A theorem on $P_{\kappa}(\lambda)$

By Thomas JECH

(Received Dec. 7, 1984)

1. Introduction.

Let κ be a regular uncountable cardinal. Consider the set

$$S(\kappa, \kappa^+) = \{x \in P_{\kappa}(\kappa^+) : |x| = |x \cap \kappa|^+\}$$
.

A question has been raised, notably in [1], [2] and [5], whether $S(\kappa, \kappa^+)$ can be stationary.

By a result of Baumgartner, cf. [1], if $S(\kappa, \kappa^+)$ is stationary then κ is (weakly) inaccessible and 0^* exists. We show (in Corollary 4.3) that if $S(\kappa, \kappa^+)$ is stationary then the function $f(\xi) = \xi^+$ on κ has the Galvin-Hajnal norm κ^+ .

2. Some facts about $P_{\kappa}(\lambda)$.

Throughout this paper, κ is a fixed regular uncountable cardinal; all other greek letters denote ordinal numbers. If x is a set of ordinals, then

$$\bar{x} =$$
the order type of x ;

as usual, |x| is the cardinality of x. For $\lambda \ge \kappa$,

$$P_{\kappa}(\lambda) = \{x \subset \lambda : |x| < \kappa\}.$$

- 2.1. DEFINITION ([4]). A set $C \subseteq P_{\kappa}(\lambda)$ is closed if whenever $D \subseteq C$ is a chain under inclusion with $|D| < \kappa$, then $\bigcup D \in C$. C is unbounded if for every $x \in P_{\kappa}(\lambda)$ there is a $y \in C$ with $x \subseteq y$. C is a club if it is closed and unbounded. A set $S \subseteq P_{\kappa}(\lambda)$ is stationary if $S \cap C \neq \emptyset$ for all clubs C.
- 2.2. PROPOSITION. A subset C of κ is a club iff C is a club in $P_{\kappa}(\kappa)$; also, κ is a club in $P_{\kappa}(\kappa)$.
 - 2.3. Proposition. Let $\kappa \leq \alpha \leq \beta$. If C is a club in $P_{\kappa}(\alpha)$ then the set

$$\{x \in P_{\kappa}(\beta) : x \cap \alpha \in C\}$$

is a club in $P_{\kappa}(\beta)$.

Research supported by an NSF grant and by a U.S.-Japan Cooperative Research Grant from the International Division of the National Science Foundation. The paper was written while the author was a Visiting Professor at the University of Hawaii.

422

Т. ЈЕСН

2.4. Lemma (Abraham). Let $\kappa \leq \alpha \leq \beta$. If C is a club in $P_{\kappa}(\beta)$ then the set $\{x \cap \alpha : x \in C\}$

contains a club in $P_{\kappa}(\alpha)$.

2.5. Corollary. Let $\kappa \leq \alpha \leq \beta$. A set $S \subseteq P_{\kappa}(\alpha)$ is stationary in $P_{\kappa}(\alpha)$ if and only if the set

$$\{x \in P_{\kappa}(\beta) : x \cap \alpha \in S\}$$

is stationary in $P_{\kappa}(\beta)$.

- 3. Ordinal functions on $P_{\kappa}(\lambda)$.
- 3.1. DEFINITION. Let f and g be ordinal functions on $P_{\kappa}(\lambda)$.

$$f < g$$
 iff $\{x : f(x) < g(x)\}$ contains a club.

The λ -norm of f is the rank of f in the well-founded relation <:

$$||f||_{\lambda} = \sup\{||g||_{\lambda} + 1 : g < f\}.$$

(If $\lambda = \kappa$, $||f|| = ||f||_{\kappa}$ is the Galvin-Hajnal norm, cf. [3].)

3.2. For $\gamma < \kappa$, let c_{γ} be the constant function with value γ . We have

$$||c_{\gamma}||_{2} = \gamma$$
.

