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1. Introduction.

The theory of viscosity solutions of first order scalar equations of the form

(E) $F(x, u, Du)=0$ in $\Omega$ ,

where $\Omega$ is an open set in $R^{n}$ , $u;\Omegaarrow R$ is continuous $(i. e., u\in C(\Omega)),$ $F\in$

$C(\Omega\cross R\cross R^{n})$ enjoys some monotonicity in $u$ and $Du$ denotes the gradient of $u$ ,

has undergone a rapid and intensive development. The original uniqueness
proofs of M. G. Crandall and P. L. Lions [4], [5] were recast in M. G. Crandall,
L. C. Evans and P. L. Lions [3] and then further improvements were made by
H. Ishii [11], [12], [13] and others. These and other improvements, however,
did not alter the basic structure of the original uniqueness argument in the
sense that each significant step in the original argument had its parallel in the
modified ones. As we think of it today, if $u$ and $v$ are solutions of (E) in the
viscosity sense, then the idea was to consider maximum points of $\Phi(x, y)=$

$u(x)-v(y)-|x-y|^{2}/\epsilon$ (or an analogue) over $\overline{\Omega}\cross\overline{\Omega}$ and then to reduce to the case
that the maximum is an interior point and to use the equation satisfied in the
viscosity sense to estimate $u-v$ at such a maximum. Of course, if $\Omega$ is un-
bounded the possibility of the maximum not being attained must be disposed of
by adding appropriate terms to $\Phi$ , and in all cases suitable use must be made
of structure conditions on the equation and so on. In all but exceptionally
simple cases, careful estimates on terms corresponding to $(x-y)/\epsilon$ at the maxi-
mum point were made and used in the course of argument.

In this note we change the point of view a bit and emphasize a way of
thinking that has evolved in recent papers. The result is simpler proofs of
greater generality. This carries over, as well, into other aspects of the theory
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like error estimation and estimating moduli of continuity. The price we will
pay for this generality is that the “natural assumptions” become somewhat
awkward and lengthy relative to the proofs. We will tolerate this, for the as-
sumptions are indeed natural and one can choose elegant special cases to pre-
sent if desired, as will be indicated.

We will consider two particular cases of (E) in some detail; the model
stationary problem

(SP) $u+H(x, u, Du)=0$ in $R^{n}$

and the Cauchy problem

$u_{t}+H(x, t, u, Du)=0$ in $R^{n}\cross(0, T)$ ,
(CP)

$u(x, 0)=\varphi(x)$ in $R^{n}$

in which $H$ is nondecreasing in $u$ . In both cases, $Du$ stands for the spatial
gradient $D_{x}u$ of $u$ .

The program in the case of (SP) begins with:

THE FIRST STEP. Observe–as is standard–that if $u$ and $v$ are, respectively,
viscosity sub- and supersolutions of (SP), then $z(x, y)=u(x)-v(y)$ is a viscosity
solution of

(SP)’ $z+\hat{H}(x, y, D_{x}z, D_{y}z)\leqq 0$ ,

where the Hamiltonian $\hat{H}$ is defined on $R^{2n}\cross R\cross R^{2n}$ by

(1) $\hat{H}(x, y, z, p, q)=H(x, u(x),$ $p$) $-H(y, v(y),$ $-q$).

One then continues with the next step.

THE SECOND STEP. Prove a comparison theorem which allows one to con-
clude that suitable everywhere differentiable solutions $w(x, y)$ of

(2) $w+\hat{H}(x, y, D_{x}w, D_{y}w)\geqq 0$

on the subset $\Delta’$ of $\Delta=\{(x, y)\in R^{n}\cross R^{n} : |x-y|<1\}$ on which $u(x)\geqq v(y)$ which
satisfy $z(x, y)\leqq w(x, y)$ on $\partial\Delta$ will satisfy $w\geqq z$ on $\Delta$ .

The definition of “suitable” in the second step is determined by the sciu-
tions of (2) one constructs in:

THE THIRD ST.EP. For each $\epsilon>0$ , construct a nonnegative everywhere dif-
ferentiable function $w$ on $\Delta$ satisfying (2) on $\Delta’$ such that $w\geqq z$ on $\partial\Delta,$ $w(x, x)\leqq\epsilon$

for $x\in R^{n}$ and the second step implies $w\geqq z$ on $\Delta$ .
After the third step we are done, for we have that $z(x, x)=u(x)-v(x)\leqq$

$w(x, x)\leqq\epsilon$ on $R^{n}$ , and $\epsilon$ is arbitrary. The program in the case of (CP) is
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entirely parallel. Moreover, using $u=v$ , it is clear how this program can be
used to estimate moduli of continuity (as was first done by Ishii [11] in the
precursor of the setting we have in mind here). Of course, one does not want
to interpret this program too rigidly, and there are probably situations where
it is better not to separate out a “Step2” for technical reasons, but it is still
useful to think of this outline. Moreover, as we will see, there may be an
auxiliary step involved and we may have to prove separately that $u(x)-v(y)$ is
bounded on $\Delta$ if this is not assumed in advance.

The goal of this paper is to illustrate the manner of looking at uniqueness
just outlined by proving results which generalize some basic theorems already
in the literature. However, we want to emphasize the point of view more than
the precise hypotheses, as there are many other types of uniqueness questions
and there are always variants of any result in this subject. Precise statements
and proofs are given in the next section, which then ends with some remarks
concerning some basic extensions of the setting we have chosen for the pre-
sentation.

