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$0$ . Introduction.

By a continuum we mean a nonempty compact connected metric space.
Let $X$ be a continuum with metric $d$. By the $hyPersPace$ of $X$ we mean
$C(X)=$ { $A|$ $A$ is a (nonempty) subcontinuum of $X$ } with the Hausdorff metric
$H_{d}$ . Let $F_{1}(X)=\{\{x\}|x\in X\}$ . A Whitney map for $C(X)$ is a continuous func-
tion $\omega;C(X)arrow[0, \omega(X)]$ such that

(0.1) if $A\subset B$ and $A\neq B$ , then $\omega(A)<\omega(B)$ , and
(0.2) $\omega(\{x\})=0$ for each $\{x\}\in F_{1}(X)$ .

In [33] and [34], H. Whitney showed that for any continuum $X$ there exists a
Whitney map $\omega$ for $C(X)$ . In 1942, Kelley’s important paper [13] appeared.

J. L. Kelley was the first person to introduce Whitney map into the study of
$C(X)$ . After Kelley’s work, several papers on Whitney maps have been written
and Whitney maps have become standard tool and has since been used in
almost all papers about hyperspaces ($e.g.$ , see the references).

Let $\mathfrak{P}$ be a topological property. The property $\mathfrak{P}$ is called a Whitney
Property provided whenever $X$ has the property $\mathfrak{P}$ , so does $\omega^{-1}(t)$ for any
Whitney map $\omega$ for $C(X)$ and $0\leqq f<\omega(X)$ . It is known that many properties
are Whitney properties ( $e$ . $g.$ , see [5], [8], [9], [13], [14], [15], [16], [18], [20],
[23], [24], [27], [28], [29], [30] and [31], etc.). Also, it is known that many
properties are not Whitney properties( $e$ . $g.$ , see [3], [4], [10], [11], [18], [24]

and [26], etc.).

In [8], we proved that the property of being pointed l-movable is a
Whitney property. Also, in [9] we proved that the property of being movable
is a Whitney property for $\theta(2)$-curves. Naturally, the following problem is
raised: Is the property of being movable a Whitney property ? In section 1,
we give a negative answer to the problem. In fact, there exist a movable
curve $X$ and a Whitney map $\omega$ for $C(X)$ such that for some $0<t<\omega(X),$ $\omega^{-1}(t)$

is not 2-movable. In [27], J. T. Rogers, Jr. proved that if $X$ is any continuum
and $\omega$ is any Whitney map for $C(X)$ , then there is an injection $\gamma^{*}:$

$\check{H}^{1}(\omega^{-1}(t))$
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$arrow\check{H}^{1}(X)$ for $0\leqq t\leqq\omega(X)$ , where $\check{H}^{1}(X)$ denotes the first ech cohomology group
of $X$. Also, if $\check{H}^{1}(X)$ is finitely generated, then there is a positive number $t_{0}$

such that $\check{H}^{1}(\omega^{-1}(t))\cong\check{H}^{1}(X)$ for $0\leqq t\leqq t_{0}$ (see [8, (1.14)]). In section 2, we
prove the similar theorems concerning the first homotopy and homology pro-
groups.

We refer readers to see [1] and [21] for shape theory, and we refer
readers to see [24] for hyperspace theory.

1. The property of being movable is not a Whitney property.

A compactum $X$ lying in the Hilbert cube $Q=[0,1]^{\infty}$ is said to be movable
([1] or [21]) provided that for every neighborhood $V$ of $X$ in $Q$ there is a
neighborhood $U$ of $X$ in $Q$ such that for any neighborhood $W$ of $X$ in $Q$ there
is a homotopy $\varphi_{W}$ : $U\cross[0,1]arrow V$ satisfying tbe following condition.

(i) $\varphi_{W}(x, O)=x,$ $\varphi_{W}(x, 1)\in W$ for every point $x\in U$.
A compactum $X$ lying in $Q$ is said to be n-movable $(n\geqq 1)$ ( $[1]$ or [21]) provided
that for every neighborhood $V$ of $X$ in $Q$ there is a neighborhood $U$ of $X$ in $Q$

such that for any neighborhood $W$ of $X$ in $Q$ , any compactum $A$ with dim $A\leqq n$

and any map $f:Aarrow U$, there is a homotopy $\varphi_{W}$ : $A\cross[0,1]arrow V$ satisfying the
following condition.

(ii) $\varphi_{W}(a, O)=f(a),$ $\varphi_{W}(a, 1)\in W$ for every point $a\in A$ .
Similarly, “ pointed movable “ and “ pointed n-movable “ are defined (see [1] or
[21]). It is well-known that those properties are topological properties ([1] or
[21]). Clearly, “ (pointed) movable “ implies “ (pointed) n-movable ” for each
$n=1,2,$ $\cdots$

The main theorem in this section is the following

(1.1) THEOREM. The property of being movable is not a Whitney Poperty.
More $Pre\alpha sely$, there enst a movable curve $X$ and a Whitney map ru for $C(X)$

such that for some $0<t<\omega(X),$ $\omega^{-1}(t)$ is not 2-movable. Hence, the Property of
being $\omega\dot{\alpha}nted$) 2-movable is not a Wh2tney prOperty.

