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1. Introduction.

The classical limit theorems for sums of indePendent random variables ([6])

have been extended in several directions. For instance, Skorohold ([19]) dis-
cussed functional limit theorems in which sums of independent random variables
in a suitable time scale converge to a L\’evy process, $i.e.$ , a process with inde-
pendent increments which is continuous in probability. Further, these theorems
have been extended to the case of sums of dependent random variables (see $e.g$ .
[5]). A unified approach to these problems has been given recently by several
authors in the framework of semimartingales. Semimartingales extend the notion
of L\’evy processes and such basic processes as Wiener processes ( $i$ . $e$ . Gaussian
martingales) and Poisson point processes are simply characterized and naturally
extended in the context of semimartingales.

The purpose of this paper is to discuss limit theorems in the framework of
semimartingales represented by stochastic integrals of point processes: We
discuss on the convergence of point processes and their functionals defined by
stochastic integrals. Similar problem was discussed by several authors $(e.g$ . $[5]$ ,
[8], [10], [16] and [17]), but a main difference is that, in our approach, we do
not necessarily assume that the point processes are defined by jumps of semi-
martingales: Rather, we start with a sequence of point processes and their
functionals represented by stochastic integrals and discuss the convergence of
them. Our results, of course, overlap those of the above authors but we believe
that our proofs are simpler in several points, and it should be remarked that
not only Gaussian martingales and Poisson processes but also the general L\’evy
processes appear in our limit theorems. Also a merit of our approach seems to
be in the point that it is useful to clarify the joint convergence of several proc-
esses related to a given sequence of point processes. For example, in the case
of weighted sums of triangular arrays of random variables, it seems more natural
to start with the point processes defined by the original arrays rather than those
defined by the weighted sums; we can then consider different weighted sums
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of the arrays at the same time (see Example 7.4 and [13]).

In section 2 we review some basic facts on semimartingales and point proc-
esses. In section 3 we summarize the notion of Skorohod’s function spaces and
convergence of stochastic processes related to them. In section 4, a central limit
theorem is given as the convergence of a class of semimartingales to a Gaussian
martingale. In section 5 we discuss the convergence of point processes to Poisson
point processes. In section 6 the convergence of stochastic integrals based on
point processes is studied and, combining these results with those of section 4,
we obtain a main theorem (Theorem 6.6) for the convergence of a class of
semimartingales to L\’evy processes. Several applications will be discussed in
later sections.

2. A summary on point processes and semimartingales.

The purpose of this section is to recall some basic facts on semimartingales
and point processes. For details [7] can be consulted: We do not restrict our-
selves to point processes of the class (QL) as in [7] but necessary modifications
are almost obvious.

Let $(\Omega, \mathcal{F}, P)$ be a complete probability space and $F=(\mathcal{F}_{t}),$ $r\in[0, \infty$ ), be a
right-continuous family of $sub-\sigma- fields$ of $\mathcal{F}$ each containing all P-null sets. Such
a family $F$ is called a filtration on $(\Omega, \mathcal{F}, P)$ . We assume that the readers are
familiar with such basic notions as $(\mathcal{F}_{t})$-adapted processes, $(\mathcal{F}_{t})$-predictable proc-
esses, $(\mathcal{F}_{t})-(1oca1)$ martingales, $(\mathcal{F}_{t})$-stopping times, etc. (cf. [4] or [7]). We
denote by $\mathcal{M}^{2}(F, P),$ $\mathcal{M}_{1oc}^{2}(F, P)$ and $\mathcal{M}_{1oc}^{c}(F, P)$ the spaces of all square-integrable
$(\mathcal{F}_{t})$-martingales ( $i.e.$ , all $(\mathcal{F}_{t})$-martingales such that $E[M_{t}^{2}]<\infty$ for all $t\in[0,$ $\infty$ )),

all locally square-integrable martingales and all continuous local martingales
(which are necessarily locally square-integrable), respectively. For $M$ belonging
to these spaces we always assume that $M_{0}=0$ and that $t-M_{t}$ is right-continuous
almost surely (abbreviated as $a.s.$ ). For $M,$ $M’\in \mathcal{M}_{1oc}^{2}(F, P)$ , there exists a
unique $(\mathcal{F}_{t})$-predictable process $A=(A_{t})$ with the following properties: $A_{0}=0$ ,
$t\mapsto A_{t}$ is of bounded variation on each finite interval $a$ . $s$ . and $M_{t}M_{t}’-A_{t}$ is a
local $(\mathcal{F}_{t})$-martingale. This process is denoted by $\langle M, M’\rangle$ . Also Meyer intro-
duced the process $[M, M’]$ : It is defined by

(2.1) $[M, M’]_{t}= \langle M^{c}, M^{\prime c}\rangle_{t}+\sum_{s\leqq t}\Delta M_{s}\cdot\Delta M_{s}’$

where $M^{c}$ is a continuous martingale part of $M$ and $\Delta M_{s}=M_{s}-M_{s-}$ .
Let $M^{i}\in \mathcal{M}_{1oc}^{c}(F, P),$ $i=1,2,$ $\cdots$ , $d$ , such that $\langle M^{i}, M^{j}\rangle_{t}=\phi_{ij}(t)$ are con-

tinuous deterministic processes, $i,$ $j=1,2,$ $\cdots$ , $d$ . Then, for $t>s\geqq 0,$ $M_{f}-M_{s}=$

$(M_{t}^{i}-M_{s}^{i})_{i\Rightarrow 1}^{d}$ is independent of $\mathcal{F}_{s}$ and Gaussian distributed, $i$ . $e.$ ,
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(2.2) $E[ \exp(\sqrt{-1}\sum_{i=1}^{d}\lambda^{i}(M_{t}^{i}-M_{s}^{i}))|\mathcal{F}_{s}]$

$= \exp\{-\frac{1}{2}\sum_{i.j=1}^{d}(\phi_{ij}(t)-\phi_{ij}(s))\lambda^{i}\lambda^{j}\}$ , $(\lambda^{i})\in R^{d}$ .

Hence $M_{t}$ is a d-dimensional continuous Gaussian process with independent in-
crements. Such a process is called a d-dimensional Gaussian martingale.

Let (X, $\mathcal{B}_{X}$ ) be a measurable space. Though the case we mostly discuss in
this paper is when $X$ is a locally compact Hausdorff space with a countable open
base and $\mathcal{B}_{X}=\mathcal{B}(X)$ is the topological a-field of $X$, we give here a general
definition. By a pOjnt function with values in $X$ or simply a Point function on
$X$, we mean a function $p$ defined on a countable subset $D_{p}\subset[0, \infty$ ) taking values
in $X$,

$p$ : $r\in D_{p}-\geq p(t)\in X$ .
$P$ defines a measure $N_{p}$ on $[0, \infty$ ) $\cross X$ with values in $\{0,1, \cdots , \infty\}$ by

$N_{p}(E)=\#\{t\in D_{p} : (t, p(t))\in E\}$ .
$N_{p}$ is called the counting measure associated with $p$ . It is obvious that $p$ can be
recovered from its counting measure $N_{p}$ . Let $\Pi_{X}$ be the totality of point func-
tions on $X$ and $\mathcal{B}(\Pi_{X})$ be the smallest $\sigma- field$ on $\Pi_{X}$ with respect to which
the map $p-N_{p}(E)$ is measurable for every $E\in \mathcal{B}([0, \infty))\cross \mathcal{B}_{X}$ . Random elements
of the space $(\Pi_{X}, \mathcal{B}(\Pi_{X})),$ $i$ . $e.$ , a $(\Pi_{X}, \mathcal{B}(\Pi_{X}))$-valued random variable defined
on a probability space is called a point process taking values in $X$, or a point
process on $X$, simply. Then the associated counting measure $N_{p}$ is a random
point measure on $[0, \infty$ ) $\cross X$.

Let $(\Omega, \mathcal{F}, P)$ and $(\mathcal{F}_{t})$ be as above and we consider point processes defined
on this probability space. A point process $p$ on $X$ is called $(\mathcal{F}_{t})$-adapted if, for
every $B\in \mathcal{B}_{X},$ $tarrow N_{p}([0, t]\cross B)$ is $(\mathcal{F}_{t})$-adapted. It is called $\sigma- finite$ if $U_{n}\in \mathcal{B}_{X}$ ,
$n=1,2,$ $\cdots$ , exist such that $U_{n}\subset U_{n+1},$ $\bigcup_{n}U_{n}=X$ and with probability one
$N_{p}([0, t]\cross U_{n})<\infty$ for every $n=1,2,$ $\cdots$ and $t>0$ . In this case we can find for
every $n=1,2,$ $\cdots$ , an increasing sequence of $(\mathcal{F}_{t})$-stopping times $\tau_{k}^{(n)}$ such that
$\lim_{karrow\infty}\tau_{k}^{\langle n)}=\infty a.s$ . and

(2.3) $E[N_{p}([0, t\wedge\tau_{k}^{(n)}]\cross U_{n})]<\infty$

for every $t>0$ and $n,$ $k=1,2,$ $\cdots$ In the case when $X$ is a locally comPact
Hausdorff space with a countable open base, it is always understood that the
above definition of $\sigma- finiteness$ is referred to $\{U_{n}\}$ which is a compact exhaustion
of $X$.

Let $P$ be a $\sigma- finite(\mathcal{F}_{t})$-adapted point process on $X$. We say that Ppossesses
the compensator $\hat{N}_{p}$ if a non-negative random measure $\hat{N}_{p}(E)$ on $[0, \infty$ ) $\cross X$

exists, $i.e.,\hat{N}_{p}(E),$ $E\in \mathcal{B}([0, \infty))\cross \mathcal{B}_{X}$ , is $\overline{R}_{+}=[0, \infty]$ -valued random variable
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and, with probability one, $Erightarrow\hat{N}_{p}(E)$ is a measure on $\{[0, \infty)\chi X, \mathcal{B}([0, \infty))\cross \mathcal{B}_{X}\}$ ,
such that the following hold:
(i) $t-\hat{N}_{p}([0, t]\chi U)$ is $(\mathcal{F}_{t})$-predictable for every $U\in \mathcal{B}_{X}$ ,
(ii) if $U_{n},$ $n=1,2,$ $\cdots$ , are those subsets in the definition of a-finiteness of $p$ ,
then $\hat{N}_{p}([0, t]\cross U_{n})<\infty$ for all $t>0$ and $n=1,2,$ $\cdots$ , $a.s.$ ,
(iii) $t\mapsto N_{p}([0, t]\cross(U_{n}\cap B))-\hat{N}_{p}([0, t]\cross(U_{n}\cap B))$ is a local $(\mathcal{F}_{t})$-martingale for
every $n=1,2,$ $\cdots$ and $B\in \mathcal{B}_{X}$ .

$\hat{N}_{p}$ is uniquely determined (up to an obvious equivalence) from $N_{p}$ and
$\hat{N}_{p}(\{s\}\cross B)\leqq 1$ for every $B\in \mathcal{B}_{X}$ and $s\geqq 0$ . In [7] we considered the case
$\hat{N}_{p}(\{s\}\cross B)\equiv 0$ exclusively and called such a class of point processes as class
(QL). The existence of compensators is assured fairly generally: In particular,
if $X$ is a locally compact Hausdorff space with a countable open base, the com-
pensators exist for every $(\mathcal{F}_{t})$-adapted $\sigma- finite$ point process on $X$.

Suppose that $P$ posseses the compensator $\hat{N}_{p}$ . We set

$\tilde{N}_{p}([0, t]\cross B)=N_{p}([0, t]\cross B)-\hat{N}_{p}([0, t]\cross B)$ .
If $B\subset U_{n}$ for some $n$ , then $t-\succ\tilde{N}_{p}([0, t]\cross B)$ is a local martingale and actually
it is an element of $\mathcal{M}_{1oc}^{2}(F, P)$ . We can show by the same but obviously modified
arguments as in [7] (page 61) that

(2.4) $\langle\tilde{N}_{p}([0, t]\cross B),\tilde{N}_{p}([0, t]\cross B’)\rangle$

$= \hat{N}_{p}([0, t]\cross(B\cap B’))-\sum_{s\leqq t}\hat{N}_{p}(\{s\}\cross B)\cdot\hat{N}_{p}(\{s\}\cross B’)$ ,

if $B,$ $B’\in \mathcal{B}([0, \infty))\cross \mathcal{B}_{X}$ and if $B,$ $B’\subset U_{n}$ for some $n$ .
A real function defined on $[0, \infty$ ) $\cross X\cross\Omega$ is called $(\mathcal{F}_{t})$-predictable if the

mapping $(t, x, \omega)-f(t, x, \omega)$ is $S/\mathcal{B}(R)$-measurable where $S$ is the smallest $\sigma-$

field on $[0, \infty$ ) $\cross X\cross\Omega$ with respect to which all $g$ having the following prop-
erties are measurable:
(i) for each $t\geqq 0,$ $(x, \omega)\vdasharrow g(t, x, \omega)$ is $\mathcal{B}_{X}\cross \mathcal{F}_{t}/\mathcal{B}(R)$-measurable,
(ii) for each $(x, \omega),$ $t-arrow g$ ( $t,$ $x$ , do) is left-continuous.

For a given $(\mathcal{F}_{t})$-adapted, a-finite point process $P$ on $X$ possessing the com-
pensator $\hat{N}_{p}$ , we introduce the following classes:

$\Phi_{p}(F, P)=\{f(t, x, \omega)$ : $f$ is $(\mathcal{F}_{t})$-predictable and for each $t>0$,

$\int_{0}^{t+}\int_{X}|f(s, x, \omega)|N_{p}(dsdx)<\infty a$ . $a$ . $\omega\}$ ,

$\Phi_{p}^{1}(F, P)=\{f(t, x, \omega)$ : $f$ is $(\mathcal{F}_{t})$-predictable and for every $t>0$,

$E[ \int_{0}^{t+}\int_{X}|f(s, x, \cdot)|\hat{N}_{p}(dsdx)]<\infty\}$ ,
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$\Phi_{p}^{2}(F, P)=\{f(t, x, \omega)$ : $f$ is $(\mathcal{F}_{t})$-predictable and for every $t>0$,

$E[ \int_{0}^{t+}\int_{X}|f(s, x, )|^{2}\hat{N}_{p}(dsdx)]<\infty\}$

and

$\Phi_{p}^{2.1oc}(F, P)=\{f(fx, \omega)$ : $f$ is $(\mathcal{F}_{t})$-predictable and there exists

a sequence of stopping times $\sigma_{n}$ such that $\sigma_{n}\uparrow\infty$

$a$ . $s$ . and $I_{[0.\sigma_{n}]}(t)f(t, x, \omega)\in\Phi_{p}^{2}(F, P),$ $n=1,$ 2, }.

