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§0. Introduction.

In this paper, we investigate a calculus of Fourier integral operators with
phase functions and symbols belonging to certain classes of weighted functions.
As an application we give another proof of the micro-local resolvent estimates
established in and [4].

The phase function ¢(x, §) we consider satisfies

0.1) 10208&(¢p(x, &) —x8)| < Cpplx)='!

for some 0<¢ =<1 and

(0.2) > sup|8edfV, Ve(p(x, &) —x8)| <
la+Bisl x,&

for some integer (=0 and 0=<r<1. Namely ¢(x, §) is in a “neighborhood” of
xé=27,x,;£; in this sense. The symbol p(x, §) satisfies
(0.3) max sug{<x>‘”“"<£>‘"‘laﬁaép(x, &)} < oo

la+Bisk =z

for some /, meR' and an integer £=0. The essential feature of ¢(x, § and
p(x, &) is that the decay order in x increases as the order of their derivatives
with respect to x increases, which makes the asymptotic expansion of symbols
with respect to x and the calculus possible. Our calculus is a version of that
of families of Fourier integral operators involving the parameter 0<h<1,
which has been discussed in Kitada-Kumano-go [6]. Schematically, we can
write “<{x>"'=h"”. However, the details have to be studied separately.

Our main result of the calculus is the following. Let ¢(x, §) satisfy
and [0.2) for some 7 small enough and some !/ large enough, and let a(x, §)
satisfy with [=m=0 and be close enough to 1 with respect to the semi-
norms defined through with /=m=0. Then the Fourier integral operator
defined by '
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(0.4) A, f(x) = Os-{[errce-v0a(x, £)7(5)dyde

has an inverse in the class of conjugate Fourier integral operators with the
same phase function: namely for some symbol b(§, y) satisfying with
I=m=0

(0.5) 4541 (x) = Os-{ [erce-e0-2ce, 5)7(y)dyde

(cf. below).
This result is useful in proving the micro-local estimates for the resolvent
R(z)=(H—2z)"', where

o0 H=—A/2+V(x)
with a real-valued smooth V(x) satisfying
0.7) [02V(x)] £ Colxy-tal-e

for all @ and some 0<e<]1.

The property of V(x) suggests that the use of our weighted classes
of phase and symbol functions is quite natural. In fact, in our previous works
[3] and [4], we have partly discussed some calculus of such Fourier integral
operators with weighted symbols. However, from the standpoint of the theory
of Fourier integral operators, the calculus has not been developed fully there.
The purpose of this paper is firstly to supplement this point, and secondly to
give a new proof of the micro-local resolvent estimates, which heavily leans
on the calculus thus obtained.

The plan of the paper is as follows. In section 1, we introduce the classes
of symbols and phase functions and give a definition of pseudodifferential and
Fourier integral operators. In section 2, we discuss a calculus of pseudodiffer-
ential operators and in section 3 that of Fourier integral operators. The
L%boundedness theorems are summarized in section 4. Then in section 5 the
micro-local estimates for the free resolvent will be summarized and in section
6 we give a proof of those for the perturbed resolvent R(z) using the results
of calculus and section 5. In section 7 we add a theorem on the micro-local
approximation of resolvent.

§1. Definitions of pseudodifferential and Fourier integral operators.

We denote by (x,, .-, x,) a point of R*, and by a=(a,, -, a,) a multi-
index whose components a; are non-negative integers. We use the usual
notations:
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(1.1 a=a,+ - +ta,, al = a,! - a,l,

xa:xi’l.-.xgn’ ag:ag{"'agz;

Dg:DgiDgQ) a.’cj:a/axj: ijz“-l'azj,

xy=A+1x 9", Vo='0, ~,0:,), V.=1,.
S=S(R") denotes the Schwartz space of rapidly decreasing functions on R™.

DErFINITION L.1. A C= function p(x, &, x’, &, x”) is said to belong to the
symbol class Bijli;%, for my, my, 1, l;, ;e R if p satisfies for any integer k=0
(L2)  |plgmemstniny

= max sup {{xy~htlaldgy-mi g )-tatlal 1Ly =me g7 )= tatiarl
la+B+a’+8' +a” sk I’z,’e ,
X |0%080%.0%0%p(x, &, x/, &, x")|} < 0.
In particular, when p is independent of (E", x”) [resp. (x’, &, x”) or (x, &, x")],

we write pe BJi1;, [resp. pe Bf*t or p< B7i1] and denote its norm by | p|fmuirt2
[resp. |pli™i0 or |p|fmvted].

REMARK 1°. The space Bj}!;'?, forms a Fréchet space with semi-norms
above.
2°. It is easy to extend our results in the following to the symbols
p<x; 5’ x,’ 5/, x”) SatiSfying
10208008 05:p(x, &, x', &, x")|
écaﬁa,lg:a.<x>’l"”“'+5“9'<$>’"1<x’>’2*P'“"*5”9’ I<$/>m2<xll>l3—pka'l
for some 0=0<p=1.

DEFINITION 1.2. A real-valued C* function ¢(x, &) is said to belong to the
phase class P,(r;!{) for 0=0¢=1, 0=7<1 and [=0, 1, 2, -+, if ¢ satisfies

) 1059%(p(x, §—x8)| S Caglx)?,
i) Jgli= 3 sup|ozodV.Velp(x, H—x8)| .

latpist

(1.3)

In particular, when /=0 we write P,(r;0) simply as P,(z).

