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\S 1. Introduction.

Recently, Ihara [5] proved a natural inequality for an infinite unramified
Galois extension $M/K$ of a global field, which gives an upper bound for some
‘weighted cardinality’ of the set $T$ of those primes of $K$ that decompose almost
completely in $M/K$ :

$(*)$ $\sum_{P\in T}\alpha_{P}\leqq\{$

$\frac{1}{2}$ log $D_{K}$ (in the number field case, assuming GRH),

$(g-1)\log q$ (in the function field case).

Here, $\alpha_{P}$ is some positive ’weight’ of a prime $P$ of $K$ and GRH means the Gen-
eralized Riemann Hypothesis for all $K’$ with $K\subset K’\subset M,$ $[K’ : K]<\infty$ (for details
see \S 2). In the function field case there are cases such that the equality in $(*)$

holds ([2], cf. also [1], [3]). However, in the number field case such cases are
still unknown. Therefore, Ihara considered $\rho(M/K)$ , the ratio of two sides of
$(*),$ $i$ . $e$ .

$\rho(M/K)=\sum_{P}\alpha_{P}/(\frac{1}{2}$ log $D_{K})$ ,

and gave an example such that $\rho(M/K)\geqq 0.7517\cdots$ . The lower bound of this
$\rho(M/K)$ is fairly smaller than 1. In this paper, we shall give a way to con-
struct examples of $M/K$ with large $\rho(M/K)$ , considering some class field tower
with many finite primes decomposing completely. Our maximum lower bound
obtained in this way is 0.9115 $\cdots,$

$i$ . $e$ . we obtain $M/K$ such that

$\rho(M/K)\geqq 0.9115\cdots$ .

This value is much nearer to 1 than that given by Ihara’s examPle. Therefore,
this value seems to be helpful for further study. This value is achieved by the
following $K$ and $M$ :

$K$ : the composite field of the absolute class field of $Q(\sqrt{15377})$

and $Q(\sqrt{-57}15377)$ ;
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$M$ : the maximum unramified pro-2-extension of $K$ in which all primes in
$\mathfrak{S}$ decompose completely, where $\mathfrak{S}$ is the set of primes of $K$ consisting
of all prime divisors of 3, 11, 13, 37 and one prime divisor of 43
$(|\mathfrak{S}|=105)$ .

This paper is part of the author’s Master’s thesis [8]. The author wishes
to express his sincere gratitude to his teacher Y. Ihara who suggested him to
consider this problem.

\S 2. Ihara’s inequality.

In this section, we shall review Ihara’s inequality.

NOTATION.
$K$ : a global field, $i$ . $e$ . either an algebraic number field of Pnite degree

(NF), or an algebraic function field of one variable over a finite field
(FF);

$M/K$ : an infinite unramified Galois extension (the unramifiedness refers also
to the archimedean primes of $K$);

$S_{0}$ : the set of all non-archimedean primes of $K$ ;
$f(P)$ : the residue extension degree of $P\in S_{0}$ in $M/K(1\leqq f(P)\leqq\infty)$ ;
$N(P)$ : the absolute norm of $P\in S_{0}$ ;
$S=\{P\in S_{0} : f(P)<\infty\}$ ;
$S_{\infty}$ : the set of all archimedean primes of $K$ ;

For each prime $P\in S\cup S_{\infty}$ , the constant $\alpha_{P}$ is defined as follows:
log $N(P)$

$\alpha_{P}=\overline{N(}P\overline{)^{f(P)/2}-1}$
$(P\in S)$

$= \frac{1}{2}(\log 8\pi+\frac{\pi}{2}+\gamma)$ ( $P\in S_{\infty}$ ; real)

$=\log 8\pi+\gamma$ ( $P\in S_{\infty}$ ; imaginary)

where $\gamma$ is Euler’s constant;

$\gamma=\lim_{narrow\infty}(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n)=0.577\cdots$ .