These classes are denoted simply by $\Phi_{p},$ $\Phi_{p}^{1},$ $\Phi_{p}^{2}$ and $\Phi_{p}^{2.1oc}$ if there is no
danger of confusions.

First for $f\in\Phi_{p}$ , we define $\int_{0}^{t+}\int_{X}f(s, x, \omega)N_{p}(dsdx)$ $\omega$-wise as the usual

Lebesgue-Stieltjes integral and this is clearly equal to the absolutely convergent
sum $\sum f(s, p(s),$ $\omega$) where the summation runs over $s\leqq t,$ $s\in D_{p}$ . Next, let $f\in$

$\Phi_{p}^{1}$ . Then we have

$E[ \int_{0}^{t+}\int_{X}|f(s, x, \omega)|N_{p}(dsdx)]=E[\int_{0}^{t+}\int_{X}|f(s, x, \omega)|\hat{N}_{p}(dsdx)]$ .

This implies, in particular, that $\Phi_{p}^{1}\subset\Phi_{p}$ . We set

(2.5) $\int_{0}^{t+}\int_{X}f(s, x, \omega)N_{p}(dsdx)$

$= \int_{0}^{t+}\int_{X}f(s, x, \omega)N_{p}(dsdx)-\int_{0}^{t+}\int_{X}f(s, x, \omega)\hat{N}_{p}(dsdx)$ .

If, furthermore, $f\in\Phi_{p}^{1}\cap\Phi_{p}^{2}$ then we can show that $t- \int_{0}^{t+}\int_{X}f(s, x, \omega)\tilde{N}_{p}(dsdx)$

$\in \mathcal{M}^{2}(F, P)$ and that

(2.6) $\langle\int_{0}^{t+}\int_{X}f(s, x, \omega)\tilde{N}_{p}(dsdx)\rangle$

$= \int_{0}^{t+}\int_{X}f(s, x, \omega)^{2}1\hat{V}_{p}(dsdx)-\sum_{s\leqq t}\{\int_{X}f(s, x, \omega)\hat{N}_{p}(\{s\}\cross dx)\}^{2}$ .

If $f\in\Phi_{p}^{2}$ , we set

$f_{n.k}(s, x, \omega)=I_{(-n,n)}(f(s, x, \omega))I_{U_{n}}(x)I_{[0.\tau_{k}^{(n)}]}(s)f(s, x, \omega)$

where $U_{n}\in \mathcal{B}_{X}$ are those subsets of $X$ in the definition of a-finiteness and $\tau_{k}^{(n)}$

are stopping times satisfying (2.3). Then it is easy to see that $f_{n.k}\in\Phi_{p}^{1}\cap\Phi_{p}^{2}$

and

$E[ \int_{0}^{t+}\int_{X}|f_{n.k}(s, x, \omega)-f_{n’.k’}(s, x, \omega)|^{2}\hat{N}_{p}(dsdx)]$

$arrow 0$ as $k,$ $k’arrow\infty$ and $n,$
$n’arrow\infty$ .
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Since this expectation dominates

$E[ \{\int_{0}^{t+}\int_{X}f_{n,k}(s, x, \omega)N_{p}(dsdx)-\int_{0}^{t+}\int_{X}f_{n’,k’}(s, x, \omega)\tilde{N}_{p}(dsdx)\}^{2}]$ ,

we see that there exists unique $M\in \mathcal{M}^{2}(F, P)$ such that

$E[ \{M(t)-\int_{0}^{t+}\int_{X}f_{n,k}(s, x, \omega)\tilde{N}_{p}(dsdx)\}^{2}]-0$ ,

as $k,$ $narrow\infty$ . It is easy to see that $M$ is uniquely determined from $f$ indifferently

to a particular choice of $U_{n}$ and $\tau_{k}^{(n)}$ . This $M$ is denoted by $\int_{0}^{t+}\int_{X}f(s, x, \omega)$

$\tilde{N}_{p}(dsdx)$ . Finally, if $f\in\Phi_{p}^{2,1oc}$ then $\int_{0}^{t+}\int_{X}f(s, x, \omega)\tilde{N}_{p}(dsdx)$ is defined to be

the unique element $M\in \mathcal{M}_{1oc}^{2}(F, P)$ such that

$M(t \wedge\sigma_{n})=\int_{0}^{t+}\int_{X}I_{[0,\sigma_{n}]}(s)f(s, x, \omega)\tilde{N}_{p}(dsdx)$ , $n\geqq 1$ ,

where $\{\sigma_{n}\}$ is a family of stopping times in the definition of $\Phi_{p}^{21oc}$ .

For $f,$ $g\in\Phi_{p}^{21oc}$ , it holds

(2.7) $\langle\int_{0}^{t+}\int_{X}f(s, x, \omega)N_{p}(\ dx)$ , $\int_{0}^{t+}\int_{X}g(s, x, \omega)N_{p}(dsdx)\rangle$

$= \int_{0}^{t+}\int_{X}f(s, x, \omega)g(s, x, \omega)\hat{N}_{p}(\ dx)$

$- \sum_{s\leqq t}\{\int_{X}f(s, x, \omega)\hat{N}_{p}(\{s\}\cross dx)\}\{\int_{X}g(s, x, \omega)\hat{N}_{p}(\{s\}\cross dx)\}$ .

The most important class of point processes is of course that of Poisson
point processes: Generally, a point process $P$ on $X$ is called a Poisson point
process if the following are satisfied;
(i) if $E_{1},$ $E_{2},$

$\cdots,$
$E_{n}\in \mathcal{B}([0, \infty))\cross \mathcal{B}_{X}$ are disjoint then $N_{p}(E_{1}),$ $N_{p}(E_{2}),$ $\cdots$ $N_{p}(E_{n})$

are independent,
(ii) for $E\in \mathcal{B}([0, \infty))\cross \mathcal{B}_{X},$ $N_{p}(E)$ is Poisson distributed, the case $N_{p}(E)=\infty$

$a$ . $s$ . being allowed as a Poisson random variable with infinite expectation.
An $(\mathcal{F}_{t})$-adapted Poisson point process is called $(\mathcal{F}_{t})$-Poisson point process if,

for every $s\geqq 0$, the family $N_{p}((s, t$] $\cross B$ ), $t\geqq s,$ $B\in \mathcal{B}_{X}$ is independent of $\mathcal{F}_{s}$ . Let
$P$ be an $(\mathcal{F}_{t})$-Poisson point process which is a-finite. Then

(2.8) $\nu_{p}(E)=E[N_{p}(E)]$

defines a a-finite measure on $\{[0, \infty)\cross X, \mathcal{B}([0, \infty))\cross \mathcal{B}_{X}\}$ in the sense that
there exist $U_{n}\in \mathcal{B}_{X},$ $n\geqq 1$ , such that $U_{n}\subset U_{n+1},$ $\bigcup_{n}U_{n}=X$ and $\nu_{p}([0, t]\cross U_{n})<\infty$

for all $n\geqq 1,$ $t>0$ . $\nu_{p}$ satisfies

(2.9) $\nu_{p}(\{s\}\cross X)=0$ for all $s\geqq 0$ .
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$p$ possesses the compensator $\hat{N}_{p}$ which coincides with the deterministic measure
$\nu_{p}$ . This ProPerty characterizes a Poisson point process. Namely, if an $(\mathcal{F}_{t})$-adapted
a-finite point process $p$ possesses the compensator which is a deterministic measure
on $\{[0, \infty)\cross X, \mathcal{B}([0, \infty))\cross \mathcal{B}_{X}\}$ satisfying (2.9) then $P$ is an $(\mathcal{F}_{t})$-Poisson point
process. Furthermore, given $\nu$ on $\{[0, \infty)\cross X, \mathcal{B}([0, \infty))\cross \mathcal{B}_{X}\}$ which is $\sigma- finite$

in the above sense and satisfies the condition (2.9) we can construct a $\sigma- finite$

$(\mathcal{F}_{t})$-Poisson point process with compensator $\hat{N}_{p}=\nu$ on some probability space
$(\Omega, \mathcal{F}, P)$ with $(\mathcal{F}_{t})$ .

Martingale characterization for Gaussian martingales and Poisson point
processes stated above can be combined together in the following form: Let
$M(t)=(M^{1}(t), \cdots , M^{d}(t))$ and $p_{1},$ $p_{2},$ $\cdots$ , $p_{n}$ be given on $(\Omega, \mathcal{F}, P)$ with $(\mathcal{F}_{t})$ where
$M^{i}\in \mathcal{M}_{1oc}^{c}$ such that $\langle M^{i}, M^{f}\rangle_{t}=\phi_{ij}(t)$ are continuous deterministic processes
$i,$ $j=1,2,$ $\cdots$ , $d$ and where $p_{1},$ $p_{2},$ $\cdots$ , $p_{n}$ are $\sigma- finite(\mathcal{F}_{t})$-point processes on $X_{1}$ ,
$X_{2},$ $\cdots$ , $X_{n}$ , respectively, possessing compensators $\hat{N}_{p_{1}},\hat{N}_{p_{2}},$ $\cdots$ , $\hat{N}_{p_{n}}$ which are
deterministic $\sigma- finite$ measures (in the above sense) on $\{[0, \infty$ ) $\cross X_{i},$ $\mathcal{B}([0, \infty))\cross$

$\mathcal{B}_{x_{i}}\}$ satisfying $\hat{N}_{p_{i}}(\{s\}\cross X_{i})=0,$ $s\geqq 0$ , for $i=1,2,$ $\cdots$ , $n$ . Furthermore, we
assume that the domains $D_{p_{i}}$ are mutually disjoint $a$ . $s$ . Then $M(t)$ is a d-
dimensional Gaussian martingale and $p_{i}$ are $(\mathcal{F}_{t})$-Poisson point processes on $X_{i}$ ,
respectively such that $\{M(\cdot), p_{1}, \cdots , p_{n}\}$ are mutually independent. In the suc-
ceeding sections this characterization will play the key role.

3. Skorohod’s function space.

The purpose of this section is to put on record notations and elementary facts
on Skorohod’s function space for the later reference.

By $D([0, \infty):R^{d})(d\geqq 1)$ we denote the space of all right-continuous $R^{d}-$

valued functions on $[0, \infty$ ) having left limits. We endow this space with the
$J_{1}$-topology (see [15]). By $D([0, \infty):R)^{d}$ we denote the product space $D([0, \infty)$ :
$R)\cross\cdots\cross D([0, \infty):R)$ which is of course endowed with the product topology $(i$ . $e.$ ,

the convergence in this space is defined as that of every component). Similarly
we can define $D([0, \infty):R^{n})\cross D([0, \infty):R^{m})$ in the same manner. The reader
should notice that $D([0, \infty):R^{n})\cross D([0, \infty):R^{m})$ may be identified with $D([0, \infty)$ :
$R^{n+m})$ as a set but the topology of the first is weaker than that of the latter.

The convergence in law of random elements of these spaces will be denoted
by $X_{n^{arrow}}^{\mathcal{D}}X$. This notation will also be used to express the weak convergence
of the laws of random elements of any other topological spaces. When we need
to emphasize the space, we write, for example, $X_{n}arrow \mathcal{D}X$ in $D([0, \infty):R^{d})$ , etc.

$\mathcal{D}_{f}$

By $X_{n}arrow X$ we denote the convergence of all finite-dimensional marginal dis-
tributions, and by $\xi_{n}arrow\xi P$ we denote the convergence in probability when $\xi_{n}$ and
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$\xi$ are $R^{d}$-valued random variables. Thus, $X_{n}(t)arrow X(t)Pt\geqq 0$ means that

$P[|X_{n}(t)-X(t)|\geqq\epsilon]arrow 0$ for every $\epsilon>0,$ $t\geqq 0$ .

The following four lemmas are easy to prove and we omit the proofs (cf.

section 4 of [20]).

LEMMA 3.1. Let $x_{n},$ $x\in D([0, \infty);R)$ and supp0se that, for every $n,$ $x_{n}(t)$ is
nondecreasing in $t$ . If $x_{n}(t)arrow x(t)$ for every $t\geqq 0$ and if $x(t)$ is continuous then
the convergence is uniform on every fnite interval.

LEMMA 3.2. Let $x_{n},$ $x,$ $y_{n}$ and $y\in D([0, \infty):R^{d})$ .
(i) If $(x_{n}, y_{n})arrow(x, y)$ in $D([0, \infty);R^{d})\cross D([0, \infty):R^{d})$ and if $y$ is continuous
then $(x_{n}, y_{n})arrow(x, y)$ in $D([0, \infty);R^{2d})$ .
(ii) If $(x_{n}, y_{n})arrow(x, y)$ in $D([0, \infty);R^{2d})$ then

(3.1) $x_{n}+y_{n}arrow x+y$ in $D([0, \infty):R^{d})$ .

LEMMA 3.3. Let $X_{n}=(X_{n}(t))_{t\geq 0}$ and $X=(X(t))_{t\geq 0}$ be stochastic pr0cesses with
sample paths in $D([0, \infty):R)$ , and supp0se that $X_{n}$ and $X$ are nondecreasing in $t$

$a.s$ . If $X$ has continuous sample paths with pr0bability one and if $X_{n}arrow X\mathcal{D}_{f}$ then
$X_{n}arrow \mathcal{D}X$ in $D([0, \infty):R)$ . Especrally, if $X$ is a deterministic, continuous function
then $X_{n}(t)^{P}arrow X(t),$ $t\geqq 0$ impljes that $X_{n}arrow \mathcal{D}X$.

LEMMA 3.4. Let $X_{n},$ $X$ and $Y_{n}$ be stochastic processes with sample paths in
$D([0, \infty);R^{d})$ and let $\phi$ be an $R^{d}$-valued continuous function. If $X_{n}arrow \mathcal{D}X$ and
$Y_{n}arrow \mathcal{D}\phi$ , then $X_{n}+Y_{n}arrow \mathcal{D}X+\phi$ .

Lemma 3.4 is of course an easy consequence of Lemma 3.2.

Recently several authors have given useful criterions for the tightness of a
family of martingales (see Lemma 6 of [16], also [17]). The next lemma is a
version which is suited for our later use.

