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Introduction.

It has been well recognized that the most appropriate notion of positivity
for linear maps between C*-algebras is the complete positivity. Although there
were classical works [8, 11, 127 on numerical completely positive functions, it
was not until the recent papers of Ando and Choi and Arveson [3] that
the nonlinear complete positivity was investigated in the C*-algebraic framework.
According to [1], in spite of the extent of nonlinearity, any completely positive
map between arbitrary C*-algebras admits a nice representation as a doubly
infinite sum of compressions of completely positive linear maps on certain
C*-tensor products. On the other hand, the essentially similar representation
was obtained in [3] for bounded completely positive complex-valued functions
on the open unit ball of a unital C*-algebra.

Since Arveson’s Hahn-Banach type extension theorem for completely
positive linear maps, the linear completely positive extension has been discussed
especially in connection with injectivity and nuclearity of C*-algebras (see e.g.
[5, 7). It seems natural to consider the nonlinear counterpart of complete
positive extension. The purpose of this paper is to investigate the problem
when completely positive maps defined on A (resp. ball.4, the open unit ball
of A) can be extended on # (resp. ball 8) given a C*-subalgebra A4 of a
C*-algebra 3.

In Section 1 of this paper, on the lines of we generalize the represen-
tation theorem in to bounded completely positive maps on ball 4 with values
in a von Neumann algebra. In Section 2, we show the local uniform continuity
of completely positive maps. In Section 3, we give some completely positive
extension theorems in special cases when B=J; or A is seminuclear. We
further characterize pairs AC @ of C*-algebras having the completely positive
extension property. It is proved above all that every completely positive map
from A to B(#) is extended on 2 if and only if A*"QRA®"C B*™RB®" for
all m, n=0, where A is the C*-algebra conjugate to A and A®™XA®" is the
projective C*-tensor product of m copies of A and n copies of 4. Finally in
Section 4, we show that any completely positive map from A to a von Neumann
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algebra % can be uniquely extended to a normal completely positive map from
the enveloping von Neumann algebra A** to M.

1. Representation of completely positive maps.

Throughout this paper, let A and @ be C*-algebras which are not neces-
sarily assumed to be unital. Let M, be the nXn complex matrix algebra. We
denote by M,(A) the C*.algebra of nXn matrices with entries in J, i.e.,
M,(A)=AQM,, the C*-tensor product. Given a map ¢: A—B and an integer
nzl, let ¢n: Mu(A)—>M,(B) be defined by ¢.([ai;N=[d(a:)], [a:;1€ Mu(A).
In accordance with the case of linear maps, a map ¢: A—3B is said to be
completely positive if, for every n=1, é,.([a;;]) is positive in M,(B) whenever
[ai;] is positive in M,(A). In the nonlinear case, it is meaningful to discuss
completely positive maps on ballA={as:|a]|<1}, the open unit ball of 4,
as well. We call a map ¢:ball.A—B to be completely positive if, for every
n=1, ¢.([a;;1)=0 in M,(B) whenever [a;;1=0 in M,(A) with a;;&ball AL
Note that a completely positive map ¢ defined on {acsd: |al<r}, r>0, is
reduced to one on ball A4 by a scaling transform ¢(ra).

In contrast to the linear case, the nonlinear complete positivity is far from
trivial even when A=2=C. Concerning numerical complete positive maps, it
was earlier known (see [8, 11, 127]) that a complex-valued function f on C (resp.
D={zeC:|z|<1}) is completely positive if and only if it admits a (unique)
representation :

- fle) = i ocmnszz'”, absolutely convergent,
m, n=
ze C (resp. z€ D),

with ¢,,=0. This representation was recently extended by Ando and Choi
to completely positive maps between arbitrary C*-algebras. For integers
m, n=0, ¢: A— B is said to be (m, n)-mixed homogeneous if

o(za) = z"z"¢(a), ze(C, ac d,

where the (0, 0)-mixed homogenuity means that ¢ is a constant map. Ando
and Choi proved the following theorem for ¢ defined on A, but their proof
remains valid also for ¢ on ball A with a slight modification.

