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1. Introduction.

Let $S$ be a countable set, and let

$X= \{x=(x_{i})_{i\in S} : x_{i}\geqq 0(i\in S),\sum_{i\in S}x_{i}=1\}$

be the totality of probability vectors on $S$ , which is equipped with the weak
topology. Suppose that we are given a second order differential operator $L$ of
the following type:

(1.1) $L= \frac{1}{2}\sum_{i\in S}\sum_{j\in S}(x_{i}\beta_{i}\delta_{ij}+x_{i}x_{j}(\Sigma x_{k}\beta_{k}-\beta_{i}-\beta_{j}))\frac{\partial^{2}}{\partial x_{\ell}\partial x_{j}}+\sum_{i\in S}b_{i}(x)-\frac{\partial}{x_{i}}\partial$ ,
$k\in S$

where $(\beta_{i})_{i\in S}$ are non-negative constants satisfying that $\sup_{i\in S}\beta_{i}<+\infty,$ $\delta_{ij}$ stands
for the Kronecker symbol, and the domain $\mathcal{D}(L)$ of $L$ is the set of all $C^{2}-$

functions defined on $X$ depending on only finitely many coordinates.
Let $W=C([0, \infty)arrow X)$ be the space of all continuous functions $w:[0, \infty$) $\ni$

$tarrow w(t)\in X$ with the topology of uniform convergence on bounded intervals, and
let $\mathcal{F}(\mathcal{F}_{t})$ be the $\sigma- field$ on $W$ generated by cylinder sets (up to time $t$).

By an (X, $L$)-diffusion we mean a system $\{P_{x}, x\in X\}$ of probability distri-
butions on $(W, \mathcal{F})$ that is strongly Markovian and satisfies the following two
conditions:

(1.2) $P_{x}\{w:w(O)=x\}=1$ for every $x\in X$ ,

(1.3) $f(w(t))-f(w( O))-\int_{0}^{t}Lf(w(s))ds$ is a $(P_{x}, \mathcal{F}_{t})$-martingale for every $f\in \mathcal{D}(L)$ .

In order to construct an (X, $L$)-diffusion we need boundary conditions and a
regularity condition on the drift coefficients $(b_{i}(x))_{i\in S}$ .

ASSUMPTION [B]. $(b_{i}(x))_{i\in S}$ are real functions defined on $X$ which satisfy
the following three conditions:
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\langle B. 1) $b_{i}(x)\geqq 0$ if $x_{i}=0(i\in S)$ ,

\langle B.2) $\sum_{i\in S}b_{i}(x)=0$ uniformly in $x\in X$ ,

(B.3) there exists a matrix $(q_{ij})_{i.j\in S}$ such that $q_{ij}\geqq 0$ for every $i$ and $j$ of $S$ ,
$\sup_{j\in S}\sum_{i\in S}q_{ij}<+\infty$ , and

$|b_{i}(x)-b_{i}(x’)| \leqq\sum_{j\in S}q_{ij}|x_{j}-x_{j}’|$ for every $x$ and $x’$ of $X,$ $(i\in S)$ .

Our main result is the following.

THEOREM 1.1. SuPpose that the oPerator $L$ of (1.1) satisfies the Assumption
[B]. Then there exists a umque (X, $L$)-diffuston.

The diffusion operator $L$ of (1.1) was first introduced by Gillespie [2] in
case that $S$ consists of two points. Then $L$ is a one-dimensional diffusion
operator. In case that $S$ is an arbitrary finite set Sato [5] derived the operator
$L$ by a diffusion approximation from Markov chain models.

As to the well-posedness problem of the (X, $L$)-diffusions Okada [4] solved
it in case that $S$ consists of three points, and Shiga [7] also gave a partial
result in case that $S$ is an arbitrary finite set.

In particular, if $\beta_{i}=\beta$ for every $i\in S$ in (1.1), $L$ reduces to an infinite allelic
diffusion model of the Wright-Fisher type, which was discussed by Ethier [1]
and Shiga [8]. In this case the diffusion coefficients are polynomials of order 2,
so that the diffusion part of $L$ transforms every polynomial of order $n$ into a
polynomial of the same order $n$ , which makes an analytical treatment extremely
tractable (cf. [1]).

