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\S 1. Introduction.

K. Eda [1] introduced the notion of the slender property in complete Boolean
algebras. In this paper, we shall show that certain Boolean algebras have the
slender property, thereby answer the question in [3].

Throughout this paper, we shall use the terminologies for forcing of set
theory (see $e.g$ . $[5]$ or [6]). We denote by $Z$ the group of all integers. We
regard the set $Z^{\omega}$ of all functions from $\omega$ to $Z$ as the countable direct product
of $Z$ . For each $n<\omega,$ $e_{n}$ stands for the element of $Z^{\omega}$ which is defined by

$e_{n}(i)=\{\begin{array}{ll}1 if i=n,0 otherwise.\end{array}$

“
$\forall^{\infty}n<\omega(\cdots)$ means that “For almost all natural numbers $n,$ $\cdots$ and “ $\exists^{\infty}n<\omega$

$(\cdots)$ means that “For infinitely many natural numbers $n,$ $\cdots$

DEFINITION. A complete Boolean algebra $B$ has the slender property, if it
holds that

$\Vert\forall\pi:(Z^{\omega})^{\vee}arrow Z$ homo $\forall^{\infty}n<\omega(\pi(e_{n})=0)\Vert_{B}=1$ .

REMARK. This definition is different from the definition of the slender prop-
erty in [1]. $|In[1]$ , the slender property is defined by using other group theo-
retical terminologies, $i.e.,$ $B$ has the slender property, if every homomorphism
$\pi$ from $Z^{\omega}$ to the Boolean power $Z^{(B)}$ is infinitely linear. But, both definitions
are equivalent.

In relation to the slender property, Eda [1] proved the following theorem.

THEOREM 1. Let $B$ be a complete Boolean algebra.
(i) If $B$ satisfies the $(\omega, \omega)$-weak distributive law, then $B$ has the sfender

property.
(ii) If $\Vert|(2^{\omega})^{\vee}|=\omega\Vert_{B}=1$ holds, then $B$ does not have the slender Property.

Eda and Hibino asked in [3] whether the complete Boolean algebra adding
a Cohen-generic real has the slender property. We shall answer positively this
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question in section 2. By Theorem 1 (ii), assuming the continuum hypothesis
(CH), the complete Boolean algebra Co1 $(\omega, \omega_{1})$ consisting of all regular open sets
in the $(\omega, \omega_{1})$-collapsing poset does not have the slender property. In section 3,
we shall consider that whether Co1 $(\omega, \omega_{1})$ has the slender property when CH is
false. In section 4, we shall construct the complete Boolean algebra with the
$\omega_{1}$-chain condition (the $\omega_{1^{-}}c.c.$ ) which does not have the slender property.

In sections 2 and 3, we shall use the following terminologies. For each
$f\in\omega^{\omega},$ $f$ denotes the function in $\omega^{\omega}$ which is defined by

$\tilde{f}(0)=1$ ,

$f(n+1)=f(n)(\Sigma_{i\leqq n}f(i)f(i)+n)$ , for $n<\omega$ .

For any elements $f,$ $g\in\omega^{\omega},$ $f$ dominates $g$ (denoted by $g<^{*}f$), if $\forall^{\infty}n<\omega(g(n)$

$<f(n))$ . A subset $F$ of $\omega^{\omega}$ is said to be cofinal in $\omega^{\omega}$ , if $\forall g\in\omega^{\omega}\exists f\in F(g<*f)$ .

\S 2. Main theorem.

For each cardinal $\kappa,$ $Fn(\kappa, 2)$ denotes the poset $\{p;\exists x\subset\kappa(|x|<\omega\ p;xarrow 2)\}$

whose order is the inverse inclusion.

THEOREM 2. The complete Boolean algebra $r.0.(Fn(\kappa, 2))$ consisting of all
regular open subsets of $Fn(\kappa, 2)$ has the slender prOperty, for any cardinal $\kappa$ .