THEOREM l1.1. For every completely positive map ¢: A—B (resp. ¢:ball A
— B), there exist unique completely positive maps Ppmn: A—B, m, n=0, such
that ¢un is (m, n)-mixed homogeneous and

o(a) = i O¢mn(a), absolutely norm convergent,
m, nmm

ae A (resp. ac ballA).
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The notion of complete positivity is introduced also for maps of several
variables. Let A, k=1, ---, n, be C*-algebras and A, X---XA, the Cartesian
product of A, -+, Ap. A map DP:A X XA,—B is called to be completely
positive if, for every (=1, [D(ayqj, -, An1;)]:;=0 in M;(8B) whenever
Lar ;1i;=0 in My(A;), k=1, ---, n. Now let @: A X X A,—B(4) be a com-
pletely positive multilinear map where B(4) is the algebra of all bounded
linear operators on a Hilbert space 4. Then @ is bounded, i.e.,

191 = sup{|P(as, -, an)l : axEAs, llasll=1} < oo,

and, as mentioned in [1], @ admits the following Stinespring representation.
The proof can be done as in the case of completely positive linear maps (see

[13], [14, .3)).

THEOREM 1.2. If @ : A XX A,—B(H) is a completely positive multilinear
map, then there exists a triple {X, (zy, -+, ®n), V} of a Hilbert space X, repre-
sentations wy: Ay—B(X), k=1, --, n, and a bounded linear operator V : 4 — X
such that

¢)) wy(Ay), k=1, -+, n, commute mutually,
@  Way -, a) =V IIm@)-V, e eds,
@ [ va] =

k=1

If {X’', (=i, -+, =2), V'} is another such triple, then there exists a unitary
operator U : K—K' such that mi(a,)=Uri(a)U*, ar€As, k=1, -, n, and
'=UV. Furthermore |@|=|V|?* holds.

Let CP(A, B) denote the set of all completely positive “linear ” maps from
A to 8. We denote by A,Q---RA, the projective C*-tensor product (i.e.,
C*-tensor product with respect to the largest C*-crossnorm) of C*-algebras
Ay, -+, Az, Which is determined independently of the order of taking tensor
products. Because projective C*-tensor products are considered in this paper

rather than injective C*-tensor products, we use simply the symbol & instead
of the usual Qmax.

COROLLARY 1.3. For every completely positive multilinear map @ : A; X -+ X A,
— B, there exists a unique p=CP(A,R - QAn, B) such that

D(ay, =, ) = p(a:Q - Raz),  ar € .

Conversely, for every pcCP(AQ - QAn, B), @ defined by the above equation is
a completely positive multilinear map and |@|=|pl.

PROOF. Assuming BCB(4), we take the Stinespring representation
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{X, (74, -, ®s), V} of @ by Then there exists a representation
T AR R A,— B(K) such that

(a,Q - Qa,) = lillrrk(ak), ap € Ag.

If we define peCP(A;Q - QAn, B(4)) by
p(x) =V*z(x)V, x& AR QAy,

then p satisfies the desired equation, and so (4@ Q@A) B. The unique-

ness of p is clear. Further we have |@|=|V|?*=]|p| by The
converse part is seen from the fact that the map (a,, -+, a»)—a:Q - Ra,

from A; X+ XA, to 4, RA, is completely positive and multilinear. O

For each n=1, let A be the n-fold Cartesian product of 4. For a= U,
the element (a, -+, a) in A™ is denoted by a‘™.

The C*-algebra conjugate to A is denoted by 4, which is defined as the
same underlying set as 4, having the same addition, multiplication, involution
and norm, but whose scalar multiplication is conjugated. We denote by & the
element in A corresponding to aA. Then the scalar multiplication in A is
defined by za=za, z&C, acA. The map a—a from A to J is a conjugate-
linear isomorphism and so a completely positive map. Note that J is isomorphic
to the C*.algebra A°P opposite to .

It was proved in that completely positive mixed homogeneous maps can
be extended to completely positive multilinear maps as follows.

THEOREM 1.4. If ¢:A— B is a completely positive (m, n)-mixed homogeneous
map with m+n>0, then there exists a completely positive multilinear map
D: A™ X A B such that

¢((l) — @(a(m)’ d(n)>, ac A.
We here state the construction of @ for later use. Let G be the (m-+n)-fold

product group of the multiplicative group {1, —1, ~/—1I, —+/—1}. Define a
completely positive map A : A™ X A™—M,(A) with [=4™+" by

m+n _
A(aly ty Qmy Ay, ", am+n) = ’;21 l:xkxl{cak]x,l’EG) a, € 04)

where X, stands for the kth component of X=G. Also define a completely
positive map 6 : M,(8)— 3 by

1 _
O([byy]) = Tl al 4 ZZ,ZEGC(ZDC(X’)bxx' , Lbyr] € M(3B),
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where
mo m+n
CO) = TT1Xe- TI X4.
k=1 k=m+1
Then the desired @ : A™ X A»— B is given by
@ - @°¢l°./1 .

