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§0. Introduction.

Let X: M— E¥ be an isometric immersion of a compact Riemannian mani-
fold into an N-dimensional Euclidean space. Then X can be decomposed as X
= ,enX:, where X, is the k-th eigenfunction of the Laplacian of M (for details,
see §2). We say that the immersion is of order {ky, ks, ks} (resp. {ki, k,} and
k) if X=Xo+Xp,+ X, +X,, (resp. X=X,+X, +X,, and X=X,+X,), where
X, is a constant mapping and X,,, X;,, X, #0 and 0<k; <ky<ks.

Let F :CP™— E¥ be the standard isometric imbedding of a complex pro-
jective space into an N-dimensional Euclidean space (for details, see §1), and
let A: M— CP™ be an isometric immersion of a compact Kaehler manifold into
an m-dimensional complex projective space. Then A is said to be of order
{ky, ks, ks} (resp. {ki, k;} and k) if the immersion F-A is of order {k,, k,, ks}
(resp. {k;, k;} and k,). A totally geodesic Kaehler submanifold of CP™ is of
order 1. Moreover there does not exist any compact Kaehler submanifold of
order b, (B, =2) (see, [8], [9]), and a compact Kaehler submanifold is of order
1 if and only if it is totally geodesic. A. Ros ([9]) proved that Einstein Kaehler
submanifolds with parallel second fundamental form except E,/Spin(10)XT in a
complex projective space are of order {1, 2}, and he characterized them by their
spectra in the class of compact Kaehler submanifolds in a complex projective
space. In §4, we calculate the eigenvalues of the Laplacians of E¢/Spin(10)xXT
and E,/E,XT. Consequently, we see that F/Spin(10)XT is of order {1, 2},
and we can say that a compact Kaehler submanifold different from a totally
geodesic Kaehler submanifold in a complex projective space is of order {1, 2} if
it is Einstein and has parallel second fundamental form (Proposition 3). Moreover
we can characterize E;/Spin(10)XT by its spectrum in the class of compact
Kaehler submanifolds in a complex projective space (Proposition 4).

Next, by applying Ros’ method, we prove that CP*(1/3) and compact irredu-
cible Hermitian symmetric spaces of rank 3 in CP**?(1) are all of order {1, 2, 3}
Proposition 5)), where CP™(c) denotes an m-dimensional complex projective space
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of holomorphic sectional curvature c.
The main result of this paper is the following.

THEOREM. Let M be an n-dimensional compact Einstein Kaehler submanifold
immersed in CP™*?(1), and let M be one of the Hermitian symmetric submanifolds
given in Tables 2 and 3 (i.e., compact Einstein Hermitian symmetric submanifolds
of degree 3).

If Spec(M):Spec(zﬁ), then M is congruent to M.

The author wishes to thank Professors K. Ogiue and N. Ejiri for many
valuable comments and encouragements.

§1. Preliminaries.

Let HM(m+1)={A=glim-+1, C)| A=*A} be the space of (m+1)x(m+1)-
Hermitian matrices. We define on HM(m-1) an inner product g by

g(A, B) =2trAB for A, B€HM(m+1).

We consider the submanifold CP™"={A€HM(@m+1) | AA=A, trA=1}. It is
known that CP™, with the metric induced from g on HM(m--1), is isometric to
the complex projective space with the Fubini-Study metric of constant holomor-
phic sectional curvature 1. The tangent space and the normal space at any
point A of CP™ are given respectively by

TACP™ = {XeHM(m+1) | XA+AX=X},
TiWCP™) = {ZeHM(m+1) | ZA=AZ}.

Let D, ¥, 4, V*, A, H be the Riemannian connection of HM(n-+1), the in-
duced connection in CP™, the second fundamental form of the immersion, the
normal connection, the Weingarten endomorphism, the mean curvature vector
of CP™ in HM(m+1), respectively.