LEMMA 3.5. Let $M_{n}\in \mathcal{M}_{1oc}^{2},$ $n\geqq 1$ and let

(3.2) $\langle M_{n}\rangle_{t}arrow^{P}\phi(t)$ , $t\geqq 0$

where $\phi(t)$ is a continuous deterministic function. Then the family $\{M_{n}\}_{n}$ is
tight in $D([0, \infty);R)$ . Furthermore, if in addition, there exists $C>0$ such that
$P[ \sup_{t}|\Delta M_{n}(t)|\leqq C]=1,$ $n\geqq 1$ , then any limit process $M$ of $\{M_{n}\}_{n}$ is a square-
integrable martingale such that $\langle M\rangle_{t}=\phi(t)a.s$ .

PROOF. Since the first half is Lemma 6 of [16], we will prove only the
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latter half. Clearly it suffices to consider on every Pnite time-interval $[0, T]$ ,
$T>0$ . We assume for the moment that there exists $C=C(T)>0$ such that $\langle M_{n}\rangle_{T}$

$\leqq C,$ $a.s.,$ $n=1,2,$ $\cdots$ By Lemma 3.6, which we will state later, we have

(3.3) $\sup_{n}E[M_{n}(t)^{4}]<\infty$ , $0\leqq t\leqq T$ .

Now let $M$ be any limit process of $\{M_{n}\}$ . We need to prove that $M(t)$ and
$M(t)^{2}-\phi(t)$ are martingales. Let $0\leqq t_{1}<\cdots<t_{k}\leqq s<t\leqq T(k\geqq 1)$ and let $H$ be a
bounded continuous function on $R^{k}$ . Since $M_{n}\in \mathcal{M}^{2}$ , we have that

(3.4) $E[(M_{n}(t)-M_{n}(s))H(M_{n}(t_{1}), \cdots , M_{n}(t_{k}))]=0$ .
Let $T_{p}$ consist of those $t$ in $[0, T]$ for which $P[M(t)\neq M(t-)]=0$ . $[0, T]\backslash T_{p}$

is at most countable (see page 124 of [1]). If $t_{1},$ $\cdots$ , $t_{k},$ $s,$ $t\in T_{p}$ , then keeping
(3.3) in mind we have from the well-known continuity theorem (see Theorem
5.1 and page 124 of [1]) that

(3.5) $E[(M(t)-M(s))H(M(t_{1}), \cdots , M(t_{k}))]=0$ .

Since $T_{p}$ is dense in $[0, T]$ , we easily see that (3.5) holds for all $0\leqq t_{1}<\cdots<t_{k}$

$\leqq s<t\leqq T$. Thus we have that $M(t)$ is a martingale and in a similar way we
can show that $M(t)^{2}-\phi(t)$ is also a martingale. It is a standard argument to
drop the assumption that $\langle M_{n}\rangle_{T}\leqq C$ : We define $\sigma_{n}=\inf\{t\leqq T:\langle M_{n}\rangle_{t}\geqq\phi(T)+1\}$

( $\sigma_{n}=T$ if { $\}=\emptyset$ ) and put $M_{n}’(t)=M_{n}(t\wedge\sigma_{n})$ . Since $P[M_{n}’\neq M_{n}]=P[\sigma_{n}<T]\leqq$

$P[\langle M_{n}\rangle_{T}\geqq\phi(T)+1]arrow 0$ , we have that $M$ is a limit process of $\{M_{n}’\}$ (cf. Theorem
4.1 of [1]). Since we can apply the previous argument to $\{M_{n}’\}$ , we have the
assertion.

LEMMA 3.6. Let $M\in \mathcal{M}_{1oc}^{2}(F, P)$ and suPpose that $\langle M\rangle_{T}\leqq C_{1}$ and $\sup_{0\leqq t\leqq T}|\Delta M(t)|$

$\leqq C_{2}a.s$ . Then, for $0<\lambda<1/\{4(\sqrt{C_{1}}+C_{2})\}$ , it holds that

$E[\exp\{\lambda S^{up_{T}|M(t)}|\}]\leqq 1/\{1-4\lambda(\sqrt{C_{1}}+C_{2})\}$ .

PROOF. Let $0\leqq\tau\leqq\sigma$ be $(\mathcal{F}_{t})$-stopping times. Then we have

$E[|M(t\wedge\sigma)-M(t\wedge\tau-)|/\mathcal{F}_{t\wedge\tau}]$

$\leqq|\Delta M(t\wedge\tau)|+E[|M(t\Lambda\sigma)-M(t\Lambda\tau)|/\mathcal{F}_{t\Lambda\tau}]$

$\leqq C_{2}+E[(M(t\wedge\sigma)-M(t\wedge\tau))^{2}/\mathcal{F}_{t\wedge r}]^{1/2}$

$\leqq C_{2}+\sqrt{C_{1}}$ .
Therefore, we have the assertion (see page 193 of [4]).

With a slight modification of the proof of Lemma 3.5 we obtain

LEMMA 3.7. Let $M_{n}\in \mathcal{M}_{1oc}^{2}(F^{n}, P^{n}),$ $n=1,2,$ $\cdots$ satisfy (3.2) and we assume
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that there exists $C>0$ such that $\sup_{\iota\geqq 0}|\Delta M_{n}(t)|\leqq C,$ $a.s$ . Let $X_{n},$ $n=1,2,$ $\cdots$ be
$(\mathcal{F}_{t}^{n})$-adapted random elements of $D([0, \infty);R^{d})$ converging in law to X. Then
$\{(M_{n}, X_{n})\}_{n}$ is tight in $D([0, \infty):R)\cross D([0, \infty):R^{d})$ and furthermore any limit
pr0cess $(\tilde{M},\tilde{X})$ satisfies the following.
(i) $\tilde{X}$ is identical in law to $X$.
(ii) $\tilde{M}$ is a square-integrable martingale such that $\langle\tilde{M}\rangle=\phi$ with respect to the
filtration generated by $(\tilde{M},\tilde{X})$ .

4. A central limit theorem.

The aim of this section is to give a central limit theorem for local martin-
gales of the form

$X_{n}(t)=M_{n}(t)+ \int_{0}^{t+}\int_{X}f_{n}(s, x, \omega)N_{p_{n}}(dsdx)$

where $M_{n}\in \mathcal{M}_{1oc}^{c}(F^{n}, P^{n})$ and $f_{n}\in\Phi_{p_{n}}^{2.1_{oC}}(F^{n}, P^{n}),$ $n\geqq 1$ . (The underlying proba-
bility space may depend on $n.$ )

THEOREM 4.1. Let $M$ be a Gausszan martingale with quadratic characreristic
$\langle M\rangle$ and supp0se that the following two con&tions are satisfied.
(A) For every $T>0$ , there exist posttjve constants $a_{n}arrow 0$ such that

$0 \leqq t\leqq T\sup_{x\in X}|f_{n}(t, x, \omega)|\leqq a_{n}$
,

(B) $\langle X_{n}\rangle_{t}arrow P\langle M\rangle_{t}$ , $t\geqq 0$ .
Then

$\mathcal{D}$

$X_{n}arrow M$, $narrow\infty$ .

PROOF. This theorem may be reduced to the result of [16]. However, for
our later use, we will give another simple proof. By assumption (A) we have

(4.1) $\sup_{0\leqq t\leqq T}|\Delta X_{n}(t)|\leqq 2a_{n}$ , $a$ . $s$ .

Therefore, aPplying Lemma 3.5 we have from (B) that $\{X_{n}\}_{n}$ is tight and that
any limit process $X^{*}$ is a square-integrable martingale such that $\langle X^{*}\rangle=\langle M\rangle$ .
Thus if $X^{*}$ has continuous paths with probability one, we can conclude that
$x*$ and $M$ are identical in law (see section 2), which proves that $X_{n^{arrow}}^{\mathcal{D}}M$. To
see that $x*$ is continuous $a$ . $s.$ , we need only to recall that the maximum dis-
continuity is a continuous functional with respect to the Skorohod $J_{1}$-topology:

The continuity of the paths of $X^{*}$ is clear from (4.1) because $a_{n}arrow 0$ .

We next consider the multi-dimensional case. Let $M_{n}^{i}\in \mathcal{M}_{1oc}^{c},$ $f_{n}^{i}\in\Phi_{p_{n}}^{2.1oc}$
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$(i=1,2, \cdots , d),$ $n=1,2,$ $\cdots$ , and define d-dimensional stochastic processes $X_{n}=$

$(X_{n}^{1}, \cdots X_{n}^{d}),$ $n=1,2,$ $\cdots$ by

(4.2) $X_{n}^{i}(t)=M_{n}^{i}(t)+ \int_{0}^{t+}\int_{X}f_{n}^{i}(s, x, \omega)N_{p_{n}}(dsdx)$ , $i=1,2,$ $\cdots$ , $d$ .

THEOREM 4.2. Let $M=(M^{1}, \cdots , M^{d})$ be a Gaussian martingale with quadratic
characteristic $\langle M^{i}, M^{j}\rangle$ , and assume the following conditions.
(A) $f_{n}=(f_{n}^{1}, \cdots , f_{n}^{\text{\‘{a}}})$ satisfies (A) in Theorem 4.1.
(B) $\langle X_{n}^{i}, X_{n}^{j}\rangle_{t}arrow P\langle M^{i}, M^{j}\rangle_{t},$ $1\leqq i,$ $j\leqq d,$ $t\geqq 0$ .
Then,

$\mathcal{D}$

$X_{n}arrow M$ in $D([0, \infty);R^{d})$ .

PROOF. Applying Theorem 4.1 to each component, we see that $\{X_{n}\}_{n}$ is
tight (see Lemma 3.2 $(i)$ ) and every limit process has continuous paths $a.s$ .
Let $X$ be any limit process. With a slight modification of the proof of Theorem
4.1, we easily see that $X^{i}$ ($i=1,2,$ $\cdots$ , d) and $X^{i}X^{j}-\langle M^{i}, M^{j}\rangle(1\leqq i, j\leqq d)$ are
martingales with respect to the filtration generated by $X=(X^{i})$ . This proves
that $X$ and $M$ are identical in law, which proves the theorem.

5. Convergence to Poisson point processes.

Let $Y$ be a locally compact Hausdorff space with a countable open basis.
By $C_{K}(Y)$ we denote the space of all continuous real valued functions defined
on $Y$ vanishing outside a compact subset of Y. $\mathfrak{M}(Y)$ denotes the totality of
non-negative Radon measures and is endowed with the vague topology: $\mu_{n}\in$

$\mathfrak{M}(Y)$ converges to $\mu\in \mathfrak{M}(Y)$ if and only if $\int f(x)\mu_{n}(dx)arrow\int f(x)\mu(dx)$ for every

$f\in C_{K}(Y)$ . It is well known that $H\subset \mathfrak{M}(Y)$ is relatively compact if and only if

$\sup\{|\int f\mu|$ : $\mu\in H\}<\infty$ for all $f\in C_{K}(Y)$ . Let $\mathfrak{N}(Y)$ be the totality of Radon

measures with values in $\{0, 1, \}\cup\{\infty\}$ . $\mathfrak{N}(Y)$ is a closed subset of $\mathfrak{M}(Y)$ . A
measurable mapping $\xi$ from a probability space to $(\mathfrak{M}(Y), \mathcal{B}(\mathfrak{M}))$ , where $\mathcal{B}(\mathfrak{M})$

is the topological $\sigma- field$ , is called a random measure. The convergence in law
of random measures is defined as usual: $\xi_{n}$ converges to $\xi$ in law, which we
denote by $\xi_{n^{arrow}}^{\mathcal{D}}\xi$ in $\mathfrak{M}(Y)$ , if $P\circ\xi_{n}^{-1}$ converges weakly to $P\circ\xi^{-1}$ . It is well known

that $\xi_{n}arrow \mathcal{D}\xi$ holds if and only if $\int f\xi_{n^{arrow}}^{\mathcal{D}}\int f\xi$ for every $f\in C_{K}(Y)$ , which condition
is also equivalent to

$\mathcal{D}$

$(\xi_{n}(A_{1}), \cdots \xi_{n}(A_{d}))arrow(\xi(A_{1}), \cdots \xi(A_{d}))$
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for $d\geqq 1$ and all Borel sets $A_{1},$ $\cdots$ , $A_{d}$ of $Y$ contained in a compact subset
satisfying $P[\xi(\partial A_{j})=0]=1,$ $j=1,2,$ $\cdots$ , $d$ .

It should be remarked that since $\mathfrak{M}(Y)$ is a Polish space, by Skorohod’s
theorem we can realize the convergence in law by an almost sure convergence
on some probability space without changing the laws of the random measures.
So far we explained only the notations and facts we need in this paper. For
details and proofs we refer to Jagers [9] (see also [11]).

Hereafter we will consider the case where $Y=[0, \infty$ ) $\cross X,$ $X$ being a locally
compact Hausdorff space with a countable open basis. When there is no danger
of confusion, we will often drop $Y$ from $\mathfrak{M}(Y),$ $\mathfrak{N}(Y),$ $C_{K}(Y)$ etc. and write
simply as $\mathfrak{M},$ $\mathfrak{R},$ $C_{K}$ etc. Let $p$ be a point process taking values in $X$. Then
the counting measure $N_{p}$ is a random element of $\mathfrak{N}$ . A random element of $\mathfrak{N}$

is also often called a point process but in this paper we will not adopt this
terminology because it is not compatible with that in section 2. In fact a point
process in our sense (defined in section 2) corresponds to a random element of

$\mathfrak{N}_{0}=$ { $\xi\in \mathfrak{N}$ : $\xi(\{s\}\cross X)=0$ or 1 for all $s\geqq 0$ }.

Indeed, we clearly have $P[N_{p}\in \mathfrak{N}_{0}]=1$ for any point process $p$ and conversely,
a random measure $\xi$ satisfying $P[\xi\in \mathfrak{N}_{0}]=1$ may easily be identified with a
counting measure of a point process. It should be noticed that $\mathfrak{N}$ is closed in
$\mathfrak{M}$ but $\mathfrak{N}_{0}$ is not.

THEOREM 5.1. Let $p_{n},$ $n=1,2,$ $\cdots$ , be $F^{n}$ $=(\mathcal{F}_{t}^{n})$ -Point Processes on $X$ and let
$\mu\in \mathfrak{M}$ be a determimstic measure such that $\mu(\{t\}\cross X)=0$ for all $t\geqq 0$ . (The

underlying probability space may depend on $n.$ ) SuppOse that
$\mathcal{D}$

(5.1) $\hat{N}_{p_{n}}(dtdx)arrow\mu(dtdx)$

Then
$\mathcal{D}$

(5.2) $N_{p_{n}}(dtdx)arrow N_{p}(dtdx)$

in $\mathfrak{M}$ , as $narrow\infty$ .

in $\mathfrak{M}$ , as $narrow\infty$

where $p$ is the Pmxon point process with compensator $\mu$ .

