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\S 0. Introduction.

Throughout this paper, we fix the complex number field $C$ as the ground
field. The purpose of this paper is to prove the following

MAIN THEOREM. Let $X$ be a nonszngular prOjectjve 3-fold whose canonical
divisor $K_{X}$ is nef and big (cf. M. Reid [12] or \S 1). Then
(i) $\Phi_{|7K_{X}|}$ is birational with the $pos\alpha ble$ exceptiom of

a) $\chi(O_{X})=0$ and $K_{X}^{8}=2$ , or
b) 3 $K_{X}|$ is composed of $pen\alpha ls,$ $i$ . $e.$ , dim $\Phi_{|3K_{X}|}(X)=1$ ,

(ii) $\Phi_{|nK_{X}|}$ is birational for $n\geqq 8$ . Further if $\chi(O_{X})<0,$ $e.g$ . when $K_{X}$ is amPle,
$\Phi_{|nK_{X}|}$ is birational for $n\geqq 7$ .

X. Benveniste [1] proved that $\Phi_{1nK_{X}I}$ is birational for $n\geqq 9$ under the same
assumption as ours. Our proof follows mainly his ideas but improves the result
to the extent that it guarantees $\Phi_{|nK_{X}|}$ being birational for $n\geqq 7$ if $\chi(O_{X})<0$ .

The author is grateful to Prof. X. Benveniste who was kind enough to send
us his preprints about this topic.

\S 1. Preliminaries.

Let $X$ be a nonsingular complete variety, and $D\in Div(X)\otimes Q$ , where Div(X)

is a free abelian group generated by Weil divisors on $X$ . Then $D$ is called nef
if $D\cdot C\geqq 0$ for any curve $C$ on $X$, and big if $\kappa(D, X)=\dim X$ (cf. Iitaka [6]),
respectively. We denote the linear equivalence and the numerical equivalance
by $\sim$ and $\equiv$ , respectively. For $D\in Div(X)$ with $h^{0}(X, O_{X}(D))\neq 0,$ $\Phi_{|D|}$ denotes
the rational map associated with the complete linear system $|D|$ .

PROPOSITION 1. Let $X$ be a nonsingular complete variety, and $D\in Div(X)\otimes Q$ .
Assume the following two conditions:
(i) $D$ is nef and big,
(ii) the fractional part of $D$ has the support with only normal crossings.

Then
$H^{i}(X, O_{X}([D1+K_{X}))=0$ for $i>0$ ,
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where [ $D\neg$ is the minimum integral dimsor with $\lceil D1-D\geqq 0$ .
For a proof, see Kawamata [8], Theorem 1.2.

PROPOSITION 2. $LefX$ be a nonszngular complete vanety with the canonical
dimsor $K_{X}$ . Then the following conditions are equivalent to each other.
(i) There exists a $po\alpha tive$ integer $n$ such that the base locus Bs $|nK_{X}|=\emptyset$ and
that $\Phi_{|nK_{X}|}$ is birational.
(ii) $K_{X}$ is nef and big.

For a proof, see Kawamata [8], Theorem 2.6.

PROPOSITION 3. Let $X$ be a nonsingular projectjve 3-fold, and $D\in Div(X)$ .
Then we have the following assertions:

(i) $\chi(O_{X}(D))=(D^{3}/6)-(K_{X}\cdot D^{2}/4)+(D\cdot(K_{X}^{2}+c_{2})/12)+\chi(O_{X})$

and
$\chi(O_{X})=-(c_{2}\cdot K_{X}/24)$ ,

where $c_{2}$ is the second Chern class of $X$.
(ii) $K_{X}\cdot D^{2}$ is even. In partjcular, $K_{X}^{3}$ is even.

PROOF. (i) is the Riemann-Roch theorem. (ii) follows easily from (i) and
the calculation

$\chi(O_{X}(D))+\chi(O_{X}(-D))=-(K_{X}\cdot D^{2}/2)+2\chi(O_{X})\in Z$ .
PROPOSITION 4. Let $X$ be a nonsingular projective 3-fold whose canomcal

divisor $K_{X}$ is nef and big. Then

(i) $P(n);=h^{0}(X, O_{X}(nK_{X}))=(2n-1)\{n(n-1)K_{X}^{q}/12-\chi(O_{X})\}$ for $n\geqq 2$ ,

(ii) $\chi(O_{X})\leqq K_{X}^{q}/6$ ,

(iii) $h^{0}(X, O_{X}(nK_{X}))\geqq 5$ for $n\geqq 3$ .
PROOF. (i) is clear from Proposition 3 (i) and Proposition 1. (ii) follows

from the inequality

$0\leqq h^{0}(X, O_{X}(2K_{X}))=3\{K_{X}^{3}/6-\chi(O_{X})\}$ .

For (iii), we consider the two cases. Whenever $K_{X}^{3}\leqq 4$, (ii) implies $\chi(O_{X})\leqq 0$ .
Therefore

$h^{0}(X, O_{X}(nK_{X}))\geqq h^{0}(X, O_{X}(3K_{X}))\geqq(2\cdot 3-1)\{3(3-1)\cdot 2/12\}=5$ .

Whenever $K_{X}^{q}\geqq 6$, we have

$h^{0}(X, O_{X}(nK_{X}))\geqq h^{0}(X, O_{X}(3K_{X}))\geqq(2\cdot 3-1)\{3(3-1)K_{X}^{3}/12-K_{X}^{3}/6\}\geqq 10$ .

Thus we obtain (iii).
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\S 2. Key steps.

The following theorem about a surface plays a crucial role in our proof of
the main theorem. We replace the condition $h^{0}(S, O_{S}(mR))\geqq 7$ in Proposition 2-0
of Benveniste [1] by $(*)$ below, which is weaker than the former.

THEOREM 5. Let $S$ be a nonsingular projective surface, $R\in PicS$ a nef and
big dimsor on $S$, and $m$ a positive integer which satisfy the following con&tion $(*)$ .
$(*)$ Given arbitrary two distinct points $x_{1},$ $x_{2}\in S$, letting $\pi:S’arrow S$ be the blow-

ing-up at $x_{1}$ and $x_{2}$ , $L_{1}$ $:=\pi^{-1}(x_{1})$ and $L_{2}$ $;=\pi^{-1}(x_{2})$ , the linear system
$|\pi^{*}(mR)-2L_{1}-2L_{2}|$ is not empty.

Then $\Phi_{|K_{S}+mR|}$ is birational in the following two cases:
(i) $R^{2}\geqq 2$ and $m\geqq 3$ ,
(ii) $R^{2}=1$ and $m\geqq 4$ .

PROOF. First, we note the following two lemmata.

LEMMA 5.1. Let $S$ be a nonsingular projective surface, $R\in PicS$ a divzsor
with $R^{2}>0$ . Let $(E_{i})_{i\in I}$ be the famzly of distinct curves such that $R\cdot E_{i}=0$ .
Then the $E_{i}$ are numerically independent in $N_{1}(S);=(\{1- cycles\}/\equiv)\otimes R$ .

PROOF. This follows easily from Hodge’s index theorem.

LEMMA 5.2. Let $S$ be a nonsrngular projective surface, $R\in PicS$ a nef divisor
with $R^{2}>0$. Given a pOsjtjve integer $n$ , let $A_{n}$ be the set of effective divisors $D$

on $S$ such that $R\cdot D=0$ and $D^{2}\geqq-n$ . Then $A_{n}$ is a fimte set.

PROOF. Let $(E_{i})_{i\in I}$ be as in Lemma 5.1. Then the $E_{i}$ are numerically
independent. Thus $\#(I)\leqq\rho(S)$ . Moreover, Hodge’s index theorem asserts that
the intersection matrix of $(E_{i})_{i\in I}$ is negative definite. Thus the number of
$D\in\oplus_{i\in I}Z_{+}E_{i}$ with $D^{2}\geqq-n$ is finite, $Z_{+}$ denoting the set of positive integers.

