
$plicity\leqq a$ . Let $\mathfrak{X}=\{x_{1}, x_{2}, \cdots , x_{d}\}$ be a system of parameters for $R$ which
satisfies the condition $(2.8.*)$ . Note that for a module in $\Gamma$

’ we have
1ength $(M/\mathfrak{X}^{(2)}M)\leqq m$ where $m=a\cdot b^{d}$ with $b$ being the least integer satisfying
$\mathfrak{m}^{b}\subset \mathfrak{X}^{(2)}R$ .

Let $M,$ $N$ be two indecomposable MCM modules with the property that
there is a morphism $f$ from $M$ to $N$ such that $f\otimes R/\mathfrak{X}^{(2)}R\neq 0$ . Assume that $M$

belongs to $\Gamma^{o}$ . First of all we want to prove that there is a chain of irreduci-
ble morphisms from $M$ to $N$ of length $<2^{m}$ which is nontrivial with respect to
$\mathfrak{X}^{(2)}$ , thus $N$ is also in $\Gamma^{O}$ . For, otherwise, by (3.2) there is a chain of ir-
reducible morphisms; $M=M_{0^{arrow}}^{f_{1}}M_{1}arrow\cdotsarrow M_{n- 1^{arrow}}^{f_{n}}M_{n}$ and a morphism $g:M_{n}arrow N$

with $(g\cdot f_{n}\cdots f_{2}\cdot f_{1})\otimes R/\mathfrak{X}^{(2)}R\neq 0$ , where $n=2^{m}$ . Here we note that $M_{i}$ are all
in $\Gamma^{o}$ , for $M_{i}$ being connected with $M$ in $\Gamma$. In particular, we have
1ength $(M/\mathfrak{X}^{(2)}M)\leqq m$ by the assumption. Then Lemma (3.1) shows that
$(f_{n}\cdot f_{n\cdot-1}\cdots f_{1})\otimes R/\mathcal{X}^{(2)}R=0$ , which is a contradiction. Summarizing the above,
we have obtained the following

(3.3.1) Let $M$ and $N$ be indecomposable MCM modules with the Property that
there is a homomorphism $f$ from $M$ to $N$ satisfying $f\otimes R/\mathfrak{X}^{(2)}R\neq 0$ . If $M$ belongs
to $\Gamma^{Q}$ , then there is a chain of irreducible morPhisms from $M$ to $N$ of length $<$

$n(=2^{m})$ . In particular $N$ also belongs to $\Gamma^{o}$ .
The dual argument shows the dual statement of the above.

(3.3.2) Let $M$ and $N$ be as in (3.3.1). If $N$ belongs to $\Gamma^{Q}$ , then there is a
chain of irreducible morphjsms from $M$ to $N$ of length $<n$ . In Particular $M$ also
belongs to $r^{Q}$ .

Now let $M$ be any indecomposable MCM module over $R$ . Then there is a
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map $f$ : $Rarrow M$ with $f\otimes R/\mathfrak{X}^{(2)}R\neq 0$ . (It is enough to take an element $x$ in $M$

which is not in $\mathfrak{X}^{(2)}M$ and to define $f(r)=r\cdot x.)$ Taking $M$ from the vertices
in $\Gamma^{Q}$ , one can show by (3.3.2) that $R$ belongs to $\Gamma^{o}$ . It then follows from
(3.3.1) that any $M$ from $\Gamma$ belongs to $\Gamma^{Q}$ . Thus we proved that $\Gamma=\Gamma^{o}$ . And
at the same time we showed that any vertex in $\Gamma$ is connected with $R$ by a
directed path of length at most $n$ . On the other hand we know from (A.18)

that the graph $\Gamma$ is locally finite. Hence $\Gamma$ must be a finite graph and the
proof is finished.

\S 4. An application.

In this section we assume that $R$ is a normal Gorenstein local analytic
domain of dimension 2 over an algebraically closed field $k$ of characteristic $0$ .
Notice that objects in $C(R)$ are reflexive modules over $R$ in this case. It is
known by Auslander [4] that $C(R)$ is of finite representation type if and only
if $R$ is one of the Klein singularities. Thus if $R$ is not a Klein singularity,
then $R$ admits infinitely many indecomposable MCM modules, more strongly by
Corollary (1.4) there are no bounds for multiplicities (or ranks) of indecomposable
MCM modules.

