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1. Introduction.

In stochastic differential geometry, Itd’s formula has been extended for
tensor fields on a C* manifold in connection with stochastic Lie transport ([6],
[11], cf. [2]), stochastic parallel displacement ([8], [I1]), and stochastic flow
of tensors induced by tensor derivations ([1].

The purpose of the present paper is to establish a general stochastic formula
for C= (local) cross sections of fiber bundles which implies a further extension
of It6’s formula to the case of “geometric object fields”. As to bundles of geo-
metric objects, we adopt a constructive approach due to Ferraris, Francaviglia
and Reina [3], [4]; thus, by a geometric object field, we mean a C* (local)
cross section of a C~ fiber bundle associated with the bundle of »-th order frames
(over a C* manifold) for some positive integer ». (For a general theory of geo-
metric objects, we refer to Salvioli [14]. See also Nijenhuis [13], Yano [15].)
Then, for example, C* tensor fields, C* pseudo-tensor fields, their jet extensions,
and linear connections of a C~ manifold are geometric object fields. It should
be pointed out that the use of frames of higher order contact enables us to
treat some geometric structures (for instance, projective structures [9]) as geo-
metric object fields.

Now let mz: E—~M be a C~ fiber bundle associated with a principal fiber
bundle P(M, G, zp) (cf. [10]). Let ¢,(p) be the solution of the following sto-
chastic differential equation (in the Stratonovich form) on P;

k
do: = ElAa((pt)*’dN“(l) , po=peP, 3.1)

where A,, (a=1, ---, k), are right G-invariant C vector fields on P and N*(f)’s
are real valued continuous semi-martingales. Suppose we are given a C* (local)
cross section ¢ of E. In this paper, we establish a formula for the #nz'(x)-
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valued stochastic process 7:;(a(6.(x))), where @.,(x)=rplp.(p)) and 7n,=
eu(p)ep~t: mpH(x) = (0.(x)), penp'(x), x=Dom(s). (For details, see §3, Theo-
rem 3.1.) It is to be noted that such a situation includes known cases of tensor
fields (cf. §4, Example 1). : *

Our formula can be applied to the study of the stochastic flow &,: Suppose
M is endowed with a linear connection [resp. a Riemannian metric] and assume
0, is a flow of diffeomorphisms of M almost surely. Then it can be shown
that @, is a stochastic flow of affine [resp. conformal] motions if all of the
vector fields that appear in the stochastic differential equation governing 8, are
infinitesimal affine [resp. conformal] motions (Theorem 5.1). Another applica-
tion will be given to the description of the behavior of a stochastically deformed
projective structure in §5.2.

This paper is organized as follows. In §2, we prepare some notions con-
cerning bundles of geometric objects following [3], [4]. In §3, we describe
our setting (with some discussion) and state a main theorem (Theorem 3.1).
We prove it in an intrinsic (coordinate free) manner to clarify the structure of
our formula, using Kunita’s results ([11], [12]) and lifted stochastic differential
equations on some fiber bundles. We also study the case where E is a C~
vector bundle (Corollary 3.2). In §4, we discuss the case of geometric object
fields and give examples which illustrate Theorem 3.1 and [Corollary 3.2. Finally,
we treat stochastic flows of affine motions and conformal motions, and the
stochastic deformation of a projective structure in §5.

The author would like to thank the referee for his valuable comments.

2. Bundles of geometric objects.

In this paper, all manifolds are finite dimensional, g-compact and of class
C~. As to manifolds and stochastic differential equations, we shall use freely
concepts and notations in Kobayashi-Nomizu [10], Ikeda-Watanabe [6], and
Kunita [12].

