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§1. Introduction.

Let n=1 and m=1. We denote by P=(X,Y) a point in R**"=R"XR™,
where X=(x,, -+, x,)eR™ and Y=(y,, -+, yn)=ER™ We write |P|, |X| and
1Y for (Xfey 23+ yDY3, (X 2V and (7, ¥9)Y?%,  respectively. We
identify R® and R™ with {(X,Y); Y=0} and {(X, Y); X=0}, respectively. We
denote by S™-! the unit sphere {a=R"; |a|=1} with center at the origin in R™.
Let D be a bounded domain in R™ We call L=R"XD={X,Y); YeD} a
strip. If D is a Lipschitz domain, then L is said to be a Lipschitz strip. In
this note we consider the Martin compactification of a Lipschitz strip.

We denote by L=R"xD the Euclidean closure of L in R**™, Let M,, ac
S»-1, be a point at infinity and let L=L\U{M,; a=S™"!} be a compact topo-
logical space with open base ©,\U0, where ©,={UNL; U is an open set of
R"*™} and ©,={U(a, ¢, R); acS"?, 0<e<1l and R>0} with U(a, ¢, R)=
{Mg; BeS™, T, aifi>1—ebU{(X, Y)eL; 1—e) ' 2, xa;> | X|>R}. We
note that P;=(X;, Y;)e L converges to M, if and only if lim,...| X;|=+co and
lim;..X;/| X;|=a. We shall prove

THEOREM 1. The Martin compactification of L is homeomorphic to L.

In case m=1 and D=(0, 1), Brawn proved by using the
exact formula for the Green function (see [1]). However it seems to be difficult
to obtain such a formula if D is a general Lipschitz domain in R™, m=2.

In this paper we shall present a new proof based on the boundary Harnack
principle (see Lemma 1) and the symmetric property of the Green function G
for L, ie., if YeD and X, X’eR", then G((X, Y), (X", Y)) depends only on
|X—X’|. We shall also consider the Martin boundary of the semi-strip {XeR";
x,>0} XD in §3, and give a generalization of [6; Example 3].

The author would like to thank Professor Yoshida for pointing out this
problem and showing a manuscript of [9]

This research was partially supported by the Fijukai Foundation.
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§2. Proof of Theorem 1.

We shall use the following notation: Let X,=(0, ---, 0)eR"®, Y,=(, ---, 0)
eR™ and P,=(X,, Y, R"*™. Without loss of generality we may assume that
Y,eD, and hence that P,eL. We let L,=R"X{Y,}. Denote by B"(X, r),
B™Y, r) and B(P, r) the n-dimensional open ball with center at X and radius 7,
the m-dimensional open ball with center at Y and radius » and the (n-+m)-
dimensional open ball with center at P and radius », respectively. We may
assume that DDB™(Y,, 5. Let n:R**™—R" be the projection defined by
7((X, Y)=X and let n(P)=(=(P), Y,. We put U,¢t)={PeL; (=m(P)),>t},
U.t)={PeL; (xn(P))<t}, E&)={Pe L ; (n(P)),=t} and 4(t)=0U-(t)N0L, where
((P))a=x, if P=(X,Y) and X=(x,, ---, x,). We observe that 2(X)=B™X, 1)
XD and 2*%(X)=B"X, 2)X D are bounded Lipschitz domains in R**™,

Unless otherwise specified, A will stand for a positive constant depending
only on L, possibly changing from one occurrence to the next, even in the
same string. If f and g are positive quantities such that A-'f=g=<Af, then
we write f~g.

The boundary Harnack principle ([8; Theorem 17) stated below is a useful
tool.

LEMMA 1. Let P€L. Let u and v be positive harmonic functions on 2*(z(P))
which vanish continuously on 0Q2*w(PYNOL. If u(m(P)Z<uv(my(P)), then u<Av
on Q(x(P)); in particular u(P)< Av(P).