We now return to the proof of Theorem 5. Let $B_{2}$ $:= \bigcup_{D\in A_{2}}D$ and $U:=S\backslash B_{2}$ .
Then by Lemma 5.2, $B_{2}$ is a proper closed subset of $S$. Thus $U$ is a nonempty
Zariski open set of $S$. In the following argument, we shall show that $|K_{S}+mR|$

$\neq\emptyset$ and that $\Phi_{|K_{S}+mR|}$ separates any two distinct points $x_{1},$ $x_{2}$ of $U$.

CLAIM 5.3. Any member $A\in|\pi^{*}(mR)-2L_{1}-2L_{2}|$ is linearly l-connected
with $A^{2}>0$ .

PROOF. We note first that

$|\pi^{*}(mR)-2L_{1}-2L_{2}|\neq\emptyset$

from the hypothesis, and we have
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$A^{2}=m^{2}R^{2}-4-4>0$

in both of the cases (i) and (ii). Therefore it is sufficient to show that $A$ is
linearly l-connected, $i.e.$ , for an arbitrary decomposition of $A,$ $A\sim D_{1}+D_{2}$ where
$D_{1}$ and $D_{2}$ are nonzero effective divisors, we have $D_{1}\cdot D_{2}\geqq 1$ .

Let $E_{i}=\pi_{*}(D_{i})$ for $i=1,2$ . Then for some integers $a_{i},$
$b_{i}$ , we have

$D_{i}=\pi^{*}(E_{i})+a_{i}L_{1}+b_{i}L_{2}$ .

By definition,
$a_{1}+a_{2}=b_{1}+b_{2}=-2$ .

Moreover,
$D_{1}\cdot D_{2}=E_{1}\cdot E_{2}-a_{1}a_{2}-b_{1}b_{2}$ .

We put $\xi:=(R\cdot E_{1}/R^{2})R-E_{1}$ . We note here that $\xi\equiv-(R\cdot E_{2}/R^{2})R+E_{2}$ , since
$mR\sim\pi_{*}(A)\sim E_{1}+E_{2}$ .

Case 1. $R\cdot E_{1}>0$ and $R\cdot E_{2}>0$ . The assumption of this case implies

$0\leqq\{(R\cdot E_{1})-1\}\{(R\cdot E_{2})-1\}=(R\cdot E_{1})(R\cdot E_{2})-mR^{2}+1$ .

Therefore
$E_{1}\cdot E_{2}=(R\cdot E_{1})(R\cdot E_{2})/R^{2}-\xi^{2}$

$\geqq(R\cdot E_{1})(R\cdot E_{2})/R^{2}\geqq(mR^{2}-1)/R^{2}>2$

in both of the cases (i) and (ii). Furthermore $a_{1}+a_{2}=b_{1}+b_{2}=-2$ implies $a_{1}a_{2}$

$\leqq 1$ and $b_{1}b_{2}\leqq 1$ . Thus

$D_{1}\cdot D_{2}=E_{1}\cdot E_{2}-a_{1}a_{2}-b_{1}b_{2}\geqq 1$ .

Case 2. $R\cdot E_{1}=0$ . If $a_{1}=-1$ or $b_{1}=-1$ , then $x_{1}\in E_{1}$ or $x_{2}\in E_{1}$ respectively,
since $\pi^{*}(E_{1})+a_{1}L_{1}+b_{1}L_{2}$ is effective. Since $x_{1},$ $x_{2}\in U=S\backslash B_{2}$ , the definition of $B_{2}$

implies $E_{1}^{2}\leqq-3$ . Noting that $E_{1}\cdot E_{2}=E_{1}(mR-E_{1})=-E_{1}^{2}$ , we have

$D_{1}\cdot D_{2}=E_{1}\cdot E_{2}-a_{1}a_{2}-b_{1}b_{2}=-E_{1}^{2}-a_{1}a_{2}-b_{1}b_{2}\geqq 1$ .
If $a_{1}\neq-1$ and $b_{1}\neq-1$ , then $a_{1}a_{2}\leqq 0$ and $b_{1}b_{2}\leqq 0$ . In the case with $E_{1}\not\equiv 0$, we
have $E_{1}^{2}\leqq-1$ , which implies

$D_{1}\cdot D_{2}=-E_{1}^{2}-a_{1}a_{2}-b_{1}b_{2}\geqq 1$ .
In the case with $E_{1}\equiv 0,$ $i.e$ . $E_{1}=0$, since $D_{1}=\pi^{*}(E_{1})+a_{1}L_{1}+b_{1}L_{2}$ is nonzero effec-
tive, we have $a_{1}>0$ or $b_{1}>0$ . Thus $a_{1}a_{2}<0$ or $b_{1}b_{2}<0$ respectively. Therefore
$D_{1}\cdot D_{2}=-a_{1}a_{2}-b_{1}b_{2}\geqq 1$ .

The case with $R\cdot E_{2}=0$ can be treated similarly as in Case 2. This com-
pletes the proof of Claim 5.3.

We have an exact sequence
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$0arrow O_{S^{p}}(\pi^{*}(K_{S}+mR)-L_{1}-L_{2})arrow \mathcal{O}_{S’}(\pi^{*}(K_{S}+mR))$

$arrow 0_{L_{1}}\oplus 0_{L_{2}}arrow 0$ .
Since $A\in|\pi^{*}(mR)-2L_{1}-2L_{2}|$ is a nonzero effective divisor which is linearly 1-
connected by Claim 5.3, Ramanujam’s vanishing theorem (cf. Ramanujam [10])
and Serre duality imply

$H^{1}(S’’, O_{S’}(\pi^{*}(K_{S}+mR)-L_{1}-L_{2}))$

$\cong H^{1}(S’’, O_{S’}(-(\pi^{*}(mR)-2L_{1}-2L_{2})))=0$ .

Therefore the induced homomorphism

$H^{0}(S’’, O_{S’}(\pi^{*}(K_{S}+mR)))arrow H^{0}(L_{1}, O_{L_{1}})\oplus H^{0}(L_{2}, O_{L_{2}})$

is surjective. Thus we complete the proof of Theorem 5.

COROLLARY 6 (cf. Bombieri [3]). Let $S$ be a nonszngular prOjectjve surface
of general type with the canonical d2visor $K_{S}$ . Then $\Phi_{1nK_{S^{1}}}$ is birational for $n\geqq 5$ .

PROOF. We may assume that $S$ is minimal, which implies $K_{S}$ is nef and
$K_{S}^{2}\geqq 1$ . By Riemann-Roch theorem and Proposition 1, we have

$h^{0}(S, O_{S}(mK_{S}))=x(O_{S}(mK_{S}))$

$=(mK_{S}-K_{S}, mK_{S})/2+\chi(\mathcal{O}_{S})\geqq 7$ for $m\geqq 4$ ,

noting that $\chi(O_{S})\geqq 1$ since $S$ is of general type. Therefore $R:=K_{S}$ and $m:=n-1$

satisfy the condition $(*)$ of Theorem 5. Thus we obtain the required result.

THEOREM 7 (cf. Proposition 3-0 of Benveniste [1]). Let $X$ be a nonsingular
projective 3-fold whose canonical $ch\cdot msorK_{X}$ is nef and big. Setting $W_{n}$ $:=$

$\Phi_{|nK_{X}|}(X)$ for a $po\alpha tive$ integer $n$ , we have the following assertions:
(i) dim $W_{n}\geqq 2$ for $n\geqq 4$ .
(ii) If dim $W_{3}=1$ , then one of the following two cases $\alpha$ ), $\beta$ ) holds. We constder
the commutative diagram below and introduce the next notation.