2. Uniqueness results.

We begin by formulating the conditions on the Hamiltonian $H$ which we
will use. $B_{R}$ will denote the ball of radius $R$ and center $0$ in $R^{n}$ and $|$ $|$ will
be both the norm on $R^{n}$ and the absolute value on $R$. The following assump-
tions, which have evolved in the papers $[7]-[13]$ will be employed. We assume
that $H:R^{n}\cross[0, T]\cross R\cross R^{n}arrow R$ satisfies:

(HO) $H$ is continuous.

(H1) The map $rarrow H(x, t, r, p)$ is nondecreasing for each $(x, t, p)\in R^{n}\cross[0, T]\cross R$.
(H2) There is a Lipschitz continuous everywhere differentiable function $\mu:R^{n}$

$arrow[0, \infty)$ and a continuous function $\sigma$ : $[0, \infty$ ) $\cross[0, \infty$ ) $arrow[0, \infty$ ) which is non-
decreasing in both of its arguments, satisfies $\sigma(0, R)=0$ for $R>0$ , and

$H(x, t, r, p)-H(x, t, r, p+\lambda D\mu(x))\leqq\sigma(\lambda, |p|)$

for $x\in\Omega,$ $r\in R,$ $p\in R^{n}$ and $0\leqq\lambda\leqq 1$ and

$\lim_{|x|arrow\infty}\mu(x)=+\infty$ .
(H3) There is a Lipschitz continuous everywhere differentiable function $\nu;R^{n}$

$arrow[0, \infty)$ and for each $R>0$ a constant $C_{R}$ such that

$H(x, t, r, p)-H(x, t, r, p+\lambda D\nu(x))\leqq C_{R}$

for $x\in R^{n},$ $t\in[0, T],$ $p\in B_{R}$ and $0\leqq\lambda\leqq R$ . Moreover
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$\nu(x)\geqq|x|$ for large $|x|$ .
Each of these assumptions is sensible for (SP) as well as (CP), as (SP) just

corresponds to $H$ independent of $t$ . The role of (HO) and (H1) is clear and
familiar. The above formulations of (H2) and (H3) evolved from Ishii [11] and
Crandall and Lions [7] to the current formulation in Crandall and Lions [9].

We will recall examples to illustrate the significance of the conditions later.
The next assumption we make is not in a form immediately recognizable in
earlier works, but it is implied by the assumptions used before, as we will
show. It requires a different formulation for (SP) than (CP). For (SP) we will
use:

(H4) There is an $r_{0}>0$ and for each $\epsilon>0$ a continuous function $w_{\epsilon}$ : $\overline{\Delta}arrow[0, \infty$ )

where
$\Delta=\{(x, y)\in R^{n}\cross R^{n} : |x-y|<r_{0}\}$

which is differentiable at each point of $\Delta$ , Lipschitz continuous and satisfies

$w_{\epsilon}(x, y)+H(x, r, D_{x}w_{\epsilon}(x, y))-H(y, r, -D_{y}w_{\epsilon}(x, y))\geqq 0$

for $r\in R$ and $(x, y)\in\Delta$ . Moreover

$w_{\epsilon}(x, x)\leqq\epsilon$ for $x\in R^{n}$ and $w_{\epsilon}(x, y)\geqq 1/\epsilon$ for $(x, y)\in\partial\Delta$ .
In the case of (CP) we assume

(H4) There is an $r_{0}>0$ and for each $\epsilon>0$ a continuous function w\’e: $\overline{\Delta}\cross[0, T]$

$arrow[0, \infty)$ which is Lipschitz continuous and differentiable at each point of $\Delta\cross$

$[0, T]$ and satisfies

$w_{\epsilon t}(x, y, t)+H(x, t, r, D_{x}w_{\epsilon}(x, y))-H(y, t, r, -D_{y}w_{\epsilon}(x, y))\geqq 0$

for $r\in R$ and $(x, y, t)\in\Delta\cross[0, T]$ and

$w_{\epsilon}(x, x, t)\leqq\epsilon$ for $x\in R^{n}$ and $w_{\epsilon}(x, y, t)\geqq 1/\epsilon$ for $(x, y)\in\partial\Delta\cross[0, T]$ .
Moreover

$\lim_{\downarrow 0}$ inf $\{w_{\epsilon}(x, y, 0):|x-y|\geqq r\}=+\infty$ for $r_{0}\geqq r>0$ .
We now formulate our main results.

THEOREM 1 (Uniqueness for (SP)). Let (HO), (H1), (H2), and (H4) hold. Let
$u,$ $v\in C(R^{n})$ be, resPectively, viscosity sub- and $suPersolutions$ of (SP) and $C$ be a
constant such that

(3) $|u(x)-u(y)|\leqq C$ or $|v(x)-v(y)|\leqq C$

holds for all $(x, y)\in\Delta$ (where $\Delta$ is from (H4)). If also
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(4) $\sup_{R^{n}}(u-\iota))<\infty$ ,

then $u\leqq\iota$ ) on $R^{n}$ . $Jn$ addition, if (H3) holds and for some $K>0$

(5) $u(x)-u(x)\leqq K(1+|x|)$ for $x\in R^{n}$ ,

then $n\leqq v$ on $R^{n}$ .
THEOREM 2 (Uniqueness for (CP)). Let (HO), (H1), (H2) and (H4) hold. Let

$u,$ $v\in C(R^{n}\cross[0, T])$ be, respectively, viscosity sub- and supers0luti0ns of the equa-
tion in (CP) on $R^{n}\cross(0, T$]. Assume that $C$ is a constant such that either

(6) $|u(x, t)-u(y, t)|\leqq C$ or $|v(x, t)-v(y, t)|\leqq C$

for $(x, y)\in\Delta$ and $0\leqq t\leqq T$ and that

(7) either $u(x, 0)$ or $v(x, 0)$ is un; $formlv\sim$ continuous.