PROOF. Let $\kappa$ be any cardinal. Set $P=Fn(\kappa, 2)$ . To get a contradiction,
suppose that

(1) $\pi$ is a P-name and $p_{0}\in P$,

(2) $|\vdash P\pi;(Z^{\omega})^{\vee}arrow Z$ homo”,

(3) $p_{0}|\vdash P\exists^{\infty}n<\omega(\pi(e_{n})\neq 0)$

Define the P-name $\sigma$ by

$|\vdash P\sigma;\omegaarrow\omega$ &\forall $n<\omega(\sigma(n)=|\pi(e_{n})|)$

Since $P$ satisfies the $\omega_{1^{-}}c.c.$ , there is $a\subset\kappa$ such that

$|a|\leqq\omega$ and $p_{0}\in P|a$ and $\sigma$ is a $P|$ a-name,

where $P|a=\{p\in P;dom(P)\subset a\}$ .

CONVENTION. For each $s\in 2^{a},$ $s|\vdash\cdots$ mean [that $\exists P\in P(P\subset s\ p|\vdash P )$ .

Set

$S=\{ s\in 2^{a} ; \forall n<\omega\exists_{J}<\omega(s|\vdash\sigma(\check{n})=\check{j}’) \ \exists\infty n<\omega(s|\vdash\sigma(\check{n})\neq 0’)\}$ .
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Then, by (2) and (3), we have that

(4) $S\cap[p_{0}]$ is comeager in $[p_{0}]$ ,

where $[p_{0}]=\{s\in 2^{a} ; p_{0}\subset s\}$ .
For each $f\in\omega^{\omega}$ , take $p_{f}\in P|a$ and $q_{f}\in P|(\kappa\backslash a)$ such that

$p_{0}\subset p_{f}$ and $\exists k\in Z(P_{f}\cup q_{f}|\vdash P\pi(f^{\vee})=\check{k}’)$ .

Since $|\{p_{f} ; f\in\omega^{\omega}\}|\leqq|P|a|\leqq\omega$, there is $p\in P|a$ such that

$\{f\in\omega^{\omega} ; p_{f}=\overline{p}\}$ is cofinal in $\omega^{\omega}$ .
Since $[\overline{p}]\subset[p_{0}]$ , by (4), there is $s\in S$ such that $\overline{p}\subset s$ . Define $g:\omegaarrow\omega$ by

$g(n)=the$ unique $j<\omega$ such that $s|\vdash$ $\sigma(\check{n})=\check{j}$ ’

Then, since $s\in S$ , it holds that

(5) $\exists^{\infty}n<\omega(g(n)\neq 0)$ .
By the choice of $\overline{p}$ , there is $f\in\omega^{\omega}$ such that

(6) $g<^{*}f$ and $p_{f}=p$ .
Take $\varphi:\kappaarrow 2$ such that

$s\subset\varphi$ and $q_{f}\subset\varphi$

Set
$H=$ { $h\in Z^{\omega}$ ; $\exists p\in P\exists k\in Z(p\subset\varphi$ &PI\vdash P $\pi(\check{h})=\check{k}’)$ },

and define $\theta:Harrow Z$ by

$\theta(h)=the$ unique $k\in Z$ such that

$\exists P\in P$ ( $p\subset\varphi$ &p $|\vdash P\pi(\check{h})=\check{k}’$ ).

Then, we have that

(7) $H$ is a pure subgroup of $Z^{\omega}$ ,

(8) $\theta$ is a homomorphism from $H$ to $Z$ ,

(9) $\forall n<\omega(e_{n}\in H\ |\theta(e_{n})|=g(n))$ .
By (6) and by the choice of $\varphi$ , it holds that

(10) $f\in H$ .
For each $n<\omega$ , define $f_{n}\in\omega^{\omega}$ by

$f_{n}(i)=\{\sim$

$f(i)$ if $i\geqq n$ ,

$0$ otherwise.
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Since $\tilde{f}\in H$, we have that $\forall n<\omega(f_{n}\in H)$ . Take $m_{0}<\omega$ such that

$m_{0}\leqq\forall n<\omega(g(n)<f(n))$ .
Set $f^{*}=f_{m_{0}}$ and $m_{1}= \max(m_{0}, |\theta(f^{*})|)$ .

CLAIM 1. $m_{1}<\forall n<\omega(\theta(f_{n})=0)$ .
PROOF OF CLAIM 1. Let $n$ be any natural number such that $m_{1}<n$ . By

the definition of $\tilde{f}$, it holds that $\exists x\in Z^{\omega}(\tilde{f}(n)x=f_{n})$ . Since $H$ is pure, we have
that

$\tilde{f}(n)$ divides $\theta(f_{n})$ .