REMARK. A necessary and sufficient condition for (5.1) is

(5.3) $\int_{0}^{\infty}\int_{X}f(s, x)\hat{N}_{p_{n}}(dsdx)\underline{P}\int_{0}^{\infty}\int_{X}f(s, x)\mu(dsdx)$

for every $f\in C_{K}$ .

For simple point processes, the result was obtained by T. Brown $[2, 3]$ and
Kabanov-Liptser-Shiryayev [10], and the discrete case is due to Durrett-Resnick
[5]. Combining these results with R\’enyi’s theorem [18], we can easily prove
Theorem 5.1. In this sense our theorem is essentially due to the above authors.
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However, in the succeeding sections we will need the next theorem which treats
the joint convergence of Theorems 4.2 and 5.1, and its proof does not seem to
be carried out using the idea of the above authors. Thus we will use a quite
different (and natural) method to prove the following theorem which includes
Theorem 5.1.

THEOREM 5.2. We assume all conditions in Theorems 4.2 and 5.1 with re-
spect to filtrations $F^{n}=(\mathcal{F}_{t}^{n}),$ $n=1,2,$ $\cdots$ Then,

$\mathcal{D}$

$(X_{n}, N_{p_{n}})arrow(M^{*}, N_{p})$ in $D([0, \infty);R^{f}()\cross \mathfrak{M}$ ,

where $M^{*}$ and $p*are$ mutually independent and identical in law to $M$ and $p$ in
Theorems 4.2 and 5.1, respectjvely.

The idea of the proof is as follows: We first prove that $\{N_{p_{n}}\}_{n}$ is tight
in $\mathfrak{M}$ and any limit measure is in fact the counting measure of a suitable point
process. Then by choosing a subsequence we can assume that $(X_{n}, N_{p_{n}})arrow \mathcal{D}$

(X, $N_{p}$) for some (X, $p$ ). To prove the theorem it suffices to show that $\tilde{X}$ is a
Gaussian martingale and that $\hat{N}_{p}=\mu$ with respect to the filtration generated by
$\tilde{X}$ and $p$ (see the characterization of Gaussian martingales and Poisson point
processes stated in section 2). Here are the details of the proof.

LEMMA 5.3. Let $f\in C_{K}$ and define
$A_{n}(t)= \int_{0}^{t+}\int_{X}f(s, x)\hat{N}_{p_{n}}(dsdx)$ ,

$Z_{n}(t)= \int_{0}^{t+}\int_{X}f(s, x)N_{p_{n}}(dsdx)$

and

$W_{n}(t)= \int_{0}^{t+}\int_{X}f(s, x)N_{p_{n}}(dsdx)$ $(=Z_{n}(t)-A_{n}(t))$ .

Under the assumpti0n of Theorem 5.1, $\{A_{n}\}_{n},$ $\{Z_{n}\}_{n}$ and $\{W_{n}\}_{n}$ are tight in
$D([0, \infty);R)$ . Furthermore, any limit pr0cess $W$ of $\{W_{n}\}_{n}$ is a square-integrable
martingale such that

$\langle W\rangle_{t}=\int_{0}^{t}\int_{X}f(s, x)^{2}\mu(dsdx)$ .

PROOF. The tightness of $\{A_{n}\}_{n}$ is obvious because $A_{n}$ converges in law

to $A(t)= i_{0}^{t}\int_{X}f(s, x)\mu(dsdx)$ . Indeed, if $f\geqq 0$ then this may easily be checked

using Lemma 3.3. To drop the condition $f\geqq 0$ , consider $f=f^{+}-f^{-}$ and apply
Lemma 3.4. We next prove the tightness of $\{W_{n}\}_{n}$ . By Lemma 3.5 it suffices
to show that $\langle W_{n}\rangle_{t}$ converges to a continuous function. Observe that
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(5.4) $\sum_{0\leqq s\leqq t}(\int f(s, x)\hat{N}_{p_{n}}(\{s\}\cross dx))^{2}\leqq\max_{s\leqq t}\Delta\overline{A}_{n}(s)\cdot\overline{A}_{n}(t)$

where $\overline{A}_{n}(t)=\int_{0}^{t+}\int|f|\hat{N}_{p_{n}}$ . Since $\overline{A}_{n}(t)arrow \mathcal{D}\int_{0}^{t}\int|f|\mu(dsdx)$ , which is continuous, we

have that the right-hand side of (5.4) converges in probability to $0$ . Therefore,
we see that

$\langle W_{n}\rangle_{t}=\int_{0}^{t+}\int f^{2}\hat{N}_{p_{n}}(dsdx)-\sum_{s\leqq t}(\int f\hat{N}_{p_{n}}(\{s\}\cross dx))^{2}$

$\underline{P}\int_{0}^{t}\int f^{2}\mu(\ dx)$ .

Thus we have the tightness of $\{W_{n}\}_{n}$ . The latter half of the assertion of
Lemma 5.3 is also proved by Lemma 3.5. Since $Z_{n}=A_{n}+W_{n}$ , the tightness of
$\{Z_{n}\}_{n}$ may be reduced to that of $\{A_{n}\}_{n}$ and $\{W_{n}\}_{n}$ (see Lemma 3.4).

We are now ready to prove Theorem 5.1 and 5.2.

PROOF OF THEOREMS 5.1 AND 5.2. As we mentioned before, the tightness
in $\mathfrak{M}$ of $\{N_{p_{n}}\}_{n}$ is equivalent to that of the family of random variables

$\{\int_{0}^{\infty}\int_{X}f(s, x)N_{p_{n}}(dsdx)\}_{n}$ for every $f\in C_{K}$ . However, the latter is clear from

Lemma 5.3. Now let $\xi(dsdx)$ be any limit of $\{N_{p_{n}}\}_{n}$ . Since $\mathfrak{N}$ is closed, it
holds that $\xi\in \mathfrak{N}$ . However, we need to show that $\xi$ is the counting measure
of a point process $(i.e., \xi\in \mathfrak{N}_{0}a.s.)$ . To this end it suffices to show that

$\int_{0}^{t+}\int_{X}f(s, x)\xi(dsdx)$ has no discontinuities greater than 1 $a.s$ . for every $f\in C_{K}$

satisfying $0\leqq f\leqq 1$ . Since we assumed that $N_{p_{n}},$
$arrow \mathcal{D}\xi$ in $\mathfrak{M}$ , it is easy to see that

$Z_{n’}(t)= \int_{0}^{t+}\int_{X}f(s, x)N_{p_{n’}}(dsdx)$

$arrow \mathcal{D}_{f}Z(t)=\int_{0}^{t+}\int_{X}f(s, x)\xi(dsdx)$ .

Since we have the tightness of $\{Z_{n}\}_{n}$ by Lemma 5.3, this proves that $Z_{n’}$ a $Z$ .
Keeping in mind that $\Delta Z_{n}(t)\leqq 1$ for every $t\geqq 0,$ $a.s.$ , we have that $\Delta Z(t)\leqq 1$ for
every $t\geqq 0a.s.$ , which proves that $\xi\in \mathfrak{N}_{0}$ . Therefore there exists a unique
point process $p$ such that $N_{p}=\xi$ ; in particular, $D_{p}=\{t\geqq 0:\xi(\{t\}\cross X)=1\}$ . To
see that $P$ is a Poisson point process it suffices to show that the compensator
is $\mu$ . Since $\hat{N}_{p_{n}}arrow\mu \mathcal{D}$ and $N_{p_{n}},$ $arrow \mathcal{D}N_{p}$ , it is almost obvious that $\hat{N}_{p}=\mu$ . Indeed,
as we have seen in the above, for any $f\in C_{K}$ , we have that
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(5.5) $\int_{0}^{t+}\int f(s, x)N_{p_{n’}}(dsdx)arrow^{\mathcal{D}}\int_{0}^{t+}\int f(s, x)N_{p}(dsdx)$ .
Since

$\int_{0}^{t+}\int f(s, x)\hat{N}_{p_{n}}(dsdx)arrow^{\mathcal{D}}\int_{0}^{t}\int f(s, x)\mu(dsdx)$ ,

we have from Lemma 3.4 and (5.5) that

(5.6) $\int_{0}^{t+}\int_{X}f(s, x)N_{p_{n’}}(dsdx)$

$arrow^{\mathcal{D}}\int_{0}^{t+}\int_{X}f(s, x)N_{p}(dsdx)-\int_{0}^{t}\int_{X}f(s, x)\mu(dsdx)$ .

By Lemma 5.3 the right-hand side of (5.6) is a martingale, which implies that
$P$ possesses the deterministic compensator $\mu$ . This proves Theorem 5.1. The
proof of Theorem 5.2 can be carried out in a similar way: By Theorems
4.2 and 5.1 we have that $X_{n}$ converges in law to a continuous process $M$ and
$N_{p_{n}}$ converges in law to $N_{p}$ . Thus we have the tightness of $\{(X_{n}, N_{p_{n}})\}_{n}$ in
$D([0, \infty):R^{d})\cross \mathfrak{M}$ . Let $(M^{*}, N_{p^{*}})$ be any limit point. We need to prove that
$M^{*i},$ $M^{*i}(t)M^{*f}(t)-\langle M^{i}, M^{j}\rangle_{t}$ and $N_{p^{8}}([0, t]\cross E)-\mu([0, t]\chi E)$ are martingales
with respect to the filtration generated by $(M^{*}, p^{*})$ . But this may easily be
checked by repeating the proof of Theorems 4.2 and 5.1 simultaneously (but use
Lemma 3.7 in place of Lemma 3.5).

6. Convergence of stochastic integrals.

Throughout this section we assume the conditions of Theorem 5.1. Hence

we have $N_{p_{n}^{arrow}}^{\mathcal{D}}N_{p}$ (Theorem 5.1) and that $\int_{0}^{t+}\int fN_{p_{n}}$ and $\int_{0}^{t+}\int_{0}f\tilde{N}_{p_{n}}$ converge in

law to $\int_{0}^{t+}\int fN_{p}$ and $\int_{0}^{t+}\int fN_{p}$ respectively, provided that $f(s, x)\in C_{K}$ . In this

section we study the convergence of stochastic integrals $\int_{0}^{t+}\int f_{n}N_{p_{n}}$ and $\int_{0}^{t+}\int f_{n}N_{p_{n}}$

where the integrand $f_{n}$ does not necessarily have a compact support and may
depend on $n$ .

NOTATION. Let $f_{n}(t, x)$ and $f(t, x)$ be $R^{d}$-valued measurable functions on
$([0, \infty)\cross X,$ $\mathcal{B}([0, \infty))\cross \mathcal{B}_{X})$ and let $\nu\in \mathfrak{M}$ . We say that $f_{n}$ converges continuously
to $f$ (v-a. $e.$ ) and write “ $f_{n}arrow ccf$ (v-a. $e.$ ) “ if and only if there exists a v-null
set $E\in \mathcal{B}([0, \infty))\cross \mathcal{B}_{X}$ such that, if $(t, x)\not\in E$ then $f_{n}(t_{n}, x_{n})arrow f(t, x)$ whenever
$(t_{n}, x_{n})arrow(t, x)$ .

Clearly, if $f_{n}(t, x)$ converges uniformly to a continuous $f(t, x)$ then
$f_{n}arrow ccf$ (v-a. $e.$ ) for every $\nu\in \mathfrak{M}$ . The following fact is well known and easily
proved (see $e.g$ . $[11]$ page 94 A7.3).
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LEMMA 6.1. Let $\nu_{n},$
$\nu\in \mathfrak{M}$ and let $f_{n}$ and $f$ be $R^{d}$-valued measurable func-

tions on $[0, \infty$ ) $\cross X$. Assume that

(i) $f_{n}f\underline{cc}$ (v-a. $e.$ ),

(ii) $\nu_{n}arrow\nu$ in $\mathfrak{M}$ ,

(iii) there exists $C>0$ such that for every $n,$ $|f_{n}|\leqq C$ $(\nu_{n^{-}}a.e.)$

and

(iv) $f_{n}$ and $f$ vanish identically outstde a common compact set $K\subset[0, \infty$ ) $\cross X$.

Then,

$\int_{0}^{\infty}\int_{X}f_{n}(s, x)\nu_{n}(dsdx)arrow\int_{0}^{\infty}\int_{X}f(s, x)\nu(ds_{4}’dx)$ in $R^{d}$ .

Lemma 6.1 may be strengthened as follows.

LEMMA 6.2. In ad&tion to the conditions of Lemma 6.1, assume that $\nu$ is
continuous in $t;i.e.$ ,

(v) $\nu(\{t\}\cross X)=0$ for every $t\geqq 0$ .

Then,

(6.1) $\int_{0}^{t+}\int J^{(s}n’ x$ ) $\nu_{n}(dsdx)arrow\int_{0}^{t}\int_{X}f(s, x)\nu(dsdx)$

in $D([0, \infty):R^{d})$ .

PROOF. Clearly it suffices to consider the case $d=1$ , and keeping Lemma
3.2 in mind we can also assume that $f_{n}\geqq 0$ (for the general case consider $f_{n}^{+}$

and $f_{n}^{-}$ ). Now by the previous lemma we have that (6.1) holds for every fixed
$t\geqq 0$ , which combined with Lemma 3.1 proves our assertion.

When we consider $\int_{0}^{t+}\int fN_{p_{n}}$ , we need to modify Lemma 6.2 a little because

$N_{p}$ does not satisfy the continuity condition (v) except in the trivial case. Thus
we prepare

LEMMA 6.3. Let $\nu_{n},$ $\nu\in \mathfrak{N}_{0}$ and assume (i), (ii) and (iv) of Lemma 6.1 (we

may drop (iii)). If $\nu(\{0\}\cross X)=0$ then

$\int_{0}^{t+}\int_{X}f_{n}(s, x)\nu_{n}(dsdx)arrow\int_{0}^{t+}\int_{X}f(s, x)\nu(dsdx)$

in $D([0, \infty):R^{d})$ .