We define the pseudodifferential operator P=p(X, D,, X’, D, X”) with
the symbol p(x, &, x’, &, x”)€ Bi}lisi, by

Ly lo, 13

1.4 Pfx) = Os-{{ [ o ewmmpe, g1, x4y, o, 24914 97)
X e+ '+ y0)dy'dy*dn'dn?

for fe8, where dyp=(2r)"dyp and Os-SSSS---dyWy’dn‘dﬁ means the usuai
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oscillatory integral (cf. e.g. [6]).
We next define the Fourier integral operators which include the pseudo-
differential operators (cf. [Proposition 2.1 below).

DEFINITION 1.3. i) Let p(x, &) eBP and ¢(x, §)eP,(r). We define the
Fourier integral operator P,=p,(X, D) with the symbol p(x, §) and the phase
function ¢(x, §) by

(L.5) P, f(x) = Os-{ {efcs-miLetcocs0-20p(x, & F(3)]dyae
for feS8. We write this oscillatory integral simply as

(1.5) P, f(x)= OS'SS‘”“""”'&"“)p(x, £)f(y)dydé.

ii) Let ¢(&, y)B7P and ¢(x, §)=P,(r). We define the conjugate Fourier
integral operator Q. «=¢,+(D, Y) by

(1.6) Quuf(x) = Os-SSem-wf[e“vf-wv-f”q@, 9 f(»)1dyde.

Or simply we write

(L.6) Quef () = Os-{[eress-o 00008, 3) p(3dpae.

§ 2. Pseudodifferential operators.

We consider fundamental properties of pseudodifferential operators in this
section.

For j=0,1,2, -, let pix,é¢, x’)eB;’;,l with /;—>—c0 (j—c0), and let
1eCy(R™) satisfy

L 101=1/2,

@1 M):{ 0 |6]=1.

Then it is easily seen that there exists a positive sequence {¢;} tending to zero
as j—oo such that the series

(2.2) P(x, & 2) = ZUFCONx, & 2
converges absolutely in Bf; , and

(2.3) px, & 5= 5, b, & 5 & Bl
for all N=1 (cf. Theorem 1.3 in [6]). We write as
2.4 plx, & %) ~ 39, &, )
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and call it an asymptotic expansion of p(x, & x’) with respect to x.
asymptotic expansion with respect to x’ can be defined similarly.

PROPOSITION 2.1. For p(x, &, x’, &, x")€Bij4,. 3, we set

i) pua(x, § = Os-{|e-vpu(x, £4n, x+9)dydn,

pulx, &, x7) = Os-\{e-vnp(x, &4, x4y, &, x")dydn,
i) pra(@, #) = Os-\{e-v7prta+y, 8=, w)dyar,

pr(x, & x7) = Os-\{e=v7p(x, &, x7+y, 6—n, x")dydn.

(2.5)

mi+m mi+meg mi+m
Th’en pLEBll}Flz.%sl pReBll l2+ls7 pLLJ pRREBll+lz+zl3) and we have

(2.6) (X, Dz, Y, Dy, Z) = pru(X, D) = pre(D, Y).

459

The

Further, for any k=0 and for an arbitrarily fixed even n, (>n+|l|+ 11|+ |1s]

+|my| +|ms| +1)
] i) |prolimrtmelivletly < G| pp | ffghneititiete

= Cil pliumtvtete

2.7

1 i) | prelfmtmetitietts) < Gy pr| iRt fatte)

l
=< Cpl plipymeste ta le)
for some constant C,>0, and

i) pulx, § ~ X (ah)@gDs pLI(x, &, %),
bu(x, §, x7) ~ X (@)~ (0¢ Dg )%, &, %, &, %),
i) prr@, 2) ~ 2 (=1 ()0 Dspr)(x’, &, x7),
Pr(x, §, x) ~ X (=1)!*(al)" (¢ Dz )%, &, 2/, &, x").

(2.8)

PROOF. is shown by virtue of Fourier’s inversion formula.

Taylor’s expansions and integration by parts, we have

29  pulx, &, 2= IMZQN(a!)‘l(aé’D%'Po)(x, §,x,8,x")

+N = @) 0= @DL o), &, %, &', x40,

where N=1 and for 0601

210)  polx, & 57, &, x7) = Os-{ e V1p(x, 407, 3"+, &, x")dydy.

By

For a fixed even ny (>n+ I+ L]+ 114+ |m | +]|m:]), we have by integration
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by parts

@1 polx, & 57, &, £) = Os-{ [e= 971+ 7]%) 14+ (—=4,))
X {A+1y]m) A+ (=A™ p(x, E+07, x'+y, &, x")}dydy.
Then, by pe Bl 3, we have for §<[0, 1] and an even n,=|a’|

(2.12) | D$04D5.0% D3 'ps(x, &, x', &, x|

< (my,magily,la,lg)
= aﬂa’ﬁ’a'] Ib | 2ng+latfta’ +8 +a’l+ny

Xyt tal gymaplamtar e yme g7 plem it
by a further integration by parts with respect to » in (2.11), where C,g4'pra->0
is independent of 8, x, & x’, &', x”. Setting 8=1, x’=x and £=§’, we obtain
the second inequality in (2.7)-i) from (2.5)-i), (2.10) and The first
inequality in (2.7)-1) is a special case of the second one. (2.8)-i) follows from

2.9), po(x, & x’, &, xM=p(x, & x’, &, x”) (by Fourier’s inversion formula), and
2.12). (2.8)-ii) can be proved similarly. O

THEOREM 2.2. For pyx,§)€ BTy (=1, -, v+1, v=1), define g,+.(x, §) by

2y
—
@13 qate, © = Os-{ - fexn(—i 3 577) T ps(x+577, £+
Jj=1 Jj=1
X Pys1(x +§;, &dy* --- dy”dﬂl dnv’
where y°=0 and y'=y'4 - +37 (j=1, -+, »). Then we have

(2.14) gon(x, &) € BPetL,

lyt1

where 77—11::1:"11‘*‘ e My, E:ZH“ o 14, and
(2.15) (]uﬂ(X, D) = p«(X, D) - pyui(X, D).