Let w(P, E) be the harmonic measure at P of ECoL in L. We observe
that o(my(P), 0LN0Q*(x(P)))=A. Hence if u is as in Lemma 1, then we apply
the lemma with v and v=A"'u(n(P))w(-, 0L~02*x(P))), and obtain

(1) u(P) = Au(ro(P)) .
We need the following Phragmén-Lindelof principle.

LEMMA 2. Let L’ be a subdomain of L. If uis subharmonic in L', bounded
above in L’ and u<0 on oL’, i.e.,

lin; sup u(P)<0  for any Qeadl’,

then u<0 i L.

PROOF. Since D is bounded, we can find a constant b such that LC{P=
(b1, s Pram)ER™™; prsm>b}. Let Qo=(0, ---,0, b)esR**™ and ['={P=
(P, s Prem) ER™™; prem—b>—2"11P—Qy|} be a cone with vertex at Q,.
Let v be a positive harmonic function on /" vanishing on d/". We observe that
v(P)=|P—Q,|v((P—Q,)/| P—Q,| +Q,) with §>0. From the Harnack inequality
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we have v(P)=A|P—Q,|° on L with A independent of P.

Let P,eL’ and ¢>0 be given. Take R>0 such that P, L’"\B(Q,, R) and
AR’¢=suppe; - u(P). By using the maximum principle in L'"N\B(Q,, R), we have
u(P;)=ev(P,). Since ¢>0 is arbitrary, u(P;)=0.

Let G(-, -) be the Green function for L. From the symmetry of L it fol-
lows that if P, Qe L, then G(P, Q) depends only on |P—Q|=|n(P)—=(Q)].
We put git)=G(P, Q) if P, Qe L, and t=|P—Q|. Obviously g(t) is a positive
continuous decreasing function of ¢>0. Let A(p)=sup,;..g(t)/g(t+p) for 0<p=1.
On account of the Harnack inequality, we have

(2) lim A(p) =1.
p-+0
Hereafter we put A,=A(1).

LEMMA 3. Let j be a positive integer. If |m(Q)—X,|=Z|n(Q)—=(P)|+J
and |w(Q)—n(P)| =8, then

G, Q)
G(PO’ Q)

Proor. First suppose that |7z(Q)—X,|<2, ie., Qe£2*X,. Take any
Q'L such that [n(Q’)—X,|=4. We observe that

|2(P)—=(Q)] 2 |2(P)—x(Q)| — |7(Q)— X, | = | Xo—m(Q") | > 2,

< AA].

so that
G(mo(P), m(Q")) = g(2) = Aig(4) = AIG(Py, mo(Q)) .

Since G(mo(P), -) and G(P,, -) are positive and harmonic on £2*(x(Q’)) and
vanish on 0L, it follows from Lemma 1 that

G(mo(P), Q') = AAIG(P,, Q).

Since |#(P)—X,| = |n(P)—n(Q)] — |n(Q)—X,| =6, it follows that G(m,(P), -) is
harmonic on B™(X,, 4)xX D, so that the maximum principle leads to

G(my(P), Q) = AAIG(P,, Q).

Noting that G(-, Q) is positive and harmonic on 2*(z(P)) and vanishes on dL,
we obtain from (1) that

G(P, Q) = AG(my(P), Q) = AAIG(Py, Q) = (AADAIG(P, Q).

Next suppose that |n(Q)—X,|=2. Since G(-, m,(Q)) is positive harmonic in
2%(z(P)) and vanishes on dL, we have from (1)

G(P, mo(Q)) = AG(m(P), 7(Q)) = Ag(1x(P)—=(Q)])
< AAlg(| Xo—r(@Q)]) = AA{G(P,, m(Q)) .



530 H. Alkawa
Since G(P, ) and G(P,, -) are positive and harmonic on £*(z(Q)) and vanishes
on 0L, we have from

G(P, Q) = AAIG(P,, Q).
Thus the lemma follows.