Let M be an n-dimensional manifold. Let PS(R™) be the pseudogroup of all
diffeomorphisms ¥ from an open neighborhood of the origin 0 of R™ onto an
open neighborhood of 0=R™ such that ¥(0)=0. For a positive integer », set
G'(n, R)y={;"¥);¥<=PS(R™)}, where j*¥) denotes the r-jet of ¥ at 0. The
set G'(n, R) is a Lie group with multiplication defined by the usual composition
law of jets. Let L"(M) be the set of all »-th order frames ;"(h), where & is a
C> map from some open neighborhood U of 0=R" into M such that A :U—h(U)
is a diffeomorphism. Define a map =": L"(M)—>M by z"(j7(h))=h(0). Then
L™(M) becomes a principal G"(n, R)-bundle over M. Moreover, LYM) is iso-
morphic to the bundle L(M) of linear frames over M.
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DEFINITION 2.1 (Ferraris et al. [3], [4], Kobayashi [9]). The bundle L"(M)
is called the bundle of r-th order frames over M.

Let F be a manifold on which a Lie group G acts on the left effectively
and differentiably, and let p:G"(n, R)—»G be a homomorphism of Lie groups.

DEFINITION 2.2 (Ferraris et al. [3], [4]). The fiber bundle B=L"(M)X ,F
of type p associated with L7(M) is called a bundle of geometric objects of type
p of finite rank (<r). Each C> (local) cross section of B is called a geometric
object field or a field of geometric objects.

For later use, we prepare the notion of lifting of (local) diffeomorphisms of
M following [3], [4] and [9]. Every local diffeomorphism # of M can be lifted
canonically to a local diffeomorphism L7(8) of L™(M) by defining

L))" (W] = j(0-h).

Thus every C= vector field X on M can be lifted canonically to a C~ vector
field L7(X) on L7(M).

DEFINITION 2.3. We call L7(8) [resp. L7(X)] the natural lift of @ [resp.
the natural lift of X] to LT(M).

Since L7(#) commutes with the natural right action of G"(n, R) on L"(M),
the natural lift of @ [resp. the natural lift of X] to any bundle of geometric
objects of finite rank is also defined in the obvious way. Then the Lie deriva-
tive of a geometric object field ¢ with respect to X in the sense of Salvioli [14]
can be defined (cf. [3], [4]), which we denote by Lye. The (usual) Lie differ-
entiation (cf. [10]) with respect to X is denoted by Ly (cf. §4).

3. A stochastic formula for (local) cross sections of fiber bundles.

In order to extend Itd’s formula to the case of geometric object fields, we
shall derive a general stochastic formula for (local) cross sections of fiber
bundles.

3.1. Setting. Let nz: E—M be a C= fiber bundle with standard fiber F,
associated with a principal fiber bundle P(M, G, mp). As usual, we regard the
principal map X:PXF—E as a multiplication, so that p&=X(p, &), pcP, écF.
For each a=G, we denote by R, the right translation P—P, p(€P)—pa. Let
Ay, -+, Ap be C vector fields on P such that (Rg)x p(A«(p)=A.(pa) for every
pPEP, a€G, (a=1, -, k), where (R,)x »: T ,P(=the tangent space of P at p)
—T P denotes the differential of R, at p, and let X, ---, X, be C* vector
fields on M such that
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(wp)x, p(Aa(P)) = Xa(mp(p)),  (a=1, -, k; pEP).

Let N(t), ---, N*({), (t=0), be real valued continuous semi-martingales defined
on a filtered probability space (2, &, p; (F.)iz0) satisfying the usual conditions
(cf. lkeda-Watanabe [6, p.45]); (2, 4, ) is a complete probability space and
(F)iz0 18 a right-continuous increasing family of sub ¢-fields of & such that &;
contains all g-null sets for every t=0. Throughout this paper, indices a and B
run from 1 to k. Solutions of stochastic differential equations are considered
up to their life times, unless otherwise stated.
Consider a stochastic differential equation (SDE) on P;

dp. = T Aulp)-dN(), (3.1)

(edN“(t): Stratonovich’s stochastic differential of N*(t)). We denote the solution
of with initial condition @,=p<P by ¢.,(p) or ¢.(p, w), (ws2). This ¢,
is a map from P into itself for each ¢ and almost all w. Moreover, ¢, is a

local diffeomorphism for any ¢ a.s. (see Kunita [12]). Since A, is invariant by
R, for every a=G, it follows that

d(Rap) = 3 Au(Rap)odN(1).