Furthermore, for an arbitrarily fixed even n, (>n-+|lLi|l4|musi|+1), there
exists a constant C,>0 such that

T T v+1
2. 16 My lyyd < Cv+1 | (mily ?.
(2.16) gl a3 T,

ProoOF. (2.15) is easy (cf. e.g. [7]). By integration by parts, we have

with an even integer nj>n-=+|l1|+ | mMsil,
2y

@17)  gunlx, &) = OS-S Sexp(—ig $7) TLCA+ 137 170) ML (A )740)

X jI:Il x4y ) py(x+y?, E)dy - dy'dnt - dy”.
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Making a change of variables

(2.18) Z=y4 .yl e, yY=z-—z"1, =0
for j=1, ---, v, and noting

2.19) Zyw=ERwt-g, =0,

we integrate by parts again. Then we have
2y

(2.20)  qy4(x, &) = OS-S Sexp(_ikglzk(nk_y]kﬂ))
X I}:_-'E (1+ I 1}k_77k+1| nf))—l(l__l_(_Azk)na/Z)
X{TL (4127 =2 =814 (— Ag)77)

X JI;II pilx 427"t E4 ) pa(x+2, E)}dz1 - dzvdn’ - Ay

Noting p,€ B3 and using (1+|2'|)*(1+[22—2"])"! - (14|27 =271 ) = (K2,
we have for a constant C,>0 and an even n{>n

(2.21) (s, 1 = O IT 1 2y 3P ey ™o

2
< E_ak ng\-1
R (AP R
Xjf_11(1+[zf'—zf"‘]"f))"dzl o dzvdy? - dy?.
Thus for another constant C,>0 one has

(2.22) |gvesz, £ 5 Co T )1 377 ey oy o,

Differentiating (2.20) and estimating similarly to the proof of [Proposition 2.1

we obtain O

THEOREM 2.3. Let ny>n-+1 be an even integer. Then there exists a constant
¢o>0 such that, for any P=p(X, D) with p(x, §)€ B} and | p|5%Y <c¢,, the operator
I—P has an inverse (I—P)™' in the class of pseudodifferential operators with
symbols in Bj.

PROOF. For v=1 we define p,..(x, §)€B§ by in with
pj=p for j=1, .-, v+1. Then Theorem 2.2 yields
(2.23) "= pn(X, D)

and
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(2.24) [ Dol = C31 2 11 | Dlsngre

kit +tkyp1sk j=1

Hence, for v+1=%, we have

(2.25) | oaa 450 = CEPU LAY 2 (1 P15ken)"

kit t+kyp1sk

=< (Coco) ™ *(Col p15%R20*Cos i s
where Cy,k:Z‘?:O(”jTj). Noting that C, ,<Cy* (v=I1, 2, --) for a constant
C,.>0, we see that, if ¢, satisfies C,c,<1, the series
(2.26) L4 4 Dot -+ + Dot -

converges in B). The sum then gives the symbol in Bj of the operator
(I—P)'=I+P+P*+ - + P+ .. [

§3. Fourier integral operators.

In this section we investigate the fundamental properties of Fourier integral
operators which will be useful in later sections.

THEOREM 3.1. Let p(x, &), p&, y)€BT, q(x, &), ¢, y)=BRe and ¢(x, &)
eP,(c) (m;, ,eRY, 0=0=1, 0=r<1).

i) There exist symbols r(x, &), s(x, & BYi;? such that

3.1) { a) p(X, D)g,(X, D) =r,(X, D),

b) ¢,(X, D)p(X, D) = s,(X, D).

Here v and s are given by

(3.2) [ i £) = SS i1 p(x, +V.0(x, & ¥y, E)dydy,
sx, &) = Sge 1a=-Ovg(x, ) p(y+Vep(, x, &), E)dydy,
where
(3.3) [ Veplr, & 3) ZSI p(y+0(x—y), £)db,
Vep(n, %, 8) = | Veplx, E+0(n—)d0

In particular,
r(x, &) ~ ‘aZ (@) 'Dg{@5p)(x, Vo0(x, & y)a(y, )} y=z,
{ s(x, &) ~ aE (a)-103 {q(x, D(DIPYVep(n, x, &), )} | y=¢-

3.4)
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ii) There exist symbols r(&, y) and s(§, y)eB{';ljg‘z such that
(3 5) { a) ng*(D: Y)p(D; Y) = rga*(Dy Y) »
' b) p(D, Y)guu(D, Y) = s,u(D, Y).

r and s are calculated by noting that (3.5) are conjugate to (3.1).
PrROOF. i) For f=S8 we have formally
(3.6) (X, D)g (X, D)f(x)
= {Jetscem-rn{{{ewpcx, 0190y, midyae} fe)dzdn,
where

3.7 ¢ =0, P—elx, PN+x—y)¥§ = (x—y)E—V0(x, 1, ¥)).

By a change of variables: §=&—V,¢(x, 5, y), we obtain (3.1)-a) and It
is easy to see r(x, §)e B} and by integration by parts and Taylor’s
expansion using ¢<P,(r), p(x, &) €BT1, and ¢(y, §) Bz (3.1)-b) and ii) can
be proved similarly. O

THEOREM 3.2. Let p(x, §)eBi, ¢¢, y)E B2, and ¢&P,(r) with 0<r<K1.
Then there exist symbols r(x, &), s(x, E)EB?;},’E;"Z such that

{ i) p(o(X) D)ng*(D: Y) = r(X’ D)’

3.8) ..
ii) gD, Y)p(X, D) = s(X, D).