Here $f_{3}$ is a succession of blowing-ups with nonsingular centers such that $g_{3}$ $:=$

$\Phi_{|3K_{X}|^{Q}}f_{3}$ is a morphism, and $g_{3}=s_{3^{O}}h_{3}$ is the Stein factorization. Let $b_{3}$ $;=\deg(s_{3})$

and $S_{3}$ be a general fiber of $h_{3}$ .
Case a) $b_{3}\cdot\{S_{3}\cdot f_{3}^{*}(K_{X})^{2}\}=2$ . In this case, $\chi(O_{X})=1$ and $K_{X}^{3}=6$ .
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Case $\beta$ ) $b_{3}=1$ , $S_{3}\cdot f_{3}^{*}(K_{X})^{2}=1$ . In this case, $S_{3}$ is a nonsingular pr0jective
surface of general type. Letting $\pi_{3}$ ; $S_{3}arrow S_{3,0}$ be the morphism onto the minimal
model $S_{3.0}$ of $S_{3}$ , and $K_{3,0}$ the canonical divisor of $S_{3_{}0}$ , we have $K_{3.0}^{2}=1$ , and

$\mathcal{O}_{S_{3}}(\pi_{3}^{*}(K_{3.0}))\cong \mathcal{O}_{S_{3}}(f_{3}^{*}(K_{X})|_{S_{3}})$ .
(iii) dim $W_{n}=3$ for $n\geqq 8$ .

PROOF. First, we note that dim $W_{n}\geqq 1$ for $n\geqq 3$ , since $h^{0}(X, O_{X}(nK_{X}))\geqq 5$

for $n\geqq 3$ by Proposition 4 (iii).

Proofs of (i) and (ii). Take a positive integer $n\geqq 3$ . Assuming that dim $W_{n}$

$=1$ , we shall show that $n=3$ . We consider the following commutative diagram:

where $f_{n}$ is a succession of blowing-ups with nonsingular centers such that $g_{n}$

$:=\Phi_{\mathfrak{l}nK_{X}1}\circ f_{n}$ is a morphism, and $g_{n}=s_{n}\circ h_{n}$ is the Stein factorization. Let $b_{n}$ $:=$

$\deg(s_{n})$ and $S_{n}$ be a general fiber of $h_{n},$ $H_{n}$ be a hyperplane section of $W_{n}$ in
$P^{P(n)-1}$ , and let $a_{n}$ be the degree of the curve $W_{n}$ in $P^{P(n)-1}$ . Then

$f_{n}^{*}(nK_{X})\sim h_{n}^{*}s_{n}^{*}(H_{n})+Z_{n}$ ,

where $Z_{n}$ is the fixed part of $|f_{n}^{*}(nK_{X})|$ . Thus

$f_{n}^{*}(nK_{X})\equiv a_{n}b_{n}S_{n}+Z_{n}$ .

Multiplying this equality by $f_{n}^{*}(K_{X})^{2}$ , we obtain

$nK_{X}^{3}=nf_{n}^{*}(K_{X})^{3}=a_{n}b_{n}f_{n}^{*}(K_{X})^{2}\cdot S_{n}+f_{n}^{*}(K_{X})^{2}\cdot Z_{n}$ .

Let $c_{n}$ $:=f_{n}^{*}(K_{X})^{2}\cdot S_{n}$ . Since $f_{n}^{*}(K_{X})$ is nef and big and since $S_{n}$ is nef and
$S_{n}\not\cong 0$ , it follows that $c_{n}\geqq 1$ and $f_{n}^{*}(K_{X})^{2}\cdot Z_{n}\geqq 0$ . Thus

$nK_{X}^{q}\geqq a_{n}b_{n}c_{n}$ .
Moreover, since $W_{n}$ is the image of $\Phi_{1nK_{X^{1}}}$ , we obtain

$a_{n}\geqq P(n)-1$ .
Combining these inequalities and equalities together, we have

$(2n-1)\{n(n-1)K_{X}^{q}/12-\chi(\mathcal{O}_{X})\}-nK_{X}^{3}/b_{n}c_{n}\leqq 1$ ,
$i.e.$ , defining

$R_{b_{n^{C}n}}(n):=n\{2n^{2}-3n+1-(12/b_{n}c_{n})\}K_{X}^{3}/12-(2n-1)\chi(O_{X})$ ,
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we obtain that $R_{b_{n^{C}n}}(n)\leqq 1$ .
Now we examine the following two cases separately.
Case 1. $\chi(O_{X})\geqq 1$ . By Proposition 4 (ii) $\chi(O_{X})\leqq K_{X}^{q}/6$ , we have $6\leqq K_{X}^{3}$ . We

define $P_{b_{n^{C}n}}(x)$ by

$P_{b_{n^{C}n}}(x):=x\{2x^{2}-3x+1-(12/b_{n}c_{n})\}/2-(2x-1)$ .
$\alpha)$ the subcase $b_{n}c_{n}\geqq 2$ . We have for $n\geqq 3$ that

$P_{2}(n)\leqq P_{b_{n^{C}n}}(n)\leqq R_{b_{n^{C}n}}(n)$ .

In fact, it is clear from the hypothesis $b_{n}c_{n}\geqq 2$ that $P_{2}(n)\leqq P_{b_{n^{C}n}}(n)$ , and

$R_{b_{n^{C}n}}(n)-P_{b_{n}c_{n}}(n)$

$=n\{2n^{2}-3n+1-(12/b_{n}c_{n})\}(K_{X}^{q}/12-1/2)-(2n-1)\{\chi(O_{X})-1\}$

$\geqq n\{2n^{2}-3n+1-(12/b_{n}c_{n})\}\{\chi(O_{X})-1\}/2-(2n-1)\{\chi(O_{X})-1\}$

$\geqq\{n(2n^{2}-3n+1-6)/2-(2n-1)\}\{\chi(o_{X})-1\}\geqq 0$ .

On the other hand, a simple computation shows $P_{2}(n)\geqq 23$ if $n\geqq 4$ . Thus $n=3$ .
Moreover, $P_{2}(3)=1$ . Therefore, in this subcase, all the inequalities above must
be equalities, $i.e.,$ $b_{n}c_{n}=2,$ $\chi(O_{X})=1$ and $K_{X}^{q}=6$ .
$\beta)$ the subcase $b_{n}c_{n}=1$ . By a similar computation to that in the subcase $\alpha$),

we have $P_{1}(n)\leqq R_{1}(n)$ for $n\geqq 4$ . But $P_{1}(n)\geqq 11$ if $n\geqq 4$ . Thus $n=3$ .
Case 2. $\chi(O_{X})\leqq 0$ . In this case,

$n\{2n^{2}-3n+1-(12/b_{n}c_{n})\}K_{X}^{3}/12-(2n-1)\chi(O_{X})\leqq 1$

implies
$R_{b_{n}c_{n}}’(n):=n\{2n^{2}-3n+1-(12/b_{n}c_{n})\}K_{X}^{3}/12\leqq 1$ for $n\geqq 3$ .

Define a polynomial $Q_{\iota_{n^{C}n}}(x)$ by

$Q_{b_{n^{C}n}}(x):=x\{2_{\mathcal{X}^{2}}-3x+1-(12/b_{n}c_{n})\}/6$ .
a) the subcase $b_{n}c_{n}\geqq 2$ . We have

$Q_{2}(n)\leqq Q_{b_{n^{C}n}}(n)\leqq R_{b_{n^{C}n}}’(n)$ .
But by a simple computation $Q_{2}(n)\geqq 2$ for $n\geqq 3$ . Thus this case does not occur.
$\beta)$ the subcase $b_{n}c_{n}=1$ . We have $Q_{1}(n)\leqq R_{b_{n^{C}n}}’(n)$ for $n\geqq 4$ . But a direct
calculation shows $Q_{1}(n)\geqq 6$ if $n\geqq 4$ . Thus $n=3$ .