Ando and Choi’s structure theorem for completely positive maps is obtained
by Theorems .1, 0.2 and I.4

For each n=1, let A®"=UAQ® QA be the n-fold projective C*-tensor
product of 4, and A" be the C*-subalgebra of 4®" generated by the elements
a®"=aQ® - Qa, ac A We put the conventions A2°=A"=C and a®*'=1, ac .
Note that the similar notations A™, A®" and A" ought to be distinguished.
For m, n=0, let A2™Q@JA®" (resp. A™®JA™) be the projective C*-tensor product
of A®™ and JA®" (resp. A™ and JA™). The permutation group of {1, 2, ---, n}
is denoted by S,. We put the convention S,=S;. The product group S, XS,
gives rise to the natural action a, ., (¢, 7)ES,XS,, on A®™X A®" defined by

aa,r(a1® ®am®dm+1® ®dm+n)
= 8ex® * RomyP@Cm+:1>Q *+* QT mszcny » a, € A.
We call a map on A®™RJA®™ to be S, X Sy-tnvariant if it is invariant under the

action « of S, XS;.
Given C*-algebras 8, and C*-subalgebras A, of 8,, k=1, ---, n, we write

AR - Qdn C B, -+ QO By
if the natural homomorphism 6 from J4,& - QA, to B,Q - R B, satisfying
0(a:® - ®an) = a,Q - Ran  ar € A,

is injective. This is not always the case in contrast to the case of injective
C*-tensor products.

LEMMA 1.5. For each m, n=0, A™"QACA™RA®" Indeed A™QA™ is
the fixed point subalgebra of A®™RA®™ under the action of S, XSa.

PrOOF. To show that the natural homomorphism 6 : A™"QA"—>AS™RAE"
is injective, suppose that there exists a nonzero positive element w in A™QA"
such that 8(w)=0. Take a positive linear functional f of A™@JA™ with f(w)>0.
Since A™ (resp. A™) is the fixed point subalgebra of A®™ (resp. A®") under the
natural action a of S, (resp. S,), we can define a completely positive multi-
linear function @ : A°"RA®"—C by

D(x, y) = fERF), =xe&J™, ye J°",
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where

L s o) and

m! oSy

Then, by [Corollary 1.3, there is a positive linear functional p of A®™Q A"
such that

=

X ad.

L TESy

O(x, y) = p(xQy), xe€J™, ye o,

and so f=p-0, contradicting f(w)>0. Hence A™"RACA®™RIA®*. Now it is
easily seen that any S, X S,-invariant bounded linear functional of A®™RA®"
vanishing on A™@JA" is identically zero. This shows the last assertion. O

THEOREM 1.6. Let ¢: A— B be a completely positive (m, n)-mixed homogene-
ous map with integers m, n=0. Then:

(1) There exists a unique S, XS,-invariant p€CP(AP™RA®", B) such that
é(a) = p(a®™Ra®"), acs .
(2) There exists a unique p’'€CP(A™RQA™, B) such that

#(a) = p'(a®"Qa®"), ae .

Furthermore ||@l|=lloll=I[lo’ll holds where |¢|=sup{ld(a)l:llall=1}.

PROOF. (1) Let @: A™x A™— 4 be as in By the con-
struction of @, @(ay, *+, Gm, Gm+1, **, Em+n) iS invariant under permutations of
(as, =+, an) and (@m+1, -, @m+n), SO that we get a desired p=CP(AP™R A", B)

by [Corollary 1.3, The uniqueness of p is readily checked, since for any p as
in (1) we have

P(a1® - RAnQREm 1R - QT msn)

]- a’“”‘ m+n
T omlnl 0z, 02m0Zmer  0Fman ¢’( éﬂkh)-

(2) follows from (1) and Finally [¢|<|p’|<]p| is clear. If
{e;} is an approximate identity of .4, then {¢;®™®&,®"} becomes an approxi-
mate identity of A®*™®.JA®" and hence

loll = limllp(e;°"@2:°M] = limlg(e|<Ngl. O

Arveson [3] characterized bounded completely positive complex-valued
functions defined on ball A of a unital C*-algebra 4. Here a map ¢ :balld— 3
is called to be bounded if sup{|@d(a)]:|a]|<1}<co. In the following theorem,
we establish this characterization in a more general setup where A is not
necessarily unital and the range algebra is a von Neumann algebra. Let
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er=@Pr_, A" be the direct sum C*-algebra of A", n=0. There is a natural
mapping I” from ball A to ball e defined by I'(a)=@P3-,a®", ||a]<1. Analogously
e* and I" on ball A are defined. Then the projective C*-tensor product e4Re?
is identified with the direct sum C*-algebra of A™QJA™, m, n=0, i.e.,

e?Ret = é_ (A™RA™).