Therefore we see that, for each x= M, the life time of ¢,(p) does not depend
on the choice of perp'(x). We write the life time of ¢,(p) by 7,(x) (or 7,(x, w),
(we ) if np(p)=x. As is easily seen, 8,(x):= wplp.()), (xEM, pErs'(x)), is
well-defined and satisfies the following SDE on M:

di, = > X.(0:)-dN*(t). (3.2)
Let g E. Take p,=np'(mg(g)) and put p,=¢.(p,). It is easy to check that
the (stochastic) map
Peepet  wE (me(q) —> wE(0:(mx(q)))

does not depend on the choice of p,=nz'(mz(g)). Here, as usual, each element
p in P is regarded as an admissible map F—rz (np(p))CE, E(cF)—-ps. We
obtain a (stochastic) map 7%,: E—FE given by %.,(¢)=(p.p3")(q) for g=E and
boemp'(we(g)). Since there exists §&F such that ¢g=p.&, defining f¢: P-E by
fe(p)=p&, (p€P), we have, for t<7,(mx(q),

dn.(q) = d(fep,) = }; (fe)x. p,(Aa(Pe))dN(t) .
On the other hand, it holds that

()%, o(Au(P)) = (fe)x, pa(Au(pa)), & =0a"'6, (PEP, a€6).

Therefore each A, induces a C= vector field Y, on E such that
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Ya(@) = (fdw. polAa(D0)) s (g=Do§; DeEP, §€F).

Each Y, is mg-related to X, ; that is,
(me)x,oYa(@) = Xo(x),  g€E, malg)=x.
Thus 7, satisfies the following SDE on E:
dy, = ; Yo(n)edN“(®). (3.3)

Moreover, mge9.(q)=0,°mwz(q), g=E. Note that 5;' satisfies (cf. Kunita [12,
Proposition 5.17)
dyit = =2 ()Y () d N (D),
where
(7Y )@ = (92D, 5y (Y a(0:()) -

Now let ¢ be a C= (local) cross section of E. [We want to treat 5;*(¢(8.(x)))
=7ng'(x), x=Dom(e) (=the domain of ¢).] Set

(D(Xq, Ya)o)(x) = 0%, :(Xo(x)—Y (0(x)) (ETs(yE), x<Dom(s). (3.4)

Clearly D(X,, Y.)o: x—(D(X,, Y,)o)x) defines a C* cross section of the pull-
back ¢*TE of the tangent bundle TE over E by ¢. Let ¥, be the natural lift
of Y, to TE. For arbitrary C> (local) cross section { of ¢*TE, we put

(DX, ¥ DO(x) = L, o Xo(2))~F o(l(x)),  x=Dom({)cDom(a). (3.5)

Then ﬁ(Xa, ?a)C: x—>(ﬁ(Xa, INC,)C)(x) is a C~ cross section of (*T(¢*TE). Put
Y.=LYY,) (the natural lift of Y, to the bundle L(E) of linear frames over E).
Let ¢, be the solution of the following SDE on L(E):

dg. =3 Yol odN“(t). (3.6)

Since Y, is invariant by R, for every beGL(#, R) with m=dimE, for a fixed
g<=E, the life time of the solution ¢.(z) of with initial condition ¢,(z)=
zenzk(g) does not depend on the choice of zenzk(q), where zyp: L(E)—E
denotes the projection. The life time of f,=¢,.(2) is denoted by 74(q) (or 74(q, @),
(we2)) if myp(z)=q. Define #,: TE-TE by 7,(X)=(p.p3")X) if XeT,E and
poenik(g). For g=E, we put 7(,;5(@)=min[ry(g), 7,(r=(g))]. Then we have
71 X="Nex, X for t<7(,:5:(q), X€TE. Thus 7, is the natural lift of », to TE.