This completes the proofs of (i), (ii) $\alpha$) and the former part of $\beta$ ). In what
follows, we shall prove the latter part of $\beta$ ). We assume that $b_{3}c_{3}=1$ . Then
$b_{3}=1$ and $c_{3}=f_{3}^{*}(K_{X})^{2}\cdot S_{3}=1$ . We put $N_{3}$ $:=f_{3*}(Z_{3})$ and $F_{3}$ $:=f_{3*}(S_{3})$ .
Then

3 $K_{X}\equiv a_{3}b_{3}F_{3}+N_{3}$ (1)
and

$f_{3}^{*}(a_{3}b_{3}F_{3})\equiv a_{3}b_{3}S_{3}+E_{3}’$ (2)
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where $E_{3}’$ is an exceptional divisor for $f_{3}$ . Moreover, taking $f_{3}$ in such a way
that all the centers of the blowing-ups are on Bs $|3K_{X}|$ , we may assume

$Supp(E_{3}’)=Supp$ ($exceptiona1$ locus of $f_{3}$ )

Multiplying (1) with $K_{X}\cdot F_{3}$ , we have

$3F_{3}\cdot K_{X}^{9}=a_{3}b_{3}K_{X}\cdot F_{3}^{2}+K_{X}\cdot F_{3}\cdot N_{s}$ .
By hypothesis, we have

$F_{3}\cdot K_{X}^{9}=f_{3}^{*}(K_{X})^{2}\cdot S_{3}=1$ ,
and

$K_{X}\cdot F_{3}\cdot N_{3}\geqq 0$ ,

because $K_{X}$ is nef and $F_{3}\cdot N_{3}\geqq 0$ (as a l-cycle). Thus

$3\geqq a_{3}b_{3}K_{X}\cdot F_{3}^{2}$ . (3)

On the other hand, applying Proposition 4 (iii), we have

$a_{3}\geqq P(3)-1\geqq 4$ . (4)

Moreover, since $F_{3}^{2}\geqq 0$ (as a l-cycle) and since $K_{X}$ is nef, it follows that
$K_{X}\cdot F_{3}^{2}\geqq 0$ . (5)

Combining (3), (4) and (5) together, we have

$K_{X}\cdot F_{3}^{2}=0$ . (6)

Since $S_{3}$ is a general fiber of $h_{3}$ , we obtain

$f_{3}^{*}(K_{X})\cdot S_{3}^{2}=0$ . (7)

Multiplying (2) by $f_{3}^{*}(a_{3}b_{3}F_{3})\cdot f_{3}^{*}(K_{X})$ , we have

$a_{3}^{2}b_{3}^{2}K_{X}\cdot F_{3}^{2}=a_{3}^{2}b_{3}^{2}S_{3}^{2}\cdot f_{3}^{*}(K_{X})+2f_{3}^{*}(K_{X})\cdot f_{3}^{*}(a_{3}b_{3}F_{3})\cdot E_{3}’-f_{3}^{*}(K_{X})\cdot E_{3}^{\prime 2}$ .

Thus the equality above with (6) and (7) implies

$f_{3}^{*}(K_{X})\cdot E_{3}^{\prime 2}=0$ .

Proposition 2 implies that there exists a positive integer $P$ such that $Bs|pK_{X}|=\emptyset$ .
Then a general member $T\in|pf_{3}^{*}(K_{X})|$ is a nonsingular projective surface by
Bertini’s theorem. Let $(E_{3,i})_{i\in I_{3}}$ be all the prime components of $E_{3}’$ . Since $E_{3}’$

is exceptional for $f_{3}$ , we have

$(f_{3}^{*}(K_{X})|_{T}\cdot E_{3,i}|_{T})_{T}=pf_{3}^{*}(K_{X})\cdot f_{3}^{*}(K_{X})\cdot E_{3,i}=0$ for any $i\in I_{3}$ .

Furthermore $f_{3}^{*}(K_{X})|_{T}$ is nef, $(f_{3}^{*}(K_{X})|_{T})^{2}=pf_{3}^{*}(K_{X})^{3}>0$ and $(E_{3}’|_{T})_{T}^{9}=pf_{3}^{*}(K_{X})\cdot E_{3}^{\prime 2}$

$=0$ . Thus applying Hodge’s index theorem on $T$, we have $E_{3,i}|_{T}=0,$ $i.e.,$ $f_{3}^{*}(K_{X})\cdot E_{3.i}$

$=0$ (as a l-cycle of $X$ ). Therefore
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$S_{3}\cdot E_{3,:}\cdot f_{3}^{*}(K_{X})\equiv 0$ for any $i\in I_{3}$ .

We set $R_{3}$ $:=f_{3}^{*}(K_{X})|_{S_{3}}$ and $G_{3}$ $:=E_{3}’’|_{S_{3}}$ , where $E_{3}’’$ is the ramification divisor for
$f_{3},$ $i.e.,$ $K_{X’}\sim f_{3}^{*}(K_{X})+E_{3}’’$ . Then by the way of taking $f_{3},$ $Supp(E_{3}’)=Supp(E_{3}’’)$ .
Since $S_{3}|_{S_{3}}\sim 0$ , it follows that $K_{S_{3}}\sim R_{3}+G_{3}$ where $K_{s_{3}}$ is the canonical divisor of
$S_{3}$ . Since $S_{3}$ is a general member, we may assume that $G_{3}$ is effective. $R_{3}$

being nef and big, we conclude that $S_{3}$ is a nonsingular projective surface of
general type. Blowing down the exceptional curves on $S_{3}$ , we obtain the minimal
model $S_{3.0}$ of $S_{3}$ with the morphism $\pi_{3}$ : $S_{3}arrow S_{3,0}$ . Then $K_{s_{3}}\sim\pi_{3}^{*}(K_{3,0})+L_{3}$ , where
$L_{3}$ is the ramification divisor for $\pi_{3}$ . Thus

$R_{3}+G_{3}\sim\pi_{3}^{*}(K_{3.0})+L_{3}$ .
Note that $R_{3}^{2}=f_{3}^{*}(K_{X})^{2}\cdot S_{3}=1,$ $R_{3}\cdot G_{3}=f_{3}^{*}(K_{X})\cdot S_{3}\cdot E_{3}’’=0$ . Therefore, since $\pi_{3}^{*}(K_{3.0})$

is nef and big and since $L_{3}$ is effective, numerical effectivity of $R_{3}$ implies that
$R_{3}\cdot\pi_{3}^{*}(K_{3,0})=1$ and $R_{3}\cdot L_{3}=0$ . Thus

$R_{3}\cdot(R_{3}-\pi_{3}^{*}(K_{3,0}))=0$ .

By Hodge’s index theorem, we obtain

$0\geqq(R_{3}-\pi_{3}^{*}(K_{3,0}))^{2}=R_{3}^{2}-2R_{3}\cdot\pi_{3}^{*}(K_{3,0})+\pi_{3}^{*}(K_{3,0})^{2}\geqq 0$ ,

which implies $R_{8}\equiv\pi_{\delta}^{*}(K_{3,0})$ and $L_{3}\equiv G_{3}$ . Since $L_{3}$ and $G_{3}$ are effective divisors
with $R_{3}\cdot L_{3}=R_{8}\cdot G_{3}=0$, we have $L_{3}=G_{3}$ and $\pi_{3}^{*}(K_{3.0})\sim R_{3}=f_{\mathfrak{Z}}^{*}(K_{X})|_{S_{3}}$ . This com-
pletes the proofs of (i) and (ii).