To prove (1.1), we need the following

(1.2) (L. E. Ward, Jr. [32]). Let $P$ be a compact metric partially ordered
space such that min $P$ and max $P$ are disjoint closed subsets and let $Q$ be a closed
subset of $P$ such that min $Q \subset\min P$ and max $Q \subset\max$ P. Then a Whitney map
for $Q$ can be extended to a Whitney map for $P$.
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The next result is obvious. We omit the proof.

(1.3) Let $\{X_{i}\}_{i=1.2\ldots..n}$ be a finite family of compact ARs such that $\bigcap_{i\in E}X_{i}$

is emPty or an AR for each subset $E$ of $\{$ 1, 2, $\cdots$ , $n\}$ . Assume that $A,$ $A_{1},$ $A_{2}$ ,
, $A_{n}$ are compacta such that $A=A_{1}\cup A_{2}\cup\cdots\cup A_{n}$ . If $f,$ $g:Aarrow U_{i=1}^{n}X_{i}$ are

any maps such that $f(A_{i}),$ $g(A_{i})\subset X_{i}$ for each $i=1,2,$ $\cdots$ , $n$ , then there is a
homotopy $F:A\cross[0,1]arrow U_{i=1}^{n}X_{i}$ such that $F(a, O)=f(a),$ $F(a, 1)=g(a)$ for each
$a\in A$ and $F(A_{i}\cross[0,1])\subset X_{i}$ for each $i=1,2,$ $\cdots$ , $n$ .

(1.4) (M. Lynch [19]). Let $X$ be any continuum and let $A\in C(X)$ . Then
for any Whitney map $\omega$ for $C(X)$ and any $r\in[0, \omega(X)]$ , the set

$C(A, \omega, t)=\{B\in\omega^{-1}(t)|B\supset A\}$

is an AR, where $\omega(A)\leqq t$ .
PROOF OF THEOREM (1.1). $Cons^{:}\wedge der$ the following sets in the Euclidean

3-dimensional space $E^{3}$ :
$X_{0}=[0,1]\cross[0, \infty)X[0,1]$ .
$X_{n}=[1/3,2/3]\cross[n-(1/3), n+(1/3)]\cross[0,1](n\geqq 1)$ .
$N=X_{0}- \bigcup_{n\approx 1}^{\infty}X_{n}$ .
$M=\partial N$, where $\partial N$ denotes the manifold’s boundary of $N$.

Then $M$ is a non compact 2-dimensional manifold (see Fig. 1). Let $Y=M\cup 1\infty$ }
denote the one point compactification of $M$, which is well-known Borsuk’s
continuum [2] (see Fig. 2). In [2], K. Borsuk proved that $Y$ is not movable,
more precisely $Y$ is not 2-movable. Let $M_{n}=M\cap([0,1]\cross[n, n+1]\cross[0,1])$

$(n=1, 2, )$ and let $K_{n}$ be a simplicial complex which is a triangulation of $M_{n}$ ,
$i.e.,$ $|K_{n}|=M_{n}$ . We may assume that $K=U_{n=1}^{\infty}K_{n}$ is a simplicial complex
which is a triangulation of $M,$ $i$ . $e.,$ $|K|=M$.

Now, we consider the set $X$ which is a disjoint union of $|K^{1}|$ and an arc
$A,$ $i.e.,$ $X=|K^{1}|\cup A$ , where $K^{1}$ denotes the l-skeleton of $K$. We define a
metric $d$ on the space $X$ satisfying the following condition:

$(*)$ For any $\epsilon>0$ , there is a subcompactum $C$ of $|K^{1}|$ such that if \langle V, $W\rangle$

is an edge of $K^{1}$ with \langle V, $W\rangle$ $\cap C=\emptyset$ , then $U_{\text{\’{e}}}(A)\supset\langle V, W\rangle$ and $U_{\epsilon}(\langle V, W\rangle)\supset A$ ,
where $U_{\epsilon}(B)=\{x\in X|d(x, B)<\epsilon\}$ for a subset $B$ of $X$.
Then $X$ is a compact connected l-dimensional metric space which contains $|K^{1}|$

and $A$ . First, we shall show that $X$ is pointed movable. In fact, consider the
decomposition space $X/A$ which is obtained by identifying $A$ to a point. Let
$p;Xarrow X/A$ be the quotient map. Since $A$ is cell-like, $P$ induces a shape
equivalence. Since $X/A$ is a locally connected curve, $X/A$ is a pointed movable
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Figure 1.