$I_{j}’$ also

(8) $\sup_{R^{n}\cross I0.TJ}(u-v)<\infty$ .

then

(9) $\sup_{R^{n}\cross[0.T]}(u-v)^{+}\leqq\sup_{R^{n}\cross\{01}(ll-v)^{+}$ .
In addition, if (H3) holds and there is a constant $K$ such that

(10) $u(x, t)-\iota)(x, t)\leqq K(1+|x|)$ ,

then (9) holds

REMARK 1. Observe that if $u$ or $v$ is the sum of a bounded and a uni-
formly continuous function, then (3) holds. Even in the special case of Theorem
1 in which both $u$ and $v$ are bounded, the theorem is more general than earlier
analogues, for it does not require either $u$ or $v$ to be uniformly continuous. A
result of this sort was noted in [7] where it was pointed out that the existence
of uniformly continuous solutions (which was established in a more restricted
generality–see also [9], [13]) implied the uniqueness of more general solutions.
However, there is an example in [9] which shows that the current assumptions
do not imply the existence of uniformly continuous solutions even in the case
$n=1$ . Remarks similar to the above apply to Theorem 2 as well, except that
the gap between existence and uniqueness remarked above does not exist for
(CP). There are, of course, new existence theorems which can be proved by
using the modulus of continuity estimates which may be proved in the spirit of
the uniqueness proofs given below–that is, we may relax the sort of assump-
tions used in the current existence theory in the place of (H4), (H4) by (H4)
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and (H4) (see below), but we will not stop to formulate such results here. All
of the papers in the bibliography are relevant for the development of the current
existence theory. During the preparation of this manuscript, significant simpli-
fications of part of the existence theory which rely in part on the results of
this paper have been obtained by H. Ishii [15].

We preface the proofs of Theorems 1 and 2 with some discussion of the as-
sumptions and a review of some examples. The reader may, if he prefers,
skip this discussion for the moment and proceed directly to the proofs.

Let us describe the typical structure which enables one to verify that (H4)

or (H4) holds. We assume for simplicity in writing that $H(x, t, r, p)=H(x, t, p)$

is independent of $r$ (although this doesn’t matter) and that we can find a func-
tion $d:R^{n}\cross R^{n}arrow[0, \infty$ ) and a function $F:[0, \infty$ ) $\cross[0, \infty$ ) $arrow[0, \infty$ ) such that

(11) $d$ is a Lipschitz continuous function, $d(x, y)$ is differentiable in $x$ and $y$

separately off the diagonal $y=x,$ $d(x, x)=0$ and $d(x, y)\geqq|x-y|$ .
Moreover, for some $r_{0}>0$

(12) $H(x, t, \lambda D_{x}d(x, y))-H(y, t, -\lambda D_{y}d(x, y))\geqq-F(\lambda, d(x, y))$

for $\lambda\geqq 0$ and $x,$ $y\in R^{n},$ $x\neq y$ and $d(x, y)\leqq r_{0}$ .
Finally we assume, in the case of (SP), that

(13) $F$ is nondecreasing in both arguments and for all $\eta>0$ there is a non-
decreasing continuous function $G_{\eta}$ : $[0, r_{0}]arrow[0, \infty$ ) which is continuously differ-
entiable on $(0, r_{0}$] and satisfies $G_{\eta}(r)\geqq F(G_{\eta}’(r), r)$ for $r\in(O, r_{0}$], $G_{\eta}(O)\leqq\eta$ , and

$\lim_{\eta\downarrow 0}$ inf $\{G_{\eta}(r):r_{1}\leqq r\leqq r_{0}\}=+\infty$ for $0<r_{1}<r_{0}$

If (11) $-(13)$ hold then so does (H4) with the choice

$w_{\text{\’{e}}}(x, y)=G_{\eta}((\delta^{2}+d(x, y)^{2})^{1/2})$

provide $\eta$ and $\delta$ are well chosen. Indeed, we have

$D_{x}w_{\epsilon}(x, y)=G_{\eta}’((\delta^{2}+d(x, y)^{2})^{1/2})(\delta^{2}+d(x, y)^{2})^{-1/2}d(x, y)d_{x}(x, y)$

(where $d(x,$ $y)d_{x}(x,$ $y)$ is taken to be $0$ if $x=y$) etc., and so, using (12), (13) and
the monotonicities of $F$

$w_{\epsilon}(x, y)+H(x, D_{x}w_{\text{\’{e}}}(x, y))-H(y, -D_{y}w_{\epsilon}(x, y))\geqq G_{\eta}-F(d(\delta^{2}+d^{2})^{-1/2}G_{\eta}’, d)$

$\geqq G_{\eta}-F(G_{\eta}’, (\delta^{2}+d^{2})^{1/2})\geqq 0$

where $d=d(x, y)$ and the arguments of $G_{\eta}$ and $G_{\eta}’$ are $(\delta^{2}+d(x, y)^{2})^{1/2}$ in each
occurrence. We have $w_{\epsilon}(x, x)=G_{\eta}(\delta)$ which can be made as small as desired by
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choosing $\eta$ and then $\delta$ small, and similarly, $w_{\epsilon}(x, y)\geqq G_{\eta}((\delta^{2}+d(x, y)^{2})^{1/2})$ can be
made as large as desired on each set of the form $|x-y|=r_{2}$ for $r_{2}$ sufficiently
small $t$)$y$ taking $\delta$ and $\eta$ to be small.

