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Additivity of Jordan *-maps between operator algebras

By J6suke HAKEDA and Kazuyuki SAIT\^o

(Received Dec. 3, 1984)

The addition and Jordan product in operator algebras seem to be closely
related. Our aim in this paper is to present a positive answer to the following
problem.

Let $M$ be a unital $c*$-algebra and $N$ be an associative $*$-algebra. A map $\phi$

is said to be a Jordan $*$-map from $M$ to $N$, if $\phi$ satisfies the following conditions
$(i)\sim(iii)[2]$ .

(i) $\phi(x\circ y)=\phi(x)\circ\phi(y)$ for all $x$ and $y$ in $M$, where $x\circ y=(1/2)(xy+yx)$ .
(ii) $\phi(x^{*})=\phi(x)^{*}$ for all $x\in M$.
(iii) $\phi$ is bijective.
Can we conclude that $\phi$ is additive?

Unfortunately, the answer to this problem is negative in the one dimensional
case, even if $\phi$ is uniformly continuous, as the following example shows. Let
$\phi(\alpha)=\alpha|\alpha|$ for $\alpha\in C$ (the complex number field). Then $\phi$ is a uniformly con-
tinuous Jordan $*$-maP from $C$ to $C$ and it is not additive. If, however, $M$ has a
system of $nXn$ matrix units for some $n\geqq 2$ , we obtain the following:

THEOREM. Let $M$ be a $C^{*}$-algebra, $N$ be an assoctative $*$-algebra and $\phi$ be
a $Jordan*$-map from $M$ to N. SuppOse that $M$ has a system of $n\cross n$ matnx units
for some $n\geqq 2$ . Then $\phi$ is addi tive.

In [2], additivity of a $Jordan*$-map on an $AW*$-algebra with no abelian direct
summand was established under the hypothesis of continuity. S. Sakai conjectured
that the hypothesis of continuity is redundant (see [2]). This follows from our
theorem:

COROLLARY. Let $M$ be a von Neumann algebra (or more generally an $AW^{*}-$

algebra) which has no abelian direct summand, let $N$ be a $C^{*}$-algebra and let $\phi$ be
a $Jordan*$-map from $M$ to N. Then $\phi$ is additive. Moreover, there exist central
projections $e_{1},$ $e_{2},$ $e_{3},$ $e_{4}$ in $M$ such that $\phi$ is a linear $*$-ring isomorphism on $Me_{1}$ ,
$\phi$ is a $linear*$-ring antiisomorphism on Me2’ $\phi$ is a conjugate linear $*$-ring isomor-
phism on Me3 and $\phi$ is a conjugate linear $*$-ring antiisomorphism on Me4 $\cdot$

Throughout this paper, we always assume that $M$ is a unital $c*$-algebra, $N$
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is an associative $*$-algebra, $\phi$ satisfies the conditions $(i)\sim(iii)$ and $M$ has a
system of $n\cross n$ matrix units for some $n\geqq 2$ .

1. Preliminaries.

An element $e$ is called a projection if it is idempotent $(e^{2}=e)$ and selfadjoint
$(e^{*}=e)$ . The relation $e=ef$ defines a partial ordering of projections, denoted
$e\leqq f$. Projections $e$ and $f$ will be said to be orthogonal if $ef=0$ . We shall break
up the proof of the theorem into a sequence of lemmas.

LEMMA 1 ([2, Lemma 1.2]). Let $e$ and $f$ be pr0jecti0ns in M. Then
(i) $ef=0$ if and only if $e\circ f=0$,
(ii) $e\leqq f$ if and only if $e=e\circ f$ .

Thus $\phi$ is an order isomorphism from the partially ordered set $M_{p}$ of the
projections in $M$ to $N_{p}$ in $N$ which preserves orthogonality. So $\phi(1)=1$ and
$\phi(0)=0$ follow.

LEMMA 2 ([3]). Let $e$ and $f$ be projections of M. If $ef=0$, then $\phi(\alpha e+\beta f)$

$=\phi(\alpha e)+\phi(\beta f)$ for all $\alpha,$ $\beta\in C$ ; in particular, $\phi(e+f)=\phi(e)+\phi(f)$ .