Figure 2.

(see [17]). Since the property of being pointed movable is shape invariant, $X$

is also pointed movable.
Next, we shall construct a Whitney map $\omega$ for $C(X)$ as follows. Consider

the following sets:

$\mathfrak{U}_{1}=\{|L|\in C(X)|L$ is a subcomplex of $K^{1}$ such that $|L|$ is contained
in some simplex of $K$ }.

$\mathfrak{U}_{2}=\{|L|\in C(X)|L$ is a subcomplex of $K^{1}$ such that $|L|$ is not contained
in any simplex of $K$ and $|L|\subset M_{n}\cup M_{n+1}$ for some $n=1,$ 2, }.

Then $\mathfrak{U}_{1}\cup \mathfrak{U}_{2}\cup F_{1}(X)\cup\{A\}$ is closed in $C(X)$ . Since $\mathfrak{U}_{1}$ and $\mathfrak{U}_{2}$ are discrete
subsets of $C(X)$ , we can define a map $\omega’$ : $\mathfrak{A}_{1}\cup \mathfrak{U}_{2}\cup F_{1}(X)\cup\{A\}arrow[0, \infty)$ satis-
fying the folIowing conditions:

(1) $\omega’(A)=1$ ,
(2) $\omega’(|L|)<1$ for $|L|\in \mathfrak{A}_{1}$ ,
(3) $\omega’(|L|)>1$ for $|L|\in \mathfrak{A}_{2}$ ,
(4) $\omega’(\{x\})=0$ for $\{x\}\in F_{1}(X)$ ,
(5) if $Z_{1},$ $Z_{2}\in \mathfrak{A}_{1}\cup \mathfrak{U}_{2}\cup F_{1}(X)\cup\{A\}$ and $Z_{1}\subsetneqq Z_{2}$ , then $\omega’(Z_{1})<\omega’(Z_{2})$ , and
(6) for any $\epsilon>0$ , there is a natural number $n$ such that if $|L|\in \mathfrak{U}_{1}\cup \mathfrak{U}_{2}$,

$|L|$ is non-degenerate and $|L|\subset M_{n}\cup M_{n+1}\cup\cdots$ , then $|\omega’(|L|)-1|<\epsilon$ .
Then (6) implies that $\omega’$ is continuous. By (1.2), there exists a Whitney map
$\omega$ for $C(X)$ which is an extension of $\omega’$ .
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Now, we shall show that $\omega^{rightarrow 1}(1)$ is homotopy equivalent to $Y,$ $i.e.,$ $\omega^{-1}(1)\simeq Y$ .
By $(*),$ $A$ is terminal in $X$, $i$ . $e.$ , if $C\in C(X),$ $C\cap A\neq\emptyset$ , then $C\subset A$ or $C\supset A$ .
Hence we see that

(7) $\omega^{-1}(1)=\bigcup_{V\in K^{0}}C(V, \omega, 1)\cup\{A\}$ , where $K^{0}$ denotes the O-skeleton of $K$

and $C(V, \omega, 1)=\{Z\in\omega^{-1}(1)|Z\ni V\}$ .
By the same way as in the proof of [10, (3.1)], for any subset $\{V_{0}, V_{1}, \cdots , V_{m}\}$

of $K^{0},$ $\langle V_{0}, V_{1}, \cdots , V_{m}\rangle\in K$ if and only if $\bigcap_{i=0}^{m}C(V_{i}, \omega, 1)$ is nonempty. Also,
if $\langle V_{0}, V_{1}, \cdots , V_{m}\rangle\in K$, then $\bigcap_{i=1}^{m}C(V_{i}, \omega, 1)$ is an AR. Hence we can construct
maps $f: \bigcup_{V\in K^{0}}C(V, \omega, 1)arrow M$ and $g:M arrow\bigcup_{V\in K^{0}}C(V, \omega, 1)$ such that