In the case of (CP) we modify (13) to ask that $G_{\eta}\geqq F((1+T)G_{\eta}’, d)$ (for ex-
ample) and use $w_{\epsilon}(x, y, t)=(1+t)G_{\eta}((\delta^{2}+d(x, y)^{2})^{1/2})$ in a manner similar to the
above.

In previous works the assumptions (12) and (13) were used with

(14) $F(\lambda, d)=m(\lambda d+d)$

for some modulus of continuity $m$ . For this $F$ , the inequality $G\geqq F(G’, r)$ holds
on $(0,1$ ] for $G(r)=A+Br^{\gamma}$ if

$A+Br^{\gamma}\geqq m(\gamma Br^{\gamma}+r)$ for $0<r<1$

Let us put $B=1/\eta$ and define $A(\eta, \gamma)$ by

$A( \eta, \gamma)=\sup_{0\xi r\leqq 1}(m(\frac{\gamma r^{\gamma}}{\eta}+r)-\frac{r^{\gamma}}{\eta})$ ,

so thalt $A(\eta, \gamma)+r^{\gamma}/\eta$ satisfies the desired differential inequality. It is easy to
see that $A(\eta, 0+)=0$ for small $\eta>0$ and then that we can choose $\gamma=\gamma(\eta)>0$ so
that $G_{\eta}(r)=A(\eta, \gamma(\eta))+r^{\gamma(\eta)}/\eta$ has the desired properties with $r_{0}=1$ .

In order to illustrate the generality we gain by assuming the existence of
a supersolution as in (H4) and (13) as opposed to (14), we consider the case of
a linear Hamiltonian

$H(x, p)=(b(x), p)$

where $(\cdot, )$ denotes the Euclidean inner product. The assumption that (12) and
(14) hold for some $m$ and $d(x, y)=|x-y|$ amounts to requiring that $xarrow b(x)+cx$

be monotone for some $c,$
$i$ . $e$ .

$(b(x)-b(y), x-y)+c|x-y|^{2}\geqq 0$ for $x,$ $y\in R^{n}$ .
However, if $\psi:(0, \infty)arrow(0, \infty)$ is continuous, nondecreasing and

(15) $(b(x)-b(y), x-y)+|x-y|\psi(|x-y|)\geqq 0$ for $x,$ $y\in R^{n}$

and

(16) $\int_{0}^{1}\frac{1}{\psi(s)}ds=+\infty$

hold, tlben we may choose $F(\lambda, d)=\lambda\psi(d)$ and

$G_{\eta}(r)= \frac{1}{\eta}\exp(-\int_{r}^{1}\frac{1}{\psi(s)}ds)$ ,

it is easy to see that this condition on $b$ is strictly weaker than the requirement
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that $b+cI$ be monotone for some $c$ .
An example in [5] shows that uniqueness of viscosity solutions for the linear

Hamiltonian is closely associated with the uniqueness of solutions of the back-
wards Cauchy problem for the characteristic equation $X’=b(X)$ , and the condi-
tions (15) and (16) are known to be rather general sufficient conditions for this
uniqueness. Indeed, it was proved in [5] that if the Cauchy problem $X’=b(X)$ ,
$X(O)=x$ has a solution $X(t, x)$ for $x\in R^{n}$ with properties associated with uni-
queness and global existence, that is $X(t, X(s, x))=X(t+s, x)$ for $t,$ $s\in R$ and
$x\in R^{n}$ and $(t, x)arrow(t, X(t, x))$ is a homeomorphism of $R\cross R^{n}$ , then the formula
associated with the method of characteristics $(i.e., u(X(t, x), t)=\varphi(x))$ defines a
viscosity solution of the Cauchy problem for the linear Hamiltonian $H(x, p)=$

$(b(x), p)$ . It is known that there are continuous vector fields $b$ for which the
uniqueness fails so badly that there are distinct flows $X(t, x)$ and $Y(t, x)$ with
the above properties (see [5] and its references). In this case, the Cauchy prob-
lem admits distinct (compactly supported) viscosity solutions for suitable $\varphi$ . As
we will see below, (H2) and (H3) are associated with growth conditions and are
irrelevant for compactly supported solutions. The failure of uniqueness here is
due entirely to the failure of $H$ to satisfy (H4).

The role of (H2) and (H3) is illustrated by simple examples as well, and we
recall some from [9]. If $H(x, p)=(b(x), p)$ and $b$ satisfies (15) we may take

$\mu(x)=\int_{1}^{|x|}\frac{1}{1+\psi(r)}dr$

for $|x|\geqq 1$ and this will satisfy (H2) if

$\int_{1}^{\infty}\frac{1}{1+\psi(r)}dr=\infty$ ,

which is the case if, $e$ . $g.,$ $\psi(r)=cr$ . Moreover, $\nu=\mu$ satisfies (H3) if $\mu$ happens
to grow at the desired rate (as is the case if $\psi(r)=0$). However, if $b(x)=-2x$

then we may take $\psi(r)=2r$ (so (H2) is satisfied) while the problem $u-(b(x), Du)$

$=0$ has the uniformly continuous solutions $u=0$ and $u(x)=|x|^{1/2}$ which both grow
less than linearly. Thus we see (H2) is not enough to guarantee the uniqueness
of uniformly continuous viscosity solutions of (SP).