In fact, if $ef=0$, then, there exists the least upper bound $e\vee f$ in $M_{p}$ , and
$e\vee f=e+f$. Since $\phi|M_{p}$ is an order isomorphism and preserves orthogonality,
there exists $\phi(e)\vee\phi(f)$ in $N_{p}$ and $\phi(e\vee f)=\phi(e)\vee\phi(f)$ . So $\phi(e+f)=\phi(e)+\phi(f)$ .
Put $a=\alpha e+\beta f$ for arbitrary $\alpha,$ $\beta\in C$. Then

$\phi(a)=\phi(a\circ(e+f))=\phi(a)\circ\phi(e+f)=\phi(a)\circ(\phi(e)+\phi(f))$

$=\phi(a)\circ\phi(e)+\phi(a)\circ\phi(f)=\phi(\alpha e)+\phi(\beta f)$ .

LEMMA 3 ([2, Lemma 2.1]). $\phi|C\cdot 1$ is additive.

Let $\{e_{ij}\}$ be a system of $n\cross n$ matrix units in $M$ with $n\geqq 2$ . Put $e=e_{ii}$ ,
$v=e_{ij}(i\neq j),$ $p=(1/2)(e+v^{*})(e+v)$ and $q=(1/2)(e-v^{*})(e-v)$ . Then $P$ and $q$ are
orthogonal projections in $M$. Since $\phi(e)\phi(x)\phi(e)=\phi(exe)$ (note that $exe=$

$((2e-1)0\chi)\circ e$ ; see [2, Lemma 1.6]) and by Lemma 2,

$\phi((\alpha+\beta)\cdot 1)\circ\phi(e_{ii})=\phi((\alpha+\beta)\cdot 1)\circ\phi(e)=\phi(e(2\alpha p+2\beta q)e)$

$=\phi(e)\phi(2\alpha p+2\beta q)\phi(e)=\phi(e)(\phi(2\alpha p)+\phi(2\beta q))\phi(e)$

$=(\phi(\alpha\cdot 1)+\phi(\beta\cdot 1))\circ\phi(e)=(\phi(\alpha\cdot 1)+\phi(\beta\cdot 1))\circ\phi(e_{ii})$

for each $i$ . So our Lemma 3 follows.

COROLLARY 4. (i) $\phi(-x)=-\phi(x)$ for all $x\in M$. (ii) $\phi(\rho x)=\rho\phi(x)$ for all
$x\in M$ and all rational number $\rho$ .
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Since $0=\phi(0)=\phi(1+(-1))=\phi(1)+\phi(-1)=1+\phi(-1)$ , by Lemma 3, $\phi(-x)=$

$\phi(-1)0\phi(x)=-\phi(x)$ . For arbitrary integers $m(m\neq 0)$ and $n,$ $m\phi((n/m)x)=$

$\phi(nx)=n\phi(x)$ . So $\phi((n/m)x)=(n/m)\phi(x)$ .

LEMMA 5 ([2]). Let $\{e_{i} : i=1,2, \cdots , n\}$ be an orthogond family of projectjons
in $M$ such that $\sum_{i}e_{i}=1$ . Then

$\phi(x)=\sum_{i}\phi(e_{i})\phi(x)\phi(e_{i})+2\sum_{i<J}\{\phi(e_{i}), \phi(x), \phi(e_{j})\}$

where $\{x, y, z\}=(1/2)(xyz+zyx)$ .

Since $\{\phi(e_{i}):i=1,2, \cdots , n\}$ is an orthogonal family of projections in $N$ such
that $\Sigma_{i}\phi(e_{i})=1$ ,

$\phi(x)=\sum_{i,j}\phi(e_{i})\phi(x)\phi(e_{j})$

$= \sum_{\ell}\phi(e_{i})\phi(x)\phi(e_{i})+2\sum_{i\triangleleft}\{\phi(e_{i}), \phi(x), \phi(e_{j})\}$ .

2. Additivity of Jordan $*$-maps.

LEMMA 6. Let $e$ and $f$ be projections in M. Then

$\phi(\alpha\cdot 1+\beta e+\gamma f)=\phi(\alpha\cdot 1)+\phi(\beta e)+\phi(\gamma f)$

for all $a,$ $\beta,$ $\gamma\in C$ .