(8) $f(C(V, \omega, 1))\subset St$ ( $V$, Sd $K$ ) and $g$ ($St(V$, Sd $K)$ ) $\subset C(V, \omega, 1)$ for every
$V\in K^{0}$ , where Sd $K$ denotes the barycentric subdivision of $K$.
Note that for each natural number $n$ , there is a positive number $\delta>0$ such that
if $Z\in\omega^{-1}(1),$ $Z\neq A$ and $H_{d}(A, Z)<\delta$ , then $Z\subset M_{n}\cup M_{n+1}\cup\cdots$ . Also, we show
that if $Z_{n}\in\omega^{-1}(1)$ and $Z_{n}\subset M_{n}\cup M_{n+1}\cup\cdots$ , then lim $Z_{n}=A$ . Suppose, on the
contrary, that there is a sequence $Z_{1},$ $Z_{2},$ $\cdots$ , of points of $\omega^{-1}(1)$ such that
$Z_{n}\subset M_{n}\cup M_{n+1}\cup\cdots$ , and $H_{d}(A, Z_{n})\geqq\epsilon>0$ for some $\epsilon>0$ . We may assume that
$\lim Z_{n}=Z\subset A$ . Then $\omega(Z)=\lim\omega(Z_{n})=1$ . Since $Z\subset A$ and $\omega(A)=1$ , $A=Z$ .
This is a contradiction. Hence we can obtain (continuous) maps
$f^{*}:$ $\bigcup_{V\in K0}C(V, \omega, 1)\cup\{A\}arrow M\cup\{\infty\}$ , and $g^{*}:$ $M \cup\{\infty\}arrow\bigcup_{V\in K0}C(V, \omega, 1)\cup\{A\}$ ,
which are defined by $f^{*}| \bigcup_{V\in K0}C(V, \omega, 1)=f$ , $f^{*}(A)=\infty$ , $g^{*}|M=g$ and
$g^{*}(\infty)=A$ . By using (1.3), $g^{*}f^{*}\simeq 1$ and $f^{*}g^{*}\simeq 1$ . Hence $\omega^{-1}(1)\simeq Y$ . Since $Y$

is not 2-movable, $\omega^{-1}(1)$ is also not 2-movable. This completes the proof.

(1.5) REMARK. By the similar arguments in the proof of (1.1), we can
conclude that if $P$ is a non compact locally finite polyhedron and $P^{*}=P\cup\{\infty\}$

is the one point compactification of $P$, then there are a movable curve $X$ and a
Whitney map $\omega$ for $C(X)$ such that for some $0<t<\omega(X),$ $\omega^{-1}(t)\simeq P^{*}$ .

2. The first homotopy and homology pro-groups of Whitney continua.

Let (X, $x_{0}$ ) be a pointed continuum. By $pro-\pi_{n}(X, x_{0})$ we mean the n-th
homotopy pro-group of (X, $x_{0}$ ) and by $pro- H_{n}(X)$ the n-th homology pro-group
of $X$ with coefficients in integers $Z$ ( $e$ . $g.$ , see [21]). Let $\omega$ be any Whitney
map for $C(X)$ . In [8] and [9], we defined a shape deformation retraction
$\underline{r}_{st}$ ; $\omega^{-1}([s, t])arrow\omega^{-1}(t)(s\leqq t)$ (see the proof of [8, (1.3)]). Now, consider the
following subset $C[x_{0}]$ in $C(X)$ :

$C[x_{0}]=\{A\in C(X)|A\ni x_{0}\}$ .
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Note that $C[x_{0}]\cap\omega^{-1}(t)=C(x_{0}, \omega, t)$ is an AR (see (1.4)). Consider the decom-
position space $C^{*}(X)=C(X)/C[x_{0}]$ which is obtained by identifying $C[x_{0}]$ to a
point $*and$ let $h:C(X)arrow C^{*}(X)$ be the projection. By the construction of $\underline{r}_{st}$

(see the proof of [8, (1.3)]), $\underline{r}_{st}$ induces a shape deformation retraction
$r_{st}^{*}$ : $(\omega^{-1}([s, t])^{*}, *)arrow(\omega^{-1}(t)^{*}, *)$ , where $\omega^{-1}([s, t])^{*}=\omega^{-1}([s, t])/(C[x_{0}]\cap\omega^{-1}([s, t])$ .
Clearly, the restriction $f_{\epsilon t}^{*}=\underline{r}_{st}^{*}-|\omega^{-1}(s)^{*}:$ $(\omega^{-1}(s)^{*}, *)arrow(\omega^{-1}(t)^{*}, *)$ is a pointed
shape morphism. Then $f_{tu}^{*}f_{\epsilon t}^{*}=f_{su}^{*}---$ for $0\leqq s\leqq t\leqq u\leqq\omega(X)$ . Since $C(x_{0}, \omega, t)$ is
an AR, $h_{t}=h|\omega^{-1}(t):\omega^{-1}(t)arrow\omega^{-1}(t)^{*}$ induces a pointed shape equivalence, $i$ . $e.$ ,
$Sh(\omega^{-1}(t), A)=Sh(\omega^{-1}(t)^{*},*)$ , where $A\in C(x_{0}, \omega, t)$ . Set $f_{st}=\underline{r}_{st}-|\omega^{-1}(s)$ . Then we
have a commutative diagram in (unpointed) shape category as follows:

$\omega^{-1}(s)$

$arrow^{f_{st}-}$

$\omega^{-1}(t)$

$h_{s}\downarrow$ $|h_{t}$

$(\omega^{-1}(s)^{*}, *)arrow(\omega^{-1}(t)^{*}, *)f_{st}^{*}-$

Hence, in order to study the shape properties of $\omega^{-1}(t)$ , we will study the
pointed space $(\omega^{-1}(t)^{*}, *)$ .