On the other hand we notice that the diffusion coefficients of (1.1) are poly-
nomials of order 3, so that the method of [1] is not applicable. Our method
is due to stochastic differential equations. A key point is an observation that
the $(X, L)$-diffusion of (1.1) is derived from a simpler diffusion corresponding to
the stochastic differential equation (2.5) by making use of normalization and
a time change transformation. Furthermore, for the equation (2.5) we can
apply a method to be adopted in a one-dimensional solvable case (cf. [9]).

2. Proof of Theorem 1.1.

We here discuss the existence and uniqueness of $(X, L)$-diffusions by the
method of stochastic differential equations.

We will formulate a stochastic differential equation which describes an
$(X, L)$-diffusion process. We first choose $\alpha(x)=(\alpha_{ij}(x))_{i.j\in S}$ as follows:

(2.1) $\alpha_{ij}(x)=(\delta_{ij}-x_{i})\sqrt{\beta_{j}x_{j}}$ , $(i, j\in S)$ .
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Then it satisfies

(2.2)
$\sum_{k\in S}\alpha_{ik}(x)\alpha_{jk}(x)=x_{i}\beta_{i}\delta_{ij}+x_{i}x_{j}(\sum_{k\in S}x_{k}\beta_{k}-\beta_{i}-\beta_{j})$ .

Consider the following stochastic differential equation on $X$ :

(2.3) $dx_{i}(t)= \sum_{k\in S}\alpha_{ik}(x(t))dB_{k}(t)+b_{i}(x(t))dt$ , $i\in S$ .

Following Ikeda-Watanabe [3], by a solution of equation (2.3) we mean a system
of stochastic processes

$\mathfrak{X}=\{x(t)=(x_{i}(t))_{i\in S}, B(t)=(B_{i}(t))_{i\in S}\}$

defined on a probability space $(\Omega, \mathcal{B}, P)$ with a reference family $(\mathcal{B}_{t})_{l\geqq 0}$ such
that

(i) $x(t)$ is a continuous $(\mathcal{B}_{t})$-adapted process taking values in $X$,
(ii) $B(t)$ is an independent system of one-dimensional $(\mathcal{B}_{f})$-adapted Brownian

motions, and
(iii) with probability one,

$x_{i}(t)=x_{i}(0)+ \sum_{k\in S}\int_{0}^{t}\alpha_{ik}(x(s))dB_{k}(s)+\int_{0}^{t}b_{i}(x(s))ds$ , $i\in S$ .

We say that the law uniqueness of solutions for (2.3) holds if whenever $\mathcal{X}$

and $\mathfrak{X}’$ are any two solutions of (2.3) whose initial law coincides, then the
probability laws of $\{x(t)\}$ and $\{x’(t)\}$ on $(W, \mathcal{F})$ coincide.

It is known that the (X, $L$)-diffusion $\{P_{x}, x\in X\}$ exists uniquely if and only
if for every probability $\mu$ on (X, $\mathcal{B}_{X}$ ) there exists a solution of (2.3) such that
the law of $x(O)$ coincides with $\mu$ and the law uniqueness of solutions holds for
(2.3).

Accordingly for the proof of Theorem 1.1 it is sufficient to show the ex-
istence and the law uniqueness of solutions for the equation (2.3).

THEOREM 2.1. SuppOse that $(b_{i}(x))_{i\in S}$ satisfies the AssumPtion [B]. Then the
existence and the law uniqueness of solutions hold for the equation (2.3).

In order to prove the theorem let us introduce another stochastic differential
equation. Let

$Y= \{y=(y_{i})_{i\in S} : y_{i}\geqq 0(i\in S), 0<\sum_{i\in S}y_{i}<+\infty\}$ .

Define a mapping $\pi:Yarrow X$ by

$\pi y=(\pi_{i}y)_{i\in S}$ , $\pi_{i}y=y_{i}/\sum_{k\in S}y_{k}$ for $y=(y_{i})_{i\in S}\in Y$ .