Here v and s are given by

J D) 7(x, & = Os-{[e-v77(x, 649, x+2)dyar,
7(x, & )= plx, V.07 (x, & yNqN07(x, &, ), »]e(x, & ),

1 i) s(x, & = Os-{{e-v75@+7, x4, Odyan,
3E v, M) = 9, Vep '€, 3, M0, 3, 1), MLE, 3, 7).

Here 7n=V,0"'(x, & v) and x=N Y&, x, ) are the inverse mappings of &=
Voo(x, 9, ¥) and y=Nep(§, x, 1), respectively, and Ji(x, §, y) and J,(&, y, ) are
the Jacobians of V¢ (x, &, ¥) and Vep~YE, v, 1), respectively.

(3.9

Proor. i) of [3.8): For f=S we have formally
(3.10)  py(X, D)gyu(D, Y)f(x) = Sge“r-www&wp(x, £)9(&, ) f(y)dydt.

By ¢€P,(r) and 0<7<K1, V0o ' (x, 7, y) exists. Making a change of variables
n=V,p(x, &, y), we then obtain (3.8)-i). Using pe€B'!, g B7}2 and o€ P,(7)
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and integrating by parts in (3.9)-i) with respect to » and y as in (2.11), we
obtain r& BJ}i;'%  (3.8)-ii) can be proved similarly. O

THEOREM 3.3. Let no>n-+1 be an even integer and set [=6m, Let ¢, be
the constant in Theorem 2.3. Let 0<7<1 be small enough such that ©<c,. Then
for any ¢(x, & e P,(z; 1), there exist q(&, y) and r(x, &)< BY such that

1) I,Que=Quul, =1,

3.11) ..
ii) IR, =R,I,x=1.

Here Quu=qu(D,Y), R,=r, (X, D), and I,, I, denote the Fourier and conjugate

Fourier integral operators with symbols 1 and phase functions ¢, respectively.
ProoF. From there exists a symbol p(x, &)= B} such that

(3.12) II= p(X, D).

By Theorem 3.2-(3.9)-i)

(3.13) { Dolx, &) = plx, §)—1= OS—SS@"'”to(x, §+n, x+y)dydy,
to(x,' Sy 3’) :jf(x, 6, y)_l.

Thus

(3.14) Il =1+py(X, D).

By Proposition 2.1 and @& P,(%; )

(3.15) | o] £ = Coltol 820525 = Crl@la 2 42m, -
Hence by ¢<=P,(%;]) and #<¢, we have

(3.16) [ D01 $% = Cingl@le,6ny < Co-

Thus (I+po(x, §))~* exists in B by Theorem 2.3. Therefore [,Q,=I holds,
if we set

(3.17) Qe = IosI+po(X, D).
Hence Q+f,Q,+=Q,~ which implies
(3.18) (Qusl y—D)I s = 0.

We can prove I,«R,=1 similarly to the above using Theorem 3.2-(3.9)-ii), which
and (3.18) imply Q.«l,=I. This completes the proof of (3.11)-i). (3.11)-ii) can
be proved similarly. [

THEOREM 3.4. Let no>n+1 be an even integer and set [=6mn, Let ¢,>0
be the constant in Theorem 2.3. Let 0<7<1 be small enough such that 7<c,/2.
For goEP‘,(%;f) and k=1, set
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(3.19) l¢ly,x = max sup|dtoiV.e(x, &),

1SI7+61sk x,€

which is finite by (1.3)-1) and o¢=1. Then for any ¢(x, &eP,(z:;]) and
a(x, §)e By satisfying |a—1[8i0(1@|1,6n)*"0 K Co/4, there exists q(&, y) B} such
that

(3.20) AyQpe = QuuA, =1.
Here Ay=a,(X, D) and Q=q,(D, Y).

PrOOF. Similarly to the proof of [Theorem 3.3, we can write using Theo-
rem 3.2-(3.9)-i)

(3.21) Al e = I+ po(X, D),
where
(3.22) pulx, & = Os-{[e-vrto(x, &4, x+3)dydn,

t(x, & y) = alx, V07 (x, &, y)Jelx, & y)—1
- {a(x: szD'l(x; E: y))—'l}jé(x, 67 y)+{.[$(x; 6, y)_l} .
By Proposition 2.1, ¢=P,(#;[) and a<Bj,

(3.23) [ Pol8%® = Colto| 2%, = Ci{l a—11 5% ,(| @ 1, 2r420) " F+1) 47},
if #=2n,. Thus by our assumptions on a, ¢ and #, we have
(3.24) [ Dol d%y < co.

Hence (I+ po(x, €))~* exists in B by Therefore A,Q.«=I holds,
if we set

(3.25) Qor = Il 4 po(X, D))~
Thus Qu+A,Q+=Q, and
(3.26) (QuAy—DI = 0.

Using we obtain from this that Qu.A,=I. has been
proved. O

REMARK. We see by taking the adjoint of that there exists the inverse
Apt of Ags=a (Y, D) in the class of Fourier integral operators Q,=¢,(D, X),
although our proof above does not work directly for the existence of A,
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§4. L%boundedness of Fourier integral operators.