As an application of Theorem (1.1) we can prove a stronger result than
this one.

PROPOSITION (4.1). Let $R$ be as above. Assume that $R$ is none of the Klein
singularities. Then, for any Positive integer $n$ , there exist infinitely many classes
of indecompOsable MCM modules of rank $n$ .

PROOF. Let $\Gamma$ be the AR-graph of $C(R)$ . Since $R$ is not a Klein singularity,
note that the divisor class group of $R$ has infinitely many elements. Equivalently
there are infinitely many isomorphism classes of MCM modules of rank 1 $(=$

divisorial ideals). Now let $\mathfrak{a}$ be an MCM module of rank 1 and let $\Gamma_{\mathfrak{a}}$ be the
connected component of $\Gamma$ containing $\mathfrak{a}$ . Since $R$ is a Gorenstein ring of dimen-
sion 2, (A.14) shows that the AR-translation $\tau$ is given by $\tau(M)=M$. (See also
[4; Corollary (6.2)].) Then by the similar argument as in [9] we see that the
rank, $rk(M)$ for each vertex $M$ of $\Gamma$, gives an additive function on $\Gamma$, that is,
for each $M$ in $\Gamma$ the equality $2 \cdot rk(M)=\sum rk(N)$ holds, where $N$ runs throu$gh$

vertices in $\Gamma$ which are incident to $M$. Then the underlying undirected graph
$|\Gamma_{\mathfrak{a}}|$ of $\Gamma_{\mathfrak{a}}$ should look like one of the graphs in the list [17; p. 282]. Notice
that, in our case, the rank function gives an unbounded function on $\Gamma_{\mathfrak{a}}$ . For,
otherwise, $\Gamma=\Gamma_{\mathfrak{a}}$ and $\Gamma$ is finite by Theorem (1.1) and consequently $R$ would
be a Klein singularity by [4; (4.9)]. It hence follows from [17; Section 2,
Theorem] that $|\Gamma_{\mathfrak{a}}|$ is of the type $A_{\infty}$ and that an additive function on $\Gamma_{\mathfrak{a}}$ is
essentially unique which looks like
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$123450-0-0-\circ-0-\cdots$ .

Note that the leftmost vertex (which has the least rank) should be the class of
$\mathfrak{a}$ . And it is easy to prove that $\Gamma_{\mathfrak{a}}\cap\Gamma_{\mathfrak{b}}=\emptyset$ whenever $\mathfrak{b}$ is a divisorial ideal and
is not isomorphic to $\mathfrak{a}$ . For any $n$ , this shows the existence of indecomposable
MCM modules of rank $n$ which, of course, correspond to the vertices with
valuation $n$ in $\Gamma_{\mathfrak{a}}$ with $\mathfrak{a}$ a divisorial ideal.

Other examples and applications of our theorem will be discussed in our
forthcoming paper [29].

Appendix. Auslander-Reiten theory for MCM modules.

In this section we summarize some definitions and facts from the Auslander-
Reiten theory (for short AR-theory) for the category of MCM modules. Cf.
Auslander [3], [5], Auslander-Reiten [7], Pierce [23] and Yamagata [28]. For
the rest of this paper $R$ is always a Cohen-Macaulay Hensel local ring with the
maximal ideal $\mathfrak{m}$ and $C(R)$ is the category of MCM modules over $R$ . Note
that $M\in C(R)$ is indecomposable if and only if $End_{R}(M)$ is local.

DEFINITION (A.1). For an indecomposable module $M$ in $C(R),$ $S(M)$ is the
set of non-split exact sequences $s:0arrow N_{s}arrow E_{s}arrow Marrow 0$ in $C(R)$ in which $N_{s}$ is also
indecomposable. Hence $s\in S(M)$ is a nontrivial element of $Ext_{R}^{1}(M, N_{s})$ . For
two elements $s$ and $t$ in $S(M)$ we denote $s\leqq t$ provided that there is an R-
homomorphism $f$ from $N_{t}$ to $N_{s}$ such that $Ext^{1}(M, f)(t)=s$ .