It satisfies
dij, = Za}Ya(ﬁt)edN“(t) . (3.7

Furthermore its inverse 7;' satisfies
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d7et = = (@)Y 7 dN (1) . (3.8)

For each C= function f defined on an open set U of E, define a C~ func-
tion G, on z7E(U) by

G (X)) =(df)(X) = X[f] (3.9)

for every Xenzi(U), where nrgz: TE—E denotes the projection and df stands
for the exterior derivative of f.

REMARK. Let {#{*} [resp. {p{®}] be the local one-parameter group of
local transformations generated by X, [resp. Y,1l. Then

. d
(DXa, Yo)o)®[f] = — = f(pi®) o020 (x))|
and
()%, o0 (D Xy, Ya)o)x)) =0, [zero-vector at x]
for every x=Dom(e) and every C* function f on zz'(Dom(c)).
3.2. A main theorem. We now give a stochastic formula for C* (local)
cross sections of fiber bundles. We shall succeed the notations in §3.1. In the

following, -dN“(t) stands for It&’s stochastic differential of N4(t), and (n;)*f=
fenet, that is, (97'(-, @))*f=f-77'(:, ).

THEOREM 3.1. Let ¢ be a C* (local) cross section of E. Set
Do =D(X,, Ya)o,  Dapo = D(X,, VID(X5, YV)o).
Then for every x=Dom(eg) and every C* function f on E, it holds that
df (97 (a(8:(x)))
= 205k, 00, (Da) 0 2NLf 1dN*(@) (3.102)
= 205 00, (Da0)O(xDLf]-dN*(@)
5 B0 s 0n(DepoXOLINIC,IANOANAE)  (3.10)
= ?(7};1)*.a(05(2))((Da0)(0b(x)))[f]'dNa(t>
5 B X ODso) 73]
—(Dga) @ (LY L(pV* f11HN*@)AN? (), (3.10¢)
0=t<z(x):=min[7,(x), 74(c(x)), inf{t>0; f.(x)&Dom(s)}].
Proor. We first remark that

do(0:(x)) = X 0x.0,@(Xal0(x))-dN*(1) .
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Using (3.4) and applying Kunita’s results ([11], [12]) to %;'<(¢-8,), we obtain
df (pz(a(8.(x)))
= =205k, 000, (Y o(0(0LINLS 1dN*()
T 2 (0%, 000,20 Tk, 0, (Kol O (XNLf AN (1)
= 2%, 000, (D20 XO(xNLS 1dN@) .

This proves [3.10a). To derive (3.10b), rewrite the right-hand side of as
% (9T%, 08,020 (Da@)(@(x)NLf1-dN“(t)

1 )
+"2‘Zﬁ) d(9T%, 00,2 (Do) 8 (N -dNF(1) .
Set, for each we @,
D, 7, ®) = {gEE ;T35 (q, 0)>1}.

Let B be fixed. Put {=Djzg. Recall (3.5),[3.8)and[3.9). Then for x=Dom(a)
(=Dom({)) and t<7(x) we have a(0.(x, ®))E9.(9D,(%, 7, »), w) and

(™ awt(m(C(@:(x)))[f])
= =S (720, T o LOLNG JdN()

T2 (%0008 0, (Xa(0(xIDLG 1= dN“(2)
= ST 00 (DX, ¥)D(0.(NLC,1-dN1),
from which (3.10b) follows. To show (3.10c), observe that
Grfit=Gray, (fO:=e)V*f = fenih),

in the sense that
df)77 (-, @)Z) = @) (97, @)k, p, 0 Z)

= (d(fe (-, @)))Z)

for every Z<T,,oE with g€ D,(y, 7, ), a.s. Accordingly
(7% 2005000 {8, 0,00 (Xl 0:00) = ¥ o (L0} G /]
= X, (0.(x)[G 1y L1—Y oLOLxMGrnr]

0<t<r(x), x<=Dom(o).
On the other hand,

(Greoye D) =L O] =CLfONx), 0=Zt<z{x), x=Dom(a).