Put
$x=\alpha\cdot 1+\beta e+\gamma f$, $y=\phi(\alpha\cdot 1)+\phi(\beta e)+\phi(\gamma f)$ and $e’=1-e$ .

Since $\{\phi(e), \phi(x), \phi(e’)\}=\phi(\{e, x, e’\})$ ([ $2$ , Corollary 2.2]; note that $2(e\circ x)\circ e’$

$=\{e, x, e’\})$ , it follows that

$\phi(e)\phi(x)\phi(e)=\phi(exe)=\phi(e((\alpha+\beta)\cdot 1+\gamma f)e)$

$=\phi(e)\phi((\alpha+\beta+\gamma)f+(\alpha+\beta)(1-f))\phi(e)$

$=\phi(e)(\phi((\alpha+\beta+\gamma)f)+\phi((\alpha+\beta)(1-f)))\phi(e)$

$=\phi(e)(\phi(\alpha f)+\phi(\beta f)+\phi(\gamma f)+\phi(\alpha(1-f))+\phi(\beta(1-f)))\phi(e)$

$=\phi(e)(\phi(\alpha\cdot 1)+\phi(\beta\cdot 1)+\phi(\gamma f))\phi(e)=\phi(e)y\phi(e)$ ,

$\phi(e’)\phi(x)\phi(e’)=\phi(e’xe’)=\phi(e’(\alpha\cdot 1+\gamma f)e’)$

$=\phi(e’)(\phi((\alpha+\gamma)f)+\phi(\alpha(1-f)))\phi(e’)$

$=\phi(e’)(\phi(\alpha f)+\phi(\gamma f)+\phi(\alpha(1-f)))\phi(e’)$

$=\phi(e’)(\phi(\alpha\cdot 1)+\phi(\gamma f))\phi(e’)=\phi(e’)y\phi(e’)$ and

$\{\phi(e), \phi(x), \phi(e’)\}=\phi(\{e, x, e’\})=\phi(\{e, \gamma f, e’\})$

$=\{\phi(e), \phi(\gamma f), \phi(e’)\}=\{\phi(e), y, \phi(e’)\}$ .
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Therefore

$\phi(x)=\phi(e)\phi(x)\phi(e)+\phi(e’)\phi(x)\phi(e’)+2\{\phi(e), \phi(x), \phi(e’)\}$

$=\phi(e)y\phi(e)+\phi(e’)y\phi(e’)+2\{\phi(e), y, \phi(e’)\}=y$

by Lemma 5.

LEMMA 7. Let $u$ and $v$ be symmetries (selfadjmnt unitaries) in M. Then
$\phi(\alpha u+\beta v)=\phi(\alpha u)+\phi(\beta v)$ for all $\alpha,$ $\beta\in C$.

Put $e=(1/2)(1+u)$ (resp. $f=(1/2)(1+v)$ ). Then $e$ (resp. f) is a projection in
$M$. Hence

$\phi(\alpha u+\beta v)=\phi(2\alpha e+2\beta f-(\alpha+\beta)\cdot 1)$

$=\phi(2\alpha e)+\phi(2\beta f)-\phi((\alpha+\beta)\cdot 1)$

$=\phi(2\alpha e)+\phi(2\beta f)-(\phi(\alpha\cdot 1)+\phi(\beta\cdot 1))$

$=\phi(\alpha\cdot 1)\circ(2\phi(e)-1)+\phi(\beta\cdot 1)\circ(2\phi(f)-1)$

by Lemma 6, Corollary 4 and Lemma 3. On the other hand,

$2\phi(e)-1=\phi(e)-(1-\phi(e))=\phi(e)-\phi(1-e)$

$=\phi(e-(1-e))=\phi(u)$

and similarly
$2\phi(f)-1=\phi(v)$ .

Therefore
$\phi(\alpha u+\beta v)=\phi(\alpha u)+\phi(\beta v)$ .