Proof of (iii). Take a positive integer $n\geqq 3$ . Assuming that dim $W_{n}=2$ , we
shall show that $n\leqq 7$ . We consider the following commutative diagram:

where $f_{n}$ is a succession of blowing-ups with nonsingular centers such that
$g_{n}$ $:=\Phi_{1nK_{X^{1}}}\circ f_{n}$ is a morphism, and $g_{n}=s_{n^{o}}h_{n}$ is the Stein factorization. Let $C_{n}$

be a general fiber of $h_{n}$ , $H_{n}$ be a hyperplane section of $W_{n}$ in $P^{P(n)-1},$ $a_{n}$ $:=$

$(H_{n}|_{W}.)^{2},$ $i.e.$ , the degree of $W_{n}$ in $P^{P(n)-1}$ and $b_{n}$ $:=\deg(s_{n})$ . Then

$\{h_{n}^{*}s_{n}^{*}(H_{n})\}^{2}\equiv a_{n}b{}_{n}C_{n}$

and
$f_{n}^{*}(nK_{X})\sim h_{n}^{*}s_{n}^{*}(H_{n})+Z_{n}$ ,

where $Z_{n}$ is the fixed part of the linear system $|f_{n}^{*}(nK_{X})|$ . Squaring the equality
above and then multiplying it by $f_{n}^{*}(K_{X})$ , we obtain
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$n^{2}K_{X}^{3}=\{h_{n}^{*}s_{n}^{*}(H_{n})\}^{2}\cdot f_{n}^{*}(K_{X})+\{h_{n}^{*}s_{n}^{*}(H_{n})\}\cdot Z_{n}\cdot f_{n}^{*}(K_{X})+nf_{n}^{*}(K_{X})^{2}\cdot Z_{n}$ .

Since $f_{n}^{*}(K_{X})$ and $h_{n}^{*}s_{n}^{*}(H_{n})$ are nef, we have

$\{h_{n}^{*}s_{n}^{*}(H_{n})\}\cdot Z_{n}\cdot f_{n}^{*}(K_{X})\geqq 0$ and $nf_{n}^{*}(K_{X})^{2}\cdot Z_{n}\geqq 0$ .
Thus

$a_{n}b_{n}f_{n}^{*}(K_{X})\cdot C_{n}\leqq n^{2}K_{X}^{3}$ .
We set $c_{n}$ $:=f_{n}^{*}(K_{X})\cdot C_{n}$ . Since $f_{n}^{*}(K_{X})$ is nef and big and since $C_{n}$ is nef and
$C_{n}\not\equiv 0$, we have $c_{n}\geqq 1$ . Thus

$a_{n}b_{n}c_{n}\leqq n^{2}K_{X}^{3}$ .
Since $W_{n}$ is the image of $\Phi_{1nK_{X^{1}}}$ , which is a surface of degree $a_{n}$ in $P^{P(n)- 1}$ ,

we have $a_{n}\geqq P(n)-2$ . Thus it follows that

$S_{b_{n^{C}n}}(n):=n\{2n^{2}-(3+12/b_{n}c_{n})n+1\}K_{X}^{3}/12-(2n-1)\chi(O_{X})\leqq 2$ .

Case 1. $\chi(O_{X})\geqq 1$ . Then we have $K_{X}^{3}\geqq 6$ by Proposition 4 (ii).
a) the subcase $b_{n}c_{n}\geqq 2$ . In this case,

$S_{b_{n^{C}n}}(n)\geqq n\{2n^{2}-(3+12/b_{n}c_{n})n+1\}/2-(2n-1)$

$\geqq n(2n^{2}-9n+1)/2-(2n-1)$ if $n\geqq 5$ .
In fact, it is clear from the hypotheses that

$n\{2n^{2}-(3+12/b_{n}c_{n})n+1\}/2-(2n-1)$

$\geqq n(2n^{2}-9n+1)/2-(2n-1)$ .
Moreover,

$S_{b_{n}c_{n}}(n)-[n\{2n^{2}-(3+12/b_{n}c_{n})n+1\}/2-(2n-1)]$

$\geqq[n\{2n^{2}-(3+6)n+1\}/2-(2n-1)]\{\chi(O_{X})-1\}$

$\geqq 0$ if $n\geqq 5$ .
On the other hand, we have

$n(2n^{2}-9n+1)/2-(2n-1)\geqq 6$ if $n\geqq 5$ .
Thus $n\leqq 4$ .
$\beta)$ the subcase $b_{n}c_{n}=1$ . In this case,

$S_{b_{n}c_{n}}(n)\geqq n(2n^{2}-15n+1)/2-(2n-1)$ if $n\geqq 5$ .
But a simple calculation shows

$n(2n^{2}-15n+1)/2-(2n-1)\geqq 21$ if $n\geqq 8$ .
Thus $n\leqq 7$ .

Case 2. $\chi(O_{X})\leqq 0$ .
a) the subcase $b_{n}c_{n}\geqq 2$ . In this case,

$S_{b_{n^{C}n}}(n)\geqq n(2n^{2}-9n+1)/6$ if $n\geqq 5$ .
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On the other hand, a direct calculation shows

$n(2n^{s}-9n+1)/6\geqq 5$ if $n\geqq 5$ .
Thus $n\leqq 4$.
$\beta)$ the subcase $b_{n}c_{n}=1$ . In this case,

$S_{b_{n}c_{n}}(n)\geqq n(2n^{2}--15n+1)/6$ if $n\geqq 5$ .
But by a simple calculation

$n(2n^{2}-15n+1)/6\geqq 12$ if $n\geqq 8$ .
Thus $n\leqq 7$ .

Since $\dim W_{n}\geqq 2$ for $n\geqq 4$ by (i), a) and $\beta$ ) imply that $\dim W_{n}=3$ for $n\geqq 8$ .
This completes the proof of Theorem 7.

\S 3. Proof of the main theorem.

THEOREM 8. Let $X$ be a nonsingular projective 3-fold whose canonical divisor
$K_{X}$ is nef and $hg$ . Then
(i) $\Phi_{I7K_{X}1}$ is birational $mth$ the $pos\alpha ble$ exceptims of

a) $\chi(O_{X})=0$ and $K_{X}^{3}=2$, or
b) 3 $K_{X}|$ is composed of $pm\alpha ls,$ $i$ . $e.$ , dim $\Phi_{|3K_{X}|}(X)=1$ ,

(ii) $\Phi_{|nK_{X}|}$ is brational for $n\geqq 8$ .

PROOF. We shall show that $\Phi_{|nK_{X}|}$ is birational in each of the following
four cases:
Case 1. dim $W_{3}\geqq 2$ and $n\geqq 8$,
Case 2. dim $W_{3}\geqq 2,$ [$\chi(O_{X})\neq 0$ or $K_{X}^{3}\neq 2$], and $n=7$ ,
Case 3. dim $W_{3}=1,$ $\beta$ ) and $n\geqq 8$,
Case 4. dim $W_{3}=1,$ $a$ ) and $n\geqq 8$,
where a) and $\beta$ ) are the cases described in Theorem 7 (ii).

Case 1. Assuming that $\Phi_{InK_{X}1}$ is not birational, we shall derive a con-
tradiction.