A. Ros [8, 9] obtained the following facts.

(1.1) 5(X,Y) = (XY +Y X)I—24),

(1.2) AzX = (XZ—ZX)YI—-2A),

(1.3) H= 3% [I—(m+1)A],

(1.4) JX = ~/=1(I-24)X,

(1.5) d(JX, JY)=6X,Y), V=0,

L6 g(X, V), oV, W) = 2g(X, V)g(V, Wyt {g(X, Wg(¥, V)
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+g(X, V)gt', W)+g(X, JW)gY, JV)
+g(X, JV)gY, W)},

~ 1 1
(L7) AoV = 58X, NV+{glt, V)X+g(X, V)Y

+g(JY, V)] X+g(JX, V)JY},

(1.8) ga(X,Y), =0, g@XY),A=—gXY),

where [ is the (m—1)X(m-+1)-identity matrix, J is the complex structure of
cP™, X,Y,V, WeTCP™) and ZT4(CP™).

§2. The order of an immersion.

Let X: M™— EY be an isometric immersion of an n-dimensional compact
Riemannian manifold into the N-dimensional Euclidean space. Let A be the
Laplacian of M acting on differentiable functions and Spec(M)={0<A;=--=4,
<Ay=+-=4,<---} be the spectrum of A. Then we have the orthogonal decom-
position X=>, X, kN, where X, : M— E¥ is a differentiable mapping satisfy-
ing AX,=2,X,, and the addition is convergent, componentwise, for the L%
topology on C=(M).

We have the relations

(2.1) AX=—nH= kleka ,

(2.2) A’X = —nAH = kleiXk ,
P

(2.3) A’X = —nA*H = kZ]x B Xy,

where H is the mean curvature vector of M in EY.

Let &y, ks, ks N with 0<k,<k,<k,., We say that the immersion X is of
order ky (resp. {ki, k:} and {&,, ky, ks}) if X=X+ X, (resp. Xo+X, +X,, and
Xo+ X, + X, +Xi,) and X, X4y, X, #0.

§3. Kaehler submanifolds.

Let M™ be an n-dimensional compact Kaehler submanifold immersed in the
(n+p)-dimensional complex projective space CP"*?, and let A: M"— CP"*? be
the immersion. Let E,, -+, E,, Eww=JE,, -, Enx=JEn, &, -, &, Eix=JE1, -+,
&,+=J&, be a local field of orthonormal frames of CP"*?, such that, restricted
to M, E,, -+, E,, Ei, -+, E,x are tangent to M. Let V, ¢, V* and A be the
Riemannian connection, the second fundamental form, the normal connection



456 S. UDAGAWA

and the Weingarten endomorphism of M in CP™*? respectively, and H the mean

curvature vector of M in HM(n-+p-+1).

Throughout this paper, we use the following convention on the range of
indices: 1, j, B, [, --=1, -, m, 1*, o 0¥ A, p, =1, e, p, 1%, o %, AL B,
C, ...:1, e, N, n+1, e n_i_p’ a, b, ¢, ...:1, e, n, a, ‘8’ 7, ...:1, -, Do Then’
the immersion X is of order k, if and only if M™" is totally geodesic and the
immersion X is of order {k,, k,} if and only if

A A
(3.1) AH = QoA H =52 (X—X0)

(see [9]), and in the same way as in p. 440 of [9] we can see that the im-
mersion X is of order {ky, k., k,} if and only if

Ap Ap,A
(3.2) AH = (A, +An,+ 2 JAH— (g Auy+ A ApytAp A ) H— 120

TG R OF

We prepare the following Lemma.

LEMMA 1 (A. Ros [9]).

(3.3) H= -1 sE, E,
2n 3
(3.4 AH = (n+1)H+%;j 5(/IU<Ei,Ej)Ei, E;)

——711-2 5(o(Ey, Ey), o(Es, E,).

This is obtained by using and the fact that M is minimal in CP»*?
and that CP"*? has parallel second fundamental form.

The normal space of M in CP™*? at x is denoted by Ti(M). We define
the tensor T:TixXTi— R by

(3.5) TE¢, p) =trd:.4, for all & peTiM).
Then, A. Ros obtained the following result.

PROPOSITION 1. Let M be an n-dimensional compact Kaehler submanifold in
CP™? such that the immersion A: M— CP™? is full. Then M is a submanifold
of order {ky, ky} in HM(n+p+1) if and only if M is an Einstein submanifold
with T=~kg|rr.rr for some real number k.