THEOREM 4.1. Let p¢, v), qlx, &) €B) and ¢(x, §)EP,(r). Let s€R".
Then there exists a constant C=C, ,>0 independent of p, q and ¢ such that

(4.1) i) ”<x>sp¢*<D, Y)<x>'8”
= C(1+ 2 Su?laga%vxgo(x, §)|)2T| bl

isjatBiser x

i) IKxdg(X, D))~
<1+, 3, suplasoiTap(x, 1) 1g1£°,

isla+Biser

where r=2([n/2]+[5n/4]+2)+n,+4js|+1, n, being an even integer with
ny>n-+1

ProoF. Let f€8. Then by and [Proposition 2.1},
(4.2) [Kx>* D ex(D, Y)XxD72 1P = (x> p (D, XNKxD*pou(D, Y Xx57°f, f)
= (r(X, DXx>=°f, <x>7*f)
=X, D)f, /) = lgX, D) fIIfI
for some r(x, &) e By, and ¢(x, £)e BS. By Calderén-Vaillancourt theorem 1],

4.3) lg(X, D)fIl = Clgli5®lfll,  ro=2([n/2]+[5n/4]1+2).
[B.9}), (2.5) and (2.7) yield
(4.4) [q15%” = Cp, ] p[2k+2n0+31s|)2

)2k+2n0+8lsl

sup 10304V (%, &)]

x(

1s|a+Bi1s2k+2ng+8isI+1l &
(4.1)-i) then follows from (4.2)~(4.4). Taking the adjoint of (4.1)-i), we obtain
4.1)-ii). O

Using [Theorem 4.1, we can prove the following theorem in quite the same
way as in the proof of Lemma 3.3 of [2] (cf. Appendix of [2]).

THEOREM 4.2. Let a.(x, §)eB} and b.(&, y)e B} satisfy for some L=0,
—1<60,<0,<1 and for any [=1

“45) 6e08a.(x, &) < Caplxdt7tl,  cos(x, §)=xx&/| x| €] 20,,
' R ETZ o>, £cos(x, £)=0,,
Caplyotet, +cos(é, ¥)=0,,
4.6 9208 b.(8, y)| <{ °°
(46) 1030%0-(&, 3)] —{ Capily>7t, +cos(§, y)=0,,

and for some 0,>0, po>0
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wn {agx, =0 for |x|=0, or |&]=<pm,
) bo(& =0  for |y1=<8, or |&]=<p,.
Set for feS and te R*
4.8) T.()f(x) = Os-ﬁgef<zf~t1512'2-v5>a¢(x, £)b.(8, ) f(y)dyde .

Then for +t=0 and sy, s;20 with s;+s. <L,
“9 IKEIIT LB p>%2] = Cltpoy=tHo1+ee
for some constant C independent of t.

REMARK. In T.() is a pseudodifferential operator, which
simplifies its proof in contrast to Lemma 3.3 of [2], where we have treated
the Fourier integral operator version of T .(i).

§5. Micro-local estimates for (—A/2—z)"1.

In this section we summarize the micro-local estimates for the free resolvent
Ry(2)=(H,—z)"}, H=—A/2, Im z+0, which will be used in the next section in
proving those for the perturbed resolvent R(z)=(H—z)™!, H=H,+ V(x), with
V(x) a smooth long-range potential.

Let p.(x, &) = B} satisfy for some —1<p.<1 and d,>0 and for any /=1

(6.1) p:(x,8 =0 for |x|=d, or |§]=0,,
and
(5.2) 10208p.(x, &) £ Copilxd>™t  if cos(x, §)Spu.

in respective signs. We write P.=p.(X, D).
We denote by LZ=L2%(R") (s R') the weighted L? space with the norm

5.9 1710 = ([ o1 7w 1x) ™

| lsesr (s, s’€R*) will denote the operator norm from L% into L%. It is well-
known (cf. e.g. Kuroda [8]) that R,(z) (Im z+0) has boundary values as Im z—0
in the space B(L% L2;) (s>1/2) of bounded operators from L2 into L2,, We
denote the boundary values by R,(A+:0)=B(L% L2,) for A+0. Then the fol-
lowing estimates are known ([8]):

(5.4) | Re(A£70)|sus < CA7Y2  for A=2,(>0).
The following theorem is a special case of Theorem 1 of [3].
THEOREM 5.1. Let s>1/2 and 4,>0. Let —1<p.<l and 2,>0%/2. Then
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there exists a constant C>0 such that for A=12,

(5.5) [| P Ro(A410) || 55—y = CA7V2,

Proor. We consider P.R(A-+:0) only. The other case can be treated simi-
larly. We decompose P. as P.=P%+P!, where PJ (j=0, 1) are pseudodiffer-
ential operators with symbols pi(x, &)= B which satisfy and for any /=1

(5.6) 95050 (x, §)] < Capu(xd™
and for some pl with 1>p’>p_

(5.7) pi(x, & =0 for cos(x, §)>pl.
Then from and follows

(5.8) |PLRy(A+10)]505-1 = CA7Y2
for 2=2,.

The other part PLR(A+:0) can be treated in quite the same way as in the
proof of Theorems and 3.5 of [3] In fact, the proof becomes much sim-
pler in our case than there due to the non-existence of the perturbation. We
omit the details. [

COROLLARY 5.2. Let s>1/2 and 2,>0. Let —1<p.<l and 2,>0%/2. Let
o(x, §)EP,(7; 6n,) with an even ny>n+1 and small 0<7T<K1, and assume that
[Veo(x, &)—x| <ci{x) for a sufficiently small constant ¢,>0. Set Py=p.,(X, D).
Then there exists a constant C>0 such that for A=2,

(5.9) [PER(A+10)|5ms-1 = CA7H2.