In the following theorem of Ihara, when $K$ is a number field, we assume that
the Riemann Hypothesis is valid for the Dedekind zeta function $\zeta_{K’}(s)$ for all
$K’$ with $K\subset K’\subset M,$ $[K’ : K]<\infty$ (GRH) and when $K$ is a function field, we
assume that the genus $g$ of $K$ is positive.

THEOREM (Ihara [5]). When $K$ is a number field, let $D_{K}$ denote the absolute
value of the discriminant of K. When $K$ is a function field, let $F_{q}$ denote the
exact constant field of K. Then
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$(*)$
$P\in F_{s_{\infty}}^{\alpha_{P}\leqq}\{\begin{array}{l}\frac{1}{2} \log D_{K}(g-1) \log q\end{array}$

the series on the left being convergent.

( $NF$, under GRll)

$(FF)$ ,

We shall also review the examples given by Ihara.

EXAMPLE 1 (FF-case). When $1\iota/[/K$ corresponds to a torsion-free co-compact
irreducible discrete subgroup $\Gamma$ of $PSL_{2}(R)\cross PSL_{2}(F_{\mathfrak{p}})$ ( $F_{\mathfrak{p}}$ : a p-adic field), the
equality in $(*)$ holds. (See $[1]\sim[5]$ . A survey is given in [4].)

EXAMPLE 2 (NF-case). Let $K$ be an imaginary quadratic number field $Q(\sqrt{d})$

$d=-3\cdot 5\cdot 7\cdot 11\cdot 13\cdot 17\cdot 23\cdot 31$ $(\equiv 1(mod 8))$

and $\mathfrak{S}$ be the set of two distinct prime divisors of (2) in $K$. Then by the
Gasch\"utz-Wienberg refinement of Golod- afarevi theory for class field tower
(cf. [7] and \S 14 of [5]), $M/K$ is infinite, where $M$ is the maximum unramified
pro-2-extension of $K$ in which two primes in $\mathfrak{S}$ decompose completely. Easy
computation shows that

$\rho(M/K)\geqq 0.7517\cdots$ .

The lower bound of this $\rho(M/K)$ is the largest among the examples that Ihara
considered in [5].

\S 3. Class field tower with finite primes decomposing completely.

In preparation for construction of infinite unramified Galois extensions of
algebraic number fields $M/K$ with large $\rho(M/K)$ , we extend a result of Martinet
([6]) for class field tower.

DEFINITION. Let $K$ be an algebraic number field of finite degree, and $P$ be
a prime number. Let $\mathfrak{S}$ be a given set of finite primes of $K$ and $K_{\infty}^{(p)}(\mathfrak{S})$ be the
maximum unramified Pro-p-extension in which all primes in $\mathfrak{S}$ decompose com-
pletely. When $K_{\infty}^{(p)}(\mathfrak{S})/K$ is inPnite (resp. finite), we say that $K$ has an infinite
(resp. finite) $\mathfrak{S}$-decomposing $P$-class field tower.

NOTATION. For an algebraic number field of finite degree $F$, we denote by
$r_{1}(F)$ (resp. $r_{2}(F)$ ) the number of real (resp. imaginary) primes of $F$ . For a
prime number $p,$ $\delta_{F}^{(p)}$ denotes 1 or $0$ , according as $F$ contains a primitive p-th
root of unity or not.

Combining Ihara’s remark ([5], \S 14) to $Golod-\check{S}afarevi\check{c}$ theory (cf. [7]) and
Martinet’s result ([6]), we easily obtain the following
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THEOREM. Let $K/k$ be a cyclic extenston of degree $p$ ( $p$ ; a prjme number)

of an algebraic number field of finite degree. Let $\mathfrak{S}$ be a given set of finite
primes of K. Let $r’$ be the number of those finite prjmes of $k$ which are ramified
in $K$ and none of its extenston to $K$ belongs to $\mathfrak{S}$ . If

$r’\geqq r_{1}+r_{2}+\delta_{k}^{(p)}+2-\rho+2\sqrt{H+p(r_{1}+r_{2}-\rho/2)+\delta_{k}^{(p)}}$

then $K$ has an infinite $\mathfrak{S}$-decomp0sing p-class field tower. Here $\rho$ denotes the

number of real prjmes of $k$ which are ramified in $K$, $r_{1}=r_{1}(k)$ , $r_{2}=r_{2}(k)$ , and
$H=|\mathfrak{S}|$ .