Let $c>0$ be a fixed constant satisfying $c>(1/2) \sup_{i\in S}\beta_{i}$ and set
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(2.4) $5_{l}(y)=b_{t}(\pi y)+c\pi_{i}y+\pi_{i}y(\beta_{i}-\Sigma\pi_{k}y\beta_{k})$ , $i\in S$ .
$k\in S$

Consider the following stochastic differential equation on $Y$ :

(2.5) $dy_{i}(t)=\sqrt{\beta_{i}y_{i}(t)}dB_{i}(t)+5_{i}(y(t))dt$ , $i\in S$ .
The notion of solutions for the equation (2.5) is defined analogously to the equa-
tion (2.3) replacing $X$ by $Y$ , that is, a system of stochastic processes

$\mathcal{Y}=\{y(t)=(y_{i}(t))_{i\in S}, B(t)=(B_{i}(t))_{i\in S}\}$

defined on a probability space $(\Omega, \mathcal{B}, P)$ with a reference family $(\mathcal{B}_{t})_{t\geq 0}$ is a
solution of the equation (2.5) if

$(i)’$ $y(t)$ is a continuous $(\mathcal{B}_{t})$-adapted process taking values in $Y$ ,
(ii)’ $B(t)$ is an independent system of one-dimensional $(\mathcal{B}_{t})$-adapted Brow-

nian motions, and
(iii)’ with probability one,

$y_{i}(t)=y_{i}(0)+ \int_{0}^{t}\sqrt{\beta_{i}y_{i}(s})dB_{i}(s)+\int_{0}^{t}\tilde{b}_{t}(y(s))ds$ , $i\in S$ .

We say that the pathwise uniqueness of solutions for (2.5) holds if when-
ever $\mathcal{Y}$ and $\mathcal{Y}’$ are any two solutions defined on the same probability space
$(\Omega, \mathcal{B}, P)$ with the same reference family $(\mathcal{B}_{t})$ and the same independent system
of $(\mathcal{B}_{t})$-adapted one-dimensional Brownian motions $B(t)$ such that $y(O)=y’(O)a$ . $s.$ ,
then $y(t)=y’(t)$ for all $t\geqq 0a$ . $s$ .

The law uniqueness of solutions for (2.5) is also defined analogously to (2.3).

It is known that the pathwise uniqueness of solutions implies the law
uniqueness of solutions, (see [3], p. 152).

THEOREM 2.2. Under the same assumptjOn as in Theorem 2.1 the existence and
the pathwise uniqueness of solutions hold for the equation (2.5). In partjcular.
the law umqueness of solutions for (2.5) holds.

PROOF. For any $\epsilon>0$ let

$Y_{\epsilon}= \{y=(y_{i})_{i\in S}\in Y : \sum_{i\in S}y_{i}\geqq\epsilon\}$ .

Note that $(5_{i}(y))_{i\cong S}$ are continuous on $Y_{\text{\’{e}}}$ , and satisfy boundary conditions:

$\tilde{b}_{t}(y)\geqq 0$ if $y\in Y_{\epsilon}$ and $y_{i}=0$ , $i\in S$ .
Then it is easy to see that if $y(O)\in Y_{\epsilon}$ there exists a $Y_{\epsilon}$-valued solution $\mathcal{Y}=$

$(y(t), B(t))$ of (2.5) up to $\tau_{\epsilon}=\inf\{t>0:\sum_{i\in S}y_{i}(t)=\epsilon\},$ $i$ . $e$ . with probability one,

$y(t)\in]_{9}^{r}$ for $0\leqq t\leqq\tau_{\epsilon}$ , and
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$y_{i}(t \Lambda\tau_{\epsilon})=y_{i}(0)+\int_{0}^{t\Lambda\tau_{\text{\’{e}}}}\sqrt{\beta_{i}y_{i}(s)}dB_{i}(s)+\int_{0}^{tA\tau_{\epsilon}}5_{i}(y(s))ds$ .
(
$See\backslash$ [6] Theorem 2.1, and [8] Theorem 2.1 for the details). Consequently
this implies that if $y(O)\in Y$ there exists a Y-valued solution $\cdot$ Y $=(y(t),$ $B(i))$ of
(2.5) up to $\tau=\lim_{\epsilon\downarrow 0}\tau_{\epsilon}$ . Also, it is easily checked that $r(t)=\Sigma_{i\in S}y_{i}(t)$ is con-
tinuous in $t\in[0, \tau)$ $a$ . $s$ .