Let ay=(0, ---, 0, —1)eS"* and {Q,}; be a sequence of points which ap-
proach M,, in L. We observe that if 7n(Q;)=X;=(x{, ---, x4), then

lim x}, = —oo,
jooo
J

lim —Ji =0 for 7, 1=/i=<n-—1.

joowo | Xq
Let X=(x,, -+, x») and X'=(x{, +--, xn). By a simple calculation we obtain
that
3) lim{| X—X;|— | X'—X;|}= x,—x7.

J=oo

Let P, @=L and (#(P)),=(w(@))». From (2) and (3) we find an integer
J1=5(m(P), (@), {m(Q,}) such that if j=j,, then Q,eU-((x(P)),—3) and

2-1 < G(mo(P), Wo(Qj))
T G(mo(Q), mo(Q7))
LEMMA 4. Let r=s—3. If P, Q€E(s) and j=j(zn(P), n(Q), {m(Q,)}), then

G(P) QJ) ~ (U(P, A(T))

GQ, Q) @, dr)”
PROOF. First we prove

G, 7(Qy) (P, A7)
G(7o(Q), mo(Q)  @(mo(@Q), ()

Let u;()=G(-, m(Q)/ G(m(Q), 7o(Q;) and v.(-)=w(-, 4))/o(w(Q), A(r)). We
observe that u; and v, are positive and harmonic on 2*(z(P)) and vanish on
0Q*(x(P))NOL. Since w(my(P), 4(r))=w(ry(Q), 4(r)), it follows from (4) that

(4)

=2

(5)

o M um(PY 2.
On account of Lemma 1, we have u;(P)~v,(P), and hence (5).
Next we observe that G(-, m(Q;))/G(P, m(Q;) and w(:, 4(r))/w(P, A(r)) are
positive and harmonic on 2*(z(Q)) and vanish on dQ2*(x(Q))NoL. We infer
from and (5) that

GP, m(Qy) _ (P, 4(r))
GQ, m(Qy)  @(Q, A(r)

Finally we observe that G(P, -) and G(Q, -) are positive and harmonic on




Martin boundary 531

Q*(z(Q;) and vanish on dL. From and the above estimate we obtain
the lemma.

It is well known that {G(P, Q;)/G(P,, Q;)}; has a subsequence which con-
verges to a positive harmonic function A uniformly on every compact subset
of L. Without loss of generality we may assume G(-, Q,)/G(P,, @;)—h. The
function 4 is called a kernel function at M,, determined by {Q;},.

LEMMA 5. For each s, h is bounded on U,(s).

PROOF. We observe from (3) that
&i_{g{ln(Qj)“ﬂ(P)l—‘]Tc(Qj)'—XO]} = (x(P)n,
so that if ; is large, then

|7(Q5)—Xo| = [2(Q)—x(P)| —(x(P)nt1.

Since limj..|7(Q;)—n(P)|=00, it follows from [Lemma 3 that h(P)<AAJ, where
7 is the least positive integer greater than 1—(z(P)),. Hence A(P) is bounded
on U.(s).

It follows from that if »r<s—3, then
hP) _ wP, 4r)
hQ)  w(Q, 4(r))
On account of Lemmas 2 and 5, we have
MP) _ w(P, Ar)
MQ)  w(Q, 4(r))

for P, Q= E(s).

for PeU,(s) and Q€ E(s),

and hence
hP) (P, 4r))
hQ) (@, 4r)

Note that (-, 4(r)) vanishes on dLNaU.(s) and so does h. Since s is arbitrary,
h vanishes on dL. Letting s——oco, we have r——oo and

o o(P, Ar)) _ R(P) . (P, Ar)
AT @, iry = @) = AR w4ty
for all P, Q= L. In particular

o (P, 4(r)) .. . o(P, A1)
AT b, Ay = MO = AN aery -

Let r;—>—oco and {w(-, 4(r;))/w(P,, 4(r;))}; converge to a positive harmonic func-
tion f on L. We have

(6) h~f on L

for P, QelU.(s).
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Since the constant of comparison in (6) is independent of {Q,},;, we have

LEMMA 6. Every kernel function h at M,, determined by {Q;}; satisfies (6)
and vanishes on 0L. Accordingly, if b’ is a kernel function at M, determined
by {Q}};, then h~h’'. Furthermore for each s, h and f are constant on L,NE(s),
i.e.,

(7 h(P) = hQ) and f(P)=f(Q)  for P, Q€ L,NE(s).