If the immersion is full, the constant part X, of X is given by X,=
(1/(n-+p+1)I (see [9]), where I is the (n-+p-+1)X(n-+p-+1)-identity matrix.
§4. Computation of eigenvalues of A.

Let (G, K) be a Riemannian symmetric pair. Let g and f be the Lie alge-
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bras of G and K, respectively. Then we have the canonical decomposition g=
f+m. Let a be a Cartan subalgebra of (G, K), i.e., a maximal Abelian subal-
gebra of g contained in m, and let t be a maximal Abelian subalgebra of g

containing a. Then we have the direct sum decomposition {=a-+b. We define
the involution S by

S(H,+H,) = —H,+H,, H,eb, H,eaq,
and define H by

ﬁz%(H-{-S(H)), Het.

Let 2(G) be the set of all roots of G with respect to t, and define X(G), 2 (G,
K), 3%(G, K) by
2o(G) = 2(G)NbY, (G, K)={a ; acX(G)—2\(G)},
246G, K) = {re2(G, K) ; r>0},
respectively. Next, we define I'(G), Z(G), D(G), I'(G, K), Z(G, K), D(G, K) by
I'G)= {Het ; expH=e<T},
Z(G)={Aet ; A, H)eZ for all HeI'(G)},
D(G) = 1{2€Z(G) ; 4, H)=0},
I'G, K)={Hea ; expHeK},
Z(G, K)={ica ; 4, H)eZ for all HeI'(G, K)},
D(G, K)={2€Z(G, K) ; (4, 1)=0 for all y€3+*(G, K)},

respectively, where T is the maximal torus generated by t, and ¢ is the identity,
and (, ) is the inner product on t.

Let I1{G)={a,, -, a;} be the fundamental root system, and let Ny, -+, N,
be the fundamental weights of g defined by

2Ny @) _ 5 for Niet,
(@;, aj)

where /=rank(G). Let M, be the fundamental weights of (g, ¥) defined by

2Ni, if paizaiy (air HO(G))_’:{O}
M;=4 N;, if pai=a;, (a;, II,(G))+ {0}
]vi—f-le, if paiza,-, aiiaj,

where I1,(G)=I1(G)N2(G) and p is the Satake involution. We put 6(G)=>3; N;.
We review the following facts (see [12]).

Fact 1. Let (G, K) be a compact symmetric pair such that G/K is simply-
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connected. Then
DG, K) = {télmM ; meZ, mz0 1<i=h}.

FACT 2. Let p be a spherical representation’of G with respect to K. Then
the highest weight A(p) of p with respect to t belongs to D(G, K).

FAcT 3. The mapping p—A(p) is bijective.

Now we can compute the eigenvalues of A for E /Spin(10)xXT and
E,/E¢XT.

1) E¢/Spin(l0)XT: We put G=E; and K=Spn(10)xT. The fundamental
roots are given by (see [2])

1 1
a; = —z—(el-l—es)-—f(eﬁ---—l—eq), a, = e;+tes,
A3 = €;—¢,, a, = é3—¢ey, a5 = €423, Qg = €524,

K3
where ¢;=(0, ---, 0,1, 0, ---, 0)eR® for /=1, ---, 8. The fundamental weights
of g are given by

2
N1 = —3_‘(98—_87_86)r

1
N, = ‘2‘(e1+ez+6’3+94+95_‘€c_97+93) ’

5

1
N; = ‘6"(98_97‘_96)+‘2‘(_91+92+93+94+95) ,

Ny = este,+es—es—e;+es,

2
N; = 3(88—27_86>+e4+e5 ;

Ny = %(98—97—es)+35,

and
o(G) = ENz = ey+2e;+3e tdes+4(eg—e—ey) .

a;
Qg as ay [+ 8 a;

Diagram 1.
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From diagram 1, the fundamental weights of (g, f) are given by

M, = N\-+N; = eg—e;—eqs+es,
1
M;= N, = ?(91"‘@24‘33"‘04"‘05_es_e7+es> .