Let {p{®} [resp. {¢i*’}] be the local one-parameter group of local transforma-
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tions generated by Y, [resp. 17'&]. Set D,(7, w)={usTE ; v (mre(u), w)>t}.
For almost all w, we have, at u<7,(9,(%, w), ),

f;a(u)[cf(t)] = %(Gﬂ“ °(P§a)(u)) 1 0

_ %{(d(f(t)))((ps‘a))*’nTE(u)u)} Oy (o g
d

= L (@@ o Nl |
=d(Ly,(fON(w) =ulY [f®]].

Hence
(FT 5,200,018k, 0,/ (Xal0(2)) =Y o LB LN G ]

= Xa(0. ()L T80 (LY L f(B)]] @3.11)

for 0=t<t(x) and x=Dom(s). Then (3.10b) and imply [3.10c). This
completes the proof.

Let us consider the case where E is a C~ vector bundle. Then it makes
sense to treat ;' (g(0.(x))—a(x). Noting that (D,0)(x)=(D(X,, Ya)o)(x) is
vertical (cf. Remark in §3.1) and using a canonical map ¢: (VE), (s, — g (x) which
identifies the vertical tangent space (VE),(» at o(x) with zz'(x) in the obvious
way, we define a C*= (local) cross section L(X,, Y,o : x(=Dom(s)) —
(L(Xa, Ya)o)(x)EE by

(L(Xa, Ya)o)(x) = «((D(Xa, Ya)a)(x)) .
Remark that

(L(X,, Ya)o)x) = lsiiloi%{(pé“’)"a(ﬁé“)(x»—G(x)}
and

(DX, YO 01 =~ S0 (0)+e(L(Xe, Y)0) D))

e=0

for every C= function f on E. From Theorem 3.1, we obtain easily the fol-
lowing.

COROLLARY 3.2. If E is a C* vector bundle, then
N (a(6:(x))—0o(x)
= 3 [0 (L (X, Yo)Oux0)dN(5)

=3 S:nsl«uxm Y )0)(04(x))) - AN(s)

+5 B[ (X, YLK, V50N 00NN ()N S)
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holds a.s. on the set {ws 2 ; t(x, w)>t}, xDom(a), t=0. (If, moreover, Dom(s)
=M and v(x)=o0 for all x, then the above formula holds for all (t, x)=
[0, o)X M, a.s.)

4. Case of geometric object fields and examples.

First, we take as E a bundle of geometric objects of type p of finite rank,
associated with L7(M). Then we obtain a stochastic formula for geometric
object fields from Theorem 3.1. If each A, [resp. Y,] is the natural lift of
X, to L™(M) [resp. E], then we have D(X,, Y,)o=Lx_o. (Note that the nat-
ural lift of X, to L™(M) is invariant by R, for every a=G"(n, R).) Moreover,
7% (0(0:(+))) in Theorem 3.1 reduces to the (stochastically) deformed geometric
object field (of o). In this case, we write 7,=(6,); and set

(Gta)(x) = (0)3'(c(0:(x))),  x<Dom(o).

If the bundle E is a C* vector bundle, we extend Ly, by setting (Lx_ 0)(x)=
z((ixao)(x)), (xeDom(es)), for every geometric object field ¢ of E.

Next, we give examples of Theorem 3.1 and

ExampPLE 1. Consider the case P=L(M) and E=TZ(M), the tensor bundle
of type (p, q) over M.

(1) If A, is the natural lift of X, to L(M), then L(X,, Y,)0=Ly o holds
and 0%¥¢: x—(0%0)(x) becomes the pull-back of ¢ by 8, (cf. Bismut [2], lkeda-
Watanabe [6], Kunita [12]).

(2) If M is endowed with a linear connection and if A, is the horizontal
liftt of X, to L(M), then %, reduces to It&’s stochastic parallel displacement
and L(X,, Y,)0=Vx_, o (the covariant derivative of ¢ with respect to X,). (Cf.
Kunita [12].)

(3) More generally, let d,, ---, 3, be derivations ([10]) of the tensor algebra
of M. Choosing X, and A, adequately, we can do as L(X,, Y.)6=0,0 and
we get a formula involving tensor derivations &y, -, d,. (See [1].)