On the other hand, since $f_{n}=f^{*}- \sum_{i=m_{0}}^{n-1}\tilde{f}(i)e_{i}$ , we have that

$\theta(f_{n})=\theta(f^{*})-\Sigma_{i=m_{0}}^{n-1}\tilde{J}(i)\theta(e_{i})$ .
So, it holds that

$|\theta(f_{n})|\leqq|\theta(f^{*})|+\Sigma_{i<n}f(i)f(i)<f(n)$ .

Thus, we have that $\theta(f_{n})=0$ . $q.e.d$ . of Claim 1.

By Claim 1, we have that

$\theta(e_{n})=0$ for $m_{1}<\forall n<\omega$

This contradicts (5) and (9). This completes the proof. $\square$

Let $\mathfrak{B}$ be the Boolean algebra of all Borel subsets of the unit interval $[0,1]$

and $\Im$ the ideal of all meager sets in $\mathfrak{B}$ . It is known [7] that the quotient
algebra $\mathfrak{B}/\Im$ is isomorphic to $r.0.(Fn(\omega, 2))$ . So, we have the following corollary.

COROLLARY 1. The complete Boolean algebra $\mathfrak{B}/\Im$ has the slender prOperty.

This answers the question in [3].

\S 3. Theorem 3.

Let $Fn(\omega, \omega_{1})$ be the $(\omega, \omega_{1})$-collapsing poset $\{p;\exists n<\omega(P:narrow\omega_{1})\}$ whose
order is the inverse inclusion. We denote by Co1 $(\omega, \omega_{1})$ the complete Boolean
algebra of all regular open sets in $Fn(\omega, \omega_{1})$ .

By Theorem 1 (ii), assuming CH, every complete Boolean algebra that col-
lapses $\omega_{1}$ does not have the slender property. It seems to be interesting to
check whether this is true when CH is false. Especially, does Co1 $(\omega, \omega_{1})$ have
the slender property? The following theorem gives a partial answer to this
question.

THEOREM 3. Let $P$ be a poset and $\kappa=|P|$ . Supp0se that the following $(*)$

holds.
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$(*)$ $\forall F\subset\omega^{\omega}(|F|\leqq\kappa\ni\exists g\in\omega^{\omega}\forall f\in F(f<*g))$ .

Then, $r.0.(P)$ has the slender ProPeriy.

PROOF. Let $P$ be a poset and $\kappa=|P|$ . Assume that $(*)$ holds. To get a
contradiction, suppose that

(1) $\pi$ is a P-name and $\overline{p}\in P$ ,

(2) $|\vdash P\pi;(Z^{\omega})^{\vee}arrow Z$ homomorphism”,

(3) $\overline{p}|\vdash P\exists^{\infty}n<\omega(\pi(e_{n})\neq 0)$ .
For each $p\in P$, set

$H_{p}=\{h\in Z^{\omega} ; \exists k\in Z (p|\vdash P "\pi(\check{h})=\check{k}’)\}$ ,

and define $\theta_{p}$ : $H_{p}arrow Z$ by

$\theta_{p}(h)=the$ unique $k\in Z$ such that $P|\vdash P\pi(\check{h})=\check{k}’$ .

CLAIM 2. There is $p\in Psuch$ that $p\leq\overline{p}$ and $\{f\in\omega^{\omega} ; f\in H_{p}\}$ is cofinal in $\omega^{\omega}$ .
PROOF OF CLAIM 2. Suppose not. For each $p\in P,$ $p\leq\overline{p}$ , take $f_{p}\in\omega^{\omega}$ such

that
$\forall g\in\omega^{\omega}$ ( $\tilde{g}\in H_{p}\Rightarrow$ not $f_{p}<*g$).

Since $|$ { $f_{p}$ ; $p\in P$ &p\leq 5} $|\leqq|P|=\kappa$, by $(*)$ , there is $\overline{f}\in\omega^{\omega}$ such that $\forall p\in P$

$(p\leq\overline{p}\Rightarrow f_{p}<*f)$ . So, it holds that

$\forall P\in P\forall g\in\omega^{\omega}(p\leq\overline{p}\ \tilde{g}\in H_{p}\Rightarrow not\overline{f}<*g)$ .
But, this contradicts the fact that $\{g\in\omega^{\omega} ; \exists p\in P(p\leq\overline{p}\ g\in H_{p})\}=\omega^{\omega}$ . $q.e.d$ .
of Claim 2.