m 0

Under this identification, we can write

ro@re = @ @@, la <1
THEOREM 1.7. For each map ¢:balldA—H where M is a von Neumann
algebra, the following conditions are equivalent :
(i) ¢ is bounded and completely positive,
(i) there exists a peCP(e*®@e?, M) such that

$(a) = pI'()RI'(@)),  llall <1.
In this case, p is unique and

loll = suplg(a-

PrROOF. (ii)=(i). Let ¢ be given as in (ii). Since the map a— a®"®a®"
is completely positive for each m, n=0, it follows that the map a—I"(a)QRI'(@)
from ball A to e*Qe? is completely positive, and hence so is ¢. Moreover we
have |g(a)l=|pl, llal<1.

(i)=(i). By Theorems L1l and L6, there exist pn,=CP(A™RA", H),
m, n=0, such that

$a) = ,i; Oma(a®™@a®™), norm convergent, la] < 1.

m 0

Regarding A™QACe*®e? naturally, we define p,eCP(e?*®e?, H) by
0r= 2k, n=0Pmn, =1, Then {p,} is increasing. Let {e;} be an approximate
identity of A contained in ball 4. Then it is easily seen that {['(e;)RI(&;)}
is an approximate identity of e*®e*. Therefore

o3l = supllox(eN@T @)

k
= swp], 3 pmnletm@er)

=< sgpllsﬁ(ez)ll < oo,



374 F. Hiar and Y. NAKAMURA

For every positive x € e*®e”, {p,(x)} is increasing and bounded, so it converges

strongly in #. Hence {p.(x)} converges strongly for every xce*®e?. Now
define peCP(e’*Re?, H) by

p(x) = s-llzim ox(x), x € etRe.
We then have

$(a) = i{l{.}pk(F(a)®F(d)) = p([(a)R®I'(@), lal <1,
and
ol = sgpllsb(ez)ll = sup lg(a)].

The uniqueness of p is seen from the uniqueness properties in Theorems [.1
and O

When the range algebra is a general C*-algebra, we obtain

THEOREM 1.8. If ¢:{acd:|a|<r}—B is a bounded completely positive
map with r>1, then there exists a unique p<CP(e*®e?, B) such that

$(a) = p(l(@)RI(@), la] <1.

PrOOF. By Theorems [LI and [.6, there exist p,,ECP(A™RA", B),
m, n=0, such that

¢la) = i Pnn(a®™@a®"), absolutely norm convergent, lall < 7.
=

m a=0
Taking an approximate identity {e;} of 4, we have
lomall = suploma(e?™ @27
= 8Up 8™ pma((5€2)°"R(522)°7)]
= sup s g(seq)

< s™ ™ sup [d(a)]

lali=s

where 1<s<r, so that 3% ,_o|omnl|<cc. Hence a desired pcCP(e*RQe?, B)
can be given by p=3% n-0f@mr The uniqueness follows from Theorems [.1]

and again. O
2. Continuity of completely positive maps.

It was proved in that completely positive complex-valued functions on
a unital C*-algebra are continuous. The purpose of this section is to establish
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the local uniform continuity of completely positive maps between arbitrary
C*-algebras.

We first introduce the notion of local boundedness for completely positive
maps. For a completely positive map ¢ : A— B (resp. ¢:balli—B), define

r(¢) = sup{r[0, R) : sup [¢(a)]l <oo}

where R=co (resp. R=1). We call ¢ to be locally bounded if r(¢)=R. When
A is unital, it follows that any completely positive map ¢ : A (resp. ball A)— B
is locally bounded. Indeed we have (cf. [3, Lemma 4.2])

sup [¢(a)l = [[¢(rD)], O0=7r<R.

lalsr

The following simple example shows that this is not the case when A is not
unital.

ExAaMPLE 2.1. Let ¢, be the C*-algebra consisting of all convergent
sequences with limit 0. Take any >0 and define ¢:¢,—C by

o(a) = él(zn/w", a = (zy, 2, ***) € ¢

Then ¢ is a completely positive function on ¢,, but we have »(¢)=r.

Now let ¢: 4 (or ballA)— B be a completely positive map. By Theorems
.1 and [.6, ¢ is represented as

¢(a) = m§)=o¢mn(a> = 23: O ma(a®"Ra®")

m 0

where ¢, A— B is a completely positive (m, n)-mixed homogeneous map and
PnnECP(APMQA®", B) With [[@nrll=llomal.