LEMMA 8. Let $h$ and $k$ be selfadjoint elements in M. Then

$\phi(\alpha h+\beta k)=\phi(\alpha h)+\phi(\beta k)$

for all $\alpha,$ $\beta\in C$.
In fact, let $\{e_{i}\}$ be the diagonal projections of the given system of matrix

units $\{e_{ij}\}$ of $M$. Put $\gamma=\Vert h\Vert+\Vert k\Vert,$ $h_{1}=\gamma^{-1}h$ and $k_{1}=\gamma^{-1}k$ . Then there exist
symmetries $u_{i},$ $u_{ij}$ (resp. $v_{i},$ $v_{ij}$) such that $e_{i}h_{1}e_{i}=e_{i}u_{i}e_{i}$ and $\{e_{i}, h_{1}, e_{j}\}=$

$\{e_{i}, u_{ij}, e_{j}\}(i\neq j)$ (resp. $e_{i}k_{1}e_{i}=e_{i}v_{i}e_{i}$ and $\{e_{i},$ $k_{1},$ $e_{j}\}=\{e_{i},$ $v_{ij},$ $e_{j}\}(i\neq j)$ ) (see

the proof of Lemma 1 in [1] and Lemma 3.5 in [2]; in fact, let

$u_{i}=e_{i}h_{1}e_{i}+(e_{l}-e_{i}h_{1}e_{i}h_{1}e_{i})^{1/2}e_{ij}+e_{ji}(e_{i}-e_{i}h_{1}e_{i}h_{1}e_{i})^{1/2}$

$-e_{ji}h_{1}e_{ij}+1-e_{i}-e_{j}$ $(i\neq j)$

and let
$u_{ij}=e_{i}h_{1}e_{f}+e_{j}h_{1}e_{i}+(e_{i}-e_{i}h_{1}e_{j}h_{1}e_{i})^{1/2}$

$-(e_{j}-e_{j}h_{1}e_{i}h_{1}e_{j})^{1/2}+1-e_{i}-e_{j}$ $(i\neq j)$ ,
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then $u_{i}$ and $u_{ij}$ enjoy all the requirements). Put

$x=\alpha h+\beta k$, $y=\phi(\alpha h)+\phi(\beta k)$ , $w_{i}=\alpha u_{l}+\beta v_{i}$, $w_{ij}=\alpha u_{ij}+\beta v_{ij}$,

$z_{i}=\phi(\alpha u_{i})+\phi(\beta v_{i})$ and $z_{ij}=\phi(\alpha u_{ij})+\phi(\beta v_{ij})$ .
Then $\phi(w_{i})=z_{i}$ and $\phi(w_{ij})=z_{lj}$ by Lemma 7. Hence

$\phi(x)=\sum_{i}\phi(e_{l})\phi(x)\phi(e_{i})+2\sum_{l\triangleleft}\{\phi(e_{i}), \phi(x), \phi(e_{j})\}$

$= \sum_{:}\phi(e_{i}xe_{i})+2\sum_{i<j}\phi(\{e_{i}, x, e_{j}\})$

$= \phi(\gamma\cdot 1)\circ(\sum_{i}\phi(e_{i}w_{i}e_{i})+2\sum_{i\triangleleft}\phi(\{e_{i}, w_{ij}, e_{j}\}))$

$= \phi(\gamma\cdot 1)\circ(\sum_{i}\phi(e_{i})z_{i}\phi(e_{i})+2\sum_{i\triangleleft}\{\phi(e_{i}), z_{ij}, \phi(e_{j})\})$

$= \phi(\gamma\cdot 1)\circ(\sum_{i}\phi(e_{i})(\phi(au_{i})+\phi(\beta v_{i}))\phi(e_{i})$

+2$\sum_{i<J}\{\phi(e_{i}), \phi(\alpha u_{ij})+\phi(\beta v_{ij}), \phi(e_{j})\})$

$= \phi(\gamma\cdot 1)\circ(\sum_{l}\phi(e_{i}(\alpha h_{1})e_{i})+\sum_{i}\phi(e_{i}(\beta k_{1})e_{i})$

+2 $\sum_{i<j}\phi(\{e_{i}, \alpha h_{1}, e_{j}\})+2\sum_{i\triangleleft}\phi(\{e_{i}, \beta k_{1}, e_{j}\}))$

$= \phi(\gamma\cdot 1)\circ(\sum_{i}\phi(e_{i})(\phi(\alpha h_{1})+\phi(\beta k_{1}))\phi(e_{i})$

+2$\sum_{l<J}\{\phi(e_{i}), \phi(\alpha h_{1})+\phi(\beta k_{1}), \phi(e_{j})\})$

$= \sum_{i}\phi(e_{i})y\phi(e_{i})+2\sum_{\approx}\{\phi(e_{i}), y, \phi(e_{f})\}$

$=y$ .