ProoF. By ﬁ*:]s,,.P; is, for a given N=0, expressed as a
sum of two pseudodifferential operators RY and QF with [[(xDYR¥{x)¥| <o
and the symbols ¢¥(x, &) B} of QF satisfying and with Jd, and p.
replaced by some other constants 0<d;<d, and pisp., —1<pi<l. Here, in
order to let d;>0 and —1<pi<l, we have used the assumption that ¢, in
[Vep(x, §)—x| <c,{x) is sufficiently small and the asymptotic expansion of the
symbols of P+ (see Theorem 3.2-(3.9)-ii) and Proposition 2.1 and note that
IVep=Y(€, 3, 9)—y]<ci{y> for some small ¢{>0if |Vep(x, §)—x|<ci{xD). Since
by Theorem 3.3, there exists a symbol »(x, §)< B} such that R,[,.=I, we have
PzzRq,ﬁ‘. Therefore by Theorems 4.1, 5.1 and (5.4), we have taking N=s

(5.10) IPERoAEIsms-1 = IR lls-1ms-1 | RY || 5ms]] Ro(A20) |- -

+ ”Rgo”s—l-—s—l”QxRo('ziiO) H s-+5-1
=Civr, O



Fourier integral operators 469

THEOREM 5.3. Let s=0 and 4,>0. Let —1<pu_-<p.<land 2,>0%/2. Then
there exists a constant C>0 such that for 1=12,

(5.11) [P Ro(A10)Pefl 55 = CA7Y2.

ProoOF. We consider P_R,(1+70)P, only. The other case can be treated
similarly. We decompose P- as P_.=P°+4P%®, where PL (j=0, co) are the
pseudodifferential operators with symbols p%(x, &) and p=(x, & = B} which satisfy

G.0, and

ox, &) =0 f 22/2,
(5.12) {P (x,6=0 or [§1>+22/

p2(x, &) =0 for |&|<~/20/4.
We use the relation:

(5.13) Ry(A+ie) = ig?e“‘““‘”(”dt, e>0.

P2R,(A+:0)P, can be written as a pseudodifferential operator with symbol
(5.14) q(x, & y) = p2x, &)(161*/2— 1) p¥E, »),

where pR(E, y) is defined through (2.5) with p(z, 9, y)=p4+(z, 7). By using
(2.8}ii), it is easy to see that, for an arbitrarily given L=0, p¥(§, y) is split
into the sum of two terms p2(&, y) and p%(&, y)< B such that for any /=0

|05045%(&, )| = Capily>™t  if cos(x, §)<ps,
(5.15) PRE »)=0 for |y|=<d, or |£|=d,,
[KxYEBED, Vx| < oo
By for p2(x, & and [Theorem 4.1, one has for s=0
(5.16) | PLRG(A+10)||5es = CA71.

Thus taking L=s, we have
(.17) IIP3R0(2+1'0)1§’£H-343 < [|P2Ry(A+10) | s PRl g5 < CA72.

Since Ple~#HoPR has the form of T.(t) in we have for =0
and any /=1

(5.18) | Poe-tHoPR| _, . < Ciityt.
Hence, using [5.13), one has
(5.19) |PLRy(A410)PE|| _y5.0s < C.

(5.12) for p%(x, &), (5.14) and yield
(5.20) |PORy(A410)PR|,., < CA-1.
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Interpolating [5.19) and [5.20), we get

(5.21) IPLR(A+10)PR| _,., < CA-'2,
Combining [5.17) and [5.21), we obtain

(5.22) |PER(A+T0) Pl < CA7H2.

On the other hand, [Theorem 4.24{4.9), [5.12) and [5.15) imply that for ¢=0,
$s=20 and =1

(5.23) [ Pre~tHoP, || ;. < C, VA
By we then have
(5.24) [PZRy(A+10)Py || 5.5 = CA7Y2.

This and [5.22) yield [5.11). O

COROLLARY 5.4. Let s=0 and 2,>0. Let —1<p-<p,.<1and 2,>0%/2. Let
pi(x, E)EP,(T; 6ny) (=1, 2) with an even ny>n-+1 and small 0<F<K1, and assume
that |Nepi(x, §)—x|<c x> (=1, 2) for a sufficiently small constant ¢,>0. Set
P% =pz,(X, D) and P§y=p.p3(Y, D). Then there exists a constant C>0 such
that for A=4,

(5.25) | P, Ro(A£i0)PGs || -5.s = CA7Y2.

PROOF. As in the proof of using we can de-
compose ﬁf=1¢1P31 and Pi= #31p, as ﬁ§=R§V+Q}° (j=1, 2) for a given N=0
such that |[<x>¥R¥{x)>¥| <o and the symbols ¢j(x, §)€ B§ of QF satisfy
and with §, and p. replaced by some other constants 0<§;<d, and p.s
pe, —1<pl<pi<l. Here, in order to let d;>0 and —1<pul<pi<1, we have
used the assumption that ¢; in |Vep;(x, §)—x|<c,{x)> is sufficiently small and
the asymptotic expansion of the symbols of 13;? (cf. Theorem 3.2-(3.9)-ii) and
Proposition 2.1). Since Theorem 3.3 implies the existence of the symbols r(x, &)
and »*§, y)e B} such that R} I, =] and I, R}, =I, we have P;I:R;Iﬁf and

foa-—-ﬁ;}?éé. Therefore we can estimate as follows:

(5.26) [1P§,Ro(ALi0)PE; || -s-s
S RS lsms {I RV - 5o 1o sl Ro(AE70) g1 s 1l R[] - 5541
HRY [[-1-5sl Ro(A£10) Q3 || - s m1-5+ | QT Ro(A00) s 1 | RE |- 5v541
HIQTR(ALi0)QF] - s} [ Ry ll-52-s -

Taking N=s+1, (5.4), Theorems 4.1, 5.1 and 5.3 conclude the proof. [J
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§6. Micro-local estimates for (—A/2+4V—2)".
We assume the following

ASSUMPTION (L). V{(x) is a real-valued C* function such that for all multi-
index «a

(6.1) [02V(x)] = Cplx)tei-e
for some constants C,>0 and ¢ with 0<e<]1.