LEMMA 2.2. For every completely positive map ¢ : A (resp. ballA)— B,

r(@) = sup{ref0, B) : 3 r™lgmal <ol

= min{R, 1/ max [l *)}

ko> \m+n=k
where R=co (resp. R=1).

ProoF. Let 0=r<s<r(¢). If [|a,|=1, then

[@malad] = s~ ™| dnalsal)l

< s=™m sup | da)ll .
lallss
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We hence have

3 gl = (22 ) sup lig(a)l < oo.

S—7r/ lalss
Conversely if 3% nmo?™**|@nall<oo for re[0, R), then r=r(¢) ‘obviously.
Therefore we get the first equality. Since

(2 Ignel) = Tm( max Ignal )

k—co\Mm+n=
by lim,..kY*=1, the second equality is obtained. O

THEOREM 2.3. If ¢:A (or ball A)—B is a completely positive map, then
r(@)>0 and ¢ is Lipschitz continuous on {a€d: ||al|=r} for every r<[0, r(g)).

PROOF. Suppose r(¢)=0, then by there is a sequence of (m,, n,),
k=1, 2, -, such that |@n,s,l|>@*)m#* "+ For each k=1, we can choose a
positive element a, in balld with ||@n,»,(as)]>@*)™#* "k Letting a=33,2"%a,,
we get a<ball A and

I3l Z 1Pmyn (O Z [@myn, @ Fan)] > @5k, k=1,

a contradiction. Hence r(¢)>0.
Next, if a, beA and |al, |b]|=r<r(4), then we have

loma(a®™®a®"—b®™Rb%™)| < |lomall(m+n)r™**=1a—b]|
and so

I6@—@I = 3 (m+nr™ | gnal-la—b].

m 0

Hence implies the theorem. O

The following corollary generalizes [3, Theorem 4.17.

COROLLARY 2.4. If ¢:ballA— B is completely positive, then ¢ is continuous
on ball A.

PrOOF. For every a,eball 4, define a map ¢: {acsd: |la||<1—]a,|} > M(B)
by
dla+la,]) Pla+ad)

, 1—|a,l.
$la+a,) ¢(a+laa“l)) lal <1=lao]

P(a) = (

b3
Since (12*’] IZ%‘]) is positive (cf. [1]), it is easily checked that ¢ is completely
0

positive. Hence, applying to a scaling transform ¢(ra) with
r=1—|a,|, we see that ¢ is uniformly continuous in a neighborhood of 0
This implies that ¢ is continuous at a,. d
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3. Extensions of completely positive maps.

The fundamental extension theorem for completely positive linear maps is
stated as follows (cf. [2, Theorem 1.2.3], [9, Theorem 4.2]): If JAC 8 are
C*-algebras and ¢=CP(, B(4)), then there is a ¢g=CP(8, B(4)) such that
¢=¢ [ A and |¢]|l=|@]. It turns out in this section that this type of extension
theorem does not always hold for nonlinear completely positive maps.

Before discussing the general case of AC 8, we give some completely
positive extension theorems in special cases. For a completely positive map ¢
on A (or ballA), let ¢n, and p,, be given as in Section 2 by Theorems [.1
and Let 4; denote the C*-algebra obtained by adjoining an identity to A

THEOREM 3.1. For each completely positive map ¢: A (resp. ballA)— M
where M is a von Neumann algebra, the following conditions are equivalent:

(i) ¢ is locally bounded,

(ii) there exists a completely positive map ¢: Ay (resp. ball A)— M such that
o=¢ I A (resp. ¢=¢ | ball A).

In this case, ¢ can be chosen so that

sup [$(a)ll = sup ig(a)l,  »= 0 (resp. 0=r<1).
[ XS] (A=) 1

lal=r lalsr

PRrROOF. Since any completely positive map is locally bounded in the unital
case, (ii)=(i) is immediate. We now show (i)=(i). For each m, n fixed,
assuming HCB(4), we can get a triple {X, (7y, ***, Tm+n), V} as in

1.2 with A= - =dp=4 and Aps= - =An+a=dJA such that
m+n
Pma(@:Q - Qamin) = V- kglnk(ak)-V, ar € Aa

Take representations 7, : (A—B(X) by
#pla+zl) = mp(a)+2lx, acs A, zeC.
Noting (JA);=A;, we define
gnn(@) =V* H 2@ I 7@V, aeun
Since 7#,((ApD), k=1, -, m-+n, commute mutually and
min