PROOF OF THEOREM. Now we come to prove our theorem. Let $h_{j},$ $k_{j}(j=$

$1,2)$ be selfadjoint elements in $M$ such that $x=h_{1}+ih_{2},$ $y=k_{1}+ik_{2}(i^{2}=-1)$ . By
Lemma 8,

$\phi(x+y)=\phi((h_{1}+k_{1})+i(h_{2}+k_{2}))$

$=\phi(h_{1}+k_{1})+\phi(i\cdot 1)0\phi(h_{2}+k_{2})$

$=(\phi(h_{1})+\phi(k_{1}))+\phi(i\cdot 1)\circ(\phi(h_{2})+\phi(k_{2}))$

$=(\phi(h_{1})+\phi(ih_{2}))+(\phi(k_{1})+\phi(ik_{2}))$

$=\phi(x)+\phi(y)$ .

This completes the proof.

PROOF OF COROLLARY. We need the following lemma which is well known
to specialists. But for the sake of completeness we give here a proof.
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LEMMA 9. $KeeP$ the notations and $\varpi sumptions$ in Corollary in mind, let a
and $b$ be any mutually commuting elements in $M$, then $\phi(a)\phi(b)=\phi(b)\phi(a)$ . In
particular, $\phi$ (the center of $M$ ) $=the$ center of $N$.

In fact, if $ab=ba$ , then $a\circ(b\circ x)=b\circ(a\circ x)$ for all $x\in M$, and so $\phi(a)\circ(\phi(b)$

$\circ\phi(x))=\phi(b)\circ(\phi(a)\circ\phi(x))$ for all $x\in M$. So $\phi(a)\phi(b)-\phi(b)\phi(a)$ is a central element
in $N$, which implies that $\phi(a)\phi(b)-\phi(b)\phi(a)$ commutes with $\phi(a)$ . Hence, by a
theorem of Kleinecke ([4]), $z=\phi(a)\phi(b)-\phi(b)\phi(a)$ is a normal quasi-nilpotent
element in $N$, and so, $z=0$ , that is, $\phi(a)\phi(b)=\phi(b)\phi(a)$ .

Let $\{p_{i}\}$ be a family of central orthogonal projections in $M$ such that $p_{i}$

$=1$ where $Mp_{1}$ has no finite type I direct summand and $Mp_{i}(i\geqq 2)$ is homoge-
neous of type $I_{n_{i}}(n_{i}\geqq 2)$ . Then $\phi|Mp_{i}$ is a Jordan $*$-map from $Mp_{t}$ to $N\phi(p_{i})$ ,

because $\phi(p_{i})$ is a central projection in $N$ for each $i$ by Lemma 9. By our
theorem, it follows, for each $i$ , that

$\phi(x+y)\phi(p_{i})=\phi(xp_{i}+yp_{i})=\phi(x)\phi(p_{i})+\phi(y)\phi(p_{i})$

$=(\phi(x)+\phi(y))\phi(p_{i})$

for every pair $x$ and $y$ in $M$, because each $iMp_{i}$ has a system of $n_{i}\cross n_{i}$ matrix
units for some integer $n_{i}$ with $n_{i}\geqq 2$ . Let $a=\phi(x+y)-\phi(x)-\phi(y)(\in N)$ and let
$b$ be the inverse image of $a$ under $\phi$ in $M$. Then $\phi(bp_{i})=\phi(b)\phi(p_{t})=a\phi(p_{i})=0$

for each $i$ . The injectivity of $\phi$ tells us that $bp_{i}=0$ for each $i$ . Since $M$ is an
$AW^{*}$-algebra, this implies that $b=0$ and so $a=0$, that is, $\phi(x+y)=\phi(x)+\phi(y)$

for all $x$ and $y$ in $M$. The rest of the proof is the same as in [2, Theorem 3.10].

Finally, the authors express their thanks to Professor S. Sakai for his valu-
able comments.
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