PROOF. All necessary idea is found in Jagers [9]: Without loss of general-
ity we may assume that $K$ in (iv) satisfies that $\nu(\partial K)=0$ . Therefore, by (ii)
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we have that $\nu_{n}(K)arrow\nu(K)$ . Thus we may assume that $\nu_{n}(K)=\nu(K)$ ( $=r$, say)

for all sufficiently large $n$ since $\nu_{n}$ and $\nu$ are integral valued. The restrictions
$\nu_{n}^{*}$ and $\nu^{*}$ of $\nu_{n}$ and $v$ to $K$ may be expressed as follows:

$v_{n}^{*}(dsdx)= \sum_{i=1}^{r}\delta_{(\iota_{i}^{n},x_{i}^{n})}(dsdx)$

$\nu(dsdx)=\sum_{i=1}^{r}\delta_{(t_{i},x_{i})}(dsdx)$

where $\delta_{(t,u)}(dsdx)$ is the Dirac measure at $(t, u)$ . Since $\nu_{n}^{*}$ converges weakly to
$\nu^{*}$, we may assume that $(t_{i}^{n}, x_{i}^{n})arrow(t_{i}, x_{i}),$ $narrow\infty(i=1,2, \cdots , r)$ . Therefore if we
number $t_{i}’ s$ so that $0<t_{1}<t_{2}<\ldots<t_{r}$ then it holds that $0<t_{1}^{n}<t_{2}^{n}<\ldots<t_{r}^{n}$ for

all sufficiently large $n$ . Now observe that $x_{n}(t)= \int_{0}^{t+}\int f\nu_{n}$ and $x(t)= \int_{0}^{t+}\int f\nu$ may

be expressed as $x_{n}(t)= \sum_{t_{i}^{n}\leq t}f_{n}(t_{i}^{n}, x_{i}^{n})$ and $x(t)= \sum_{\iota_{i}\leqq t}f(t_{i}, x_{i})$ , respectively. Let
us define polygons as follows: let $\lambda_{n}(0)=0,$ $\lambda_{n}(t_{i})=t_{i}^{n}$ and $\lambda_{n}(t)=t$ if $t\geqq t_{r}+1$ , and
$\lambda_{n}(t)$ be linear on intervals $[0, t_{1}],$ $[t_{1}, t_{2}],$ $\cdots$ , $[t_{r}, t_{r}+1]$ . Since $t_{i}^{n}arrow t_{i}$ as $narrow\infty$

$(i=1,2, \cdots , r)$ , we have that $\lambda_{n}(t)$ converges to $\lambda(t)\equiv t$ uniformly. To prove our
lemma it suffices to show that $x_{n}(\lambda_{n}(t))arrow x(t)$ uniformly for $t\geqq 0$ . To this end
observe that $x_{n}(\lambda_{n}(t))=\Sigma_{\iota_{t}^{n}\leq\lambda_{n}(t)}f_{n}(t_{i}^{n}, x_{i}^{n})=\Sigma_{\iota_{i\leq t}}f_{n}(t_{i}^{n}, x_{l}^{n})$ . Thus $x_{n}(\lambda_{n}(t)),$ $n=$

$1,2,$ $\cdots$ are step functions with common time of discontinuities. Since $(t_{i}^{n}, x_{i}^{n})arrow$

$(t_{i}, x_{i})$ , we have from the assumption (i) that $f_{n}(t_{i}^{n}, x_{i}^{n})arrow f(t_{i}, x_{i})$ , which com-
bined with the above fact proves that $x_{n}(\lambda_{n}(t))arrow x(t)$ uniformly for $t\geqq 0$ .

NOTATION. Let $f(s, x, \omega)=(f^{1}(s, x, \omega), \cdots , f^{d}(s, x, \omega))$ be $R^{d}$-valued func-
tion on $[0, \infty$ ) $\cross X\cross\Omega$ . We write $f\in\Phi_{p}$ (or $\Phi_{p}^{2}$ ) if and only if $f^{i}\in\Phi_{p}$ (or $\Phi_{p}^{2}$ ,

respectively), $i=1,$ $\cdots,$
$d$ . $\int_{0}^{t+}\int_{X}fN_{p}$ is defined to be $( \int_{0}^{t+}\int_{X}f^{1}N_{p},$ $\cdots$ , $\int_{0}^{t+}\int_{X}f^{d}N_{p})$ ,

if $f\in\Phi_{p}$ . $\int_{0}^{t+}\int_{X}f\tilde{N}_{p}$ is defined in a similar way if $f\in\Phi_{p}^{2}$ .

PROPOSITION 6.4. Let $f_{n},$ $g_{n},$ $f$ and $g$ be $R^{d}$-valued measurable functions on
$[0, \infty)\cross X$ vanishing outside a common compact set $K\subset[0, \infty$ ) $\cross X$. Under the
condition of Theorem 5.1, if $f_{n}f\underline{cc}(\mu- a.e.)$ and $g_{n}arrow^{c_{.}.c.}g(\mu- a.e.)$ and if $f_{n}$ is
uniformly bounded, then

$( \int_{0}^{t+}\int_{X}f_{n}(s, x)\tilde{N}_{p_{n}}(dsdx)$ , $\int_{0}^{t+}\int_{X}g_{n}(s, x)N_{p_{n}}(dsdx))$

$arrow^{\mathcal{D}}$ ( $\int_{0}^{t+}\int_{X}f(s, x)\tilde{N}_{p}(dsdx)$ , $\int_{0}^{t+}\int_{X}g(s, x)N_{p}(dsdx)$),

in $D([0, \infty);R^{2d})$ .
The assumpti0n that $f_{n}$ is uniformly bounded may be dropped if
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$(*)$ $\int_{0}^{t+}\int_{X}f_{n}(s, x)\hat{N}_{p_{n}}(dsdx)arrow^{\mathcal{D}}\int_{0}^{t}\int_{X}f(s, x)\mu(dsdx)$ .

PROOF. As we mentioned in section 5, the convergence of (5.2) may be
realized by an almost sure convergence on some suitable probability space.
Thus we may and do assume that (5.2) holds $a.s$ . Since $\mu$-null set is also
$N_{p}$-null set with probability one, it follows from our assumption that $(f_{n}, g_{n})$

$arrow cc(f, g)(N_{p^{-}}a.s.)$ with probability one. Therefore, applying Lemma 6.3 we
see that

( $\int_{0}^{t+}\int_{X}f_{n}N_{p_{n}}$ , $\int_{0}^{t+}\int_{X}g_{n}N_{p_{n}})arrow(\int_{0}^{t+}\int_{X}fN_{p},$ $\int_{0}^{t+}\int_{X}gN_{p})$ , $a.s$ .

By Lemma 6.2 we also have

$\int_{0}^{t+}\int_{X}f_{n}\hat{N}_{p_{n}}arrow\int_{0}^{t}\int_{X}f\hat{N}_{p}$ ,

Therefore, combining these two with the definition $N_{p_{n}}=N_{p_{n}}-\hat{N}_{p_{n}}$ we have
that

( $\int_{0}^{t+}\int_{X}f_{n}\tilde{N}_{p_{n}}$ , $\int_{0}^{t+}\int_{X}g_{n}N_{p_{n}})arrow(\int_{0}^{t+}\int_{X}fN_{p},$ $\int_{0}^{t+}\int_{X}gN_{p})$ , $a.s.$ ,

(see Lemma 3.2 (i) and (ii)).

We next relax the assumption that $f_{n}$ and $g_{n}$ , $n\geqq 1$ , vanish outside a
common compact set. Let $K_{1}\subset\subset K_{2}\subset\subset\ldots$ be a compact exhaustion of $X$.

THEOREM 6.5. Let $f_{n},$ $g_{n},$ $f$ and $g$ be $R^{d}$-valued measurable functions on
$[0, \infty)\cross X$ satisfying that (i) $f_{n}\in\Phi_{p_{n}}^{2}$ , (ii) $g_{n}\in\Phi_{p_{n}}$ , (iii) $\{f_{n}\}_{n}$ is uniformly
bounded. We assume that the conditions of Theorem 5.1 are satisfied and let
$(f_{n}, g_{n})arrow^{c..c.}(f, g)(\mu- a.e.)$ as $narrow\infty$ where $f\in\Phi_{p}^{2}$ and $g\in\Phi_{p}$ . If for every $\epsilon>0$ ,
$T>0$ ,

(6.2) $\lim_{karrow\infty}\lim_{narrow}\sup_{\infty}P[\int_{0}^{T+}\int_{X\backslash K_{k}}|f_{n}|^{2}\hat{N}_{p_{n}}(dsdx)\geqq\epsilon]=0$

and

(6.3) $\lim_{karrow\infty}\lim_{narrow}\sup P[\int_{0}^{T+}\int_{X\backslash K_{k}}|g_{n}|\hat{N}_{p_{n}}(dsdx)\geqq\epsilon]=0$ ,

then

(6.4) $( \int_{0}^{t+}\int_{X}f_{n}(s, x)\tilde{N}_{p_{n}}(dsdx),$ $\int_{0}^{t+}\int_{X}g_{n}(s, x)N_{p_{n}}(dsdx)$ , $N_{p_{n}})$

$arrow^{\mathcal{D}}(\int_{0}^{t+}\int_{X}f(s, x)\tilde{N}_{p}(dsdx),$ $\int_{0}^{t+}\int_{X}g(s, x)N_{p}(dsdx)$ , $N_{p})$
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in $D([0, \infty):R^{2d})\cross \mathfrak{M}$ .
The assumptjOn (iii) may be dropped if for every $k\geqq 1$ ,

$(**)$ $\int_{0}^{t+}\int_{K_{k}}f_{n}(s, x)\hat{N}_{p_{n}}(dsdx)arrow^{\mathcal{D}}\int_{0}^{t}\int_{K_{k}}f(s, x)\mu(dsdx)$ .

PROOF. Let $\phi_{k}(x),$ $k=1,2,$ $\cdots$ be continuous functions such that $I_{K_{k}}(x)\leqq$

$\phi_{k}(x)\leqq I_{K_{k+1}}(x)$ , and define

$W_{n}^{k}(t)= \int_{0}^{t+}\int_{X}\phi_{k}(x)f_{n}(s, x)N_{p_{n}}(dsdx)$ ,

$W^{k}(t)= \int_{0}^{t+}\int_{X}\phi_{k}(x)f(s, x)N_{p}(dsdx)$ ,

$Z_{n}^{k}(t)= \int_{0}^{t+}\int_{X}\phi_{k}(x)g_{n}(s, x)N_{p_{n}}(dsdx)$ ,

and

$Z^{k}(t)= \int_{0}^{t+}\int_{X}\phi_{k}(x)g(s, x)N_{p}(dsdx)$ , $k,$ $n\geqq 1$ .

For every fixed $k\geqq 1$ , we have from Proposition 6.4 that as $narrow\infty$ ,

$\mathcal{D}$

$(W_{n}^{k}(t), Z_{n}^{k}(t))arrow(W^{k}(t), Z^{k}(t))$ in $D([0, \infty):R^{2d})$ .

Therefore, to prove that $(W_{n}, Z_{n})^{\mathcal{D}}arrow(W, Z)$ it suffices to show the following (see

Billingsley [1] Theorem 4.2).

(6.5) $\lim_{karrow\infty}\lim_{narrow}\sup_{\infty}P[\sup_{0\leqq t\leqq T}|W_{n}^{k}(t)-W_{n}(t)|\geqq\epsilon]=0$

and

(6.6) $\lim_{karrow\infty}\lim_{narrow}\sup_{\infty}P[\sup_{0\leqq t\leqq T}|Z_{n}^{k}(t)-Z_{n}(t)|\geqq\epsilon]=0$ .

However, (6.6) is immediate from (6.3), while (6.5) follows from (6.2) by the
Lenglart inequality ([14]) (see also Corollary of Lemma 1 of [16]).

REMARK. (6.4) implies, for example,

(6.7) $\int_{0}^{t+}\int f_{n}N_{p_{n}}+\int_{0}^{t+}\int g_{n}N_{p_{n}}arrow^{\mathcal{D}}\int_{0}^{t+}\int fN_{p}+\int_{0}^{t+}\int gN_{p}$ in $D([0, \infty):R^{d})$ .
(See Lemma 3.2 (ii).)

In (6.4) (or (6.7)) the limiting processes are L\’evy processes without Gaussian
part. But if we combine Theorems 4.2 and 6.5 we have the following theorem
where the limiting processes have both Gaussian and Poisson parts.
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THEOREM 6.6. We assume all the conditions of Theorem 5.1. Let $f_{n},$ $g_{n},$ $f$

and $g$ be as in Theorem 6.5 but we drop (6.2); instead we assume that for every
$T>0$

(6.8) $\lim_{karrow\infty}\lim_{narrow}\sup_{\infty}$ sup $\{|f_{n}(t, x)| : 0\leqq t\leqq T, x\not\in K_{k}\}=0$ .

Let $M_{n}^{i}\in \mathcal{M}_{1oc}^{c}$ and define $X_{n}=(X_{n}^{1}, \cdots , X_{n}^{d})$ and $X_{n.k}=(X_{n.k}^{1}, \cdots , X_{n.k}^{d})(n, k\geqq 1)$

$by$

$X_{n}^{i}(t)=M_{n}^{i}(t)+ \int_{0}^{t+}\int_{X}f_{n}^{i}\tilde{N}_{p_{n}}+\int_{0}^{t+}\int_{X}g_{n}^{i}N_{p_{n}}$

and

$X_{n.k}^{i}(t)=M_{n}^{i}(t)+ \int_{0}^{t+}\int_{X\backslash K_{k}}f_{n}^{i}\tilde{N}_{p_{n}}$ .

If there exists a continuous $R^{d}\otimes R^{d}$-valued function $\phi(t)=(\phi^{ij}(t))_{i.j}$ such that for
every $t\geqq 0$ and $\delta>0$,

(6.9) $\lim_{karrow\infty}\lim_{narrow}\sup_{\infty}P[|\langle X_{n.k}^{i}, X_{n,k}^{j}\rangle_{t}-\phi^{ij}(t)|\geqq\delta]=0$ ,

then

$X_{n}(t) arrow^{\mathcal{D}}M(t)+\int_{0}^{t+}\int_{X}f\tilde{N}_{p}+\int_{0}^{t+}\int_{X}gN_{p}$

in $D([0, \infty),$ $R^{d}$ ), where $P$ is a Poisson point prOcess $posses\alpha ng$ compensator $\mu$ and
$M$ is a Gausszan martingale independent of $p$ such that $\langle M^{i}, M^{j}\rangle=\phi^{ij}$ .