It is also the case that (H4) alone is not enough to guarantee the uniqueness
of bounded solutions of $(SP)-$ even Lipschitz continuous ones. A simple example
of this sort is given by the equation $u-x(|Du|)^{1/2}=0$ in $R$. Taking $d(x, y)=$

$|x-y|$ , the Hamiltonian $H(x, P)=-x(|p|)^{1/2}$ satisfies (11), (12), (14) with $m(r)=r$ .
However, $u=0$ and $u(x)=x/(1+|x|)$ are distinct bounded and Lipschitz continuous
solutions of (SP). Finally we observe that (H3) and (H4) do not imply the uni-
queness of bounded solutions (and hence do not imply (H2)). Indeed, notice that
any bounded Hamiltonian satisfies (H3) with $\nu(x)=(|x|^{2}+1)^{1/2}$ . Next, if $g(r)=$
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$\max(\min(r, 1),$ $-1$ ) the Hamiltonian $H(x, p)=-g(x(|p|)^{1/2})$ is bounded (and there-
fore s\‘atisfies (H3)) and tbe same $F,$ $m$ as above may be used. However, the
equation $u-g(x(|Du|)^{1/2})=0$ still has the solutions $u=0$ and $u=x/(1+|x|)$ .

PROOF OF UNIQUENESS FOR (SP). The second step of the program is con-
tained in the next lemma. The first step is trivial in this case.

LEMMA 1. Let $\Omega$ be an open subset of $R^{n}$ and let $H:\Omega\cross R^{n}arrow R$ satisfy
(H2). Let $u$ be a viscosity solution of $u+H(x, Du)\leqq 0$ in $\Omega$ , and $v$ be everywhere

differentiable on $\Omega$ and satisfy

(17) $v(x)+H(x, Dv(x))\geqq 0$ and $|Dv(x)|\leqq L$ if $x\in\Omega$ and $u(x)>v(x)$ .

Assume that

(18) $y \in su_{i}?^{\lim_{\Omega\Omega\ni x}\sup_{arrow y}}(u(x)-v(x))<\sup_{\Omega}(u-v)$ .

If also

(19) $\sup_{\Omega}(u-v)<\infty$ ,

then $u\leqq v$ on $\Omega$ . Moreover, if (H3) holds and

(20) $u(x)-v(x)\leqq C(1+|x|)$ for some constant $C$ and $x\in\Omega$ ,

then (19) holds (and so $u\leqq v$).

Before embarking on the proof, let us note that if (18) is replaced by

(18) $\lim_{\Omega\ni x}\sup_{arrow y}(u(x)-v(x))\leqq 0$ for $y\in\partial\Omega$ ,

then the conclusions still hold (because then (18) holds unless $u\leqq v$). We also
remark that while the case in which (20) holds is not used to prove Theorem 1,
it is included for later use (see Remark 5) and the proof will illustrate the
process of obtaining an initial bound as was mentioned in the introduction.

PRCOF. We begin with the case in which (19) holds. We may assume that

(21) $\sup_{\Omega}(u-v)>0$

since there is nothing to prove otherwise. Let $0<\beta<1$ and $g_{R}\in C^{1}(R)$ satisfy

(22) $0\leqq g_{R}’\leqq 1,$ $g_{R}(r)/rarrow 1$ as $rarrow\infty$ and $g_{R}(r)=0$ for $0\leqq r\leqq R$ .
Let $\Phi(x)=u(x)-v(x)-\beta g_{R}(\mu(x))$ . It follows from (H2), (18), (19), (21) and (22)

that $\Phi$ attains a positive maximum on $\Omega$ as soon as $R>0$ is sufficiently large.
Let $y\in\Omega$ be this maximum point–then we use that $u$ is a subsolution, (17) and
(H2) to conclude that
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(23) $0\geqq u(y)+H(y, Dv(y)+\beta g_{R}’(\mu(y))D\mu(y))$

$=u(y)-v(y)+v(y)+H(y, Dv(y))$

$+H(y, Dv(y)+\beta g_{R}’(\mu(y))D\mu(y))-H(y, Dv(y))$

$\geqq u(y)-v(y)-\sigma(\beta, |Dv(y)|)$

and so

(24) $u(x)-v(x)-\beta g_{R}(\mu(x))=\Phi(x)\leqq\Phi(y)\leqq u(y)-v(y)\leqq\sigma(\beta, L)$

for $x\in\Omega$ . We may let $Rarrow\infty$ and then $\betaarrow 0$ to conclude that $u-v\leqq 0$ as desired.
If (H3) and (20) hold in place of (19), then the arguments which led us to

(23) may be repeated with $\mu$ replaced by $\nu$ provided we choose $\beta>C$ . Using
(H3) in place of (H2), the conclusion is now

$u(x)-v(x)-\beta g_{R}(\nu(x))\leqq C_{\beta+L}$

and letting $Rarrow\infty$ we find that $u-v$ is bounded, reducing to the previous case.