ExaMPLE 2. If E is a C vector bundle over M and if a linear connection
VEZ is given in E, then, choosing Y, to be the horizontal lift of X, to E, we
get a formula involving V{%ao (the covariant derivative of a C> (local) cross
section ¢ of E with respect to X,), since L(X,, Y,)0=V% ¢ holds in this case.

ExaMPLE 3. We now take L*(M) as P. Following Ferraris et al. [3], [4],
consider the affine representation

p : G*n, R) —> Diff[T}(R")]
defined by
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(& g5l =( 3 el 5gin+ 3 8if5m),
£, 4,v=1 £=1
where (g¢, gin) and I'§ are canonical coordinates in G*(n, R) and TH(R")=
R"Q(R™)*Q(R™)*, respectively, and (g%, gin)=(g}, gim)~'. Here DIff[TH(R"™)] is
the diffeomorphisms of T3i(R™) and dimM=n. Each C> cross section I" of the
fiber bundle Conn(M)=L*M)X ,Ti(R") defines a linear connection of M. This
fiber bundle is called the bundle of linear connections of M (cf. [3], [4). Let
us take Conn(M) as E. If A, [resp. Y.] is the natural lift of X, to L*M)
[resp. Conn(M)], then 3;'-I'-@, reduces to the (stochastically) deformed linear
connection §fI" of I' and moreover D(X,, Y )['=Ly I

5. Applications.

Let M be a connected n-dimensional manifold. Let 6, be the solution of
the SDE [3.2). In this section, we assume for simplicity that 0,(-, @) is a flow
of diffeomorphisms of M a.s.

5.1. Stochastic flows of affine motions and conformal motions. We
consider first the case where M is endowed with a linear connection.

DEFINITION 5.1. Given a linear connection I" (cf. Example 3) of M, we say
that the solution 8, of (3.2) is a stochastic flow of ajffine motions in (M, I') if the
(stochastically) deformed linear connection 8#I' is equal to the original linear
connection I” (that is, (8#1")(x)=I"(x), x=M for any t, a.s.).

Next, consider the case where a Riemannian metric g is given on M.
Define a vector bundle Q(M) over M by

QM) = (T*MOT*M)QI NI -*™(M),

where T*MQ@T*M denotes the symmetric tensor product of the cotangent bundle
T*M (over M) with itself, and |A|-*"(M) stands for the bundle of densities
(5] of order —2/n. Obviously, Q(M) is associated with L(M). Let @ be the
C= cross section of Q(M) given in terms of a local coordinate system (x%) by

@ = 3 |det(g2)| g dx*Qdx)Q|dx N+ Adx™| 2",
,J

where g=3; ;g:;dx*©dx’, locally.

DEFINITION 5.2. We say that the solution 8, of (3.2) is a stochastic flow of
conformal motions in (M, g) if (0#®)(x)=®(x), (x&M), for any ¢, a.s. (See [15,
pp. 32-331.)

We can now state a sufficient condition for the solution of the SDE to
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be a stochastic flow of affine motions [resp. conformal motions] as follows.

THEOREM 5.1. Let 8, be the solution of [3.2).

(1) Suppose M is endowed with a linear comnection I'. If X,, -, X, are
infinitesimal affine motions in (M, I'), then 8, is a stochastic fiow of affine motions
in (M, I').

(2) Suppose a Riemannian metric g is given on M. If X, ---, X are in-
finitesimal conformal motions in (M, g), then @, is a stochastic flow of conformal
motions in (M, g).

PrOOF. We first remark that X, is an infinitesimal affine [resp. conformal]
motion in (M, I') [resp. (M, g)] if and only if ﬁxa[’:O [resp. Lx,P=0] (cf.
[15]). Then part (1) is an obvious consequence of Example 3. Part (2) follows
directly from the discussion in §4 if we take L(M), Q(M) and @ as P, E and
o, respectively.

REMARK 5.1. Let P=L(M) and let y be the connection form corresponding
to I. Take A, to be the natural lift of X, to L(M) and consider [3.1). We
can also prove (1) of Theorem 5.1 with the use of 7, since the condition 6#I°
=I"in can be replaced by saying that ¢¥r=y (cf. [9], [10]),
where ¢¥r is the pull-back of y by ¢..