The assumption (iii) (in Theorem 6.5) may be replaced by $(**)$ .

PROOF. Choose $1\leqq k(1)\leqq k(2)\leqq$ $arrow\infty$ and let $f_{n}^{(1}$ ‘ $(t, x)=f_{n}(t, x)I_{K_{k(n)}}(x)$ ,
$f_{n}^{(2)}(t, x)=f_{n}(t, x)-f_{n}^{(1)}(t, x),$ $n\geqq 1$ . Define

$W_{n}(t)=M_{n}(t)+ \int_{0}^{t+}\int_{X}f_{n}^{(2)}\tilde{N}_{p_{n}}$ ,

$Y_{n}(t)= \int_{0}^{t+}\int_{X}f_{n}^{(1)}\tilde{N}_{p_{n}}$ ,

and

$Z_{n}(t)= \int_{0}^{t+}\int_{X}g_{n}N_{p_{n}}$ , $n\geqq 1$ .

Notice that we have by definition $X_{n}(t)=W_{n}(t)+Y_{n}(t)+Z_{n}(t)$ . Our idea of the
,proof is to apply the central limit theorem to $W_{n}$ and Theorem 6.5 to $(Y_{n}, Z_{n})$

and then consider the joint convergence of $(W_{n}, Y_{n}, Z_{n})$ using Theorem 5.2.
Now as we will see later, if $k(n)$ tends to infinity slowly enough, we can
assume that, for every $T>0$,
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(6.10) sup $\{|f_{n}^{(2)}(t, x)| : 0\leqq t\leqq T, x\in X\}arrow 0$ ,

(6.11) $\langle W_{n}^{i}, W_{n}^{j}\rangle_{t}\phi^{ij}(t)\underline{P}$ , $t\geqq 0$ , $1\leqq i,$ $j\leqq d$ ,

and

(6.12) $\lim_{marrow\infty}\lim_{narrow}\sup_{\infty}P[\int_{0}^{T}\int_{X\backslash K_{m}}|f_{n}^{(1)}|^{2}\hat{N}_{p_{n}}\geqq\text{\’{e}}]=0$ , for all $\epsilon>0$ .

By Theorem 4.2, we have from (6.10) and (6.11) that $W_{n^{arrow}}^{\mathcal{D}}M$. In fact we also
have the independence of $M$ and $p$ : By Theorem 5.2 we have that $(W_{n}, N_{p_{n}})$

$arrow \mathcal{D}(M, N_{p})$ where $M$ and $P$ are independent. Therefore, keeping in mind that

$\int_{0}^{t+}\int f\tilde{N}_{p}$ and $\int_{0}^{t+}\int gN_{p}$ are functionals of $p$ , we have the assertion of the theorem

if we show that $(Y_{n}, Z_{n})^{\mathcal{D}} arrow(\int_{0}^{t+}\int f\tilde{N}_{p},$ $\int_{0}^{t+}\int gN_{p})$ (cf. Lemma 3.2 (ii)). However,

this is done in Theorem 6.5. ( $f_{n}^{(1)}$ plays the role of $f_{n}$ in Theorem 6.5.) Indeed,
(6.2) is satisfied by (6.12) while other assumptions of Theorem 6.5 are also
satisfied by assumption. Now let us return to the proof of $(6.10)-(6.12)$ . Let
us consider (6.12) first. Let $\phi_{m}(x)$ be as in the proof of Theorem 6.5 and put

$\xi j^{n)}=\int_{0}^{T+}\int\{\phi_{i+1}(x)-\phi_{i}(x)\}|f_{n}|^{2}\hat{N}_{p_{n}}(dsdx)$ , $i,$ $n\geqq 1$ ,

and

$a_{i}= \int_{0}^{T}\int\{\phi_{i+1}(x)-\phi_{i}(x)\}|f|^{2}\hat{N}_{p}(dsdx)$ , $i\geqq 1$ .

Observe that, if $m\leqq k(n)$ then

(6.13) $\int_{0}^{T+}\int_{X\backslash K_{m+1}}|f_{n}^{(1)}(s, x)|^{2}\hat{N}_{p_{n}}(dsdx)$

$\leqq\int_{0}^{T+}\int_{X}\{\phi_{k(n)+1}-\phi_{m}\}|f_{n}|^{2}\hat{N}_{p_{n}}=\sum_{l=m}^{k(n)}\xi 1^{n)}$ .

Thus (6.12) may be reduced to

(6.14) $\lim_{marrow\infty}\lim_{narrow}\sup_{\infty}P[\sum_{i=m}^{k(n)}\xi_{i}^{(n)}\geqq\epsilon]=0$ .

To see that (6.14) (hence (6.12)) holds for any $\{k(n)\}_{n}$ tending to infinity slowly

enough, notice that $\sum a_{i}\leqq\int_{0}^{T}\int|f|^{2}\mu(dsdx)<\infty$ (recall that $f\in\Phi_{p}^{2}$ ). Thus the

assertion is established by the next lemma.

LEMMA 6.7. Let $a_{i},$ $i=1,2,$ $\cdots$ be nonnegative numbers such that $\Sigma a_{i}<\infty$ ,
and let $\xi i^{n)},$ $i,$ $n\geqq 1$ be nonnegative random variables satisfying
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$P$

(6.15) $\xi_{i}^{(n)}arrow a_{i}$ as $narrow\infty$

for every $i\geqq 1$ . Then there exist $k(1)\leqq k(2)\leqq\cdotsarrow\infty$ such that

(6.16) $\lim_{mr}\lim_{narrow}\sup_{\infty}P[\sum_{i=m}^{k(n)}\xi_{i}^{(n)}\geqq\delta]=0$ , for every $\delta>0$

and

(6.17) $\sum_{i=1}^{k(n)}\xi j^{n)}arrow^{P}\sum_{i=1}^{\infty}a_{i}$ , as $narrow\infty$ .

PROOF. By (6.15) we can choose $\tau(1)<\tau(2)<\cdots$ so that

(6.18) $P[|\xi_{i}^{(n)}-a_{i}|>2^{-i}]\leqq 2^{-i}$ for all $n\geqq\tau(i)$ .

Now define $k(n)=$ ] iff $\tau(j)\leqq n<\tau(]+1)$ . Since $j\leqq k(n)$ implies that $n\geqq\tau(])$ , we
see from (6.18) that

(6.19) $P[\xi_{j}^{(n)}>2^{-j}+a_{j}]\leqq 2^{-j}$ for all $j\leqq k(n)$ .
For any given $\delta>0$, it holds that $\Sigma_{j=m}^{\infty}(2^{-j}+a_{j})<\delta$ for all sufficiently large $m$ .
Therefore, we obtain that

$P[ \sum_{j=m}^{k(n)}\xi\}^{n)}>\delta]\leqq P[\sum_{j\Rightarrow m}^{k(n)}\xi j^{n)}>\sum_{j\Rightarrow m}^{k(n)}(2^{-J}+a_{j})]$

$\leqq\sum_{j=m}^{k(n)}P[\xi\}^{n)}>2^{-j}+a_{j}]\leqq 2^{1-m}$ ,

for all sufficiently large $m$ by (6.19). Thus we have (6.16). (6.17) follows from
(6.15) and (6.16) (see Theorem 4.2 of [1]).

We now return to the proof of Theorem 6.6 and prove that (6.10) and (6.11)

are automatically satisfied for $\{k(n)\}_{n}$ chosen in the above: (6.10) is obvious by
(6.8). To see (6.11), observe that

$|\langle W_{n}^{i}, W_{n}^{j}\rangle_{t}-\langle X_{n.m}^{i}, X_{n.m}^{j}\rangle_{t}|$

$\leqq|\langle W_{n}^{i}, W_{n}^{j}-X_{n,m}^{j}\rangle_{t}|+|\langle W_{n}^{i}-X_{n,m}^{i}, X_{n,m}^{j}\rangle_{t}|$

$\leqq\langle W_{n}^{i}\rangle_{t}^{1/2}\langle W_{n}^{j}-X_{n,m}^{j}\rangle_{t}^{1/2}+\langle X_{n.m}^{j}\rangle_{t}^{1/2}\langle W_{n}^{i}-X_{n,m}^{i}\rangle_{t}^{1/2}$

$\leqq 2(\sum_{q=1}^{k(n)}\xi_{q}^{(n)})^{1/2}(\sum_{q=m-1}^{k(n)}\xi_{q}^{(n)})^{1/2}$ if $k(n)\geqq m>1$ .

(Since the extreme left-hand side does not depend on $M_{n}$ , we assume that
$M_{n}\equiv 0.)$ Therefore, by (6.16) and (6.17) we easily see that for every $\delta>0$ ,

(6.20) $\lim_{marrow\infty}\lim_{narrow}\sup_{\infty}P[|\langle W_{n}^{i}, W_{n}^{j}\rangle_{t}-\langle X_{n,m}^{i}, X_{n,m}^{j}\rangle_{t}|\geqq\delta]=0$ .
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Combining (6.20) and (6.9) we obtain that for every $\delta>0$ ,

$\lim_{narrow\infty}P[|\langle W_{n}^{i}, W_{n}^{j}\rangle_{t}-\phi^{ij}(i)|\geqq\delta]$

$\leqq\varliminf_{m}\lim_{narrow}\sup_{\infty}P[|\langle W_{n}^{i}, W_{n}^{j}\rangle_{t}-\langle X_{n,m}^{i}, X_{n,m}^{j}\rangle_{t}|\geqq\frac{\delta}{2}]$

$+ \lim_{m\infty}\lim_{narrow}\sup_{\infty}P[|\langle X_{n,m}^{i}, X_{n,m}^{j}\rangle_{t}-\phi^{ij}(t)|\geqq\frac{\delta}{2}]=0$ .

Thus we have (6.11) and hence the proof of Theorem 6.6 is complete.

7. Discrete case.

In this section we will consider discrete point processes associated with
triangular arrays of random variables which are dePendent in general, and we
will rewrite the results of the previous sections. Some of the results overlap
those of Durrett-Resnick [5].

For simplicity we will consider only the case where the limiting Poisson
point processes are temporally homogeneous, which condition is not essential.
Let $(\Omega_{n}, \mathcal{F}^{n}, P_{n}),$ $n=1,2,$ $\cdots$ be probability spaces as before and let $(\mathcal{F}_{i}^{n})_{i=1}^{\infty}$ be
an increasing family of $sub-\sigma- fields$ of $\mathcal{F}^{n}$ . For real $t\geqq 0$ , we define $F^{n}=(\mathcal{F}_{t}^{n})$

by $\mathcal{F}_{t}^{n}=\mathcal{F}_{[t]}^{n}$ . Suppose $\{\xi_{ni}\}_{i.n=1}^{\infty}$ is a triangular array of $(\mathcal{F}_{i}^{n})$-adapted real-
valued random variables. We define discrete point processes $p_{n},$ $n\geqq 1$ as
follows.

$X=[-\infty, 0)\cup(0, \infty]$ ,

$D_{p_{n}}=\{i/n : i=1,2, \cdots, \xi_{ni}\neq 0\}$ ,

$p_{n}(j/n)=\xi_{ni}$ if $j/n\in D_{p_{n}}$ .
The compensators are given by

$\hat{N}_{p_{n}}([0, t]\cross E)=\sum_{i\leqq nt}P_{n}[\xi_{ni}\in E/\mathcal{F}_{i-1}^{n}]$ , $E\in \mathcal{B}(X)$ .

Let $\nu(dx)$ be a Borel measure on $(-\infty, \infty)\backslash \{0\}$ such that $\int_{|x|>\epsilon}\nu(dx)<\infty$ for

every $\epsilon>0$ . Note that $\nu(dx)$ may be considered as a Radon measure on
$X(=[-\infty, 0)\cup(0, \infty])$ by putting $\nu(\{-\infty\})=\nu(\{\infty\})=0$ . By rewriting Theorem
5.1 we have a result of [5]:

THEOREM 7.1. If, for every $t>0$ and every continuity point $x$ of $\nu(dx)$ ,

(7.1) $\Sigma P_{n}[\xi_{nk}>x/\mathcal{F}_{k-1}^{n}]arrow^{P}t\nu(x, \infty)$ if $x>0$ ,
$h\leqq nt$

$P$

(7.2) $\Sigma P_{n}[\xi_{nk}<x/\mathcal{F}_{k-1}^{n}]-t\nu(-\infty, x]$ if $x<0$ ,
$k\leqq nt$
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then $N_{p_{n}^{arrow}}^{\mathcal{D}}N_{p}$ , where $p$ is a Poisson point process with compensator $dt\nu(dx)$ .

We next rewrite Theorem 6.6. Let $f_{n}(t, x),$ $f(t, x),$ $g_{n}(t, x)$ and $g(t, x)$ be
measurable functions on $[0, \infty$ ) $\cross R$ satisfying the following four conditions.

(7.3) $f_{n}(t, 0)=g_{n}(t, 0)=0$ , $t\geqq 0,$ $n\geqq 1$ .

(7.4) $\int_{0}^{t}\int_{|x|>0}\{f(s, x)^{2}+|g(s, x)|I(|x|\leqq 1)\}\nu(dx)ds<\infty$ , $t\geqq 0$ .

(7.5) There exists $C>0$ such that $|f_{n}(t, x)|\leqq C,$ $t\geqq 0,$ $x\in R,$ $n\geqq 1$ .
(7.6) $\lim_{\epsilon l0}\lim_{narrow}\sup_{\infty}$ sup $\{|f_{n}(t, x)| : 0\leqq t\leqq T, |x|\leqq\epsilon\}=0$ , for every $T>0$ .

The condition (7.3) corresponds to that we are considering point processes
with values in $X=[-\infty, 0$) $\cup(0, \infty$]. It should be noticed that (7.4) implies that
$f\in\Phi_{p}^{2}$ and $g\in\Phi_{p}$ . It also follows from (7.5) that $f_{n}\in\Phi_{p_{n}}^{2}$ . Notice that $g_{n}\in\Phi_{p_{n}}$

is always true. (7.6) corresponds to (6.8).

THEOREM 7.2. SuppOse that (7.1) through (7.6) are satisfied and we further
assume the following three conditions.

(7.7) $(f_{n}, g_{n})arrow(f, g)c.c$
.