Take $P^{*}\in P$ such that

(4) $p^{*}\leq\overline{p}$ and $\{f\in\omega^{\omega} ; f\in H_{p}.\}$ is cofinal in $\omega^{\omega}$ .
By induction on $n<\omega$, using (2) and (3), take $p_{n}\in P(n<\omega)$ and $m_{n}<\omega(n<\omega)$

such that, for any $n<\omega$,

(5) $p_{0}\leq p*$ & $p_{n+1}\leq p_{n}$ ,

(6) $m_{n}<m_{n+1}$ ,

(7) $\forall i\leqq m_{n}\exists k\in Z(p_{n}|\vdash P\pi(e_{i})=\check{k}’)$ ,

(8) $p_{n}|\vdash P\pi(e_{m_{n}})\neq 0’$ .

Set $H=\cup {}_{n<\omega}H_{p_{n}}$ and $\theta=\bigcup_{n<\omega}\theta_{p_{n}}$ . Define $g\in\omega^{\omega}$ by
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$g(n)=|\theta(e_{n})|$ for any $n<\omega$ .
Then, the following (9) $\sim(12)$ hold.

(9) $H$ is a pure subgroup of $Z^{\omega}$ .
(10) $\theta:Harrow Z$ homomorphism.

(11) $\forall n<\omega(e_{n}\in H)$ & $\exists^{\infty}n<\omega(g(n)\neq 0)$ .
(12) $\exists f\in\omega^{\omega}$ ($g<*f$ &f\in H).

By a similar argument as in the proof of Theorem 2, we can derive a contradiction
from (9) $\sim(12)$ . $\square$

It is well-known [5] that the statement “
$\forall F\subset\omega^{\omega}(|F|<2^{\omega}\Rightarrow\exists g\in\omega^{\omega}\forall f\in F$

$(f<*g))$ is consistent with $ZFC+2^{\omega}=\omega_{2}$ . So, we have the following corollary.

COROLLARY 2. The statement Co1 $(\omega, \omega_{1})$ has the slender Property’ is con-
sistent with $ZFC+2^{\omega}=\omega_{2}$ .

I do not know whether the statement Co1 $(\omega, \omega_{1})$ does not have the slender
property” is consistent with $ZFC+2^{\omega}=\omega_{2}$ .

\S 4. A certain complete Boolean algebra with the $\omega_{1}- c.c$ . which does not
have the slender property.

In [2], Eda showed an example of a complete Boolean algebra with the $\omega_{1^{-}}$

$c$ . $c$ . which does not have the slender property. His example is complicated, since
it was constructed by using a complete Boolean algebra $B$ which satisfies
$\Vert MA+\neg CH\Vert_{B}=1$ . In this section, we shall construct a complete Boolean alge-
bra with those properties more directly.

Define the poset $P$ by $(H, \theta)\in P$ if and only if

$\exists n<\omega\exists h_{0},$ $\cdots$ , $h_{n-1}\in H(H=\oplus_{i<n}\langle h_{i}\rangle \ Z\omega=H\oplus Z^{\omega\backslash n})$

& $\theta:Harrow Z$ homomorphism,

and, for any $(H, \theta),$ $(G, \sigma)\in P$,

$(H, \theta)\leq(G, \sigma)$ if and only if $H\supset G$ &\mbox{\boldmath $\theta$}\supset \sigma ,

where $\langle h\rangle$ denotes the subgroup generated by $h,$ $\oplus_{i<}{}_{n}H_{i}$ the direct product of
$H_{i}(i<n)$ and $Z^{\omega\backslash n}$ the subgroup $\{h\in Z^{\omega} ; \forall i<n(h(i)=0)\}$ of $Z^{\omega}$ .

THEOREM 4. (i) $P$ satisfies the $\omega_{1^{-}}c$ . $c$ .
(ii) $r.0.(P)$ does not have the slender Property.

In the proof of this theorem, we need the following lemma.
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LEMMA 1. $\forall h\in Z^{\omega}\exists(H, \theta)\in P(h\in H)$ .