REMARK 5.2. Take (2, 4, p; (F)iz0) to be the standard (k—1)-dimensional
Wiener space in the sense of [7]. Let w(f)=(w'({®), -+, w* () be the canonical
realization of Brownian motion on the probability space. Consider the case
(N'(@t), -, N¥@)=w'®), ---, w**(@), ).

(a) Assume for simplicity that the manifold M is compact. Theorem 5.1
can also be proved by using the approximation theorem (or the support theorem)
for stochastic flows (cf. [6, Chapter VI, Theorem 7.3], [7]). If each X, is an
infinitesimal affine [resp. conformal] motion, then by a polygonal approximation
it is shown that the flow @, is the almost sure limit of a sequence of affine
[resp. conformal] motions. From this, #, becomes an affine [resp. a conformal]
motion. ‘

(b) The results in Theorem 5.1 can be strengthened to “if and only if”.
We shall show the “only if” part for (2) of Theorem 5.1, although the proof is
analogous to that of [2, p. 160, Théoréme 1.2], except that @ is not a tensor
field in the ordinary sense. Take a Riemannian fiber metric & in Q(M). Let
x€M be arbitrarily fixed. By the martingale part [,(x)=(J.(x, w))
of (#D)(x)—D(x) is given by

k=1

T, w) = 5 [ (OHLx,0)(0)-dw(s)

If (0§P)(x)=®(x), then J,(x)=0, and thus for each a=1, -, k—1,
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ciox, w)i=8(| (2L, D)) dw(s), Jitx, w) = 0.
Therefore, the bounded variation part of C{®(x)=(C{*(x, w)) is
[zworrx o0, B2 Lx, D)0ds = 0.

Since F((0§(Lx,D)(x), (0§(Lx,D))(x)) is continuous in s, we can conclude that

(0f(Lx,D)(x)=0. Hence Ly 0=0, (a=1, -+, k—1). Now yields
. 0zcx, 000005 =0,

from which we obtain .Lx,@=0.

As for (1), use the connection form y (Remark 5.1), with a suitable modifi-
cation of the above discussion. (The “only if” part also follows from the sup-
port theorem.)

5.2. Stochastic deformation of a projective structure. We now apply
Theorem 3.1 to the study of the behavior of a stochastically deformed projec-
tive structure. Let G, be the following closed subgroup of the group
SL(n+1, R)/center;

Gy = {(;4 O) eSL(n+1, R)}/center ,

c

where A=GL(n, R) and v is a row n-vector ([9, p.132]). By definition, a pro-
jective structure on M is a principal subbundle of L%*(M) with structure group
G, (CG3¥n, R) ([9, p. 142]). A basic fact is that the cross sections M—L*M)/G,
are in one-to-one correspondence with the projective structures on M (9, p. 147,
Proposition 7.1]). Since the quotient bundle L%*M)/G, is the fiber bundle with
standard fiber G%(n, R)/G, associated with L2*(M), each projective structure on
M can be regarded as a geometric object field.

Now suppose we are given a projective structure on M and let ¢: M—
L*(M)/G, be the cross section corresponding to the projective structure. Then
we obtain ffe (cf. §4), which defines the stochastic deformation of the projec-
tive structure (corresponding to o) by 07*. From Theorem 3.1, the behavior of
the deformed projective structure is immediately given by the equation

df((0¢e)(x)) = ? (@))%, a(05(:::))((zXao)<0t(x)>)[f] -dN“(t)

1

5 B, (XN Lx o)L f(0071]]

—~(Lx30) 0N XE[f (007" 1NN ®INP ()

for every C* function f on L*M)/G,, where X% denotes the natural lift of X,
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to L3M)/G,.

REMARK 5.3. For a closed subgroup G of G"(n, R), the stochastic deforma-

tion of a G-structure of degree v ([9, p.37]) on M by 6;' can be discussed in
a similar manner.
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