\S 4. Construction of infinite unramified Galois extensions with large
ratio of Ihara’s inequality.

In this section, we shall give a way to construct infinite unramiPed Galois
extensions $M/K$ with large $\rho=\rho(M/K)$ . We use the following

PROPOSITION. Let $F=Q(\sqrt{D})$ be a real quadratic number field with discrim-
inant D. Let $q_{i}(1\leqq i\leqq t)$ be prjme numbers with the following prOpertjes:

(1) $(D/q_{i})=-1(1\leqq i\leqq t);i$ . $e.$ , each $q_{i}$ remains prime in $F$.
(2) $-q_{1}q_{2}\cdots q_{t}\equiv 1(mod 4)$ .
Let $K$ be the compOsite field of the imaginary quadratic number field $L=$

$Q(\sqrt{-q_{1}q_{t}D})$ and the absolute cla $ss$ field $k$ of F. Let $\mathfrak{S}$ be a set of finite
primes of $K$ with $|\mathfrak{S}|=H$, satisfying the following conditions:

(3) All primes in $\mathfrak{S}$ are prime to each $q_{i}(1\leqq i\leqq t)$ .
(4) $th\geqq 3+2\sqrt{H+2h+1}$, where $h$ is the class number of $F$.
Then $K$ has an infinite $\mathfrak{S}$-decomPosing 2-class field tower.

PROOF. We apply the theorem in \S 3 to $K/k$ . In this case,

$r_{1}=\rho=[k:Q]=2h$ , $r_{2}=0$ , $\delta_{k}^{(2)}=1$ ;

hence it is sufficient to show that

$r’\geqq 3+2\sqrt{H+2h+1}$ .
Therefore, by (4) we require only $r’\geqq ih$ . By (2), the finite primes of $k$ which
are ramified in $K$ are tbe prime divisors of $q_{i}(1\leqq i\leqq t)$ . By (1) and class field
theory, each $q_{i}$ decomposes completely into $h$ prime divisors in $k$ . Hence $r’=th$ .

Before constructing examples we give some remarks. The constant

$\alpha_{P}=\log N(P)/(N(P)^{f(P)/2}-1)$
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decreases as $N(P)$ grows larger when $f(P)$ is fixed. Dividing two sides of
Ihara’s inequality by $n=[K:Q]$ , we obtain

$\frac{1}{n}P\in S^{\alpha_{P}+\frac{r_{1}}{n}\alpha_{r}+\frac{r_{2}}{n}\alpha_{i}\leqq\frac{1}{2}}$ log $D_{K}^{1/n}$

where $r_{1}=r_{1}(K),$ $r_{2}=r_{2}(K)$ , and

$\alpha_{r}=\frac{1}{2}(\log 8\pi+\frac{\pi}{2}+\gamma)$

$\alpha_{i}=\log 8\pi+\gamma$ .
Therefore, in order to obtain examples of $M/K$ with large $\rho(M/K)$ using Prop-
osition, we should note the following two points:

(a) Take $K$ with small root-discriminant $D_{K}^{1/n}$ . It is easy to see that $D_{K}^{1/n}$

$=(Dq_{1}\cdots q_{t})^{1/2}$ . Hence we need to take all $q_{i}$ as small as possible.
(b) Take $\mathfrak{S}$ consisting of primes with small norm. Primes of $K$ with small

norm are prime divisors of primes of $F$ decomposing completely in $k$ . There-
fore, we need to take $D$ such that many small primes $q$ satisfy $(D/q)=-1$ .