LEMMA (A.2). Let $M$ be an indecompOsable MCM module over $R$ and let $s$

and $t$ be elements in $S(M)$ . If $s\leqq t$ and $t\leqq s$ , then there is an isomorphism $f$ from
$N_{s}$ onto $N_{t}$ such that $Ext^{1}(M, f)(s)=t$ .

To prove this, it is obviously enough to verify the following

LEMMA (A.3). Let $s$ be in $S(M)$ and $h$ in $End_{R}(N_{s})$ . If $Ext^{1}(M, h)(s)=s$ ,
then $h$ is an automorphism on $N_{s}$ .

PROOF. Suppose that $h$ is not an automorphism. Then $h$ is in the radical
of the local ring $End_{R}(N_{s})$ , hence some power of $h$ is contained in $\mathfrak{m}End_{R}(N_{s})$ .
We may assume that $h$ is in $\mathfrak{m}End_{R}(N_{s})$ . Particularly for any integer $n$ we may
write $h^{n}= \sum a1^{n)}g_{i}^{(n)}$ $(a_{i}^{(n)}\in \mathfrak{m}^{n}, g_{i}^{(n)}\in End_{R}(N_{s}))$ . Thus $s=Ext^{1}(M, h^{n})(s)=$

$\sum a_{i}^{(n)}Ext^{1}(M, g_{i}^{(n)})(s)$ and this belongs to $\mathfrak{m}^{n}Ext^{1}(M, N_{s})$ . This holds for any
integer $n$ , hence we see that $s=0$ which is a contradiction.

LEMMA (A.4). For any two elements $s$ and $t$ in $S(M)$ there exists an element
$u$ in $S(M)$ such that $u\leqq s$ and $u\leqq f$ .
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PROOF. Let $s$ (resp. t) be the sequence; $0arrow N_{s}arrow E_{s^{arrow}}^{p_{S}}Marrow 0$ (resp. $0arrow N_{t}arrow E_{t}$

$arrow Marrow 0)pt$ and let $E$ denote tbe direct sum of $E_{s}$ and $E_{t}$ and $p=(p_{s}, p_{t})$ . Then
the sequence; $0arrow Larrow E^{p}arrow Marrow 0$ is also non-split, where $L$ is the kernel of $p$ .
Decompose $L$ into a sum of indecomposable modules $L_{i}$ and consider the exact
sequences; $u_{i}$ ; $0arrow L_{i}arrow E/\Sigma_{j\neq i}L_{j}arrow Marrow 0$ . Then one of the $u_{i}$ is non-split and
hence is in $S(M)$ . It is trivial that this $u_{i}$ is less than $s$ and $t$ .

COROLLARY (A.5). If $s$ is minimal in $S(M)$ , then it is minimum in $S(M)$ .

DEFINITION (A.6). For an indecomposable MCM module $M$, the minimum
(or minimal) element in $S(M)$ (if it exists) is called the AR-sequence ending in
$M$. If there exists an AR-sequence; $0arrow Narrow Earrow Marrow 0$ ending in $M$, then $N$ is
uniquely determined by $M$. This $N$ is denoted by $\tau(M)$ and $\tau$ is called the AR-
translation.

AR-sequences have the following property.

LEMMA (A.7). For an exact sequence $s:0arrow N_{s}arrow E_{s^{arrow}}^{p_{S}}Marrow 0$ in $S(M)$ , the fol-
lowing conditions are equzvalent.

(a) $s$ is the AR-sequence ending in $M$.
(b) For any homomorPhism $p_{1}$ : $M_{1}arrow M$ in $C(R)$ which is not a spljt ePimorphism,

there exests a homomorphjsm $f:M_{1}arrow E_{S}$ such that $p_{s}\cdot f=p_{1}$ .

PROOF. (b) implies (a). Let $t:0arrow N_{t}arrow E_{t^{arrow}}^{p_{t}}Marrow 0$ be an element in $S(M)$

such that $t\leqq s$ . We want to show that $s\leqq t$ . Since $p_{t}$ is not a split epimorphism,
(b) shows that there is a morphism $f$ from $E_{t}$ to $E_{s}$ such that $p_{s}\cdot f=p_{t}$ . If $g$

denotes the restriction of $f$ on $N_{t}$ , then it is easy to see that $Ext^{1}(M, g)(t)=s$ ,
hence $s\leqq t$ .