It follows from Facts 1, 2 and 3 that A(p)=m,M,+m.M,. Therefore the Freu-
denthal’s formula implies that the eigenvalue A, of the Casimir operator of an
irreducible representation p is given by

1
Ay, = f(l(p)+25<G), Ap))
= 2m,(m,+my+8)+my(m,+11).
Since the eigenvalues 0<4,<4,<--- of A are given by A,’s, we see that

Zl =12 (m1:0, m2:1> ’
/22 - 18 (7711:1, mg———0> 5

ii) E;/E;xXT: We put G=F, and K=E,xT. The fundamental roots are
given by

o, = '—;—(el_l_es)""%—(92'{‘93"_94_!_95_}“95_'_@7)y
a, = e,+e,, a; = e,—ey, a; = e;—e,,
as = e,—e;, oy = e;—e,, A, = e,—es.
The fundamental weights of g are given by
N, = eg—e,,

N, = é(el+eg+es+e4+e5+ee—2e7+2€s),

1
N; = ‘2—("91+92+'e3+94+95+96_397+398) ’

N, = este,+es+e,+2(es—2,),
N; = %(224+2e5+2e6+398—397) ,
Ny = 85_[_06_67_*_@'8,

N; = eﬁ—!—i(es—e,,),

2
and

25(G):2ez+423+694+885+10€6'—17e7+17eg .
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as
a7 a6 aS Ia4 a3 al
(o, O- @ 2 4 -O
Diagram 2.

From diagram 2, the fundamental weights of (g, f) are given by
M, = N, = eg—ey,
My = Ny = eg+e,—eq+es,
M; = 2N, = 2¢4-}-e5—ey

Hence the highest weight is given by A(p)=m M,+m,Ms+m;M,, where m,, m,, ms
eZ, m;, my, my==0. Therefore the Freudenthal’s formula implies that

1, = 5 W) +25(G), X(p)

= m3+2mi+-3mi+2mymy+Amomy+2mam,+17m,+26my+27m; .
Thus we see that the eigenvalues 0<4,;<4,<--- of A are given by
A, =18 (my=1, my,=m,=0),
Ay =28 (my=m;=0, m,=1),
A3 =30 (my=my=0, my=1),

..............................

§ 5. Spectral geometry for Kaehler submanifolds 1.
First we state the following.
LEMMaA 2 ([9]).

—(5.1) g4, A)=12,
(5.2) g(A, H)= —

_ n+l
65 g, am)=""F1 +§%n I,
6.6 g@H,am) =" L B o e s A2
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where d=Ag,.

461

Note that S g(X,, X;)=0 for r+s, and put ak:SMg(Xk, X.). Then from

(2.1) and [2.2) we have
~2n| _g(X, H) = Shas,
M kz1

4n25 g(H, H) = 3 2a,,
M kz1

4712S g(H, AH) = X 2lay,
M k21
4n2| g(AH, AH) = S 2a,
JM kz1

We put

4n°Sug H, H)+ 2n2§ g(X, H),

4712S‘1g (H, AH)— 4n22S g(H, H),

4nzg g(AH, AH)—4712,21§ g(H, AH),

M JM
4n“’g g(AH, AH)—4n2(Z,_+22)SMg(H, AH)+4nﬂzlzZSMg<H, H),
= 4n?| g(AH, A)—an*Giu+io+ 20| g(H, AF)

+4n2<2122+2223+2321>SMg<H, H)+2ndiat| g(X, H).
Then we get
5.7) 0, = S h—1a, 20,
(5.8) 0, = Zg dAr—4)a, =0,
(5.9) = g AAr—4)a, =0,
(5.10) O,= Q—2,0, = ZAk( r—A)Ar—A)a, =0,

= 2 k(4 —21)(2k——22)(2k-—23)ak =0.

We put
(5.12) @e = @2"‘12@1 = gslzk(zk’“/zlek_‘zl)ak =0.

The equality in holds if and only if the immersion is of order 1,

the
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equality in holds if and only if the immersion is of order 1or {1, 2}, and
the equality in holds if and only if the immersion is of order 1 or {1, 2}
or {1, 3} or {2, 3} or {1, 2, 3}.