PrOOF. The proof of the last assertion remains. We note that if P, Q€ L,
and |P—Q,;|=|Q—Q,|, then G(Q,, P)=G(Q;, @). Hence it follows from the
Harnack inequality and (3) that if P, Q€ L,N\E(s), then

. G(Q;, Q)

lim X2 ¥/

i G(Q;, P)
so that A(P)=h(Q). We infer from the symmetry that w(P, 4(r,)=w(Q, 4(r;))
for P, Q= L,NE(s) and have (7) for f.

1,

Now we shall prove the uniqueness of kernel function in a way similar to
[5; §3]. For a sequence {t;},, t;—»—oo, and r,, 0<»,=<4, we put M,;=((0, -,
0,t;), Yo), Fi=F(t;, ro)={XeR"; t;—r,<x,<tj+r} X B"(Y, 1), and C;=\_iZ;Fs.
We recall B™(Y,, 5)CD and obtain F,CL.

LEMMA 7. Let 0<r,<1 and let C; be as above. There is a positive constant
A depending only on r, such that if h is a kernel function at M, then

lim R$i(P) = AW(P)  for P=L,

J—oo

where R§i is the regularized reduced function of h relative to C; (see [3; p. 49]).

PrOOF. In this proof A depends on r,. Let h,=R$/.. The Harnack in-
equality and (7) yield that
h(P)= AWM,)  for PEF;,
so that

(8) h; = AMM;)RYi  on L.
We observe that RYj is positive and harmonic on L\F;, and that
RIiP)= A  for PEF(t;, 4).

Let r<t,, u;(-)=w(-, 4@))/o(M;, A7) and v,(-)=REi(-). Take P E(t;+3).
We infer from the Harnack inequality and the symmetry of L that

u(mo(P)) ~ vimo(P)) ~ 1.

Since u; and v; are positive and harmonic on 2%(z(P)) and vanish on 82*(x(P))
NoL, it follows from that u;(P)~v;(P). Since u; and v; are bounded
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on U.(t;+3), leads to
uJ(P) NZ)j(P) for PEU+<tJ+3) .

On account of (8), we have

w(Py, 4(r)) w(P, 4(r))
o(M;, Ar)) (P, A(r))

Letting r——oco, we have from
hi(P)= Ah(P) for PeU.(t;43).

for PeU.,(t;+3).

hi(P) = Ah(M,)

Letting j—oco, we obtain the lemma.
The next lemma is proved by Hunt and Wheeden [5; Lemma (3.4)].

LEMMA 8. Suppose that v is harmonic in L, u is superharmonic in L, 0=vp
<u and ECL. If RE=u, then RE=v.

LEMMA 9. Let h be a kernel function at M., and C=C, be defined as before
Lemma 7. Then
RS =n on L.

PrOOF. Let r,, M;, F;, C; and h; be as in In this proof A depends
on r,. We observe that h; converges decreasingly to a harmonic function A,.
On account of he=Ah on L. Since R{=h,=h on C, we infer that
RS =R§=h,. Applying Lemma 8§ with v=h, and u=h,, we have R =h,. Again
using with v=Ah and u=h,, we obtain
R¢=h on L.
Thus the proof is complete.

LEMMA 10. Let h be a kernel function at M,,. Suppose that v is a posi-
tive harmonic function on L and for each s
) v(P)=v(Q) for P, Qe L,NE(s).
If v(Py)=1 and v~h on L, then v=h on L.