We have a birational morphism $f_{3}$ : $X’arrow X$ such that $g_{3}=\Phi_{|3K_{X}|}\circ f_{3}$ is a
morphism. Let $H_{3}$ be a hyperplane section of $W_{3}$ $:=\Phi_{13K_{X^{1}}}(X)$ in $P^{P(3)-1}$ and $S_{3}$

a general member of $|g_{3}^{*}(H_{3})|$ . Since $|g_{3}^{*}(H_{3})|$ is not composed of pencils by the
hypothesis dim $W_{3}\geqq 2,$ $S_{3}$ is a nonsingular irreducible projective surface. We set
$3K_{X}\sim N_{3}+Z_{\theta}$ where $Z_{3}$ is the fixed part of $|3K_{X}|$ , and set

$f_{3}^{*}(N_{3})\sim S_{\theta}+E_{3}’$ , $K_{X’}\sim f_{3}^{*}(K_{X})+E_{3}$ ,

where $E_{3}$ is the ramification divisor for $f_{3}$ and $E_{3}’$ is an exceptional divisor for
$f_{\}$ . Moreover, we put $m:=n-4$ and

$\psi_{m}$ $:=\Phi_{|K_{X’}+mf\dot,(K_{X})+S_{3}|}$ .
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From the relation

$nK_{X’}\sim\{K_{X’}+mf_{3}^{*}(K_{X})+S_{3}\}+(m+3)E_{3}+f_{3}^{*}(Z_{3})+E_{3}’$ ,

we infer that $\psi_{m}$ is not birational, since $\Phi_{1nK_{X^{1}}}$ is not birational. Fix an effec-
tive divisor $D_{0}\in|(m+1)f_{s}^{*}(lf_{X})+E_{3}|$ , and a section $t_{0}\in H^{0}(X’, O_{X’}((m+1)f_{3}^{*}(K_{X})$

$+E_{3}))$ which determines $D_{0}$ . Then there exists a nonempty Zariski open set $U$

of $X’$ such that $U\cap D_{0}=\emptyset$ , and that for an arbitrary point $x\in U$, there exists
$y\in U$ distinct from $x$ such that $\psi_{m}(x)=\psi_{m}(y)$ . We may assume that $S_{3}\cap U\neq\emptyset$ ,
since $S_{3}$ is a general member.

CLAIM 8.1. $\psi_{m}|_{S}$ , is not birational.
Proof. Take $s\in H^{0}(X’, O_{X’}(g_{8}^{*}(H_{3})))$ so that $s$ determines $S_{3}$ . For an arbitrary

point $x\in S_{3}\cap U$, there exists $y\in U$ distinct from $x$ such that $\psi_{m}(x)=\psi_{m}(y)$ . Since
$t_{0}\cdot s\in H^{0}(X’, O_{X’}(K_{X’}+mf_{3}^{*}(K_{X})+S_{3}))$ , there exists $a\in C^{*}$ such that $t_{0}(x)s(x)=$

$a\cdot t_{0}(y)s(y)$ . By hypotheses, we have $D_{0}\cap U=\emptyset$ , which implies $t_{0}(y)\neq 0$, and
$s(x)=0$ . Therefore $s(y)=0,$ $i.e.,$ $y\in S\cap U$. Thus $\psi_{m}|_{S_{3}}$ is not birational.

We have an exact sequence

$0arrow O_{X’}(K_{X’}+mf_{3}^{*}(K_{X}))arrow \mathcal{O}_{X’}(K_{X’}+mf_{3}^{*}(K_{X})+S_{3})$

$arrow O_{S_{3}}(K_{S_{3}}+mR_{3})arrow 0$

where $R_{3}$ $:=f_{3}^{*}(K_{X})|_{S_{3}}$ . Proposition 1 gives

$H^{1}(X’, O_{X’}(K_{X’}+mf_{3}^{*}(K_{X})))=0$ .
Thus the homomorphism

$H^{0}(X’, O_{X’}(K_{X’}+mf_{J}^{*}(K_{X})+S_{3}))arrow H^{0}(S_{3}, O_{S_{3}}(K_{S_{3}}+mR_{3}))$

is surjective, which induces $\psi_{m}|_{S_{3}}=\Phi_{1K_{S_{3}}+mR_{3}1}$ .

CLAIM 8.2. $\Phi_{1K_{S_{3}}+mR_{3}I}$ is birational.
Proof. Since $f_{a}^{*}(K_{X})$ is nef and big and since $S_{3}$ is nef and $S_{3}\not\equiv 0$, we have

$R_{3}^{2}=f_{3}^{*}(K_{X})^{2}\cdot S_{3}\geqq 1$ . The hypothesis $n\geqq 8$ implies $m=n-4\geqq 4$ . Therefore, by

Theorem 5, it is sufficient to verify the condition $(*)$ .
We consider the blowing-up of $X’$ at arbitrary two points $x_{1}$ and $x_{2}$ of $S_{3}$ ,

denoted by $\psi:X’’arrow X’$ . Let $M_{1}$ $:=\psi^{-1}(x_{1}),$ $M_{2}$ $:=\psi^{-1}(x_{2}),$ $S_{3}’’$ the proper transform
of $S_{3}$ and $\pi_{S}:=\psi|_{S_{\dot{3}}}$ : $S’’arrow S_{3}$ the restriction of $\psi$ to $S_{3}’’$ . Then $\pi_{3}$ is the blowing-
up of $S_{3}$ at $x_{1}$ and $x_{2}$ with the exceptional divisors $L_{1}$ $:=\pi_{8}^{-1}(x_{1})=M_{1}\cap S_{3}’’$ and
$L_{2}:=\pi_{3}^{-1}(x_{2})=M_{2}\cap S_{3}’’$ . We have

$h^{0}(X’’, O_{X’}(m\psi^{*}f_{3}^{*}(K_{X})))=h^{0}(X’, O_{X’}(mf_{3}^{*}(K_{X})))$

$=h^{0}(X, O_{X}(mK_{X}))\geqq 14$ .
In fact, in case $K_{X}^{3}\leqq 4$, the inequality $\chi(O_{X})\leqq 0$ implies that
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$h^{0}(X, O_{X}(mK_{X}))\geqq h^{0}(X, O_{X}(4K_{X}))$

$\geqq(2\cdot 4-1)\{4(4-1)K_{X}^{3}/12\}\geqq 14$ .

In case $K_{X}^{3}\geqq 6$ , the inequality $\chi(O_{X})\leqq K_{X}^{3}/6$ implies that

$h^{0}(X, O_{X}(mK_{X}))\geqq h^{0}(X, O_{X}(4K_{X}))$

$\geqq(2\cdot 4-1)\{4(4-1)-2\}K_{X}^{3}/12\geqq 35$ .
Thus we have

$h^{0}(X’, O_{X}(m\psi^{*}f^{*}(K_{X})-2M_{1}-2M_{2}))\geqq 14-4-4=6$ ,
$i.e.$ ,

$H^{0}(X’’, O_{X’}(m\psi^{*}f_{3}^{*}(K_{X})-2M_{1}-2M_{2}))\neq 0$ .
Since

$O_{X’}(m\psi^{*}f_{3}^{*}(K_{X})-2M_{1}-2M_{2})|_{S_{3}’}$

$=\mathcal{O}_{S_{3}’}(m\pi^{*}(R_{3})-2L_{1}-2L_{2})$ ,

we obtain the natural restriction homomorphism

$H^{0}(X’’, O_{X’}(m\psi^{*}f^{*}(K_{X})-2M_{1}-2M_{2}))$

$arrow H^{0}(S_{3}’’, \mathcal{O}_{S_{3}’}(m\pi^{*}(R_{3})-2L_{1}-2L_{2}))$ .

We claim that this is not a zero homomorphism. Assume the contrary. Then
we have

$S_{3}^{\prime/}\subset$ Bs $|m\psi^{*}f_{3}^{*}(K_{X})-2M_{1}-2M_{2}|$ ,

which implies $h^{0}(X’’, O_{X’}(S_{s}’’))=1$ . On the other hand, we have

$h^{0}(X’’, O_{X’}(S_{3}’’))=h^{0}(X’’, O_{X’}(\psi^{*}g_{s}^{*}(H_{3})-M_{1}-M_{2}))$

$\geqq 5-1-1=3$ ,

which leads to a contradiction. This completes the proof of Claim 8.2.