Let H=Hy+ V(x) and R(z)=(H—2)"!, Imz+0. In this section, we extend
Theorems B.1 and 5.3 to R(z).

In and [4], we have constructed a phase function ¢(x, §) and an am-
plitude function a(x, & which satisfy the following

PropoOSITION 6.1 (cf. [5, Theorem 2.1]). Let —1<60,<8,<1, d>0, 0<dK1
and R>1. Then there exist real-valued C* functions ¢(x, §) and a(x, &) which
satisfy the following properties:

i) For |&l=d/2, cos(x, &) e[—1, 6,]U[b,, 1] and |x|=R/2

(6.2) IV20(x, &)|%/2+ V(x) = |£]%/2.

¢ satisfies for all (x, )€ R*™ and a, f8

(6.3) |0204(¢p(x, &) —xE)| = Copadi=s=191(ED1
and

(6.4) p(x, 8 =x6  for |x|=R/4 or |§|=d/4,

where constants C,p are independent of (x, &) R*™ and R.
ii) a(x, &) satisfies for all (x, &) R*™ and a, B
|050%a(x, &)| = Caplxd~'*,
|020%(a(x, §)—1)| = Capdxd='%1=¢&)1
for cos(x, §)e[—1, 0,—0]UL0,+0, 1], |&]=d, |x|=R,
a(x, 8 =0 for cos(x, &) e[b,, 0,] or |x|<R/2 or |E|Zd/2

(6.5)

where Cqp are independent of (x, &) and R. Further set

(6.6) t(x, §) = e = O(—A/24+V(x)—|§|*/2)(e* =P a(x, §)).

Then for any L=1

Coprlx) &>  for cos(x, &)e[—1, 0,—61U[0,+9, 1],
Coplxd1712KE>  otherwise.

In particular, t(x, £)e BL,.

(6.7) 1950%(x, &) é{
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Let ¢,>0 be the constant in Let #>0 be small enough and
n,>n-+1 be an even integer such that #<c¢,/2, so that holds for
the phase functions in P,(¥; 6n,). Let —1<pu.<p,<1 and ¢,>0 be fixed and
let ¢,>0 be the constant in Corollaries 5.2 and 5.4. Then for given d>0 and
—1<6,<8,<1, we can choose R>1 in [Proposition 6.1 so large that ¢(x, §) &
P,_(Z;6n0); |Vep(x, &§)—x|<ci{x)>; and a(x, §) restricted to the region G=
{(x, &) R*"|cos(x, &) e[—1, 8,—01U[0,+0, 1], |§|=d, |x| =R} can be extended
to an a&(x, §)€ B} with |a—1[&D([@l1,600)°"°<KCo/4.  Hence
holds for ¢(x, &) and a(x, §). These are possible due to and (6.5).
We remark that we can switch to another larger R>1 and smaller ¢,>0 if
necessary in the following, since the estimates in [Proposition 6.1] are uniform
in large R as far as —1<60,<60,<1 and d>0 are fixed.

We then define the Fourier integral operators:

6.8) Jf(x) = Os-SSe“W-f>-vf>a<x, &) f(»)dyde,
6.9) Jfx) = oS-SSeW-@-wd(x, & f(y)dyde,
(6.10) Tf(x) = (H—JHy) f(x)

= 0s-[{etvmomsouz, ) f(5)dyag
for fe€8. The second equality in [6.10) is easily seen by [6.6).
PROPOSITION 6.2. For Im z+0,
(6.11) R(2)] = JRy(2)—R(2)TR,(2).
Proof is easy by using T=HJ/—JH,.

PROPOSITION 6.3. The inverse J-' exists in the class of conjugate Fourier
integral operators with phase function ¢(x, &) and Bj-symbol.

Proof is clear by [Theorem 3.4(3.20), the definition of a@(x, &), and our choice
of R»1.

Let p.(x, &)= B} satisfy and for —1<p_-<p,+<1l and §,>0 fixed
above.

PrROPOSITION 6.4. If 6,+0<ps [resp. p-<B,—0] and d<d,, then for any
S5, S,ER?

(6.12) NJ=DFPillgasy < 000 [resp. |(J=I)J1P- ||y, < 00.]

Proof is easy by using the calculus (Theorems 2.2, B.2 and [B.4), the asymp-
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totic expansion of the symbols (Proposition 2.1), and the L2-boundedness theorem
(Theorem 4.1). Here we switch to another larger R>1 if necessary, and use
Theorems B.2-(3.9)-1), 6,+0<p., d<d,, (6.3) and in order to separate the
supports of the symbols $_(x, &) and §.(x, &) B of (J—J)j-* and P, in the
sense that g, in for p.(x, §) satisfy —1<a_-<f;<1 and that p.(x, £)=0
for & with |£]<d, and pH_(x, §)#0 for some x<R", so that

0¢D3p-(x, 8)p+(x’; N} zrmzpr=e=0  for all a.
The following theorem is due to Saito [9].

THEOREM 6.5. Let a>1/2 and 2,>0. Then for A=2, the boundary values
R(A+:0)=1im,_,(H—(Aie))~! exist in B(LZ2, L2,) and satisfy for A=24,

(6.13) [R(A£10)| gu-a = CA7Y2,
where C>0 is independent of A=A,

THEOREM 6.6. Let s>1/2 and 2,>0. Let —1<u.<1 and 2,>0%/2. Then
(6.14) | RA£0)P]|1-50ms = CA7YE,

(6.15) [Pz R(A£i0)||gus-1 = CA7V2,
where C>0 is independent of A=2,.
PROOF. Since is conjugate to [6.14), we have only to prove

We consider R(A+:0)P, only. The other case can be treated similarly.
We first choose 6,<6@; and d>0 of Proposition 6.1 such that ,+d< g, and
d<d,. By [Proposition 6.3, we have

(6.16) P, = JJ-'P, = JJ-"Pi+-(J—=])J-P;.