Ve 24DV © H,

it follows that ¢, is a completely positive (m, n)-mixed homogeneous map
from A to M with ¢mn:¢mn TJ and llsbmnl[:llVHZ:HSémnH Hence
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implies that a desired completely positive map ¢ is given by

Ha) = 2= Pmnla), a<s A (resp. a € ball ).

m 0

Moreover, for each »=0 (resp. 0=r<1), since

2 fnalrD) = slim 3 guares)
and

|2 natren)| S 1g0enl,  kz1,
we have

sup lg(a)ll = gD = Sgpll¢<rex)il
ac 1

lalisr

where {e¢;} is an approximate identity of . O

It is said that A is seminuclear (or equivalently A has the WEP) if
ARCC BRC (the projective C*-tensor products) for any C*-algebras 4 and C
with AC B (see [10]). This notion is weaker than that of nuclear C*-algebras.

THEOREM 3.2. Let A be seminuclear, AC B, and M a von Neumann algebra.
If ¢: A (resp. ball h)—M is a locally bounded completely positive map, then there
exists a locally bounded completely positive map ¢ : B (resp. ball B)— M such that
¢=¢ I A (resp. ¢=¢ [ ballA) and

sup Ig(a)l = sup IO,  r=0 (resp. 0=7< 1.

PROOF. Since J; is seminuclear if so is A (cf. [7, 9]), we may assume by
Theorem 3.1 that & is unital and A contains the identity of 8. For each m, n
fixed, we have a triple {X, (71, -, Tm+n), V} representing pmn(a;Q - Qam+n),
a,sA,, where A,=A or A according as 2=<m or k>m. Since A (and hence
A) is seminuclear, by [7, Theorem 6.3] there exist %,&CP(B,, mi(A)"),
k=1, -+, m+n, such that z,=n, | A, where $,=93 or 3 according as 2=m
or k>m. Define

Drn(b) = V*- ﬁlnk<b)k':r;f;nk<5>-v, be 3.

By an argument as in the proof of with 7z,(A;)” instead of
F((A)D, Pma is a completely positive (m, n)-mixed homogeneous map from B
to M, and a completely positive map ¢: B (resp. ball 8)— M can be given by
db)=2m, r=oPma(d). Then ¢=¢ | A (resp. ¢=¢ I'ballA). The last assertion
of equality follows from the assumption that A contains 1l 2. O
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In a similar way, we obtain

THEOREM 3.3. Let A, CB,;, k=1, -, n, be C*-algebras and M a von
Neumann algebra. If each A, is seminuclear and @ : A, X - X A,— M 1s com-
pletely positive multilinear map, then there exists a completely positive multilinear
map U : B, XX Bp—> M such that Q=0 | A, X XA, and |D|=|T|.

We now present necessary and sufficient conditions for nonlinear completely
positive extensibility. In the sequel, let AC 3 be general C*-algebras and 4
(#{0}) an arbitrary Hilbert space.

THEOREM 3.4. For each m, n=0, the following conditions are equivalent :

(i) if ¢: A—=B(K) is a completely positive (m, n)-mixed homogeneous map,
then there exists a completely positive (m, n)-mixed homogeneous map ¢ : B— B(H)
such that ¢=¢ I 4,

(i) A®™QA®C ™R 3B%",

(iii) A™QATC B™R3B".

PrOOF. (i)=(i). Let 8: A°"QA®"— 3°™RF®" be the natural homomor-
phism. It is obvious that

0°ao,r=ﬁu,r°0; (0,7) € SnXSa,

where a and 8 are the natural actions of S, XS, on A®™QJA®" and $*°™Q3B°",
respectively. If (ii) does not hold, then there exists a nonzero positive element
w in A®"QRA®" with #(w)=0. A positive linear functional f of A®™Q A%
can be chosen so that f(w)>0. Let fo=>, .f°a, . Then f,is S, XS,-invariant
and fo(w)=f(w)>0. It follows from (i) that there exists a completely positive
(m, n)-mixed homogeneous map ¢: 83— B(4) such that

fo(a®™Ra®")1y = ¢la), ac< L.

By there is an S,XS,-invariant p=CP(8°™®3°", B(X)) such
that
o(b) = p(b®™Rb®™), b e 3.

Then p-8 is S, X S,-invariant and
fo(a®"@a®")ly = p<0(a®"Ra®"), a< A.