PrOOF. Let M; be defined as before We claim that

. h(My
hm oy — L
For suppose

. h(M;)
hn;'ljoup v(Mj)

We can choose ¢>0 and subsequence {Mj;}; such that A(M;,)>(1+2&)v(M;;) for

>1.
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all ;. Using the Harnack inequality, (7) and (9), we obtain that if »,>0 is small
enough, then

W(P)> (1+ew(P) for PeC'= Q Fltye 7o).

Since v~h on L, we infer from Lemmas 8 and 9 with E=C=C"’ that
h=R§ = 1+&)RS = (1+e)w;

in particular 1=h(Py)=(1+¢)v(P,)=1+¢. This is a contradiction. Changing A
and v, we have lim inf;..A(M;)/v(M;)=1. Thus lim;..h(M;)/v(M;)=1.
Given £>0, there is an integer N such that

_i<_._h(Mj) < £ >
1 7 =00, =1+2 for all j=N.

By the aid of the Harnack inequality, (7) and (9), we can find a constant r,
0<r;<1, such that
(1—e)h(P) 2 v(P) = (14+e)h(P) for PeC’"= O F(y, re).
i1

Since v~h on L, we infer from Lemmas 8 and 9 with E=C=C" that
(1—e)h = (1—e)R§ < RY" = v < (1+&)RY = (1+e)h.
Since >0 is arbitrary, v=h on L.
We readily obtain from Lemmas 6 and 10

LEMMA 11. There exists only one kernel function at M., Furthermore as
r——o0, w(P, 4(r))/w(P,, A(r)) converges to the kernel function h at M,,.

Now we determine the form of h.

LEMMA 12. There are a positive constant Ap and a positive function fp(Y) on
D vanishing on aD such that fp(Ye)=1 and

(X, Y)) = fp(Y)exp(—2Apxn) .

ProoF. Let fp(Y)=h((X,, Y)). Since h(P,)=1, A>0on L and A vanishes on
oL, it follows that fp(Ye)=1, f>0 on D and f vanishes on ¢D. We infer from
(7) that A((X, Y)) does not depend on x;, *+, x,-y. Put P(s)=((0, -+, 0, s), Y,)
and ¢(s)=h(P(s)). Noting that

o(P(s+1), A1) _ o(P(s), dr—1) = oP®), 4r)
o(Py, 4(r)) Py, dir—1))  @(Py, Ar)) ’

we obtain from Lemma 11 that ¢(s+#)=¢(s))(t). Since ¢ is continuous, there
is a constant Ap such that ¢(s)=exp(—A4ps). Observe that
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(!)((X, Y)) A(?’)) (l)((X, Y)’ A(f')) w((X’ YO)' A(T’))

0Py, A7) (X, Yo, A (P, A(r))

_ o((Xo, V), dr—x4))  @(P(x4), 40)
Q)(Po, A("—xn)) w(PO! A(?’)) ’

Using again, we have
h(X, Y)) = h((Xe, Y))P(x2) = fp(Y)exp(—2Apxn) .

It follows from that & is bounded on U,(0), so that 1,=0. If 2,=0,
then # is bounded on L, and hence A=0 by Lemma 2. This is a contradiction.
Thus A,>0. The proof is complete.

From the symmetry of L, there exists exactly one kernel function K(-, M,)
at M, for every a=S""%, and K(-,M,) is of the form

10) K(P, M) = fo(V)exp(2p 3 auxs),

where P=(X,Y), X=(x1, -+, x,) and a=(ay, *-+, a,). In view of if a%a’,
then K(-, M)+ K(-, M,).

PrROOF OF THEOREM 1. First note that L is dense in L. Secondly let
Q<dL and {M;},CL converge to Q. In the same way as in Hunt and Wheeden
[5; §3] we can prove that {G(-, M,)/G(P,, M;)}; converges to a positive har-
monic function K(-, Q). This together with yields that G(P, -)/G(P,, +)
has a continuous extension on L.