It is easy to see by the calculus (Theorems [B.1+i) and 3.4) that, for a given
N=0, f"P+ is decomposed as a sum of two conjugate Fourier integral operators
Qi and RY. with [[<x>¥R¥.(x>¥|<co and the symbol ¢*(&, y)€ B} of Q. satis-
fying and [5.2) with 8, and p. replaced by some other 0<§;<d, and
—1<pi<p,. Here, we switch to another larger R>1, if necessary in order
to let 6;>0 and pi>—1 by virtue of [Theorem 3.143.4), [6.3) and [6.4) Note
that p,—p! can be taken arbitrarily small if we let R large enough, hence we
can assume 6;4+0<ph (<ps).
Write z=21+ie, =24, ¢>0. By [(6.11) and [(6.16),

(6.17) R(2)P. = R(=)] Q4+ RE@JRE+(J—NJ-P.)
= JR\(2)Q}— R(@)TR(2)Qps+ R R +(J=))J-P.).

By virtue of the condition |V.p(x, §)—x|<c,{x), the estimate conjugate to
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5.9) of [Corollary 5.2 yields that the first term on the RHS of satisfies
the required estimate. The third term on the RHS of clearly satisfies
the required estimate by [Theorem 6.5 and [Proposition 6.4, if we take N=s.

To treat the second term on the RHS of [6.17), we first note by
6.1-(6.7), Corollary 5.4, [6.10), 6,+8<pi, d2/2<8i/2<2, and [Vep(x, &)—x| <
c¢{x> that for A=4, and ¢>0

(6.18) IKD>"'TR(2)Qsll1-s-s = CA7V2.

where <(D>*! are the pseudodifferential operators with symbols (£)>*!. This and
imply that for A=4, and >0

(6.19) [R(2)TR(2)Qsll1-s--s = I R(IXD) |l s5--sIKD>* TRy(2) Qrll1- 55

=1,

since ||R(z){D>|;.-s=C for some constant C independent of A=4, and £>0,
which follows from and [3], Theorem 1.4. This completes the
proof of [(6.14). O

THEOREM 6.7. Let s=0 and 4,>0. Let —1<pu-<p,<land 2,>03/2. Then
for A=14,

(6.20) [Pz R(A£10) Pl -5 = CA™YE,
where C>0 is independent of A.

ProoF. We only consider P_R(4+:0)P,. The other case can be treated
similarly.

We first choose 8,<@, and d>0 of Proposition 6.1 such that §,+d<p. and
d<0d,. As in the proof of for a given N=0, J-'P, can be decom-
posed as a sum of two conjugate Fourier integral operators QJ. and RJ. with
[Kx>¥ RE.{x>¥||<co and the symbol ¢.(§, y) B} of Q. satisfying and
with d, and p, replaced by some other 0<(9,<d, and —1<pi<py.. Further,
switching to another larger R>1 if necessary and using —1<p-<p.<1l and
—1<60,4-0<p+, pi can be taken to satisfy p-<pgi and 6,4-0<pl.

Writing z=A+1ie, A=4,, ¢>0, we have from [6.17)

(6.21) P_R(z)P, = P_]Ro(z)Q;Z.—P_R(Z)TRO(Z)Q};.
+P_R@)(JREA+(—D)J-P,).
Using —1<pu-<pi<1, Theorem 3.1H), and and switching to another

larger R>1 if necessary, we separate the supports of the symbols p-(x, &) and
g+¢, y)e B} of P_J and Q. in the sense that the constants g’ and g} corre-
sponding to p, in for §- and g, satisfy —1<pul<pi<l. Then by Corol-
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lary 5.4 and the condition |Vep(x, §)—x]<c,{x), the first term on the RHS of
satisfies the required estimate.
The third term on the RHS of is estimated as

(6.22) 1P-R)(JRY A (J—)JP)ll -5
S P-R(@)es1s TR AT =DF P -gsir »

which is bounded by a constant times A-'/% by [Proposition 6.4] and [Theorem

6.646.15), if we take N=s-+1.
The second term on the RHS of is majorized as

(6.23)  [IP-R(TR(2)Q%t]l-s-s = [ P-R(@KD) 54125 IKD>" TRy(2)Q ]l - g5 -

It follows from [Theorem 6.6 and Theorem 1.4 of that
(6.24) | P-R(2)}D>| 54126 = C

for some constant C independent of A=4, and ¢>0. Therefore, by (6.10), (6.7),

Corollary 5.4, 0,+8<p, d*/2<58;2/2<%, and |Vsp(x, &)—x|<cixd, the RHS
of (6.23) is bounded by C4-'’2, which concludes the proof. O

§7. Micro-local approximation of (—A/2+V—2z)"1.
Let X (x)e=CH(R™) satisfy

(7.1) (x) = boorI=L
‘ WE=10 2122,
and set

(7.2) Vix) = V(x)Xo(x/7)

for j=1, 2, 3, ---. Then V,(x) satisfy in Assumption (L) uniformly in j=1,
Further it is easy to check the proof of ([9]) to see that
holds for R;(A+:0)=(H;—(2+:0))"*, H;=—A/24 V;, uniformly in j=1.

Then the following theorem can be proved in quite the same way as in §5
of by using Theorems and above, and the proof is omitted here.

THEOREM 7.1. Let s=0, 2,>0, and —1<p-<p,<l. Then for 2=2, and
i=1,2, -,
(7.3) | P-(R(A+10)— R j(A4+10)) P, || -5.s = Cj€277,

where C>0 is independent of A=24, and j=1, 2, ---.
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