Claim 8.1 and Claim 8.2 are contradictory to each other. Thus we complete
the proof in Case 1.

Case 2. We fix the notation as in Case 1. We can carry out the same
argument as in Case 1 uP to the proof of Claim 8.2, which we modify as follows.
In this case, we have $m=n-4=3$ . Since $\chi(O_{X})\neq 0$ or $K_{X}^{3}\neq 2$ , we have

$h^{0}(X’’, O_{X’}(3\psi^{*}f_{3}^{*}(K_{X})))=h^{0}(X’, O_{X’}(3f_{8}^{*}(K_{X})))$

$=h^{0}(X, O_{X}(3K_{X}))\geqq 10$ .
In fact, in case $K_{X}^{3}=2$, we have $\chi(O_{X})<0$, which implies

$h^{0}(X, O_{X}(3K_{X}))\geqq(2\cdot 3-1)\{3(3-1)K_{X}^{3}/12+1\}=10$ .
In case $K_{X}^{3}=4$ , we have $\chi(O_{X})\leqq 0$ , which implies
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$h^{0}(X, O_{X}(3K_{X}))\geqq(2\cdot 3-1)\{3(3-1)K_{X}^{3}/12\}=10$ .
In case $K_{X}^{3}\geqq 6$, the inequality $\chi(O_{X})\leqq K_{X}/6$ implies

$h^{0}(X, O_{X}(3K_{X}))\geqq(2\cdot 3-1)\{3(3-1)-2\}K_{X}^{3}/12\geqq 10$ .
Thus

$h^{0}(X’’, \mathcal{O}_{X’}(3\psi^{*}f_{3}^{*}(K_{X})-2M_{1}-2M_{2}))\geqq 10-4-4=2$ .
Moreover, we have

$h^{0}(X’’, O_{X}\cdot(S_{\theta}’’))=h^{0}(X’’, \mathcal{O}_{X}\cdot(\psi^{*}g_{3}^{*}(H)-M_{1}-M_{2}))$

$\geqq 10-1-1=8$ .
Therefore, it is sufficient to show that $R_{3}^{2}\geqq 2$ in order to apply Theorem 5.

CLAIM 8.3. $R_{3}^{2}\geqq 2$ .
Proof. We have a priori $R_{3}^{2}=f_{3}^{*}(K_{X})^{2}\cdot S_{3}\geqq 1$ . Assuming that $R_{3}^{2}=1$ , we shall

derive a contradiction. Multiplying 3 $K_{X}\sim N_{\}+Z_{3}$ by $K_{X}\cdot N_{3}$ , we have

$3K_{X}^{2}\cdot N_{3}=K_{X}\cdot N_{3}^{2}+K_{X}\cdot N_{S}\cdot Z_{3}$ .
Thus, noting that $K_{X}^{2}\cdot N_{3}=f_{3}^{*}(K_{X})^{2}\cdot S_{\}=R_{3}^{2}=1$ , we have $3=K_{X}\cdot N_{3}^{2}+K_{X}\cdot N_{3}\cdot Z_{3}$ .
Since $|S_{3}|$ is not composed of pencils, $f_{3}^{*}(K_{X})$ is nef and big, and since $S_{3}$ is nef,
we have

$K_{X}\cdot N_{3}^{2}=f_{3}^{*}(K_{X})\cdot f_{3}^{*}(N_{3})^{l}=f_{3}^{*}(K_{X})\cdot f_{S}^{*}(N_{3})\cdot S_{3}$

$=f_{3}^{*}(K_{X})\cdot S_{3}^{2}+f_{3}^{*}(K_{X})\cdot S_{3}\cdot E_{3}’\geqq 1$ .
Moreover, $K_{X}\cdot N_{3}^{2}$ is even by Proposition 3 (ii), and $K_{X}\cdot N_{3}\cdot Z_{l}\geqq 0$ because
$N_{3}\cdot Z_{3}\geqq 0$ as a l-cycle. Therefore we conclude that $K_{X}\cdot N_{3}^{2}=2$ and $K_{X}\cdot N_{3}\cdot Z_{3}$

$=1$ . Since $2=K_{X}\cdot N_{3}^{2}=f_{3}^{*}(K_{X})\cdot S_{s}^{2}+f_{s}^{*}(K_{X})\cdot S_{3}\cdot E_{3}’$ , $f_{3}^{*}(K_{X})\cdot S_{3}^{2}\geqq 1$ and since
$f_{3}^{*}(K_{X})\cdot S_{3}\cdot E_{3}’\geqq 0$, we have the following two cases:
(A) $f_{3}^{*}(K_{X})\cdot S_{3}^{2}=1$ and $f_{3}^{*}(K_{X})\cdot S_{3}\cdot E_{s}’=1$ , or
(B) $f_{3}^{*}(K_{X})\cdot S_{3}^{2}=2$ and $f^{*}(K_{X})\cdot S_{3}\cdot E’,=0$ .
We consider an exact sequence

$0arrow H^{0}(X’, O_{X’}(f_{3}^{*}(Z_{3})+E_{3}’))arrow H^{0}(X’, O_{X’}(3f_{s}^{*}(K_{X})))$

$\underline{r}>H^{0}(S_{3}, O_{S_{\theta}}(3R_{3}))$ .
Since $f_{3}^{*}(Z_{3})+E_{3}’$ is the fixed part of $|3f_{3}^{*}(K_{X})|$ , we have

$\dim_{C}({\rm Im} r)=P(3)-1\geqq 9$ .
Subcase: $\dim g_{3}(S_{3})=1$ . In this case,

$a_{3}:=g_{3}(S_{3})\cdot H_{3}\geqq P(3)-2\geqq 8$ ,
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but we have $D\equiv a_{3}F$, where $F$ is a general fiber of $g_{3}|_{S_{3}}$ and $D:=g_{3}^{*}(H_{3})|_{S_{3}}$ . Thus

$R_{3}\cdot D\geqq a_{3}\geqq 8$ .
On the other hand,

$R_{3}\cdot D=f_{3}^{*}(K_{X})\cdot S_{3}^{2}=1$ or $=2$

in the case (A) or (B), respectively. This is a contradiction.
Subcase: dim $g_{3}(S_{3})=2$ . In this case,

$D^{2}\geqq(H_{3}|_{g_{3}(S_{3})})^{2}\geqq P(3)-3\geqq 7$ .
When (A) holds, $R_{3}\cdot D=f_{3}^{*}(K_{X})\cdot S_{3}^{2}=1$ , which leads to $R_{3}\cdot(D-R_{3})=0$ . Thus we
have by Hodge’s index theorem

$(D-R_{3})^{2}=D^{2}-2R_{3}\cdot D+R_{3}^{2}\leqq 0$ ,

$i.e.$ , $D^{2}\leqq 1$ , which contradicts $D^{2}\geqq 7$ . When (B) holds, $R_{3}\cdot D=f_{3}^{*}(K_{X})\cdot S_{3}^{2}=2$,

which leads to $R_{3}\cdot(D-2R_{3})=0$ . Thus we have by Hodge’s index theorem

$(D-2R_{3})^{2}=D^{2}-4R_{3}\cdot D+4R^{2},\leqq 0$ ,

$i.e.,$ $D^{2}\leqq 4$, which contradicts $D^{2}\geqq 7$ .
This completes the proof of Claim 8.3, and thus the proof in Case 2.

Case 3. We take a birational morphism $f_{3}$ : $X’arrow X$ such that $g_{3}=\Phi_{|3K_{X}|}\circ f_{3}$

is a morphism. Moreover, we use the same notation as in Case 1 except that
$S_{\}$ denotes a general fiber of $g_{3}$ : $X’arrow W_{3}$ . Then $S_{S}$ is a nonsingular projective
surface of general type as claimed in Theorem 7 (ii) $\beta$ ).