With the above in mind, the author calculated some examples. From his
observation, it seems that for our purpose we may restrict ourselves only to the
case where

$D=p(prime)\equiv 1(mod 4)$ , $t=2$ , $H>0$

in the above proposition. In this case, (4) is equivalent to
(4) $H-1\leqq h(h-5)$ .

Now we give a way to construct required examples:
1o We first take a prime number $p\equiv 1(mod 4)$ such that $F=Q(\sqrt p\gamma$ has a

class number larger than four and among those prime numbers $q$ with

(i) $(P/q)=-1$

there are small ones as 3, 5, 7, $\cdot$ ...
$2^{o}$ Let $h’=(h-5)/2$ (integer). Then (4) is equivalent to $H\leqq 2hh’+1$ . Take

the first $h’+3$ prime numbers satisfying (i), and denote by $\mathfrak{S}_{0}$ the set of these
primes. From $\mathfrak{S}_{0}$ we select $q_{1}$ and $q_{2}$ such that $q_{1}q_{2}\equiv 3(mod 4)$ , and put the
others $q^{(1)},$ $q^{(2)},$ $\cdots$ , $q^{(h’+1)}$ , where $q^{(h’+1)}$ is the largest one.

$3^{o}$ Let $K$ be the composite field of the absolute class field $k$ of $F$ and the
imaginary quadratic number field $L=Q(\sqrt{-q_{1}q_{2}p})$ . It is easy to see from the
choice of $q^{(S)}$ that each $q^{(S)}(1\leqq s\leqq h’+1)$ decomposes in $K$ as follows:

$q^{(S)}=q_{1}^{(s)}q_{2}^{(s)}$ $q_{2h}^{(S)}$ , $N_{K/Q}q_{j}^{(s)}=q^{(S)2}$ $(1\leqq s\leqq h’+1,1\leqq j\leqq 2h)$ .
Let

$\mathfrak{S}=\{q_{f}^{(s)}(1\leqq s\leqq h’, 1\leqq j\leqq 2h), q_{1}^{(h’+1)}\}$ .
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Then $K$ has an infinite $\mathfrak{S}$-decomposing 2-class field tower.
$4^{O}$ Let $M=K_{\infty}^{(2)}(\mathfrak{S})$ . Since $S\supset \mathfrak{S}$ (for definition of $S$ , see \S 2), we can cal-

culate the lower bound of $\rho(M/K)$ . Thus we have a required example $M/K$

with large $\rho$ , In fact, if $p<20000$ , $h\geqq 13$ , and $\mathfrak{S}_{0}\ni 3,5,7,13,17,31$ , then we
have $\rho>0.87$ .

We give three examples:
1. Let $p=15377$ . Then $h=13$ (cf. [9]), $h’=4$ , and

$\mathfrak{S}_{0}=\{3,5,7,11,13,37,43\}$ .

Let $q_{1}=5$ and $q_{2}=7$ . Then we obtain

$\rho(M/K)\geqq 0.9115\cdots$ .

2. Let $p=65537$ . Then $h=21$ (cf. [9]), $h’=8$ , and

$\mathfrak{S}_{0}=\{3,5,7,11,23,29,31,41,43,47,59\}$ .

Let $q_{1}=5$ and $q_{2}=7$ . Then we obtain

$\rho(M/K)\geqq 0.91079\cdots$ .

3. Let $p=13457$ . Then $h=13$ (cf. [9]), $h’=4$ , and

$\mathfrak{S}_{0}=\{3,5,7,13,17,31,47\}$ .

Let $q_{1}=5$ and $q_{2}=7$ . Then we obtain

$\rho(M/K)\geqq 0.9059\cdots$ .

The value 0.9115 $\cdots$ in example 1 is much nearer to 1 than that given by
Ihara’s example. Therefore, this value seems to be helpful for further study.
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