For almost all x (i.e. for all x in a club $C \subseteq P_{\kappa}(\lambda)$),

$$\kappa_x = x \cap \kappa$$

is an ordinal, and

$$\|\kappa_x\|_{\lambda} = \kappa$$
.

3.3. Proposition. For all α such that $\kappa \leq \alpha \leq \lambda$, and all $x \in P_{\kappa}(\lambda)$, let

$$\alpha_x = \overline{x \cap \alpha}$$
.

Then

$$\|\alpha_x\|_{\lambda} = \alpha$$
.

(The proof is by induction.)

3.4. PROPOSITION ([2]). An ordinal function f is canonical if $||f||_{\lambda} \leq ||g||_{\lambda}$ implies $f \leq g$. For each $\eta < \lambda^+$ there is a canonical function f_{η} on $P_{\kappa}(\lambda)$ such that $||f_{\eta}||_{\lambda} = \eta$.

(The functions in 3.2 and 3.3 are canonical, for $\eta \leq \lambda$.)

3.5. For every $\eta < \lambda^+$, if f_{η} is the η^{th} canonical function on $P_{\kappa}(\lambda)$, then

$$f_{\eta}(x) < \lambda_x^+$$
.

It follows that

$$\|\lambda_x^+\|_{\lambda} \geq \lambda^+$$
.

In particular,

4. A theorem on $P_{\kappa}(\lambda)$.

4.1. THEOREM. Let $\kappa \leq \alpha \leq \lambda$, and let f be an ordinal function on $P_{\kappa}(\alpha)$ with $||f||_{\alpha} \leq \lambda$. The following holds for almost all $x \in P_{\kappa}(\lambda)$:

$$\overline{x \cap \|f\|_{\alpha}} \leq f(x \cap \alpha)$$
.

If $\alpha = \kappa$ then Theorem 1 takes the following form:

4.2. Theorem. If f is an ordinal function on κ , $||f|| = \beta \le \lambda$, then

$$\beta_x \leq f(\kappa_x)$$

for almost all $x \in P_{\kappa}(\lambda)$.

4.3. COROLLARY. If the set $S(\kappa, \kappa^+)$ is stationary, then the function $\xi \mapsto \xi^+$ on κ has norm κ^+ .

PROOF of the Corollary. Assume that $S(\kappa, \kappa^+)$ is a stationary subset of $P_{\kappa}(\kappa^+)$. If $\|\xi^+\| > \kappa^+$ then there is a function f on κ such that $f(\xi) < \xi^+$ for almost all ξ , and $\|f\| = \kappa^+$. Thus it suffices to prove that for any function f on κ such that $f(\xi) \le \xi^+$, if $\|f\| = \kappa^+$ then $\{\xi < \kappa : f(\xi) = \xi^+\}$ is stationary. Let f be such a function.

By Theorem 4.2 (with $\beta = \lambda = \kappa^+$) the set

$$\{x \in P_r(\kappa^+) : \bar{x} \leq f(\kappa_x)\}$$

contains a club. Since $S(\kappa, \kappa^+)$ is stationary, so is the set

$$\{x \in P_{\kappa}(\kappa^+): f(\kappa_x) = \kappa_x^+\}.$$

By Corollary 2.5, $\{\xi < \kappa : f(\xi) = \xi^+\}$ is a stationary subset of κ .

PROOF of Theorem 4.1. Let $\kappa \leq \alpha \leq \lambda$. We prove the theorem by induction on $||f||_{\alpha}$.

Assume that f is an ordinal function on $P_{\kappa}(\alpha)$ such that the theorem fails; let $\beta = ||f||_{\alpha} \le \lambda$. Hence the set

$$X = \{x \in P_{\kappa}(\lambda) : \overline{x \cap \beta} > f(x \cap \alpha)\}$$

is stationary. By normality, there is a stationary set $Y \subseteq X$ and some $\gamma < \beta$ such that for every $x \in Y$,

$$\gamma$$
= the $f(x \cap \alpha)^{\text{th}}$ element of $x \cap \beta$.