First, we shall show the following

(2.1) THEOREM. Let $(X, x_{0})$ be a p0inted continuum and let $\omega$ be any Whitney
map for $C(X)$ . Then $pro-\pi_{1}(-f_{st}^{*}):pro-\pi_{1}(\omega^{-1}(s)^{*}, *)arrow pro-\pi_{1}(\omega^{-1}(t)^{*}, *)$ is an etn-
morplusm of pro-groups for each $0\leqq s\leqq t\leqq\omega(X)$ .

PROOF. The proof is essentially due to Rogers [27]. First, we consider
the case $s=0$. Consider the following subset $Y$ of $X\cross\omega^{-1}(t)$ :

$Y=$ { $(x,$ $A)|x\in X,$ $A\in\omega^{-1}(t)$ and $A\ni x$ }.

Also, consider the decomPosition sPace

$Y^{*}=Y/\{x_{0}\}\cross C(x_{0}, \omega, t)$ ,

which is obtained by identifying $\{x_{0}\}\cross C(x_{0}, \omega, t)$ to a $point*$ . Let $A\in C(x_{0}, \omega, t)$ .
Let $k:(Y, (x_{0}, A))arrow(Y^{*}, *)$ be the quotient map and let $p;(Y, (x_{0}, A))arrow(X, x_{0})$

and $q:(Y, (x_{0}, A))arrow(\omega^{-1}(t), A)$ be the projections. Clearly, there is a map
$g:(Y^{*}, *)arrow(\omega^{-1}(t)^{*}, *)$ such that $h_{t}\cdot q=g\cdot k$ , where $h_{t}$ : $\omega^{-1}(t)arrow\omega^{-1}(t)^{*}$ is the pro-
jection. By using the unpointed shape morphism $f_{0t}-$ : $Xarrow\omega^{-1}(t)$ , we can easily
obtain a shape morphism $\underline{\tilde{f}}_{0t}$ : $(X, x_{0})arrow(Y, \{x_{0}\}\cross C(x_{0}, \omega, t))$ such that $p\cdot\underline{\tilde{f}}_{0t}=\underline{1}_{X}$

and $q\cdot\underline{\tilde{f}}_{0t}=f_{0t}-\cdot$ Note that $h_{t}\cdot q\cdot\underline{\tilde{f}}_{0t}=f_{0t}^{*}-\cdot$ Then $k\cdot\underline{\tilde{f}}_{0t}$ : $(X, x_{0})arrow(Y^{*}, *)$ is a pointed
shape morphism. Note that $p^{J}\cdot k\cdot\underline{\tilde{f}}_{0t}=p\cdot\underline{\tilde{f}}_{0t}=\underline{1}_{(X.x_{0})}$ , where $P’$ : $(Y^{*}, *)arrow(X, x_{0})$

is a map such that $p’\cdot k=p$ . Then we have the following diagram in pointed
shape category:
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By (1.4), $p,$ $k$ and $h_{t}$ are cell-like maps, and $q$ is a monotone map, $i.e.$ ,
$q^{-1}(Z)\cong Z\in AC^{0}$ for each $Z\in\omega^{-1}(1)$ . Hence $pro-\pi_{1}(p),$ $pro-\pi_{1}(k)$ and $pro-\pi_{1}(h_{t})$

are isomorphisms of pro-groups ( $e$ . $g.$ , see [21, p. 283]) and $pro-\pi_{1}(q)$ is an
epimorphism of pro-groups ( $e$ . $g.$ , see [6, Theorem (8.5)]). Thus $pro-\pi_{1}(g)$ is an
epimorphism of pro-groups. Since $pro-\pi_{1}(p’)$ is an isomorphism of pro-groups,
we conclude that $pro-\pi_{1}(k\cdot\underline{\tilde{f}}_{0i})$ is an isomorphism of pro-groups. Since
$pro-\pi_{1}(-f_{0t}^{*})=pro-\pi_{1}(g)\cdot pro-\pi_{1}(k\cdot\underline{\tilde{f}}_{0t}),$ $pro-\pi_{1}(f_{0t}^{*})-$ is an epimorphism of pro-groups.
Next, we consider the case $s>0$ . Note that $f_{\epsilon t}^{*}f_{0\}^{*}=f_{0t}^{*}---\cdot$ Hence we can easily
see that $pro-\pi_{1}(f_{\epsilon t}^{*})-$ is also an epimorphism of pro-groups. This completes the
proof.

A compactum $X$ is said to be $n$-shape connected $(n\geqq 0)$ ( $e$ . $g.$ , see [21])
provided that $pro-\pi_{i}(X, x_{0})=0$ for each $x_{0}\in X$ and $0\leqq i\leqq n$ .