The uniqueness property in implies fo(-)l4=p-60, contradicting
So(w)>0.
(ii)= (iii) follows from and (iii)= (i) follows from [Theorem 1.6

and the extension theorem for completely positive linear maps. |

Similarly we have
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THEOREM 3.5. Let A,CB,, k=1, ---, n, be C*-algebras. Then the following
conditions are equivalent:

(i) if @: A, XX A—B(I) is a completely positive multilinear map, then
there exists a completely positive multilinear map ¥ : B, X -+ X B,— B(4) such that
Q=Y | A XX A,

(i) AR RACB:,Q - QB

The following theorem is our main characterization of completely positive
extensibility. ‘

THEOREM 3.6. The following conditions are equivalent:

(i) if ¢p: A—B(LK) is a locally bounded completely positive map, then there
exists a locally bounded completely positive map ¢ : B—B(H) such that ¢=¢ [ A,

(ii) if ¢:ball A—B(4)is a bounded (resp. locally bounded) completely positive
map, then there exists a bounded (resp. locally bounded) completely positive map
¢ :ball B—B(K) such that ¢g=¢ [ ball A,

(iii) AmRQA®C BE™RB®"* for all m, n=0,

(V) AmRATC B™RF™ for all m, n=0, i.e., e*RQe’Ce?Re>.

PROOF. shows (iii) & (iv).
(ii)=(@{v). For each m, n=0, let ¢: A—-B(H) be a completely positive
(m, n)-mixed homogeneous map and ¢ :ball 3—B(4) a completely positive

extension of ¢ | ball A. Let ¢=33,, ¢;; be the decomposition as in
For every ac<ball 4 and z=C, |z| <1, we then have

Z"zrgla) = X 2*2'duila),

and so ¢(a)=¢mn(a). Therefore ¢=¢u. I A. Hence (iv) holds by [Theorem 3.4

(iv)= (ii). shows that (iv) implies the bounded case of (ii).
Also the locally bounded case of (ii) is derived from Theorems [, and
Lemma 2.2

The proof of (i) (iv) is analogous. O

asserts that if A is seminuclear, then A satisfies the conditions
in for any 8 with AC 8. In fact, condition (iii) is directly
checked by definition of seminuclearity. Note that Theorems [3.4-3.6 hold also
when B(4) is replaced by an injective C*-algebra (see [5]).

We conclude this section with a counter-example for nonlinear completely
positive extension.

EXAMPLE 3.7. As a non-nuclear C*-subalgebra of a nuclear C*-algebra,
Choi [4] constructed AC 8 such that 4 is isomorphic to the regular group
C*.algebra C}¥G) of a non-amenable discrete group G and @ is isomorphic to
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Cuntz’s algebra @, If AQJAC B3RS, then we have ARQA=ARminA, the
injective C*-tensor product, since B is nuclear. As stated in [6], this condition
implies that 4 is nuclear, when A =C¥G) with discrete G. Hence AQRIC BR3
does not hold. So, by there is a completely positive (1, 1)-mixed
homogeneous function ¢: A—C having no completely positive extension on 3.

4. Normal extensions of completely positive maps.

Let 91 and .# be von Neumann algebras. As for positive linear maps, we
call a completely positive map ¢: 31 (resp. ball 1)—H to be normal if ¢(ar),/ P(a)
for every. increasing net {a;} and a in 7 (resp. ballJ1) with 0=a, "a. Let T,
k=1, ---, n, be von Neumann algebras. A completely positive map @ : J1, X -
XI,— M is said to be normal if @D(a,;, -+, ani)/ P(a,, -, a,) whenever
0Za,;:a, in 3, k=1, .-, n

Let A** be the enveloping von Neumann algebra of a C*-algebra A. We
first give the normal extension of a completely positive multilinear map.

THEOREM 4.1. Let A, k=1, ---, n, be C*-algebras. If O: Jlx;--xdln'-—?ﬂn
is a completely positive multilinear map, then there exists a unique normal com-
pletely positive multilinear map @ : AF*X - X A¥*> M such that Q) D AX
X An.  Further |@|=||®| holds.