Thirdly we see that K(-,Q) vanishes on o0L“{Q} and is unbounded on
B(Q,r) for any »>0. Hence if Q,Q'€dL U{M,; acS™*} and Q+#Q’, then
K(-,Q)#K(-,Q"), i.e. {K(P,.); P=L} separates L\L. On account of [3;
Theorems XIII, 1 and XIV, 1] or [4; pp. 240-243], the Martin compactification
of L is homeomorphic to L.

It is well known that there are two types of boundary points, minimal and
not minimal ([6; p. 155], [4; p. 254]). We shall prove :

THEOREM 2. Every point on 0L\J{M,; asS™"'} is a wunimal boundary
point.

PROOF. It is easy to see that if MedL, then K(-, M) vanishes on 0L\ {M}
and is bounded on L\B(M,r) for each r>0. We infer from the symmetry of L

that
C(r) = sup sup K(P, M)

McoL PSL\B(M,7)

= sup sup K(P,M)< .

Me(Xg1xdD PEL\B(M,7)

Take Q=(X, Y)=dL. We shall prove that K(-, Q) is minimal. Suppose
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that u is a positive harmonic function on L such that #<K(-, Q) on L. We
have to prove u=u(P,)K(-, Q). By the aidof [6; §3] or [4; Lemma 12.9], we
can find measures g on 0L and y on S™! such that

u=|KC, MdpM+| K, Mdva),

(11)
p@L)+p(S™ ") = u(P,).

We remark that g and v are not necessarily unique. Since K(-, Q) is bounded
on L\B(Q, r) for any >0, so is u. If v+0, then there are a point a’=S"-!
and e, 0<e<1, such that v({asS**; (a, a’)>¢})>0, where (a, a’) denotes the
inner product of « and @’. We may assume that E={a=sS""*'; a,<—¢} has
positive v-measure. We obtain from that if £>0, then

u(©, -, 0, =1, Y = | exp(—tant)dvia)

> SEexp(lpst)dv(a) — W(E)exp(Apet) .

The last term tends to oo as t—oo, which contradicts the boundedness of u.
Hence y=0 and p(0L)=u(P,). If u#u(Py)K(:, @), then there is »>0 such that

0< u@L~B(Q, 2r)=u(P). Let u’:SaL veoan, Ko MDAE(M). We see that
vanishes on dLN\B(Q, ) and hence on dL. Note .

sup #/(P) £ max{ sup K(P, Q), sup u'(P)}

PeL PEL\B(@Q,1) PeLAB(@Q, 1)

= max{C(r), S CridpM)} < Cr).

JdL\B(Q,27)

Hence leads to #’=0 on L. This is a contradiction. Therefore u=
u(Py)K(-, @), so that K(-, Q) is minimal.

Now we shall prove that K(-, M,) is a minimal harmonic function for every
aeS"'. From the symmetry it is sufficient to show that A(-)=K(-, M,,) is
minimal. Suppose that u is a positive harmonic function on L such that u<h.
We can find measures ¢ on 6L and v on S™* for which (11) holds.

Suppose that p#+0. Then there is »>0 such that g(B™(X,, r)XaD)>0. Put

”

u’ = K(-, MYdp(M).

SBn(XO,r)an

From observe that u” is bounded on (R*\B™(X,, r+8))x D, and hence
on L. Since u”<u=<h, u” vanishes on 0L, so that leads to u”=0
on L. This is a contradiction. Hence p=0.
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Next suppose v(S™\{a,})>0. Then there is a positive constant ¢ such that
v(F)>0 with F={a=(a,, -, a,)=5""; a,=e—1}. Hence we obtain from [10
that if t>0, then

u(©, -+, 0,0, Yo = | expidpantidn(a)

> SFeXp(ZD(e——l)t)dv(a) — W(F)exp(Ap(e—1)f).