(2.2) COROLLARY. The prOperty of being $l$-shape connected is a Whitney
property.

(2.3) THEOREM. Let (X, $x_{0}$) be a pOjnted continuum and let $\omega$ be any Whitney
map for $C(X)$ . If $pro-\pi_{1}(X, x_{0})$ is stable ($e.g.$ , see [21]), then there is a pOsjtjve
number $0<t_{0}<\omega(X)$ such that $pro-\pi_{1}(-f_{0t}^{*}):pro-\pi_{1}(X, x_{0})arrow pro-\pi_{1}(\omega^{-1}(t)^{*}, *)$ is an
isomorphism of pro-groups for $0\leqq t\leqq t_{0}$ .

PROOF. Let $t_{1}>t_{2}>\cdots$ , be a decreasing sequence of positive numbers such
$\lim t_{l}=0$. Note that $\bigcap_{i=1}^{\infty}(\omega^{-1}([0, t_{i}])^{*},*)=(X, x_{0})$ . Then we have the following
commutative diagram in pointed shape category:

$(\omega^{-1}([0, t_{1}])^{*}, *)=(\omega^{-1}([0, t_{2}])^{*}, *)arrow(\omega^{-1}([0, t_{3}])^{*}, *)=$

$\int\downarrow\underline{r}_{0t_{1}}^{*}$ $\int\downarrow\underline{\gamma}_{0t_{2}}^{*}$ $l\downarrow\underline{r}_{0t_{\}}^{*}$

$(\omega^{-1}(t_{1})^{*}, *)arrow^{f_{c_{2}\iota_{1}}^{*}-}(\omega^{-1}(t_{2})^{*}, *)arrow^{f_{t_{3}t_{2}}^{*}-}(\omega^{-1}(t_{3})^{*}, *)-$

Note that the inclusion $i:(\omega^{-1}(t_{j})^{*}, *)c(\omega^{-1}([0, t_{j}])^{*}, *)$ induces a pointed shape
equivalence (see [8, (1.3)]). By the shape continuity, $f=-\{pro-\pi_{1}(f_{0t_{n}}^{*})\}_{n=1.2}-,\ldots$ . :
$pro-\pi_{1}(X, x_{0})arrow\underline{W}$ induces an isomorphism of pro-groups, where $\underline{W}$ is the fol-
lowing inverse system:

$pro-\pi_{1}(\omega^{-1}(t_{1})^{*},*)arrow pro-\pi_{1}(\omega^{-1}(t_{2})^{*},*)pro-\pi_{1}(f_{t_{2}t_{1}}^{*})-arrow pro-\pi_{1}(\omega^{-1}(t_{3})^{*},*)pro-\pi_{1}(f_{t_{3}t_{l}}^{*})-arrow$
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Since $pro-\pi_{1}(X, x_{0})$ is stable, for some group $G,$ $pro-\pi_{1}(X, x_{0})\cong G$ . By (2.1),
$pro-\pi_{1}(f_{t_{n+1^{t}n}}^{*})$ is an epimorphism of pro-groups for each $n=1,2,$ $\cdots$ By the
following lemma (2.4), we conclude that there is a natural number $n$ such that
for each $m\geqq n,$ $pro-\pi_{1}(f_{0\iota_{m}}^{*})-$ is an isomorphism of pro-groups. Let $t_{0}=t_{n}$ and
let $0\leqq t\leqq t_{0}$ . Since $pro-\pi_{1}(-f_{tt_{n}}^{*})\cdot pro-\pi_{1}(-f_{0t}^{*})=pro-\pi_{1}(f_{0\iota_{n}}^{*})-$ is an isomorphism of
pro-groups, $pro-\pi_{1}(f_{0t}^{*})-$ is a monomorphism of pro-groups. Hence we can con-
clude that $pro-\pi_{1}(f_{0t}^{*})-$ is an epimorphism and a monomorphism of pro-groups.
By [21, p. 114, Theorem 6], $pro-\pi_{1}(f_{0t}^{*})-$ is an isomorphism of pro-groups.

(2.4) LEMMA. Let $\underline{H}(i)=\{H(\iota)_{1}arrow H(i)_{2}arrow\cdots\}h(t)_{21}h(t)_{32}$ be an inverse sequence of
groups for each $i=1,2,$ $\cdots$ , and let $\underline{p}(i+1, i)=\{p(i+1, i)_{k} : H(i+1)_{k}arrow H(\iota)_{k}\}_{k=1,2},\ldots$ , :
$\underline{H}(i+1)arrow\underline{H}(i)$ be an epjmOrphim of $\psi 0$-groups for each $i$ . Let $G$ be a $grmP$ and
$f=-\{f_{i} : Garrow\underline{H}(i)\}_{i=1.2}-\cdots.$ . : $Garrow\underline{H}$ be a morphjsm of Pro-groups, where $\underline{H}$ denotes the
following inverse system:

$H(1)_{3}\downarrowarrow^{p(2,,1)_{3}}H(2)_{3}\downarrow\underline{p(3,2)_{3}}H(3)_{3}|arrow$

...