(a) implies (b). Let $p_{1}$ ; $M_{1}arrow M$ be as in (b). Consider the exact sequence;
$u;0arrow Qarrow E_{s}\oplus M_{1^{arrow}}^{p}Marrow 0$ , where $p=(p_{s}, p_{1})$ and $Q=Ker(p)$ . Note that $u$ is not
split and that there is a morphism $h$ from $N_{s}$ to $Q$ such that $Ext^{1}(M, h)(s)=u$ .
(In fact $h$ is the restriction of the natural injection of $E_{s}$ into $E_{s}\oplus M_{1}.$ ) Decom-
pose $Q$ into indecomposable modules $Q_{i}$ . Then $Ext^{1}(M, Q)=\sum Ext^{1}(M, Q_{i})$ and
$u=(u_{i})$ along this decomposition. Since $u$ is nontrivial in $Ext^{1}(M, Q)$ , one of
the $u_{i}$ is a non-split sequence. Denote this sequence by $t$ . Then $t$ belongs to
$S(M)$ and it satisfies the inequality $f\leqq s$ . Thus we know that $s\leqq f$ for $s$ is
minimum. This shows the existence of a homomorphism $g$ from $Q$ to $N_{s}$ such
that $Ext^{1}(M, g)(u)=s$ . Thus there is a commutative diagram:

$0arrow Qarrow E_{s}\oplus M_{1}arrow^{p}Marrow 0$

$\downarrow g$ $\downarrow f$

$p_{s}$

$\Vert$

$0arrow N_{s}arrow$ $E_{s}$ $arrow Marrow 0$ ,
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where $f=(f_{s}, f_{1})$ . This $f_{1}$ obviously lifts the map $p_{1}$ .
Let $K$ be the canonical module of $R$ . We denote the functor $Hom_{R}( , K)$

from $C(R)$ to itself by $($ $)$ ’. Note that this functor gives the duality on $C(R)$ ,
that is, $M’=M$ for any $M$ in $C(R)$ . For the detail of the canonical modules
the reader will refer to Herzog-Kunz [15]. Dualizing everything in the above
from (A.1) to (A.7) we may have the definitions and lemmas in the dual state.
For instance, an exact sequence $s:0arrow Narrow Earrow Marrow 0$ is the AR-sequence starting
from $N$ if and only if its dual $s’$ : $0arrow M’arrow E’arrow N’arrow 0$ is the AR-sequnce ending
in $N’$ .

Now the following is almost trivial.

LEMMA (A.8). Let $s:0arrow Narrow Earrow Marrow 0$ be an exact sequence in $C(R)$ with $M$

and $N$ being indecomposable. Then $s$ is the AR-sequence ending in $M$ if and only
if $s$ is the AR-sequence starting from $N$.

DEFINITION (A.9). We say that $C(R)$ admits AR-sequences if, for any
indecomposable MCM module $M$ over $R$ which is not isomorphic to $R$ , there
exists the AR-sequence ending in $M$. Remark that this is equivalent to saying
that, for any indecomposable MCM module $N$ over $R$ which is not isomorphic
to the canonical module $K$, there exists the AR-sequence starting from $N$.

The followin $g$ is due to Auslander [5], and we.will give an outline of a
new proof for it.

PROPOSITION (A.10). For a Cohen-Macaulay Hensel local $nng$ , the following
con&tions are eqwvalent.

(a) $C(R)$ admits AR-sequences.
(b) $R$ has only an isolated singulanty, that is, for any non-maximal pnme

ideal $P$ of $R,$ $R_{P}$ is a regular local $nng$ .

Before giving a proof of this proposition, we remark the following fact,
whose proof is almost trivial and is left to the reader.

LEMMA (A. 11). The following are equivalent.
(1) $R$ has only an isolated singulanty.
(2) $Ext^{1}(M, N)$ is of fimte length for any $M$ and $N$ in $C(R)$ .

Now we can prove one implication in Proposition (A.10).