Thus we have

ProrosITION 2 (N. Ejiri, A. Ros, see [9]). Let M be an n-dimensional com-
pact Kaehler submanifold immersed in CP™. Then

A< ntl.
The equality holds if and only if M is totally geodesic (that is, of order 1).

PROPOSITION 3. Let M be an n-dimensional compact Kaehler submanifold
immersed in CP™.

If legMz'/(n vol(M)) and M is not totally geodesic, then
A, = nt2.

The equality holds if and only if M is Einstein and the second fundamental form
of the immersion is parallel (that is, of order {1, 2}).

PrOOF. In Corollary 5.4 in [9], under the same assumptions as
3, it is proved that 2,<n-+2 and the equality holds only if M is Einstein and
the second fundamental form of the immersion is parallel. Hence it is enough
to prove that if M is an Einstein parallel submanifold, then 2,=n-+2. But,
from Theorem 7.4 in [6], all Einstein parallel submanifolds are listed in Table
1, which, together with the result obtained in §4, shows that 4,=n-2. Using
Lemma 2 and we see that 1,=n+2 if and only if the equality in [5.12)
holds since M is not totally geodesic. But since the equality in [5.12) holds if
and only if M is of order {1, 2}, the proof of is accomplished.

Table 1. Einstein Kaehler submanifolds of degree 2.

submanifold 1 dime b ’ T \ A1 \ As
M,=CP™(1/2) | kD)2 | a(AD2 | kD2 2
M,=Q" | on 1 7 n? y n ! n+2mi
M,=CP" CP" 2 n? 2n(n-+1) j nitl | 242
MEVCLZYT@XUE) g | ss-nyz | 2sts+2) | 2 242
M;=S0(10)/U(5) 10 5 80 j 8 12
My=E,/Spinl)xT | 16 10 92 | 12 18
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Since dimension, vol(M), and Sur are spectral invariants, from
and Table 1, we have )

PROPOSITION 4. Let M be an n-dimensional compact Kaehler submanifold
immersed in CP™. If Spec(M)=Spec(M;) for some i=1, --- 6, then M is con-
gruent to the standard imbedding of M,;, where M; is one of the Hermitian sym-
metric spaces given in Table 1.

REMARK. for i=1, ---, 5 is obtained in [9].
The following formulas are well-known (for example, see [7], [9]),

(5.13) = n(n+1)—|al|?,

.14 IS =+ n(n-+1P—(n-+ Dllo|+r(S A2,

(5.15) IR = 2n(n-+D)—dlo+2I T,

(5.16) — Al = Vol " ol —2tr(s Ay 1T,
5.17) D R = 2n)S)e 2 22,

The first equality in holds if and only if M has constant holomorphic
sectional curvature, and the second equality in [5.17) holds if and only if M is
Einstein.

From [5.13), [5.14) and [5.17), we have
1
E) 2\2 > 4

The equality holds if and only if M is Einstein.

LEMMA 3. Let M be an n-dimensional compact Kaehler submanifold immersed
in CP™ with the following properties:

b

i) 21 e

nvol(M) ’
) (n+3a— | (IRI+2ISI) / (nvol(M))
i) A, = —— - +2:,
iii) vo # 0.
Then

23 __g_ n+3.

The equality holds only if the immersion is of order {1, 3} or {2, 3} or {1, 2, 3}.
Moreover, Ay, 25, 25 and |e||? are given as follows: For the case of order {1, 3},
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n(n+p+1)—p
n+2p ’

np(n+3)
n+2p ’

and, for the case of order {2, 3},

7 = 2n(n+1)+p(n—3)

A = A —=n+1, A, =n-13,
(5.19)

lol® =

2n-+3p ’
_ 2n(ntp+l) o
(5.20) Ay = 2n+3p , Ay = n+3,
loft = 2np(n+3)
 2n+3p

where p is the full codimension.
PrROOF. Using Lemma 2, [5.13), [5.14) and [5.15), we have

@5 = 2nvol(M){(n+1)(n+2)(n-+3)—(n+1)(n+2)(A,+2,+2y)
F(n41)(AiheF 2225 A541) — 214245}

+20 de A= an—8)| 42| (IRI*+2IS].
From the assumptions i) and ii), we get

D; =2nvolMYn+1—2A)(n+2—2,)(n+3—2,).