$h(1)_{32}|$

$p(2,1)_{2}$

$\downarrow h(2)_{32}p(3,2)_{2}$ $\downarrow h(3)_{32}$

$H(1)_{2}arrow H(2)_{2}arrow H(3)_{2}arrow$

$h(1)_{21}\downarrow$ $\downarrow h(2)_{21}$ $1^{h(3)_{21}}$

$H(1)_{1}\overline{p(2,1)_{1}}H(2)_{1}arrow^{p(3,,2)_{1}}H(3)_{1}arrow\ldots$

If f: $Garrow\underline{H}$

-

is an isomorPhsm of Pro-groups, then there is a natural number $n$

such that $f_{m}$ :$Garrow\underline{H}(m)-$ is an isomorPhm of Pro-groups for $m\geqq n$ .
PROOF. Set $f_{i}=-\{f_{ij}\}_{f=1,2},\cdots$ . , where $f_{ij}$ : $Garrow H(i)_{j}$. Let $\underline{g}$ : $\underline{H}arrow G$ be a

morphism of pro-groups such that $\underline{g}\cdot f=1_{G}-$ and f- $\cdot$

$\underline{g}=1_{\underline{H}}$ . We may assume that
$\underline{g}=\{g:H(1)_{1}arrow G\}$ . We shall show that $f_{i}$ :$Garrow\underline{H}(i)-$ is an isomorphism of pro-
groups for each $i\geqq 1$ . In fact, $(\underline{g}\cdot\underline{p}(i, 1))\cdot-f_{i}=\underline{g}\cdot f_{1}=1_{G}-$ , where $\underline{p}(i, 1)=\underline{p}(2,1)$

$\underline{p}(3,2)\cdots\cdot\underline{p}(i, i-1)$ . Since f- $\cdot$

$\underline{g}=1_{\underline{H}}$ , for each $j$ , there are $i_{1}$ and $j_{1}$ such that
$i_{1}\geqq i,$ $j_{1}\geqq j$ and $f_{ij}\cdot g\cdot p(i, 1)_{1}\cdot h(i)_{j_{1}1}\cdot P(i_{1}, i)_{j_{1}}=h(i)_{j_{1}}{}_{!}P(i_{1}, i)_{j_{1}}$ . Since $\underline{p}(j_{1}j)$ is an
epimorphism of pro-groups, by [21, p. 109, Theorem 3], there is a $j_{2}\geqq r_{1}$ such
that ${\rm Im}(h(i)_{j_{2}j_{1}})\subset{\rm Im}(p(i_{1}, i)_{j_{1}})$ . Hence $f_{ij}\cdot g\cdot p(i, 1)_{1}\cdot h(i)_{j_{2}1}=h(i)_{j_{2}j}$, which implies
that $f_{i}-\cdot(\underline{g}\cdot\underline{p}(i, 1))=1_{\underline{H}(i)}$ . Thus $f_{i}$ :$Garrow\underline{H}(i)-$ is an isomorphism of Pro-groups.

Next, we shall study the first homology pro-groups of Whitney continua.
By [21, p. 136, Theorem 2], there is a natural epimorphism $\varphi_{1}$ : $pro-\pi_{1}(X, x_{0})$

$arrow pro- H_{1}(X)$ of pro-groups for any pointed continuum (X, $x_{0}$). Hence (2.1) and
(2.3) imply the following
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(2.5) COROLLARY. Let $X$ be a continuum and let $\omega$ be any Whitney map for
$C(X)$ . Then $pro- H_{1}(-f_{st}):pro- H_{1}(\omega^{-1}(s))arrow pro- H_{1}(\omega^{-1}(t))$ is an ePimorphism of pro-
groups for each $0\leqq s\leqq t\leqq\omega(X)$ . Moreover, if $pro- H_{1}(X)$ is stable, then there is a
Positive number $0<t_{0}<\omega(X)$ such that $pro- H_{1}(-f_{0t}):pro- H_{1}(X)arrow pro- H_{1}(\omega^{-1}(t))$ is an
isomorphism of pro-groups for $0\leqq t\leqq t_{0}$ .

(2.6) REMARK. In [26], A. Petrus showed that there exists a Whitney map
$\omega$ for $C(D)$ such that $D$ is a 2-cell and for some $t>0$ the 2-sphere $S^{2}$ is
homotopy dominated by $\omega^{-1}(t)$ . Hence (2.1), (2.2), (2.3) and (2.5) are not true
for the second homotopy and homology pro-groups.