(a) implies (b). Supposed that $R$ is not an isolated singularity. Then by

Lemma (A.11) there would be a non-maximal prime ideal $P$ and $M,$ $N$ in $C(R)$

such that $Ext^{1}(M, N)_{P}\neq 0$ . Takin $g$ indecomposable direct summands of $M$ and
$N$ if necessary, we may assume that both $M$ and $N$ are indecomposable. It
can be seen that there is an element $s$ in $Ext^{1}(M, N)$ and $r$ in $\mathfrak{m}$ but not in $P$
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such that $r^{n}s\neq 0$ for any integer $n$ . Note that $s$ belongs to $S(M)$ . By the
assumption there exists the AR-sequence $t$ ending in $M$, and hence $t\leqq r^{n}s$ in
$S(M)$ . Thus there is a homomorphism $f^{(n)}$ from $N$ to $N_{t}$ with $Ext^{1}(M, f^{(n)})(r^{n}s)$

$=t$ for any integer $n$ . This implies that $t$ is in $r^{n}Ext^{1}(M, N_{t})$ for any $n$ which
finally shows that $t=0$ . This clearly contradicts $t$ being non-split.

Before proceedin $g$ to the proof of the implication from (b) to (a), it will be
necessary to introduce some notion.

DEFINITION (A.12). (i) Let $M$ be an element of $C(R)$ . Assume that $M$

has the following presentation by free modules; $F_{1^{arrow}}^{f}F_{0}arrow Marrow 0$ which is minimal.
We define $tr(M)=Coker(f^{*})$ where *denotes the functor $Hom_{R}( , R)$ . And tr
is called the transpose.

(ii) Let $M$ be a finitely generated R-module and let $0arrow Narrow Farrow M-arrow 0$ be an
exact sequence of R-modules with $F$ free. Decompose $N$ into a direct sum
$L\oplus G$ where $G$ is free and $L$ has no free direct summand. We define $L$ is the
first syzygy module $Syz_{1}M$ of $M$. Note that $Syz_{1}M$ is uniquely determined by
$M$. And inductively we define $Syz_{n}M=Syz_{n-1}(Syz_{1}M)$ and call it the n-th
syzygy module of $M$.

(iii) Let $M$ and $N$ be in $C(R)$ . We define $\underline{Hom}_{R}(M, N)=Hom_{R}(M, N)/P(M, N)$

where $P(M, N)$ is the set of homomorphisms from $M$ to $N$ which factor through
free modules. We also denote $End_{R}(M)/P(M, M)$ by $\underline{End}_{R}(M)$ . Note that
$\underline{End}_{R}(M)$ is a local ring whenever $M$ is indecomposable. It is known by [7;
2.2] and is easy to prove that $\underline{End}_{R}(M)$ is isomorphic to $Tor_{1}^{R}(tr(M), M)$ as an
$\underline{End}_{R}(M)$-bimodule.

To complete the proof of Proposition (A.10) we need a lemma.

LEMMA (A.13). Let $R$ be an isolated singularity of &men\alpha on $d$ with the
canonical module $K$ and let $M$ be an MCM module over R. If we denote the
ring $\underline{End}_{R}(M)$ by $A$ , then there is an isomorPhism of A-bimodules; Extg$(A, K)\cong$

$Ext_{R}^{1}(M, (Syz_{d}tr(M))’)$ .

PROOF. We have the following two spectral sequences converging to the
same module;

$\prime E_{2}^{pq}=Ext_{R}^{p}(tr(M), Ext_{R}^{q}(M, K))\Rightarrow H_{n}$

$\prime\prime E_{2}^{pq}=Extg(Tor_{q}^{R}(tr(M), M),$ $K$ ) $\Rightarrow H_{n}$ .
Since we have that $Ext_{R}^{q}(M, K)=0$ for $q>0$ by the local duality, we see that
$\prime E_{2}^{pq}=0$ for $q>0$ and it follows from this that $H_{n}=Ext_{R}^{n}(tr(M), M’)$ . On the
other hand we know that $Tor_{q}^{R}(tr(M), M)$ has a finite length, since $M_{P}$ is free
over $R_{P}$ for any non-maximal prime ideal $P$, for $R$ being an isolated singularity.
It therefore turns out that $\prime\prime E_{2}^{pq}=0$ for $q>0$ and $p\neq d$ , hence we have that
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$H_{d+1}=Ext_{R}^{d}(Tor_{1}^{R}(tr(M), M),$ $K$ ) and this is isomorphic to $Ext_{R}^{d}(A, K)$ . (See