Let g < f be a function on $P_{\kappa}(\alpha)$ such that $||g||_{\alpha} = \gamma$. By the induction hypothesis,

$$\overline{x \cap \gamma} \leq g(x \cap \alpha)$$

holds for almost all $x \in P_{\kappa}(\lambda)$.

On the other hand, the set

$$\{x \in P_{\kappa}(\lambda) : \overline{x \cap \gamma} = f(x \cap \alpha)\}$$

is stationary. On the other hand, the set

$$\{x \in P_{\kappa}(\alpha) : g(x) < f(x)\}$$

contains a club in $P_{\kappa}(\alpha)$, and so

$$\{x \in P_{\kappa}(\lambda) : g(x \cap \alpha) < f(x \cap \alpha)\}$$

contains a club in $P_{\kappa}(\lambda)$; hence for almost all $x \in P_{\kappa}(\lambda)$,

$$\overline{x \cap \gamma} < f(x \cap \alpha)$$
.

A contradiction.

5. Final remarks.

It is well known that stationary subsets of κ remain stationary in generic extensions obtained by $<\kappa$ -closed forcing. This is not the case for stationary subsets of $P_{\kappa}(\lambda)$: In [1], Baldwin proves that if κ is weakly inaccessible and $\lambda > \kappa$ is Ramsey, then the set

$$S = \{x \in P_{\kappa}(\lambda) : |x| \ge \kappa_x^{++}\}$$

is stationary. If λ is changed to κ^+ by the Lévy collapse, then S is no longer stationary, even though the forcing is $<\kappa$ -closed. By Theorem 4.2, $|x| \le \kappa_x^+$ for almost all $x \in P_{\kappa}(\kappa^+)$.

We conclude by stating two open problems: What is the consistency strength of the following?

(5.1)
$$S(\kappa, \kappa^+)$$
 is stationary

and

(5.1) holds if κ is κ^+ -supercompact (cf. [1]), and implies (5.2) by 4.3.

6. Added in proof (May 1986).

Hans-Dieter Donder, Aki Kanamori and Jean-Pierre Levinski have kindly brought to my attention the following partial answers to the open problems (5.1) and (5.2):

- 6.1 (Baumgartner [6]). If κ is ineffable then the function $\xi \mapsto \xi^+$ has norm κ^+ . If V=L then $\|\xi^+\|=\kappa^+$ if and only if κ is ineffable.
- 6.2 (Donder). If κ is inaccessible but not Mahlo and if $\|\xi^+\| = \kappa^+$ then L[U] exists.
 - 6.3 (Levinski [7]). If $S(\kappa, \kappa^+)$ is stationary then 0^+ exists.

References

- [1] S. Baldwin, The consistency strength of certain stationary subsets of $P_{\kappa}(\lambda)$, Proc. Amer. Math. Soc., 92 (1984), 90-92.
- [2] S. Baldwin, Generalizing the Mahlo hierarchy, with applications to the Mitchell models, Ann. Pure Appl. Logic, to appear.
- [3] F. Galvin and A. Hajnal, Inequalities for cardinal powers, Ann. of Math., 101 (1975), 491-498.
- [4] T. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic, 5 (1973), 165-198.
- [5] W. Zwicker, Partial results on splitting stationary subsets of $P_{\kappa}(\lambda)$, to appear.
- [6] J. Baumgartner, Ineffability properties of cardinals II, Logic, Found. of Math. and Comp. Theory, D. Reidel, Dordrecht and Boston, 1977, pp. 87-106.
- [7] J.-P. Levinski, Instances of the conjecture of Chang, Israel J. Math., 48 (1984), 225-243.

Thomas JECH
Mathematics Department
Pennsylvania State University
University Park, PA 16802
U.S.A.