$(dt\nu(dx)- a.e.)$ .
(7.8) There exists $\sigma^{2}\geqq 0$ such that

$\lim_{\downarrow 0}\lim_{narrow}\sup_{\infty}P_{n}[|\Sigma(E[f_{n}(i/n, \xi_{ni}^{s})^{2}/\mathcal{F}_{i-1}^{n}]$

$i\leqq nt$

$-\{E[f_{n}(i/n, \xi_{ni}^{\epsilon})/\mathcal{F}_{i-1}^{n}]\}^{2})-\sigma^{2}t|\geqq\delta]=0$

for every $t\geqq 0,$ $\delta>0$, where $\xi_{ni}^{\epsilon}=\xi_{ni}I(|\xi_{ni}|\leqq\epsilon)$ .

(7.9) $\lim_{s\downarrow 0}\lim_{narrow}\sup_{\infty}P_{n}[\Sigma E[|g_{n}(i/n, \xi_{ni}^{\epsilon})|/\mathcal{F}_{i-1}^{n}]\geqq\delta]=0$

$i\leqq nt$

for every $t\geqq 0,$ $\delta>0$ .
Then, puttjng $A_{n}(t)=\Sigma_{i\leqq nt}E[f_{n}(i/n, \xi_{ni})/\mathcal{F}_{i-1}^{n}]$ , we have

$(\Sigma\{f_{n}(i/n, \xi_{ni})+g_{n}(i/n, \xi_{ni})\}-A_{n}(t), N_{p_{n}})$
$i\leqq nt$

$arrow^{\mathcal{D}}$ ( $\sigma B(t)+\int_{0}^{t+}\int f\tilde{N}_{p}+\int_{0}^{t+}\int gN_{p}$ , $N_{p}$),

where $p$ is the same as in Theorem 7.1 and where $B$ is a standard Brownian
motion independent of $p$ .

The assumptjon (7.5) may be dropped if $f_{n}\in\Phi_{\dot{p}_{n}}^{21oc}$ and if



Limit theorems 567

(7.10) $\sum_{i\xi nt}E[f_{n}(i/n, \xi_{ni})I(|\xi_{ni}|>\epsilon_{k})/\mathcal{F}_{i-1}^{n}]$

$arrow^{\mathcal{D}}\int_{0}^{t}\int_{|x|>\epsilon_{k}}f(s, x)ds\nu(dx)$ , $narrow\infty$

for some $\epsilon_{k}(>0)$ tending to $0$ .

REMARKS 7.3. (i) Multi-dimensional cases can be considered in a similar
way.

(ii) If, in addition, $A_{n}(t)^{\underline{\mathcal{D}}}a(t)$ in $D([0, \infty):R)$ (or in $D([0,$ $\infty):R^{d}$ ) in the
multi-dimensional case), then we have the convergence of $\Sigma_{i\leqq nt}\{f_{n}(i/n, \xi_{ni})+$

$g_{n}(i/n, \xi_{ni})\}$ itself.
(iii) [5] considers the following case: $f_{n}(t, x)=f(t, x)=xI(|x|<\tau),$ $g_{n}(t, x)$

$=g(t, x)=xI(|x|\geqq\tau)$ , where $\tau$ and $-\tau$ are continuity points of $\nu(dx)$ . In
this case (7.3) through (7.9) except (7.8) are automatically satisfied if

$\int\min\{1, x^{2}\}\nu(dx)<\infty$ .

EXAMPLE 7.4. Let $\xi_{1},$ $\xi_{2},$ $\cdots$ be nonnegative, independent, identically distri-
buted random variables such that

$\lim_{xarrow\infty}xP[\xi_{1}>x]=1$ .

Then for any $1<\alpha_{1}<\ldots<\alpha_{d}(d\geqq 1)$ and $0<\beta<1/2$ , we have

$(n^{-\alpha_{1}} \sum$

isnt

$arrow^{\mathcal{D}}$ ( $\int_{0}^{t+}\int_{x>0}x^{\alpha_{1}}N_{p}$ , $\cdots$ $\int_{0}^{t+}\int_{x>0}x^{\alpha_{d}}N_{p}$ , $\sigma B(t)$),

where $p$ is a Poisson point process on $R\backslash \{0\}$ with compensator $I(x>0)(1/x^{2})dsdx$

and where $B$ is a standard Brownian motion independent of $p,$ $\sigma^{2}$ being the
variance of $\xi_{1}^{\beta}$ . The convergence holds in $D([0, \infty):R)^{d+1}$ (in fact in
$D([0, \infty):R^{d+1}))$ . It should be remarked that the assertion may be restated as
follows.

$( \int_{0}^{t+}\int x^{\alpha_{1}}N_{p_{n}}$ , , $\int_{0}^{t+}\int x^{\alpha_{d}}N_{p_{n}}$ , $n^{\beta-1/2} \int_{0}^{t+}\int x^{\beta N_{p_{n}})}$

$arrow^{\mathcal{D}}$ ( $\int_{0}^{t+}\int x^{\alpha_{1}}N_{p}$ , $\cdots$ $\int_{0}^{t+}\int x^{\alpha_{d}}N_{p}$ , $\sigma B(t)$).

The proof of this example can easily be carried out by checking the conditions
of Theorem 7.2. (Notice that it suffices to consider the convergence of each
component.)
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8. Asymptotic independence of point processes.

Let $X$ be of the form $X_{1}\cross\cdots\cross X_{d}$ , each of $\{X_{i}\}_{\ell=1}^{d}$ being a locally compact
Hausdorff space with a countable open base. $X$ is of course endowed with the
product topology and we denote by $\pi_{i}$ the projection from $X$ to $X_{i}$ : $\pi_{i}(x_{1}, \cdots, x_{d})$

$=x_{i}$ . Let $P$ be a point process with values in $X$. We denote by $\pi_{i}p$ the $j^{th}$

component of $p,$ $i.e.,$ $D_{\pi_{i}p}=D_{p}$ and $(\pi_{i}p)(t)=\pi_{i}(p(t)),$ $t\in D_{p}$ . The compensator
of $\pi_{i}p$ is given as follows using the compensator of $p$ :

$\hat{N}_{\pi_{i}p}([0, t]\cross E)=\hat{N}_{p}([0, t]\cross\pi_{i}^{-1}(E))$ , $E\in \mathcal{B}(X_{i})$ .
In this section we will consider the asymptotic independence of components

of point processes $\{p_{n}\}_{n}$ with values in $X$.

THEOREM 8.1. Assume that for every $i(1\leqq i\leqq d),$ $N_{\pi_{i}p_{n}}$ and $\hat{N}_{\pi_{i}p_{n}}$ are Radon
measures on $[0, \infty$ ) $\cross X_{i}a.s.$ , and satisfy

$\mathcal{D}$

(8.1) $\hat{N}_{\pi_{i}p_{n}}(dtdx)arrow\mu_{i}(dtdx)$ , $narrow\infty$

where $\mu_{i}$ is a deterministic Radon measure on $[0, \infty$ ) $\cross X_{i}$ continuous in $t$ . If

(8.2) $\hat{N}_{p_{n}}([0, t]\cross(\pi_{i}^{-1}(K_{i})\cap\pi_{j}^{-1}(K_{j})))0\underline{P}$ $t\geqq 0$

for all compact sets $K_{i}\subset X_{i},$ $K_{j}\subset X_{j},$ $i\neq j$, then
$\mathcal{D}$

(8.3) $\{N_{\pi_{1}p_{n}}, \cdots , N_{\pi_{(}p_{n}}f\}arrow\{N_{p^{1}}, \cdots , N_{p^{d}}\}$ , $narrow\infty$

in $\mathfrak{M}([0, \infty)\cross X_{1})\cross\cdots\cross \mathfrak{M}([0, \infty)\cross X_{d})$ where $p^{1},$ $\cdots$ , $p^{d}$ are mutually independent
Poisson pojnt pr0cesses such that $\hat{N}_{p^{i}}=\mu_{i},$ $i=1,$ $\cdots$ , $d$.

PROOF. The convergence of each component is immediate from Theorem
5.1 and therefore it remains to prove the independence of $p^{1},$ $\cdots$ , $p^{d}$ . Let $\overline{X}_{i}=$

$X_{i}\cup\{\Delta_{i}\}$ be one-point compactification of $X_{i},$ $i=1,$ $\cdots$ , $d$ , and let $Z=\overline{X}_{1}\cross\cdots$

X $\overline{X}_{d}\backslash \{\Delta\}$ where $\Delta=(\Delta_{1}, \cdots , \Delta_{d})$ . Since $X$ is a subset of $Z,$ $p_{n}$ may be regarded
as a point process with values in $Z$ . Of course we have to check that $N_{p_{n}}$ and
$\hat{N}_{p_{n}}$ are Radon measures $(a.e.)$ not only on $[0, \infty$ ) $\cross X$ but also on $[0, \infty$ ) $\cross Z$ .
But this can easily be seen because we assumed that $N_{\pi_{i}p_{n}}$ and $\hat{N}_{\pi_{i}p_{n}}$ are
Radon measures $(a.s.)$ on $[0, \infty$ ) $\cross X_{i},$ $i=1,2,$ $\cdots$ , $d$. Now let $F_{i}=\{x\in Z:\pi_{j}x=\Delta_{j}$,
$j\neq i\}$ . Notice that $F_{1},$ $F_{2},$ $\cdots$ , $F_{d}$ are mutually disjoint. By (8.1) and (8.2) we
have that

$\mathcal{D}$

(8.4) $\hat{N}_{p_{n}}arrow\Gamma$ in $\mathfrak{M}([0, \infty)\cross Z)$

where $\Gamma\in \mathfrak{M}([0, \infty)xZ)$ is concentrated on $[0, \infty$ ) $\cross U_{i=1}^{d}F_{i}$ and satisfies that

$\Gamma([0, t]\cross\tilde{E}^{i})=\mu_{i}([0, t]\cross E)$ , $E\in \mathcal{B}(X_{i}),$ $1\leqq i\leqq d^{\backslash }$.
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Here, $\tilde{E}^{i}$ denotes the set { $x\in Z$ : $x_{i}\in E,$ $x_{j}=\Delta_{j}$ for all $j\neq i$ } $(\subset F_{i})$ . By Theo-
rem 5.1 we have from (8.4) that

$\mathcal{D}$

(8.5) $N_{p_{n}}arrow N_{p}$ in $\mathfrak{M}([0, \infty)\cross Z)$ ,

where $P$ is the Poisson point process with $\hat{N}_{p}=\Gamma$. Now let $f_{i}\in c_{K}([0, \infty)\cross X_{i})$ ,
$i=1,2,$ $\cdots$ , $d$ , and define a function $f$ : $[0, \infty$ ) $\cross Zarrow R^{d},$ $f(t, x)=(f_{1}(t, \pi_{1}x),$ $\cdots$ ,
$f_{d}(t, \pi_{d}x)),$ $x\in Z$ . Here, we set $f_{i}(t, \Delta_{i})=0,$ $i=1,2,$ $\cdots$ , $d$ . Note that $f$ has a
compact support in $[0, \infty$ ) $\cross Z$ (but does not in $[0,$ $\infty$ ) $\cross X$ except the trivial case).

Therefore, by (8.5) we have that

$\int_{0}^{\infty}\int_{Z}f(t, x)N_{p_{n}}(dtdx)arrow^{\mathcal{D}}\int_{0}^{\infty}\int_{Z}f(t, x)N_{p}(dtdx)$ ,

which may be written as

(8.6) $( \int_{0}^{\infty}\int_{X_{1}}f_{1}(t, u)N_{\pi_{1}p_{n}}(dtdu),$ $\cdots$ $\int_{0}^{\infty}\int_{x_{d}}f_{d}(t, u)N_{\pi_{d}p_{n}}(dtdu))$

$arrow^{\mathcal{D}}$ ( $\int_{0}^{\infty}\int_{Z}f_{1}(t, x_{1})N_{p}(dtdx)$ , , $\int_{0}^{\infty}\int_{Z}f_{d}(t, x_{a})N_{p}(dtdx)$).
Since $\hat{N}_{p}$ and hence $N_{p}$ are concentrated on $U_{i=1}^{d}F_{i}$ , we see that

$\int_{0}^{\infty}\int_{Z}f_{i}(t, x_{i})N_{p}(dtdx)=\sum_{j=1}^{d}\int_{0}^{\infty}\int_{F_{j}}f_{i}(t, x_{i})N_{p}(dtdx)$

$= \int_{0}^{\infty}\int_{F_{i}}f(t, x_{i})N_{p}(dtdx)$ .

Keeping in mind that $\{F_{i}\}_{i=1}^{d}$ are disjoint, we conclude that $\{\int_{0}^{\infty}\int_{Z}f_{i}(t, x_{i})$

$N_{p}(dtdx)\}_{i=1}^{d}$ are mutually independent. Thus (8.6) implies the asymptotic

independence of $\{\pi_{i}p_{n}\}_{l=1}^{d}$ as $narrow\infty$ , which completes the proof of the theorem.

As an example of Theorem 8.1, let us consider the convergence of point
processes defined from a sequence of independent, identically distributed random
variables.

Let $\{\xi_{i}\}_{i=1}^{\infty}$ be a sequence of $i.i.d$ . (independent, identically distributed) ran-
dom variables which are uniformly distributed over $[0,1]$ . For each $a(0\leqq a\leqq 1)$ ,

we define point processes $p_{n}^{a},$ $n=1,2,$ $\cdots$ as follows.

$D_{p_{n}^{a}}= \{\frac{k}{n}$ : $k=1,2,$ $\cdots$ $\xi_{k}\neq a\}$ , $p_{n}^{a}( \frac{k}{n})=n(\xi_{k}-a)$ .

The compensator of $p_{n}$ is given by

$\hat{N}_{p_{n}^{a}}([0, t]\cross dx)=[nt]P(n(\xi_{1}-a)\in dx)$

$=I(-na \leqq x\leqq n(1-a))\frac{[nt]}{n}dx$ .
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Thus we obtain that

$\mathcal{D}$

(8.7) $\hat{N}_{p_{n}^{a}}arrow x^{a}(x)dtdx$ in $\mathfrak{M}([0, \infty)\cross R)$ ,

where $x^{a}(x)=I_{Io.\infty)}(x)$ , 1 or $I_{(-\infty.\iota 3l}(x)$ according as $a=0,0<a<1$ or $a=1$ .
Hence it follows from Theorem 5.1 that, for every $0\leqq a\leqq 1$ ,

$\mathcal{D}$

(8.8) $N_{p_{n}^{a}}arrow N_{p^{a}}$ in $\mathfrak{M}([0, \infty)\cross R)$ , $narrow\infty$

where $p^{a}$ is a Poisson point process with compensator $x^{a}(x)dtdx$ . We now con-
sider the joint convergence of $\{N_{p_{n}^{a}}\}_{a}$ .