From the assumption iii), [Proposition 2, [Proposition 3 and [5.11), we have

23 = n+3.
If the immersion is of order {k,, k,}, then the following holds (see [9]):
2
(5.21) Ryt 2y, = np 1RO

np
It follows from that M is an Einstein Kaehler submanifold with
T=Fkg. Hence we obtain

T _ nnt+D—|a|?
n_ n )

Since |T|*=|la]|*/2p (see [9]), from [5.14), [5.15) and [5.18), we have
[ (IRIE+21819) I
nvol(M) n'p

From [5.21), [5.22), (5.23) and 2,=n+3, we have (5.19) for the case of order
{1, 3}, and for the case of order {2, 3}. Q.E.D.

(5.22) A=

(5.23)

2(71-1—3)”01[2Jr
n

=(n+D(n+3)—
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§6. Spectral geometry for Kaehler submanifolds II.

In this section, we investigate the order of CP"*(1/3) and compact irreducible
Hermitian symmetric spaces of rank 3. We choose a local field of unitary
frames {e;, -:-, en, €n+1, =+, @nspy On CP™ P in such a way that, restricted to
M?, ey, -, e, are tangent to M™ With respect to the frame field on CP"*?,
let {0, -+, 0", 0", ---, @"*?} be the field of dual frames. Then the Kaehler

metric of CP™*? is given by 2% *2w4.-%* and the structure equations of CP"*?
are given by

6.1) do*+ et w? =0, wi+ot =0,
B

(6.2) dot+ e e = 04, 04 = 3 Ricpw’ N@P.
C C,D

Since CP™*? is a complex space form of constant holomorphic sectional curvature
1, we have

~ 1
6.3) Ricp = 1 (080cp+0805p) .
Restricting these forms to M", we have
(6.4) w* =0,

and the Kaehler metric g of M™ is given by g=X,w*-@%%. Moreover we obtain

(6.5) w5 = %}kgbw”, k& =k,

(6.6) dw“+§w§/\wb =0, wi+a=0,

(6.7) dwi+ ga)?/\wg = 0%, 02¢ = c,ngcgwc/\ch,

(6.8) doj+ ;0)?/\0)173 =024, 2= c,ngcawc/\ch .
From and [6.7), we have the equation of Gauss

(6.9) R§z = —i—(ﬁé‘ﬁcd-l—ﬁé’ﬁbd)—? k§.k%q,

and from [[6.5), [(6.6) and [(6.8), we have

(6.10) RSz = - 030cut 5 kckza.

The Ricci tensor S,z and the scalar curvature ¢ of M™ are given by
(6.11) Sez = —%i—ﬁcd—ZEkchgd,

(6.12) T = n(n+1)—4a;dkgdﬁgd.
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Now, we define the covariant derivatives k%, and k%,; of k2%, by
;kgbcw%czkg,,;ac = dkg,,—;kgm%zc:kgcwng%k%bwg.

Then we have

(6.13) k3pe = ki = k3co, k= 0.

We can define inductively the covariant derivatives & and %

of k%,.a, for m=2. It is clear that

a a —_
al...amam+1 Q3 AmAm+

(Egl...am)b = Egl...amb' and (Egl...am)i,‘ - Egl...a,mb.

We see that k§,.., is symmetric with respect to a;, ---, an. The following

formula is proved in [6]:

LEMMA 4.

(6.14)

-5 - a 8 8
vl (m—r)! az,e: ckc“a(l)'"“o(r)k aa(r+1)"‘ao(m)k0b

for m=3, where the summation on ¢ is taken over all permutations of (1, ---, m).

Let T.(M) be the tangent space to M at x and TS(M) its complexification.
Let TLoM)={X—+/—=1JX|XeT . M)} and T (M)={X++/—1]X | X T (M)}.
Then

TIM) =T (M)+TZ (M).