END OF PROOF OF THEOREM 1. To complete the proof of Theorem 1, we
begin by assuming that (4) holds and

(25) $0< \sup_{R^{n}}(u-v)$

Now $z(x, y)=u(x)-v(y)$ is a solution of

$z(x, y)+\hat{H}(x, y, D_{x}z, D_{y}z)\leqq 0$

in $R^{2n}=R^{n}\cross R^{n}$ in the viscosity sense, where $\hat{H}$ is given by (1). Moreover, $\hat{H}$

satisfies (H2) $((H3))$ with the function $\beta(x, y)=\mu(x)+\mu(y)$ (respectively, $C(x, y)$

$=\nu(x)+\nu(y))$ if $H$ does with the function $\mu$ (respectively, $\nu$). Let $\Delta$ and $w_{\epsilon}$ be as
in (H4). Observe that $w_{\epsilon}$ is a solution of $w_{\epsilon}(x, y)+\hat{H}(x, y, D_{x}w_{\epsilon}(x, y), D_{y}w_{\epsilon}(x, y))$

$\geqq 0$ on the subset of $\Delta$ on which $z\geqq w_{\text{\’{e}}}$ , since there $z(x, y)=u(x)-v(y)\geqq w_{\text{\’{e}}}\geqq 0$

and so
$\hat{H}(x, y, P, q)=H(x, u(x),$ $p$) $-H(y, v(y),$ $-q$ ) $\geqq H(x, u(x),$ $p$ ) $-H(y, u(x),$ $-q$ )

by (H1). In order to conclude that $z\leqq w_{\epsilon}$ on $\Delta$ we have only to verify the
analogue of (18) and apply Lemma 1. Let us assume that it is $v$ that satisfies
(3). If (18) fails (for $z,$ $w_{\epsilon},$

$\Delta$ in place of $u,$ $v,$
$\Omega$ ) then there is a point $(x, y)\in\partial\Delta$

such that
$z(x, y)-w_{\epsilon}(x, y) \geqq\sup_{\Delta}(z-w_{\epsilon})-1$ ,

and, in particular,
$z(x, y)-w_{\epsilon}(x, y)\geqq z(x, x)-w_{\epsilon}(x, x)-1$ .

However, this amounts to $v(x)-v(y)\geqq w_{\epsilon}(x, y)-w_{\epsilon}(x, x)-1$ and by (3) for $v$ , (H4)
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and $(x, y)\in\partial\Delta$ we conclude that $C\geqq 1/\epsilon-\epsilon-1$ . This is false if $\epsilon$ is small enough,
so (18) holds for small $\epsilon$ . Now we may apply Lemma 1 to conclude that $z\leqq w_{\epsilon}$ ,
and the proof is complete in the case where (4) holds.

It rema $j_{ns}$ to establish that the result holds under the assumptions (H2) and
(5) in place of (4). We have a situation similar to that in the final assertion of
Lemma 1–we prove that $u-v$ is bounded from above by an argument similar
to that used before and reduce to the previous case. Let it be $v$ that satisfies
(3), $\beta>K,$ $\epsilon>0$ and consider $\Phi(x, y)=z(x, y)-w_{\epsilon}(x, y)-\beta g_{R}(\nu(x))$ . If this func-
tion is never positive for small $\epsilon$ and large $R$, we are done. In the contrary
case, it is clear that there is a positive maximum point $(\overline{x},\overline{y})$ of this function
in $\overline{\Delta}$ . Since $\Phi(\overline{x},\overline{y})\geqq\Phi(\overline{x},\overline{x})$ implies that $v(\overline{x})-v(\overline{y})\geqq w_{\epsilon}(\overline{x},\overline{y})-w_{\epsilon}(\overline{x},\overline{x})$ , which
is impossible for $\epsilon$ small and $(\overline{x},\overline{y})\in\partial\Delta$ as above, we conclude that $(\overline{x},\overline{y})\in\Delta$ .
Now we use the relations satisfied by $z$ and $w_{\epsilon}$ to deduce first that

$u(\overline{x})-v(\overline{y})+H(\overline{x}, u(\overline{x}),$ $D_{x}w_{\text{\’{e}}}(\overline{x},\overline{y})+\beta g_{R}’(\nu(\overline{x}))D\nu(\overline{x}))-H(\overline{y}, v(\overline{y}),$ - $D_{y}w_{\epsilon}(\overline{x},\overline{y}))\leqq 0$

and then
$u(\overline{x})-v(\overline{y})-w_{\text{\’{e}}}(\overline{x},\overline{y})\leqq H(\overline{x}, u(\overline{x}),$ $D_{x}w_{\epsilon}(\overline{x},\overline{y}))$

$-H(\overline{x}, u(\overline{x}),$ $D_{x}w_{\text{\’{e}}}(\overline{x},\overline{y})+\beta g_{R}’(\nu(x))D\nu(\overline{x}))$ .
It now follows from the Lipschitz continuity of $w_{\epsilon}$ , etc., and (H3), that

$u(x)-v(x)-w_{\epsilon}(x, x)-\beta g_{R}(\nu(x))\leqq\Phi(\overline{x},\overline{y})\leqq u(\overline{x})-v(\overline{y})-w_{\epsilon}(\overline{x},\overline{y})\leqq C_{M}$

where $M$ is a bound on $|D_{x}w_{\text{\’{e}}}|$ and $\beta$ . Since $w_{\epsilon}(x, x)\leqq\epsilon$ , the boundedness of
$u-v$ follows upon letting $Rarrow\infty$ .