Let $\sigma_{M}=\inf\{t>0:r(t)\geqq M\}$ for $M>0$ , and set $\zeta=\zeta_{-}\vee’-1f=\tau_{\hat{e}}$ A $a_{M}$ . Since
$\sum_{i\in S}5_{i}(y)=c$ , using Ito’s formula we see

log $r$ ( $t$ A $\zeta$)–log $r(0)- \int_{0}^{t\Lambda\zeta}\frac{1}{r(s)}(c-\frac{1}{2}\sum_{i\in S}\beta_{i}y_{i}(s)/r(s))ds$

is a martingale. Recalling that $c>(1/2) \sup_{i\in S}\beta_{i}$ we have

$E\{\log r(t\Lambda\zeta)\}\geqq E\{\log r(O)\}>-\infty$

for any $\epsilon>0$ , any $M>0$ , and any $t>0$ , which implies that

$P\{\tau=+\infty\}=1$ ,

since $\lim_{\epsilon\downarrow 0}\tau_{\text{\’{e}}}=\tau$ and $\lim_{Marrow\infty}\sigma_{JI}=\infty$ . Thus we have shown that there exists a
solution of the equation (2.5) taking values in $Y$ through a full time interval
$\overline{\llcorner}0,$ $\infty$).

Now we proceed to prove the pathwise uniqueness of solutions. SuPpose
that $\{y(t)\}$ and $\{y’(t)\}$ be two solutions of (2.5) taking values in $Y$ with $y(O)=$

$y’(O)$ for the same independent system of one-dimensional Brownian motions
$B(t)=(B_{i}(t))_{i\in S}$ on a probability space $(\Omega, \mathcal{B}, P;(\mathcal{B}_{t}))$ . Let $r(t)= \sum_{i\in S}y_{i}(t)$ and
$r’(t)=\Sigma_{i\in S}y_{i}’(i)$ , and for any $\epsilon>0$ and $M>0$ define

$\zeta=\inf$ { $t>0$ : $r(t)\not\in(\epsilon,$ $M)$ or $r’(t)\not\in(\epsilon,$ $M)$ }.
Then

(2.6) $y_{i}$ ( $t$ A $\zeta$ ) $-y_{i}’(t \wedge\zeta)=\int_{0}^{t\Lambda\zeta}(\sqrt{\beta_{i}y_{i}(s})-\sqrt{\beta_{i}y_{i}’(s)})dB_{i}(s)$

$+ \int_{0}^{t\wedge(}(5_{i}(y(s))-5_{i}(y’(s)))ds$ .

We choose a sequence of smooth functions $(\psi_{n}(u))_{n\geq 1}$ defined on $R^{1}$ such that

(i) $||\psi_{n}(u)|\leqq|u|$ and $\lim_{narrow\infty}\psi_{n}(u)=|u|$ ,

(ii) $\lim_{narrow\infty}\psi_{n}’(u)=\{\begin{array}{ll}1 (u>0)0 (u=0)-1 (u<0)\end{array}$

(iii) $\lim_{narrow\infty}u\psi_{n}’’(u)=0$ boundedly.

boundedly,
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Applying Ito’s formula for (2.7) with $\psi_{n}(u)$ and letting $narrow\infty$ we have

$E \{|y_{i}(t\wedge\zeta_{1}-y_{i}’(t\wedge\zeta)|\}\leqq\int_{0}^{t}E\{|5_{i}(y(s\wedge\zeta))-5_{i}(y’(s\wedge\zeta))|\}$ $ds$ .

From the Assumption [B] and (2.4) it follows that there exists a constant $C.>\hat{\cup}$

such that for every $y$ and $y’$ of $Y_{\epsilon}$

$\Sigma|5_{\ell}(y)-5_{i}(y’)|\leqq C_{\epsilon}\sum_{i\in S}$ yi-y\’i .
$t\cong S$

Thus we obtain

$\ell 8_{\in}^{E\{|y_{l}(t\Lambda\zeta)-y_{i}’(t\Lambda\zeta)|\}}\leqq c_{\epsilon}\int_{8^{E\{|y_{t}(s}}^{t}0i\in$ \wedge $\zeta$ ) $-y_{i}^{f}$ ( $s$ \wedge $\zeta$ ) $|$ } $d_{\grave{6}}$ .

Hence, by Gronwall’s inequality we have

$P$ { $y(t)=y’(t)$ for $0\leqq t\leqq\zeta$ } $=1$ ,

which implies the pathwise uniqueness of solutions for (2.5) because of
$\lim_{Marrow\infty}\lim_{e\downarrow 0}\zeta=+\infty a$ . $s$ . Therefore the proof of Theorem 2.2 is complete.