The similar results hold for CP”+?, Suppose that the relation between ey
and E, is given by

1 1 p—
eAzg(EA—\/ —1E), 971:_2—<EA+\/_1 Es).

Then, the relation between A%, and k%, is given by (see [7])
ke = h&—~—1 hm,

(6.15) _ _
k¢y = h&t+v—1 hp.

Moreover we can see that

kgbc = hzbc'_ v—1 hgb'c,
(6.16) _ -

kgbc = hgbc+\/—l hgb*c-

Thus we have
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lol?= 3 hihl; =4 3 k&kd,
.1, a,a,b
(6.17) IT|? = S hihuhhi =8 X RLEELEBES,
Ayt vk, 1 a,B,a,b,¢,d

INa|* = , > khgjkh%jk =8 X kiyckls..
Vi g,

a,a,b, ¢

The Laplacian is given by

A= —43V;V,.
We define A, by
An= 3  R&anklian-
a, g, am

Now, we say that the immersion is of degree m, if there exists a positive integer
m, in such a way that A, #0, Ap +,=0. We need the following.

LEMMA 5 ([11]). Let f,,: M;— CP™ be the p;-th full Kaehler imbedding of
a compact irreducible Hermitian symmetric space M; of rank r;, and let [ be the
tensor product of fp, (=1, -+, s). Then the degree of [ is 21 pi7i.

If M is an n-dimensional locally symmetric Einstein Kaehler submanifold

with T=kg (see, [Proposition 1), then we have
EkgbcEge — 0 and 2 kgbCE‘%b — 0,
a a,b

so that from (6.14) we get

a
abc .

n+3 3le||?
degbcdﬁz( 2 - &nu )
Hence if M is an n-dimensional locally symmetric Einstein Kaehler submanifold
with T=kg, A,=0 and r#n(n—3)/3, then Vo=0. Therefore, from
1, and Table 2, we see that CP™(1/3) and compact irreducible Hermi-
tian symmetric spaces of rank 3 cannot be of order {4, k,}. Consequently, from
and Table 2 we have the following.

PROPOSITION 5. Compact irreductble Hermitian symmetric submanifolds of
degree 3 are of order {1, 2, 3}.

§7. Proof of Theorem.

Let R, S, z, T, ¢ be the curvature tensor, the Ricci tensor, the scalar cur-
vature, the tensor given in and the second fundamental form of M respec-
tively, and let B, S, #, T and & be the ones of M. First, we get (see [1])

dim(M) = dim(81),  vol(M) = vol(4), SMT — S;T-

M
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and
[ c1rp—218 450 = | @IRI—21517+52).
These, together with the fact that M and M are Einstein, yield
c=%  ISE=131" and | jR)={ 1R
M M
Then, from [(5.13), [5.15) and [5.16)] we see that

@y Jolr=ta [ are={a% and 9ol i%a1

Moreover, since M is Einstein,

(7.2) [, (~ 5 IVRI= o % RfyuRfima Rbinss)

is a spectral invariant (see [10]), where R}, denotes the components of R
with respect to the real local orthonormal frames.
We see that

(7.3) ZRuR maR iy = 64X REaR 7RG oz

From [6.9) we get
e pe —pe . nn+D@43)  (m+3)lgl® | lell* | ITI®
ZRbcdeefRfab - 64 39 —}—/327[ -+ G
_Ek 5 krdkdek%fkfa

This, together with (7.1)~(7.3), implies that

(7.4) SM(—%HVRH? Blzzkabkbck okl e )

is a spectral invariant. From Lemma 4, we have

1
kgbcﬁ - Z‘(kgc5ad+kgcabd+kgb5cd)
'_ﬁ2<kgak +k kféa_‘—keckaab)ked’
N3

from which it follows that

_ 3 i} _
> k&(kSse)a = ZZ kpakd—3 2 kaycki ki akh. .

a,a,b, ¢
Since M is Einstein, we have
2 kgbcEge - (2 kgb};ge)c =0,
a,a a,q
so that we get

(7.5) Y koelk§oc)a = 0.

a,a,b,c
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Then it follows that

1 _
—ZAAs = > (k%sckisc)az
a,a,b,c,d
= 3 Ppeaakivet D kSreakisea
= X k&yeazkiset+As.