PROOF OF UNIQUENESS FOR (CP). The outline of the proof is as similar to
the one given above. The lemma corresponding to Lemma 1 is

LEMMA 2. Let $\Omega$ be an oPen subset of $R^{n},$ $Q_{T}=\Omega\cross(0, T$] and $\partial_{p}Q_{T}=$

$\partial\Omega\cross(0, T]\cup\overline{\Omega}\cross\{0\}$ . Assume $H:\Omega\cross[0, T]\cross R^{n}arrow R$ satisfies (H2). Let $u:Q_{r}$

$arrow R$ be a zrzscosity solution of $u_{t}+H(x, t, Du)\leqq 0$ in $Q_{T}$ and $v:Q_{T}arrow R$ be every-
where differentiable and satisfy

(26) $v_{t}+H(x, v(x, t), Dv(x, t))\geqq 0$ and $|Dv|\leqq L$

when $(x, t)\in Q_{T}$ and $u(x, t)>v(x, t)$ .
Assume that

(27)
$\lim_{(xt)arrow,t\dot{x}.t)}\sup_{(\,\in Q_{T}^{y)}}(u(x, t)-v(x, t))<\sup_{Q_{T}}(u-v)$ for $(s, y)\in\partial_{p}Q_{T}$ .

If also

(28) $\sup_{Qp}(u-v)<\infty$ ,
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then $u\leqq v$ in $Q_{T}$ . Moreover, if
(29) $u(x, t)-v(x, t)\leqq C(1+|x|)$ for some $C$ and all $(x, t)\in Q_{T}$

and (H3) holds, then (28) holds (and so $u\leqq v$ in $Q_{T}$).

PROOF. We first assume that (28) holds and

(30) $\sup_{Q_{T}}(u-v)>0$

Let $g_{R}$ be as in (22), $\mu$ as in (H2), $\alpha>0,1>\beta>0$ and consider

$\Phi(x, t)=u(x, t)-v(x, t)-\beta g_{R}(\mu(x))-at$ .
By virtue of (27), (28), (30) and (H2), $\Phi$ attains a positive maximum at some
point $(y, s)\in Q_{T}$ provided $R$ is sufficiently large and $\alpha>0$ is sufficiently small.
By the assumptions

$0\geqq v_{t}(y, s)+\alpha+H(y, s, Dv(y, s)+\beta g_{R}’(\mu(y))D\mu(y))$

$\geqq v_{t}(y, s)+H(y, s, Dv(y, s))+\alpha-\sigma(\beta, L)\geqq\alpha-\sigma(\beta, L)$

and we reach a contradiction (to (30)) upon choosing $\beta$ so that $\alpha>\sigma(\beta, L)$ .
If we assume (H3) and (29) in place of (28), we proceed as above with $\nu$ in

place of $\mu$ and $\beta>C$ to conclude that if

$\sup_{Q_{T}}(u-v-\alpha t)>0$

then $\alpha\leqq C_{\beta+L}$ . In particular, $u-v\leqq(C_{\beta+L}+1)T$ and (28) holds, completing the
proof.

Of course, just as (18) could be replaced by (18) in Lemma 1 without
changing the conclusions, so may (27) be replaced by a (27) in Lemma 2.

The only new point in the remainder of the proof of Theorem 1 comes
from the role of the uniform continuity assumed of one of $u(x, 0)$ and $v(x, 0)$ .
In the usual way, we can assume $u\leqq\iota$ ) at $t=0$ . Then we want to use the
lemma to see that $u(x, t)-v(y, t)\leqq w_{\epsilon}(x, y, t)$ and for this it suffices to have
either $u(x, O)-u(y, O)\leqq w_{\epsilon}(x, y, 0)$ or $v(x, O)-v(y, O)\leqq w_{\epsilon}(x, y, 0)$ for small $|x-y|$ .
Of course, this cannot be unless one of these initial functions is uniformly con-
tinuous and does not necessarily hold even in that case. However, using the
uniform continuity, we may use $w_{\epsilon}+A_{\epsilon}$ in place of $w_{\epsilon}$ where $A_{\epsilon}= \sup\{z(x, y, 0)$

$-w_{\epsilon}(x, y, 0):|x-y|\leqq r_{0}\}$ and still have all the desired properties. We leave the
remaining details to the reader.
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Further considerations.

We now briefly comment on the arguments of the sort presented above
relative to other situations in which one might wish to use them besides the
simplest framework we have discussed. These include the situations in which
one wants to consider boundary problems in the context of Theorems 1 and 2,
the situation in which $u$ and $v$ are not continuous, the situation in which $R^{n}$ is
replaced by an infinite dimensional Banach space $V$ and in constructing solutions.