(2.7) REMARK. In the statements of (2.3) and (2.5), we cannot omit the
condition that $pro-\pi_{1}(X, x_{0})$ and $pro- H_{1}(X)$ are stable. Consider the following
continuum in the plane $E^{2}$ .

$X= \bigcup_{n=1}^{\infty}\{(x, y)|(x-(1/n))^{2}+y^{2}=1/n^{2}\}$ (see Fig. 3).

Then $pro-\pi_{1}(X, (0,0))$ and $pro- H_{1}(X)$ are not stable. If $\omega$ is any Whitney map
for $C(X),$ $\omega^{-1}(t)$ is an ANR for $0<t\leqq\omega(X)$ (see [9, (3.12)]). Hence $pro-\pi_{1}(f_{0t}^{*})-$

and $pro- H_{1}(f_{0t})-$ are not isomorphisms of pro-groups for each $0<t\leqq\omega(X)$ .

Figure 3.

Let $G$ be a graph ($=compact$ connected l-dimensional polyhedron) with a
triangulation $T$ . For each edge $e=\langle V, W\rangle\in T$ , let $\mathfrak{U}(e)=\{A|$ $A$ is an arc in
$G$ from $V$ to $W$ } and let $|\mathfrak{U}(e)|$ denote the cardinal number of $\mathfrak{A}(e)$ . Set
$n(G)= \max$ { $|\mathfrak{U}(e)||e$ is an edge of $T$ }. A curve $X$ is said to be a $\theta(m)$-curve
[9] provided that there exists an inverse sequence $\{G_{i}, p_{ii+1}\}$ of graphs such
that $X\cong 1iarrow m\{G_{i}, p_{ii+1}\}$ and $n(G_{i})\leqq m$ for each $i$. Note that $X$ is tree-like if
and only if $X$ is a $\theta(1)$-curve. In (2.7), the continuum $X$ is a $\theta(2)$-curve.

Finally, we prove the following

(2.8) COROLLARY (cf. [9, (3.11)]). Let $X$ be a $\theta(2)$-curve and let $\omega$ be any
Whitney map for $C(X)$ . Let $0\leqq t\leqq\omega(X)$ . Then the shape morPhsm $f_{0t}$ :$Xarrow\omega^{-1}(t)-$
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is a weak domination in shape category ($e.g.$ , see [21, p. 186]). Moreover, if $X$

is an FANR ($e.g.$ , see [1] or [21]), $f_{0t}-$ is a shape domination. Also, there is a
positive number $0<t_{0}<\omega(X)$ such that $f_{0t}-$ is a shape equivalence for $0\leqq t\leqq t_{0}$ .

PROOF. Since $X$ is a $\theta(2)$-curve, $Fd(\omega^{-1}(t))\leqq 1$ (see [9, (3.9)]). By (2.1),
$pro-\pi_{1}(f_{0t}^{*})-$ is an epimorphism of pro-groups. By the proof of [21, p. 150,
Theorem 5], $f_{0\iota}^{*}-$ is a weak domination, hence $f_{0t}-$ is also a weak domination.
Assume that $X$ is an FANR. By [9, (3.10)], $\omega^{-1}(t)$ is movable. Since
$Fd(\omega^{-1}(t))\leqq 1$ , it is well-known that $Sh(\omega^{-1}(t))=Sh(_{i=0}^{n}S^{1})$ , where $V_{t=0}S^{1}$ denotes
the one point union of $n$ circles for $n=0,1,$ $\cdots$ , $\infty$ . Since $f_{0t}-$ is a weak
domination, we see that $n<\infty$ . Hence $f_{0t}-$ is a shape domination. By (2.3),

there is a positive number $0<t_{0}<\omega(X)$ such that $pro-\pi_{1}(f_{0t}^{*})-$ is an isomorphism
of pro-groups for $0\leqq t\leqq t_{0}$ . Note that Fd $X\leqq 1$ and $Fd(\omega^{-1}(t))\leqq 1$ . By the
Whitehead theorem in shape theory ($e$ . $g.$ , see [21, p. 152, Theorem 8]), we
conclude that $f_{0t}^{*}-$ is a pointed shape equivalence. Hence $f_{0t}-$ is a shape equiva-
lence for $0\leqq t\leqq t_{0}$ .

(2.9) REMARK. In the statement of (2.8), we cannot omit the condition
that $X$ is a $\theta(2)$ -curve. Let $G$ be the graph as follows (see Fig. 4).

Figure 4.

Note that $n(G)=3$. In [9, (2.6)], we showed that for any Whitney map $\omega$ for
$C(X)$ , there is a positive number $0<t_{0}<\omega(X)$ such that $\omega^{-1}(t)\simeq S^{2}$ ( $=the$ 2-sphere)
for $t_{0}\leqq t<\omega(X)$ . Hence $f_{0t}-$ : $Xarrow\omega^{-1}(t)$ is not a weak domination.
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