Hence we obtain
S A4 — —‘S E kgbcdilggbc?-
M M
Then, from Lemma 4, we see that
(7.6) [, 4= (—T0+3/2-31012/4n A+ S kst kb e
+3X kayckbsktkGect .
On the other hand, from we get

0= E{kgbc(Egbc)d}E =2 kgbcE(Egbc)d’i‘z kgbc(}ggbc)di

_ 3n+2lelr 3 . llal* 3lel®I T
B e (VA e s 7

+—‘Z—A3—32kgac§’ibﬁ%ck‘id+6Ek3b5'%ck€d53ek€f

as

(SR

from which it follows that

a.7) S8Rk B = - S Bhaktuck s

+ termof {n, [l |T|? As}.
This, together with implies

- - . 1 1 _ -

7.8 |, Seaklrlofakt B = | (cA—g Shtfibibi.
+ termof {n, [l¢|? | T]? A3})-
Therefore, from (7.4) and (7.8) we see that
L igrle s 26 spe 7o s g 256
[, (—GIVRIE + o Skscbtehfucin— 7 A,)
is a spectral invariant. On the other hand, from (6.15) and (6.16) we get
[VR|® = 643 k& ycks ek bk,

from which it follows that
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Table 2. Compact irreducible Hermitian symmetric
submanifolds of degree 3.

submanifold dim¢ P INE | R|?
CP™(1/3) n n(n+1)(n+5)/6| n(n+1)?/18 2n(n+1)/9
SU(r+3)(/rSZ§l3J)(7’) XUB)| s, r(r—1)(r+7)/6 3r(r-+3)2/2 6r(3r+1)
S»3)/U(3) 6 7 48 66
S0O12)/U(6) 15 16 750 660
SO014)/U(7) 21 42 1512 1344
E,JE;XT 27 28 4374 3132
; T loll® 1T JZ A As As
n(n+1)/3 | 2n(n+1)/3 | 4n(n+1)/9 1/3 (n-+1)/3 2(n+2)/3 n+3
3r(r+3) 6r(r—1) 12»(r—1) —1 r+3 2r+4 3r+3
24 18 27 —1/2 4 7 9
150 90 270 —2 10 16 18
252 210 630 —2 12 20 24
486 270 1350 —4 18 28 30
Table 3. Compact reducible Einstein Hermitian symmetric
submanifolds of degree 3.
submanifold dime¢ A As As
CP*X CP" X CP" 3n n+1 | 2n+2 | 2n+4
CP" X CP*"+(1/2) 3n+1 | n+l | 2n+2 | 2n-+3
CP"xQ™+? (n=2) 2n+1 n+1 n+3 | 2n+2
CP"><{SU(n+%1)z/§Sll)J(2)><U(n——l))} 3n—2 | n+l om 9n+2
CP"x{S0(10)/U(5)} 17 8 12 16
CPY X {E:/Spin(10)X T} 27 12 18 24
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[, @IvRI+2564)

is a spectral invariant. Since M is locally symmetric and of degree 3, it follows
that M is also locally symmetric and of degree <3. Hence M is a compact
Hermitian symmetric submanifold of degree <3. From Lemma 5 [Proposition 2
Tables 1~3 and Theorem 4.3 in [6], M is one of the compact Hermitian sym-
metric submanifolds given in Tables 2 and 3. Q.E.D.

Eigenvalues for classical symmetric spaces (up to their ranks) are computed
by T. Nagano and eigenvalues for exceptional types are computed in §4,
and eigenvalues for ones given in Table 3 can be computed in the same way.
And from Lemma 2.4 in [6], we get

ITI* = A—-wlel®,

where p is given in Table 2. Since the scalar curvatures for irreducible Hermitian
symmetric spaces are given in Table 2 of [6], from the above formula and (5.13)~
we can compute the values of |[a|?, |T]? [S|i* and | R}z
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