REMARK 2 (On boundary problems). First, let us remark that if $\Omega$ is
bounded, then the assertions of Lemmas 1 and 2 are obviously valid without
assuming (H2) or (H3). We did not formulate Theorems 1 and 2 for boundary
problems, as this seems an awkward thing to do in the spirit in which we
have presented this note. However, there is no difficulty in using the basic
program in this situation to prove particular theorems. For example, let us
replace $R^{n}$ by an open subset $\Omega$ in Theorem 1 and ask that $(u-v)^{+}$ have the
limit $0$ at points of $\partial\Omega$ . We proceed as before, replacing $\Delta$ by $\Delta’=\{(x, y)\in$

$\Omega\cross\Omega:|x-y|<r_{0}\}$ . Now we will want, roughly, $(u(x)-v(y))^{+}-w_{\epsilon}(x, y)$ to be
nonpositive on $\partial\Delta’$ and then we may continue as before. It is this last condi-
tion which we didn’t want to formulate in the beginning, although we remarked
upon a difficulty of this sort when discussing the comparison at $t=0$ in the
Cauchy problem. Similarly, the reader may verify that if $\rho(x, \partial\Omega)$ is the dis-
tance from $\chi$ to $\partial\Omega$ ,

$\lim_{\downarrow 0}\sup\{(u(x)-v(y))^{+};$ $x,$ $y\in\Omega,$ $\min(\rho(x, \partial\Omega),$ $\rho(y, \partial\Omega))\leqq r$ ,

$|x-y|\leqq r\}=0$

holds and $w_{\epsilon}$ is as constructed in the discussion of (H4), then we may succeed
by using $w_{\text{\’{e}}}+C_{\epsilon}$ with a suitable small constant $C_{\epsilon}$ in place of $w_{\epsilon}$ in the proofs.
This can be made more general: The process succeeds here because

$\lim_{\epsilon\downarrow 0}$ inf $\{w_{\epsilon}(x, y):|x-y|\geqq r\}=\infty$ for $1>r>0$ ,

and $iJf$ we simply assume this we obtain results in general $\Omega$ . Analogous re-
marks hold for the Cauchy problem.

$RJDMARK3$ (On semicontinuous functions). The definition of viscosity sub-
solutions (resp. supersolutions) generalizes in a straightforward way to upper
(resp. lower) semicontinuous functions (see also [3, Remark 1.4]). For example,

an upper-semicontinuous function $u;\Omegaarrow R$ is called a viscosity subsolution of
(E) if whenever $\varphi\in C^{1}(\Omega),$ $y\in\Omega$ and $u-\varphi$ attains a local maximum at $y$ , then
$F(y, u(y),$ $D\varphi(y))\leqq 0$ . With these extensions of the definition, Theorems 1 and
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2 remain true even if the requirement that $u$ and $v$ be continuous is weakened
to the requirement that $u$ be upper semicontinuous and $v$ be lower semicontinuous.
The proofs completely parallel the above. This observation is powerful when
one wants to identify the value functions of differential games with the visco-
sity solutions of the associated Isaacs equations without knowing the continuity
of the value functions (see Ishii [14]). Moreover, it is useful to define a locally
bounded function $u$ to be a subsolution (supersolution) provided its upper-semi-
continuous (respectively, lower-semicontinuous) envelope $u^{*}$ (respectively, $u_{*}$ )

has the same property. See Ishii [14], [15]. With this convention, comparison
results for discontinuous sub- and supersolutions are immediate.

REMARK 4 (On infinite dimensions). The current lines of argument may
be used in theory of Hamilton-Jacobi equations in infinite dimensional spaces
developed in $[8]-[10]$ . For example, Theorems 1 and 2 remain true if $R^{n}$ is
replaced by a Banach space $V$ with the Radon-Nikodym property. Indeed, we
have left the assumption that $H$ be continuous in Theorem 1 so that this remark
would hold–it is not needed in finite dimensions.

REMARK 5 (On verifying (3) and (6)). The following situation arises when
attempting to prove existence theorems: Suppose, for example, we have a
solution $u$ of (SP) which grows at most linearly. We would like to know that
$u(x)-u(y)\leqq w_{\epsilon}(x, y)$ for $|x-y|\leqq 1$ and small $\epsilon$ in order to establish a modulus of
continuity for $u$ . As it stands, we do not know it this holds because we have
no bound on $u(x)-u(y)$ for $|x-y|=1$ . In applications we obtain such bounds
by further comparison arguments. In the spirit of this note, we should assume:

(H5) There is a Lipschitz continuous differentiable function $w;R^{n}\cross R^{n}arrow R$ such
that

$w(x, y)+H(x, r, D_{x}w(x, y))-H(y, r, -D_{y}w(x, y))\geqq 0$

for $x,$ $y\in R^{n},$ $r\in R$ and $w(x, x)$ is bounded above on $R^{n}$ .
Then Lemma 1 would imply $u(x)-u(y)\leqq w$ . An analogous formulation for (CP)

which would allow us to bound the difference of solutions of Cauchy problems
is:

(H5) For each uniformly continuous $\varphi$ on $R^{n}$ there is a Lipschitz continuous
differentiable function $w:R^{n}\cross R^{n}\cross[0, T]arrow R$ which satisfies

$w_{t}(x, y, t)+H(x, t, r, D_{x}w(x, y, t))-H(y, t, r, -D_{y}w(x, y, t))\geqq 0$

on $R^{n}\cross R^{n}\cross[0, T],$ $w(x, y, O)\geqq\varphi(x)-\varphi(y)$ and $w(x, x, t)$ is bounded from above

One can replace $R^{n}$ by arbitrary open sets and take into account the boundary
if desired. Conditions of the sort (11), (12), (13) imply (H5) but not (H5). When
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$(HO)-(H5)$ ($(HO)-(H4)’$ , (H5)) hold, we have the uniqueness of viscosity solu-
tions with at most linear growth.
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