Letting ¢ tend to oo, we have

u((oy ) 07 t)) YO)
h((O’ AR 0) t); YO)

1= = y(F)exp(Apet) — oo,

which is a contradiction. Thus the theorem follows.

§3. The Martin boundary of a semi-strip.

Let L*={XeR"; x,>0} XD be a Lipschitz semi-strip and let L+=L+U{M,;
asS™! a,=0} be a compact space with the relative topology induced from L.
We observe that L*\L* consists of the Euclidean boundary of L+ and {M,;
acST-1USE-1}, where St l={aeS™*!; a;>0} and St '={acsS"!; a,=0}. We
shall show

THEOREM 3 (cf. [6; Example 3]). The Martin compactification of L* is
homeomorphic to L* and every point on L*\L* is a minimal boundary point.

Let ¢ be the Green function for L*. For P=(X, Y)eR"*™, we put d(P)=
[(=(P));|=]x.] and P=((—x,, X3, -, X2), Y). From the symmetry we have

(12) (P, Q)= G(P, @)—G(P, Q)= G(P, Q)—G(P, Q)  for P, QeL*.

By an elementary calculation we obtain that if P, Q=L+, then

(PIQ) v

(13) P-Q1 = 1P-QI{1+

LEMMA 13. Let a=S%! and let Q;=L* tend to M,. If PEL*, then

. . g(Py Q )

lim inf ———-

e G(P, Q)

Proor. First we assume that P, Q;= L,\L*. We observe

. dQ)
Ny =R

Hence yields that if ; is large, then

>0.
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igﬁd(P)
| P—Q;l
Since g(t) is decreasing and lim,..g(»+t)/g(r)=exp(—Aat), it follows from
that

1P—05l = 1P—Q, {1+ P2 1P=Q,l +aud(P).

a(P, Q) = g(|P—Q;1)—g(|P—Q;1)
= A'g(I1P—-Q;!) = A'G(P, Q)),
where A’ depends only on a, and d(P).
Now we assume that P and @; are general. We may assume that
|z(P)—n(Q)|=2, d(P)=2 and d(Q;)=2 by the Harnack principle. Then

a(my(P), +) and G(m,(P), -) are positive and harmonic on £2*(x(Q;)) and vanish
on 0Q2*(x(Q,))NL. From Lemma 1 and the first case we have

4my(P), Q;) = A"G(my(P), Q) .
Again applying to @(-, Q,) and G(-, Q,), we obtain
a(P, Q;) = A"G(P, Q)).
The lemma follows.

Let P,=((1,0, -, 0), YL, NL*. On account of and [7;
Théoréme 13], we have

LEMMA 14. Let M, and Q; beas in Lemma 13. Then {g(-, Q;)/2(P,, Q;)};
is convergent.

In order to consider the behavior of &(-, Q;)/e(P;, Q;) as @Q; tends to M,,
acsSt™!, we need an estimate of the Green function G for L.

LEMMA 15. Let ¢>0 and YeD. There are constants t,, 0<t,<1, and r,>0
such that if Qe L, r=r, and 0=t<t,, then

(1—=&)AptG(P, Q) = G(P, Q)—G(F’, Q) = (14+e)AptG(P, Q)
for P€dB™(=(Q), )X {Y} and P'€dB™(=(Q), r+t)x{Y}.

PROOF. From the symmetry we may assume that @Q=Q,=(0, ---, 0, —7), Y"),
P=(X,, Y) and P'=P,=((0, ---,0,%),Y). Since G(-, Q,)/GP, Q.)=[G(-, @)/
G(P,, Q.)]/[G(P, Q.)/G(P,, Q,)] converges to K(-, M,,)/K(P, M,,) uniformly on
every compact subset of L as »—oo, we infer from the Poisson integral that
each derivative of G(-, Q,)/G(P, Q.) converges to that of K(-, M,,)/K(P, M,,)
uniformly on every compact subset of L as r—oo. Letting ¢,(t)=