(A.12) (iii).) By the above we showed that $Ext^{d}(A, K)\cong Ext^{d+1}(tr(M), M’)$ . On
the other hand, one sees inductively that $Ext^{d+1}(tr(M), M’)\cong Ext^{d}(Syz_{1}tr(M), M’)$

$\cong Ext^{d-1}(Syz_{2}tr(M), M’)\cong\cdots\cong Ext^{1}(Syz_{d}tr(M), M’)$ and this last one is isomorphic
to $Ext^{1}(M, (Syz_{d}tr(M))’)$ by the duality. This completes the proof of the lemma.

Now we will be back to the proof of Proposition (A.10). Let $R$ be an
isolated singularity and let $M$ be an indecomposable MCM module over $R$ which
is non-free. We want to show that there is the AR-sequence ending in $M$. Let
$A$ be the local ring $\underline{End}_{R}(M)$ and let $J$ be the Jacobson radical of $A$ . Note that
$A$ is an Artin local ring. It is easily seen by the duality that the injective
hull $E_{A}(A/J)$ of $A/J$ as a left A-module is isomorphic to $Ext_{R}^{d}(A, K)$ . It then
follows from Lemma (A.13) that there is an isomorphism of left A-modules;
$E_{A}(A/J)\cong Ext_{R}^{1}(M, (Syz_{d}tr(M))’)$ . Take an element $s$ in $Ext^{1}(M, (Syz_{d}tr(M))’)$

which corresponds by this isomorphism to a generator of the socle of $E_{A}(A/J)$ .
If we know that $(Syz_{d}tr(M))’$ is indecomposable, then the same argument in
[7; Proof of Proposition (4.1)], together with the isomorphism given in Lemma
(A.13), shows that the exact sequence $s$ is the AR-sequence startin $g$ from
$(Syz_{d}tr(M))’$ .

Now it remains to prove that $(Syz_{d}tr(M))’$ is indecomposable. It suffices to
prove that $Syz_{d}tr(M)$ is indecomposable. We assume that $d\geqq 2$ . (In the case
$d\leqq 1$ it is rather easy to prove this and it is left to the reader.) In this case
$R$ is a normal domain and any MCM modules are reflexive. It is also known
by Auslander-Bridger ([6] or [12]) that for any finitely generated module $N$ it
is an MCM module if and only if $Ext_{R}^{i}(tr(N), R)=0$ for $1\leqq i\leqq d$ . We first claim
that $(*)Ext^{i}((Syz_{d}tr(M))^{*}, R)=0$ for $1\leqq i\leqq d-2$ . In fact this follows from the
fact that $Syz_{d}tr(M)$ is the d-th syzygy module of $tr(M)$ and that $Ext^{i}(tr(M), R)=0$

for $1\leqq i\leqq d$ . Now supposed that $Syz_{d}tr(M)$ is decomposed into $X_{1}\oplus X_{2}$ . If the
projective dimension pd(X $f$ ) is less than $d-1$ , then $Ext^{i}(X_{i}^{*}, R)\neq 0$ for some
$1\leqq i\leqq d-2$ and this leads the contradiction to $(*)$ . Thus both $X_{l}^{*}$ have projective
$dimension\geqq d-1$ . In particular $Syz_{j}(X_{i}^{\star})$ , $1\leqq j\leqq d-1$ , are non-trivial. Since
$Ext^{i}(tr(M), R)=0,1\leqq i\leqq d$ , it follows that $(tr(M))^{*}$ is the d-th syzygy module
of $(Syz_{d}tr(M))^{*}$ and thus by the exact sequence; $0arrow(tr(M))^{*}arrow F_{1}arrow F_{0}arrow Marrow 0$ we
have that $M$ is the $(d-2)$-th syzygy module of $(Syz_{d}tr(M))^{*}$ . Consequently one
obtains that $M\cong Syz_{d-2}((Syz_{d}tr(M))^{*})\cong Syz_{d-2}(X_{1}^{*})\oplus Syz_{d-2}(X_{2}^{*})$ which contradicts
the indecomposability of $M$. This contradiction shows that $Syz_{d}tr(M)$ is inde-
composable, and the proof is completed.