PrROOF. Let {X, (%, -+, ma), V} be the Stinespring representation of Q);
and #,: A¥*—m.(A,)”, k=1, ---, n, be the normal extension of =, (cf. [14,
p. 1217). If we define @ : AF*X - X AX¥*— MU by

n

F(ay, -, an) =V* ML #a)V,  ap € AP
then @ is a normal completely positive multilinear map satisfying @=@& | A,X
XA, and |@|=]®|. To show the uniqueness, let ¥ : A¥ X - X A¥*—H be
a normal completely positive multilinear map with @=¥ | A4,;X--XA,, and
{X’, (=], -+, @), V'} be the Stinespring representation of ¥. Since ¥ is normal,
it follows as in the case of completely positive linear maps that =;, k=1, ---, n,
are normal. Hence zmi(A¥)==n%A,)” where =ni==,|A;,, and so
{X’, (=8, -+, %), V'} is the Stinespring representation of @. By
there is a unitary operator U: X—X’ such that #(a,)=Ur,(a,)U*, a,E A,
k=1, ---, n, and V/'=UV. By the normality of #, and x;, we have.

milay) = URp(a)U*, a, s A¥*,
so that T=4@. O

The main result in this section is
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THEOREM 4.2. If ¢: A (resp. ball A)—» M is a locally bounded completely
positive map, then there exists a unique normal completely positive map g$: A**
(resp. ball A**)— M such that ¢=¢ | A (resp. $=¢ | ball A).

To prove the theorem, we need some lemmas.

LEMMA 4.3. If ¢:T1—M is a normal completely positive map, then so is
On : Mo (TD)—>M (M) for every n=1.
* * .
PROOF. Let x;z(g; 22) and x=<g Z ) be in My(:) with 0=x, "x. Then
0<a,;"a and 0=c,; "¢, so that ¢(a;) "¢(a) and ¢(c;) ¢(c). Since {P,(x2:)} is
increasing with @,(x;)<d,(x), {¢:(x,)} converges weakly to some element in

M, (M). Hence it follows that {@(b;)} converges weakly to some yc=H. We
now get

( 0 (¢b)—n)*
pb)—y 0

This implies that y=g¢@(b), and so @,(x,;) ¢,(x). Therefore ¢, is normal.
Repeating this argument, we deduce that ¢, is normal for n=2%, k=1, showing
the desired conclusion. O

)=o.

LEMMA 4.4. If ¢: A—>M is a completely positive (m, n)-mixed homogeneous
map, then there exists a unique normal completely positive (m, n)-mixed homogene-
ous map ¢ : A¥*—>M such that ¢=¢@ ! A. Further |¢|=|g| holds.

PrROOF. Let @: A™ X A™—H be a completely positive multilinear map
taken for ¢ by [Theorem 1.4 [Theorem 4.1 gives the normal completely positive
multilinear map @ : A**™ x J**m_, ¢ guch that @=@& | A™ x A™ and
|@)=|@|. Identifying A** with A** we can define a desired ¢: A**—H by

$a) = Ba™, a™), ae A

Since [|¢||=|®| and |||=|@] (see the proof of Theorem 1.6), we get |gl=Idl.
To show the uniqueness, let ¢: A**— % be a normal completely positive
(m, n)-mixed homogeneous map with ¢g=¢ [ A, and ¥ : A¥*™ X J**™— 9 be
taken for ¢ by Indeed ¥ is given by the formula ¥'=0-¢,- 4
where /=4™+" as stated just after It is immediate that 4 and @
are normal. Also ¢, is normal by Hence ¥ is normal. Moreover,

since g=¢ | A, we have @=U | 4™ x A, Therefore ¥=F follows from
Theorem 4.1, and so ¢=¢. [

PROOF OF THEOREM 4.2. Let ¢=3, ~¢n. be the decomposition by Theo-
rem 1.1. For each m, n=0, gives the normal completely positive
(m, n)-mixed homogeneous map @nn: A**—>H such that Gni=@m. | A and
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@mnl=l@mal]. Since ¢ is locally bounded, shows that a desired
@ : A** (resp. ball A**)—H can be defined by §=3p, nns For the uniqueness,
let ¢:A** (resp. ball A**)— U be a normal completely positive map with
¢=¢ I A, and ¢=3 2¢mn be the decomposition by [Theorem 1.1. Then it is
readily seen that ¢, is normal and @up=¢mn, [ A for every m, n=0. Hence
¢=4¢ follows from O

Lastly we note one aspect of the normality of nonlinear completely positive
maps. If a completely positive map between von Neumann algebras is continuous
with respect to the o-weak topologies, then it is normal clearly. However the
converse is false in the nonlinear case. Indeed we have

EXAMPLE 4.5. We consider the map fe L=(R)— | f|*=ff< L*(R), which is
a normal completely positive (1, 1)-mixed homogeneous map. Let f,(#)=e®,

s,teR. Then f;—0 in (L=, L*) as s—oo, a consequence of Riemann-Lebesgue
lemma. But |f;|*=1.
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