PROOF OF THEOREM 2.1. Let $\mathcal{Y}=(y(t), B(t))$ be a solution of the equation
(2.5) defined on a probability space $(\Omega, \mathcal{B}, P;(\mathcal{B}_{t}))$ . Let

$r(t)=_{t}\S_{\in}^{y_{i}(t)}$ , and set $A_{t}= \int_{0}^{t}\frac{ds}{r(s)}$ .

Then it holds that $A_{t}$ is strictly increasing and $\lim_{tarrow\infty}A_{t}=\infty a$ . $s$ . because
lim $farrow\infty^{r(t)}/t=ca$ . $s$ . follows from the equality $\sum_{i\in S}5_{t}(y)=c$ in (2.4).

Denoting by $A_{t}^{-1}$ the inverse function of $A_{t}$ we define a new process $x(t)$ by

$x(t)=y(A_{t}^{-1})/r(A_{t}^{-1})$ .

Then we will find an independent system of one-dimensional Brownian motions
$\hat{B}(t)=(B_{i}(t))_{l\in S}$ such that $(x(t), B(t))$ is a solution of the equation (2.3).

Let $\tilde{x}(t)=y(t)/r(f)$ . By Ito’s formula we have

\langle 2.7) $d \tilde{x}_{i}(t)=\frac{1}{r(t)}dy_{i}(t)-\frac{y_{i}(t)}{r^{2}(t)}dr(t)+\frac{y_{i}(t)}{r^{8}(f)}d\langle r\rangle(t)-\frac{1}{r^{2}(t)}d\langle y_{l}, r\rangle(t)$ ,

\langle 2.8) $dr(t)= \sum_{j\in S}\sqrt{\beta_{j}y_{j}(t)}dB_{j}(t)+cdt$ ,

\langle 2.9) $d \langle r\rangle(t)=\sum_{i\equiv S}\beta_{t}y_{i}(t)dt$ ,

\langle 2.10) $d\langle y_{t}, r\rangle(t)=\beta_{t}y_{t}(t)dt$ .
Substituting $(2.8)-(2.10)$ into (2.7) we see

(2.11)$d \tilde{x}_{l}(t)=\frac{1}{\sqrt{r(t)}}\sum_{j\in S}(\delta_{tj}-\tilde{x}_{i}(t))\sqrt{\beta_{j}R_{j}(t)}dB_{j}(t)-\}\frac{1}{r(t)}b_{t}(\tilde{x}(t))dt$ .
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Let

$B_{i}(t)= \int^{t}\frac{1}{\sqrt{r(A}}=_{\overline{1}}dB_{i}(A_{s}^{-1})$ for every $i\in S$ .

Then, as is easily seen, $\hat{B}(t)=(\hat{B}_{\ell}(t))$ is an independent system of one-dimensional
Brownian motions, and (2.11) turns into

(2.12) $x_{i}(t)=x_{i}(0)+ \sum_{j\in S}J_{0}^{t}(\delta_{ij}-x_{i}(s))\sqrt{\beta_{j}x_{j}(s)}d\hat{B}_{j}(s)+J_{0}^{t}b_{i}(x(s))ds$ .

Thus $(x(t),\hat{B}(t))$ is a solution of the equation (2.3). Consequently we have
shown the existence of solutions for the equation (2.5).

Now, suppose that $\mathfrak{X}=(x(t), B(t))$ be a solution of the equation (2.3) with
an arbitrarily given initial law $\mu$ on (X, $\mathcal{B}_{X}$ ). For the solution $X=(x(t), B(t))$

let us consider the following one-dimensional stochastic integral equation:

(2.13) $z(t)=1+ \int_{0}^{t}z(s)\sum_{i\in S}\sqrt{\beta_{i}x_{i}(s)}dB_{i}(s)+\int_{0}^{t}cz(s)ds$ .

Since the coefficients of the equation (2.13) are Lipschitz continuous in $z$ , there
exists a unique solution, which is obtained by a standard successive iteration
procedure.

Moreover it holds that the solution $z(t)$ satisfies

(2.14) $P\{z(t)>0$ for any $t\geqq 0$ , and lim $tarrow\infty^{z(t)=\infty\}}=1$ .