In this proof we have proved the following

REMARK (A.14). If $R$ is an isolated singularity, then $C(R)$ admits AR-
sequences and the AR-translation $\tau$ is given by $\tau(M)=(Syz_{d}tr(M))’$ for any



736 Y. YOSHINO

indecomposable MCM module $M$.

DEFINITION (A.15). (a) Let $M$ and $N$ be indecomposable MCM modules
over a Cohen-Macaulay Hensel local ring. A homomorphism $f$ from $M$ to $N$ is
said to be irreducible if the following conditions hold: (1) $f$ is not an isomorphism,
and (2) given any factorization $f=g\cdot h$ in the category $C(R),$ $g$ is a split
epimorphism or $h$ is a split monomorphism.

(b) The AR-graph of $C(R)$ (or simply the AR-graph of $R$ ) is a directed
graph which has as vertices the isomorphic classes of indecomposable MCM
modules over $R$ , and there is an arrow from the isomorphic class of $M$ to that
of $N$ provided there is an irreducible morphism from $M$ to $N$.

EXAMPLE (A.16). (a) If $R$ is a reduced local ring of dimension 1 given by
$k\{x, y, z\}/(x^{3}-yz, y^{2}-xz, z^{2}-x^{2}y)$ , then the AR-graph of $R$ is given as follows;

where each integer indicates the multiplicities of modules corresponding to each
vertex and the dotted lines show the AR-translation.

(b) If $R=k\{x, y, z\}/(xy, yz, zx)$ , then the AR-graph is given by

(c) Other examples of AR-graphs of analytic algebras can be found in
Auslander-Reiten [9], Dieterich-Wiedemann [11], Knorrer [19] and Yoshino-
Kawamoto [29].

The following is proved in [8; 2.4].

LEMMA (A.17). Let $0arrow N^{qp}arrow Earrow Marrow 0$ be the AR-sequence en&ng in $M$ and
let $f$ be any irreducible morphism from $L$ to $M$ (resp. $N$ ) where all modules are
in $C(R)$ . Then there is a spljt monomorphism (resp. a split epimorphism) $g$ from
$L$ (resp. $E$ ) into $E$ (resp. $L$ ) such that $f=p\cdot g$ (resp. $f=g\cdot q$). Thus if there is
an AR-sequence en&ng in $M$ (resp. starting from $N$ ), then only a finite number
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of arrows in the AR-graph ending in the vertex $M$ (resp. starting from the
vertex $N$) can occur.

Combining this with the previous proposition we have

PROPOSITION (A.18). Let $R$ be an isolated singulanty and let $\Gamma$ be the
AR-graph of R. Then $\Gamma$ is a locally finite graph, that is, each vertex may be
incident to only a finite number of other vertices.

PROOF. If $M$ is an indecomposable MCM module which is not isomorphic
to $R$ (resp. $K$), then arrows ending in $M$ (resp. starting from $N$ ) are finite by
Proposition (A.10) and Lemma (A.17). The problem is to show the finiteness
of arrows ending in $R$ and arrows starting from $K$. By the duality it is
sufficient to show the finiteness of arrows ending in $R$ . However this is a
direct consequence of the following fact proved by Auslander [4]:

FACT (A.19). Let $M$ be any finitely generated module (not necessary MCM).

Then there is a homomorphism $f$ from an MCM module $L$ to $M$ such that any
homomorphism from any MCM module to $M$ is factored through $f$.

In fact by this fact one sees that there is an MCM module $L$ and a homo-
morphism $f$ from $L$ to $\mathfrak{m}$ factoring any homomorphism from any MCM module
to $\mathfrak{m}$ . Decomposing $L=\Sigma L_{i}$ with $L_{i}$ indecomposable, then this means that
these $L_{i}$ are just the set of indecomposable modules from which there are
irreducible morphisms to $R$ . Hence they are finite.
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