THEOREM 8.2. Let $0=a_{1}<\ldots<a_{d}=1(d\geqq 2)$ and let $p_{n}^{i}=p_{n^{i}}^{a}(i=1, \cdots , d)$ ,
$n\geqq 1$ . Then

$\mathcal{D}$

$\{N_{p_{n}^{1}}, \cdots , N_{p_{n}^{d}}\}arrow\{N_{p^{1}}, \cdots , N_{p^{d}}\}$ , as $narrow\infty$

in $\mathfrak{M}([0, \infty)\cross R)\cross\cdots\cross \mathfrak{M}([0, \infty)\cross R)$ , where $\{p^{i}\}_{i=1}^{d}$ are mutually independent
Poisson point processes such that $\hat{N}_{p^{i}}(dtdx)=x^{a_{i}}(x)dtdx,$ $i=1,$ $\cdots$ , $d$ .

PROOF. Define $D_{p_{n}}=\{i/n:i=1, 2, \},$ $p_{n}(t)=(p_{n}^{1}(t), \cdots , p_{n}^{d}(t)),$ $t\in D_{p_{n}}$ . Let
us now apply Theorem 8.1. The condition (8.1) is clearly satisfied by (8.7).

To check (8.2), notice that

$\hat{N}_{p_{n}}([0, t]\cross E)=[nt]P((n(\xi_{1}-a_{1}), \cdots , n(\xi_{1}-a_{d}))\in E)$ .
Therefore, for any $\alpha,$ $\beta,$

$\gamma,$ $\delta(\alpha<\beta, \gamma<\delta)$ , it holds that

$\hat{N}_{p_{n}}([0, t]\cross(\pi_{i}^{-1}([\alpha, \beta])\cap\pi_{j}^{-1}([\gamma, \delta]))$

$=[nt]P( \xi_{1}\in[\frac{\alpha}{n}+a_{i},$ $\frac{\beta}{n}+a_{i}]\cap[\frac{\gamma}{n}+a_{j},$ $\frac{\delta}{n}+a_{j}])$ .

This vanishes identically for all sufficiently large $n$ provided that $a_{i}\neq a_{j}$ . Thus
we have (8.2) and the proof of the theorem is complete.

By considering min $\{p_{n}^{0}(s):s\leqq t, s\in D_{p_{n}}\}$ and max $\{p_{n}^{1}(s):s\leqq t, s\in D_{p_{n}}\}$ ,
$t\geqq 0(n\geqq 1)$ , we have from Theorem 8.2 the following.

COROLLARY.
$\mathcal{D}$

$(n \min_{k\leqq nt}\xi_{k}, n\max_{k\leq nt}\xi_{k}-n)arrow(X_{0}(t), X_{1}(t))$ as $narrow\infty$

in $D([\epsilon, \infty);R^{2})$ for every $\epsilon>0$ , whher $X_{0}$ and $X_{1}$ are mutually independent and
identical in law to min $\{p^{0}(s);s\leqq fs\in D_{p^{0}}\}$ and max $\{p^{1}(s);s\leqq t, s\in D_{p1}\},$ re-
spectively.
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9. Sums, maxima and minima of random variables.

In this section we will treat some applications of the results of the previous
section. Let $\{\xi_{ni}\}$ be as in section 7 and let $\mu(dx)$ be an infinite Borel measure
on $(x_{0}, \infty)$ $(x_{0}\geqq-\infty)$ such that $\mu(x_{1}, \infty)<\infty$ for all $x_{1}>x_{0}$ . Thus if we put
$\mu(\{\infty\})=0$ then $\mu$ is a Radon measure on $(x_{0}, \infty$ ]. Assume that for some $a_{n}>0$,
$b_{n}\in R$ it holds that

$P$

(9.1) $\sum_{i\leqq nt}P_{n}[a_{n}\xi_{ni}+b_{n}>x/\mathcal{F}_{i-1}^{n}]-t\mu(x, \infty)$ , $t\geqq 0$

for any continuity point $x(>x_{0})$ of $\mu$ . Then as we have seen in Theorem 7.1,
the point process $p_{n}$ defined by $a_{n}\xi_{ni}+b_{n}$ converges to a Poisson point process
$p^{0}$ possessing the compensator $dt\mu(dx)$ . Thus as an easy consequence we obtain
that

$\mathcal{D}$

(9.2) $M_{n}(t) \equiv a_{n}(\max_{i\leqq nt}\xi_{ni})+b_{n}arrow M(t)$ in $D([\epsilon, \infty);R)$

for every $\epsilon>0$, where $M(t)= \max\{P^{0}(s):s\leqq t, s\in D_{p^{0}}\}$ . This fact was first
pointed out by Durrett-Resnick [5]. Let us further assume that there exists an
infinite Borel measure $\nu$ on $(-\circ 0x_{1})(x_{1}\leqq\infty)$ such that $\nu(-\infty, x)<\infty$ for all
$x<x_{1}$ and that for some $c_{n}>0,$ $d_{n}\in R$ ,

(9.3) $\sum_{i\leq nt}P_{n}[c_{n}\xi_{ni}+d_{n}<x/\mathcal{F}_{i-1}^{n}]t\nu(-\infty\underline{p}x)$ , $t\geqq 0$

at all continuity points of $\nu(dx)$ . Since min $\xi_{ni}=-(\max(-\xi_{ni}))$ , we have from
(9.2) that

$\mathcal{D}$

$m_{n}(t) \equiv c_{n}(\min_{i\leqq nt}\xi_{ni})+d_{n}arrow m(t)$ in $D([\epsilon, \infty):R)$

for every $\epsilon>0$, where $m(t)= \min\{p^{1}(s):s\leqq t, s\in D_{p^{1}}\},$ $p^{1}$ being a Poisson point
process possessing compensator $dt\nu(dx)$ .

We next consider the joint convergence of $(M_{n}(t), m_{n}(t))$ . The next theorem
is a generalization of Corollary of Theorem 8.2.

THEOREM 9.1. Let $\nu,$ $\mu,$
$M_{n},$ $M,$ $m_{n}$ and $m$ be as in the above and assume

that (9.1) and (9.3) hold. Then

$(M_{n}(t), m_{n}(t))arrow^{\mathcal{D}}(A\prime 1(t)\sim,\tilde{m}(t))$ in $D([0, \infty):R^{2})$ ,

where $\tilde{M}$ and $\tilde{m}$ are mutudly independent and are identical in law to $M$ and $m$ ,
respectively.
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PROOF. Since we have already seen the convergence of each component,
the only thing to be proved is the independence of $\tilde{M}$ and $\tilde{m}$ . To this end we
will see the asymptotic independence of the components of the point process
defined from $\{(a_{n}\xi_{ni}+b_{n}, c_{n}\xi_{ni}+d_{n}):i=1,2, \cdots\}$ . By Theorem 8.1 it suffices to
show that

$P$

(9.4) $\sum_{i\leqq nt}P[a_{n}\xi_{ni}+b_{n}\geqq x, c_{n}\xi_{ni}+d_{n}\leqq y/\mathcal{F}_{i-1}^{n}]arrow 0$ ,

for every $x>x_{0},$ $y<x_{1}$ and $t\geqq 0$ . (Notice that $[x, \infty](x>x_{0})$ is a compact sub-
set of $(x_{0}, \infty$] $.$ ) (9.4) may be restated as

$P$

(9.5) $\sum_{i\leqq nt}P[(x-b_{n})/a_{n}\leqq\xi_{ni}\leqq(y-d_{n})/c_{n}/\mathcal{F}_{i-1}^{n}]-0$ .
However, (9.5) is in fact obvious since $(x-b_{n})/a_{n}>(y-d_{n})/c_{n}$ for all sufficiently
large $n$ . Indeed, if $(x-b_{n})/a_{n}\leqq(y-d_{n})/c_{n}$ it follows that

$[nt] \leqq\sum_{i\leqq nt}\{P[\xi_{ni}\geqq(x-b_{n})/a_{n}/\mathcal{F}_{i-1}^{n}]+P[\xi_{ni}\leqq(y-d_{n})/c_{n}/\mathcal{F}_{i-1}^{n}]\}$ .

However, the right-hand side converges to $t\{\mu(x, \infty)+\nu(-\infty, y)\}(<\infty)$ while
the left side diverges as $narrow\infty$ . Thus we see that $(x-b_{n})/a_{n}\leqq(y-c_{n})/d_{n}$ oc-
curs at most finitely many times, which completes the proof of the theorem.

We next consider the joint convergence of the sums and the maxima. In the
rest of this section we will assume the assumptions of Theorem 7.1 as well as
(9.6) $\lim_{\epsilon\downarrow 0}\lim_{narrow}\sup_{\infty}P_{n}[|\sum_{i\leqq nt}\{E[(\xi_{ni}^{\epsilon})^{2}/\mathcal{F}_{i-1}^{n}]-(E[\xi_{ni}^{\epsilon}/\mathcal{F}_{i-1}^{n}])^{2}\}-\sigma^{2}t|\geqq\delta]=0$ ,

$t\geqq 0,$ $\delta>0$,

for some $\sigma\geqq 0$ , where $\xi_{ni}^{\epsilon}=\xi_{ni}I(|\xi_{ni}|\leqq\epsilon)$ . We then have (see Remark 7.3 (iii)),

if $\int\min(1, x^{2})\nu(dx)<\infty$ ,

(9.7) $\Sigma\xi_{ni}-A_{n}(t)arrow^{\mathcal{D}}\sigma B(t)+\int_{0}^{t+}\int_{\{x\downarrow\leq\tau}x\tilde{N}_{p}+\int_{0}^{t+}\int_{|x|>\tau}xN_{p}$ ,
$i\leqq nt$

where $A_{n}(t)= \sum_{i\leq nt}E[\xi_{ni}^{r}/\mathcal{F}_{i-1}^{n}],$ $P$ is a Poisson point process with compensator
$dt\nu(dx)$ and $B$ is a standard Brownian motion independent of $p$ . (Here we choose
$\tau(>0)$ so that $\tau$ and $-\tau$ are continuity points of $\nu(dx).)$ In view of the results
of section 6 we have

THEOREM 9.2. Let $\nu$ be an infinite Borel measure such that $\int\min(1, x^{2})\nu(dx)$

$<\infty$ . If (7.1) and (7.2) hold, then

$( \sum$

isnt

as $narrow\infty$ , where $X$ is the right-hand stde of (9.7) and $Y(t)= \sup\{p(s):s\leqq t, s\in D_{p}\}$ .



Limit theorems 573

The assumption that $\nu(R\backslash \{0\})=\infty$ is not essential and may be removed
with the understanding that $p(s)=0$ if $s\not\in D_{p}$ . In any case it should be remarked
that $Y$ is a functional of $X$. Indeed, the point process $P$ coincides with that of
the discontinuities of $X$ and hence $Y(t)= \max\{\Delta X(s)\vee 0:s\leqq t\}$ . In the special
case when $\nu(0, \infty)=0$, we have that $Y(t)$ vanishes identically $a.s$ . However, in
this case, it could happen that (9.1) holds for suitably chosen $a_{n}>0$ and $b_{n}$ (and

therefore $a_{n} \max_{i\leqq nt}\xi_{ni}+b_{n}$ has nontrivial limiting processes). In such a case
the limit process of the maxima is no longer a functional of that of the sums
and in fact we have

THEOREM 9.3. Let $\nu$ be a Borel measure on $R\backslash \{0\}$ such that $\nu(0, \infty)=0$ ,

$\int_{-\infty}^{0}$ min $(1, x^{2})$ $\nu(dx)<\infty$ and let $\mu$ be a Borel measure on $(x_{0}, \infty)(x_{0}\geqq-\infty)$ such

that $\mu(x, \infty)<\infty$ for every $x>x_{0}$ . Under the assumptiOn of Theorem 7.1, if (9.1)

and (9.6) hold for some $a_{n}>0,$ $b_{n}\in R$ and $\sigma^{2}\geqq 0$ , then
$\mathcal{D}$

$( \sum_{i\leqq nt}\xi_{ni}-A_{n}(t), a_{n}\max_{i\leqq nt}\xi_{nl}+b_{n})arrow(X(t), Y(t))$ , in $D([\epsilon, \infty):R^{2})$

for every $\epsilon>0$ , where $X$ and $Y$ are mutually indepmdent and are identical in law
to the right-hand stde of (9.7) and $M$ in (9.2), respectjvely.

PROOF. For simplicity we assume that $x_{0}=-\infty$ . (Other cases may be
treated in a similar way with a slight modification.) Let $p_{n}$ be the point process
on $(R\backslash \{0\})\cross(x_{0}, \infty$] defined by } $p_{n}(i/n)=(\xi_{ni}, a_{n}\xi_{ni}+b_{n}),$ $i=1,$ 2, $(n\geqq 1)$ .
Notice that $\sum_{i\leq nt}\xi_{ni}-A(t)$ is a functional of the first component of $p_{n}$ while
$a_{n} \max_{i\leqq nt}\xi_{ni}+b_{n}$ is that of the second component. Thus to have the asymptotic
independence of the sums and the maxima, we can apply Theorem 8.1 and it
suffices to show that for every $\alpha>0,$ $\beta<0,$ $\gamma>x_{0}$,

$P$

(9.8) $\sum_{i\leqq nt}P[\xi_{ni}\in[\alpha, \infty$), $a_{n}\xi_{ni}+b_{n}\in[\gamma, \infty$) $/\mathcal{F}_{i-1}^{n}$] $arrow 0$

and
$P$

(9.9) $\sum_{i\leqq nt}P[\xi_{ni}\in(-\infty, \beta],$
$a_{n}\xi_{nl}+b_{n}\in[\gamma, \infty$ ) $/\mathcal{F}_{i-1}^{n}$] $arrow 0$ .

However, (9.8) is obvious from the assumption (7.1) and $\nu(0, \infty)=0$ :

$\sum_{i\leqq nt}P[\xi_{ni}\in[\alpha, \infty)/\mathcal{F}_{t-1}^{n}]arrow^{P}t\nu(\alpha, \infty)=0$ .

To see (9.9) it suffices to show that $\beta<(\gamma-b_{n})/a_{n}$ holds for all sufficiently large
$n$ , which may be easily checked using the idea of the proof of Theorem 9.1.

Theorem 9.3 is an extension of the result in [12], where the case of $i$ .i.d.
is considered.
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