PROOF. This lemma follows immediately from the proof of Theorem 19.2
in [4, p. 94]. $\square$

PROOF OF THEOREM 4. First, we shall show (i). So, let $W$ be any subset
of $P$ such that $|W|=\omega_{1}$ . For each $p=(H, \theta)\in W$, take $n_{p}<\omega$ and $h\#,$ $\cdots$ , $h_{n_{p}-1}^{p}$

$\in H$ such that
$H=\oplus_{i<n_{p}}\langle h_{i}^{p}\rangle$ ,

and set
$s_{p}=\langle h?rn_{p}|i<n_{p}\rangle$ ,

$t_{p}=\langle\theta(h?)|i<n_{p}\rangle$ .
CLAIM 3. There are $W’\subset W,$ $n<\omega,$ $s$ and $t$ such that

(1) $|W’|=\omega_{1}$ ,

(2) $\forall P\in W’$ ( $n_{p}=n$ &s$p^{=S}\ t_{p}=t$).

PROOF OF CLAIM 3. This claim follows immediately from the fact that
$|\{n_{p} ; p\in W\}\cup\{s_{p} ; p\in W\}\cup\{t_{p} ; p\in W\}|\leqq\omega$ . $q$ . $e$ . $d$ . of Claim 3.

Take $W’\subset W,$ $n,$ $s$ and $t$ which satisfy (1) and (2) in Claim 3. We shall
show that

$(*)$ $W’$ are pairwise compatible.

In order to show $(*)$ , let $p=(H, \theta)$ and $q=(H’, \theta’)$ be any elements in $W’$ . For
each $i<n$ , set

$g_{i}=h?-h8$ .

Since $g_{0},$
$\cdots$ $g_{n-1}$ are in $Z^{\omega\backslash n}$ , by Lemma 1, there are a subgroup $G$ of $Z^{\omega\backslash n}$

and $j<\omega$ such that

(3) $G\oplus Z^{\omega\backslash (n+j)}=Z^{\omega\backslash n}$ ,

(4) $g_{0},$
$\cdots$ $g_{n-1}\in G$ .

Let $\tau$ be the homomorphism from $G$ to $\{O\}\subset Z$. Set

$\sigma=\theta\oplus\tau$ : $H\oplus Garrow Z$ .
Then, it is easy to see that ( $H\oplus G$ , a)\in P&(H\oplus G, $a$ ) $\leq(H, \theta),$ $(H’, \theta’)$ .

Next, we shall show (ii). Define the P-name $\tilde{\pi}$ by

$dom(\tilde{\pi})=$ { $(h,$ $k)^{\forall}$ ; $h\in Z^{\omega}$ &k\in Z},

$\tilde{\pi}((h, k)^{\vee})=$ { $(H,$ $\theta)$ ; h\in H&\mbox{\boldmath $\theta$}(h) $=k$ }.
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By Lemma 1, it holds that

$\forall h\in Z^{\omega}\forall P\in P\exists q\in P\exists k\in Z(q|\vdash P(h, k)^{\vee}\in\tilde{\pi})$ .
From this, we have that

$|\vdash P$ $\tilde{\pi};(Z^{\omega})^{\vee}arrow Z$ homomorphism”.

To complete the proof we show that $|\vdash P\exists^{\infty}n<\omega(\tilde{\pi}(e_{n})\mp 0)$ . Let $n<\omega$ and
$P=(H, \theta)\in P$. It suffices to show that

$\exists m<\omega\exists q\in P$ ($q\leq P$ &n\leqq m &q|\vdash P “
$\tilde{\pi}(e_{m})\neq 0’$ ).

Take $m<\omega$ and $\overline{p}=(\overline{H}, \theta)\in P$ such that

$\overline{p}\leq p$ & $n\leqq m$ & $Z^{\omega}=\overline{H}\oplus Z^{\omega\backslash m}$ .

Set $G=\overline{H}\oplus\langle e_{m}\rangle$ , and define $\tau:Garrow Z$ by

$\tau(h+ke_{m})=\overline{\theta}(h)+k$ for $\forall h\in\overline{H}$ and $\forall k\in Z$ .

Set $q=(G, \tau)\in P$. Then, it holds that

$q\leq\overline{p}\leq p$ and $q|\vdash P\tilde{\pi}(e_{m})=1$“.

This completes the proof. $\square$
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