G(P,, Q,)/G(P, Q,), we have from

lim ¢,(t) = exp(—4pt),
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lim ¢y(t) = —Apexp(—Apt),

uniformly for ¢, 0=¢t<1. Hence for ¢>0, there are »,>0 and ¢, 0<¢,<1, such
that if »=», and 0=¢t<¢,, then

—(+e)p = QD;U) = —(1—¢)dp,

so that
—(1+)st = gt} —i(0) = | pr)dr < ~(1—)st .
Therefore
B _ G(P, Q)
(L—eipt < 1L o < (et

Multiplying each term by G(P, Q,), we have the lemma.
LEMMA 16. Let a=St™ and let Q;=L* tend to M,. If P=(X,Y)eL*,
then

lim 4(P, Q;) _ d(P)K(P, M,)
Joeo g(Ply Q;) K(Ph Ma)

- fD(Y)xlexp(ZD >3 ax)  for PEL*.
i=2

PrOOF. Let PeL*. We observe that

o d@)
m 1 pg, =0

Let ¢>0 be given. It follows from that if j is large, then

d(P)dQ) _ 5
(2—¢) IP—Qjﬁlu = [P—Q;1—1P—0Q4l

d(P)d(Q))
|P—Q;l '
so that and Lemma 15 with Q=Q; and P’=P yield

d(P)d(Q;)
| P—Q;l

< (2+¢)

2(1—2e)2pG(P, Qy) = 4P, Q)

< 2(14-2e)A,G(P, Qj)ﬁ%)fj%%éc,)—(‘) :
Hence
(1—2¢)G(P, Q;)

(14+26)G(Py, Q))

|P—Q;| - (P, Q;)
| P—Q;| — @(P, Q)
(14+2e)G(P, Qj) | P,—Q;

= T=2e0(P, Q) 4P Tp=0, -
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Letting j—oo, we have the lemma from the arbitrariness of .

PrROOF OF THEOREM 3. On account of Lemmas [4 and we observe that
g(P, -)/G(P,, -) has a continuous extension X(P, -) on L*. Further we have

(P, Q;) _ K(P, M)—K(P, M,)

4 i = =
19 I Py Q) KBy, My—K(P,, M)
. sinh(Apa;x,) 5o
=/fo(Y) sinh(Apa;) (eXPZDEza’x‘)

if Q—>M,, acS?*and PeL*. Itiseasy toseethat {KX(P, +); PeL*} separates
L+\L*. Hence we obtain from [3; Theorems XIII, 1 and XIV, 1] or [4; pp.
240-2437 that the Martin compactification of L* is homeomorphic to L*.

It follows from [7; Théoréme 12] that every point of dL\U{M,; ac St}
is minimal. We prove that M,, a=S%! is ‘a minimal boundary point. From
the symmetry we may assume that a=a*=(0, ---, 0, 1)&S%-1. Let u be a posi-
tive harmonic function on L+ such that u<X(-, M,) on L*. Since u vanishes
on 0L*, we can, in the same way as in the proof of find measures
¢ and v on S%~! and S%-! such that

= Ssz-l‘]‘(" M)dp(a) +S H(-, Ma)dv(a).

sl

If #+0, then there is ¢>0 such that E={a=S%}™"; a,>¢} has positive g meas-
ure. By and [14) we have

1 u(((t: 0) Ty 0)7 YO))
= J{(((t: O) A 0)) YO)) Ma*)

- [sinh(4pet)/sinh 5]

; u(E) — oo,

as t—oo, a contradiction. If v(S%-\{a*})>0, then there is 6>0 such that F=
{aeSt'; a,<1—ad} has positive v measure. In the same way as above, we
have

u(((1, 0, ---, 0, —1), Yy))
K1, 0, --,0, =18), Yy, M)

~ exp(4p(0—1)t)
= exp(—Apt)

v

y(F) — oo

s

as {—oo, a contradiction. Hence u=y({a*})K(-, M,). Thus the theorem is
completely proved.
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