Because, applying Ito’s formula for (2.13) with log $x$ we see

(2.15) log $z(t \wedge\sigma_{\epsilon})=\int_{S^{\sqrt{\beta_{i}x_{i}(s)}dB_{i}(s)+\int_{0}^{t\Lambda\sigma_{\epsilon}}(c_{i}}}^{t\Lambda\sigma_{\text{\’{e}}_{i}}}0\in-\frac{1}{2}\in 8^{\beta_{i}x_{i}(s))ds}$

where $a_{\text{\’{e}}}= \inf\{t>0;z(t)\leqq\epsilon\}$ . Accordingly, by $c>(1/2) \sum_{i\in S}\beta_{i}x_{i}$ we have

$E\{\log z(t\wedge a_{\text{\’{e}}})\}\geqq 0$ ,

from which it follows that $P \{\lim_{\epsilon\downarrow 0}\sigma_{\epsilon}>t\}=1$ for any $t>0$ , so that $P\{z(t)>0$ for
any $t\geqq 0$ } $=1$ holds.

Furthermore, the equation (2.15) turns into

(2.16) log $z(t)= \int_{0i}^{t}\in R^{\sqrt{\beta_{i}x_{i}(s)}dB_{i}(s)+\int_{0}^{t}(c_{i}}-\frac{1}{2}\in R^{\beta_{i}x_{i}(s))ds}$ .
Hence from

$c- \frac{1}{2}iR^{\beta_{\{x_{i}\geqq c-\frac{1}{2}S\mathfrak{U}}}P^{\beta_{i}}>0$

it follows that
$\lim_{tarrow\infty}z(t)=+\infty$ $a.s.$ ,
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which yields (2.14).

Next, we set $\tilde{y}_{i}(t)=z(t)x_{i}(t)$ for each $i\in S$ . Then by Ito’s formula

$d\tilde{y}_{i}(t)=z(t)dx_{i}(t)+x_{i}(t)dz(t)+d\langle z, x_{i}\rangle(t)$ .
Into this substituting (2.3), (2.13) and

$d \langle z, x_{i}\rangle(t)=z(t)\sum(\delta_{ij}-x_{i}(t))\beta_{j}x_{j}(t)dt$ ,
$j\in S$

we obtain

(2.17) $d\overline{y}_{i}(t)=\sqrt{z(t)}\sqrt{\beta_{i}\overline{y}_{i}(t)}dB_{i}(t)+z(t)5_{i}(\tilde{y}(t))dt$ , $i\in S$ .
Define a time change function $C_{t}$ by

$C_{t}= \int_{0}^{t}z(s)ds$ .

By (2.14) $C_{t}$ is strictly increasing, continuous, and $\lim_{tarrow\infty}C_{t}=\infty a$ . $s$ . Denoting
by $C_{t}^{-1}$ the inverse function of $C_{t}$ we define

$y(t)=\tilde{y}(C_{t}^{-1})$ , $\ovalbox{\tt\small REJECT}_{t}=\mathcal{B}_{c_{\overline{t}^{1}}}$ , and $\tilde{B}_{i}(t)=\int_{0}^{t}\sqrt{z(C_{\overline{s}}^{1})}dB_{i}(C_{\overline{s}}^{1})$ .

Then $\tilde{B}(t)=(\tilde{B}_{i}(t))_{i\in S}$ is an independent system of one-dimensional $(\ovalbox{\tt\small REJECT}_{t})$-adapted
Brownian motions, and $(y(t),\tilde{B}(t))$ is a solution of the equation (2.5). Hence,
by virtue of Theorem 2.2 the probability law of $\{y(t)\}$ is uniquely determined
from $\mu$ (the law of $y(O)=x(O)$ ).

Let

$r(t)=i8_{\in}^{y_{i}(t)}$ , and $A_{t}= \int_{0}^{t}\frac{1}{r(s)}ds$ .

Then, noticing that $C_{t}^{-1}=A_{t}$ holds we obtain

$x(t)=y(C_{t})/z(t)=y(A_{t}^{-1})/r(A_{t}^{-1})$ .
Therefore the probability law of $\{x(t)\}$ is uniquely determined by the initial
law $\mu$ . Thus we have completed the proof of Theorem 2.1, which is equivalent
to Theorem 1.1.
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