Assuming that $\Phi_{1nK_{X}I}$ is not birational, we shall derive a contradiction.
Under the assumption above, $\psi_{m}$ $:=\Phi_{|K_{X’}+mf_{3}(K_{X})+g_{\dot{3}}(H_{3})|}$ is not birational as in
Case 1.

CLAIM 8.4. $\psi_{m}|_{S_{3}}$ is not birational.
Proof. Let $(s_{i})_{l\in I}$ be a base of the C-vector space $H^{0}(X’, O_{X’}(g_{3}^{*}(H_{3})))$ . Then

$t_{0}\cdot s_{i}\in H^{0}(X’, O_{X’}(K_{X’}+mf_{3}^{*}(K_{X})+E_{3}))$

and the $t_{0}\cdot s_{i}$ are linearly independent over $C$ . We take $D_{0},$ $t_{0}$ and $U$ as in Case
1. For an arbitrary point $x\in S_{3}\cap U$, there exists $y\in U$ distinct from $x$ such that
$\psi_{m}(x)=\psi_{m}(y)$ . Thus there exists $a\in C^{*}$ such that $t_{0}(x)s_{i}(x)=a\cdot t_{0}(y)s_{i}(y)$ . By
hypothesis, we have $D_{0}\cap U=\emptyset$ , which implies $t_{0}(y)\neq 0$ . Since $g_{3}=\Phi_{1g_{\dot{3}}(H_{3})1}$ , we
have $g(x)=g(y)$ , I. $e.,$ $y\in g^{arrow 1}g(x)=S_{3}$ . Thus $\psi_{m}|_{S_{3}}$ is not birational.

Let $\pi_{3}$ ; $S_{3}arrow S_{3.0}$ be the morphism onto the minimal model $S_{3.0}$ with the
canonical divisor $K_{3.0}$ as in Theorem 7 (ii) $\beta$ ). Since

$\mathcal{O}_{S_{3}}(\pi_{3}^{*}(K_{3.0}))\cong O_{S_{3}}(f_{3}^{*}(K_{X})|_{S_{3}})$ and $O_{X’}(g_{3}^{*}(H_{3}))|_{S_{3}}\cong \mathcal{O}_{X’}(S_{3})|_{S_{3}}\cong O_{S_{3}}$ ,
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we have an exact sequence

$0arrow O_{X’}(K_{X’}+mf_{\epsilon}^{*}(K_{X})+g_{3}^{*}(H_{3})-S_{3})$

$arrow O_{X’}(K_{X’}+mf^{*}(K_{X})+g_{s}^{*}(H_{3}))$

$arrow O_{S_{3}}(K_{S_{3}}+m\pi^{*}(K_{3.0}))arrow 0$ .
Moreover, since $mf_{3}^{*}(K_{X})+g_{3}^{*}(H_{3})-S_{3}$ is nef and big, Proposition 1 gives

$H^{1}(X’, O_{X’}(K_{X’}+mf_{s}^{*}(K_{X})+g_{3}^{*}(H_{\})-S_{a}))=0$ .
Thus the homomorphism

$H^{0}(X’, O_{X’}(K_{X’}+mf_{3}^{*}(K_{X})+g_{3}^{*}(H_{3})))-H^{0}(S_{s}, O_{S_{8}}(K_{S_{3}}+m\pi_{3}^{*}(K_{3.0})))$

is surjective, which implies

$\psi_{m}|_{S_{3}}=\Phi_{1K_{S_{3}}+m\pi_{\dot{8}}(K_{3\cdot 0})1}=\Phi_{|(m+1)K_{S_{3}}|}$ .
But since $m+1=n-3\geqq 5,$ $\Phi_{1(m+1)K_{S_{3}^{1}}}$ is birational by Corollary 6. Thus we come
to a contradiction. This completes the proof in Case 3.

Case 4. We consider the following diagram:

where $f_{3}$ is a succession of blowing-ups with nonsingular centers such that
$g_{3}$ $:=\Phi_{13K_{X}I^{\circ}}f_{3}$ and $g_{m}$ $:=\Phi_{|mK_{X}\}}\circ f_{3}$ are morphisms, and $g_{\theta}=s_{3}\circ h_{3}$ is the Stein
factorization. Let $S_{s}$ be a general fiber of $h_{3},$ $H_{3}$ a hyperplane section of $W_{s}$ in
$P^{P(3)- 1},$ $H_{m}$ a hyperplane section of $W_{m}$ in $P^{P(m)1}\vee$ , and let $S_{m}$ be a general
member of $|g_{m}^{*}(H_{m})|$ . We set

$a_{3}$ $;=\deg_{W_{8}}(H_{3})$ , $b_{@}$ $:=\deg(s_{3})$ and $c_{3}$ $:=f_{3}^{*}(K_{X})^{2}\cdot S_{3}$ .

We put $3K_{X}\sim N_{3}+Z_{3}$ where $Z_{3}$ is the fixed part of $|3K_{X}|,$ $f_{3}^{*}(N_{3})\sim h_{3}^{*}s_{3}^{*}(H_{3})+E_{3}’$ ,

and $K_{X’}\sim f_{3}^{*}(K_{X})+E_{3}$ , where $E_{3}$ is the ramification divisor for $f_{3}$ and $E_{3}’$ is an
exceptional divisor for $f_{3}$ . Then $h_{3}^{*}s_{3}^{*}(H_{3})\equiv a_{3}b_{3}S_{3}$ . $7^{\tau}hus$

$f_{3}^{*}(3K_{X})\equiv a_{3}b_{3}S_{3}+E_{3}’+f_{3}^{*}(Z_{8})$ .
Multiplying this by $f_{3}^{*}(K_{X})^{2}$ , we have $3K_{X}^{3}\geqq a_{8}b_{3}c_{3}$ . Since $b_{3}c_{3}=2$ as in Theorem
7 (ii) $\alpha$ ), $a_{3}\geqq P(3)-1=(2\cdot 3-1)\{3(3-1)K_{X}^{3}/12-\chi(O_{X})\}-1=9$ , and since $K_{X}^{3}=6$ ,

we have $a_{s}=9$ . Therefore

$f_{3}^{*}(3K_{X})\equiv 18S_{3}(or9S_{3})+E_{3}’+f_{3}^{*}(Z_{3})$ .
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Assuming that $\Phi_{|nK_{X}|}$ is not birational, we shall derive a contradiction.
Since $m;=n-4\geqq 4$, Theorem 7 (i) implies that $|mK_{X}|$ is not composed of pencils.
Thus $S_{m}$ is a nonsingular projective surface. We set

$\psi_{m}$ $:=\Phi_{1K_{X}\prime+3f_{\dot{3}}(K_{X})+S_{m^{1}}}$ .
Since

$K_{X’}+(m+3)f_{3}^{*}(K_{X})\sim K_{X’}+3f_{3}^{*}(K_{X})+S_{m}+Z_{m}$

where $Z_{m}$ is the fixed part of $|mf^{*}(K_{X})|,$ $\psi_{m}$ is not birational.

CLAIM 8.5. $\psi_{m}|_{S_{m}}$ is not birational.
Proof. This can be done as in the former cases.

We have an exact sequence

$0arrow O_{X’}(K_{X’}+3f_{3}^{*}(K_{X}))arrow \mathcal{O}_{X’}(K_{X’}+3f_{3}^{*}(K_{X})+S_{m})$

$arrow O_{s_{m}}(K_{m}+3R_{m})arrow 0$ ,

where $K_{m}$ is the canonical divisor of $S_{m}$ and $R_{m}$ $:=f_{3}^{*}(K_{X})|_{S_{m}}$ . Proposition 1 gives

$H^{1}(X’, O_{X’}(K_{X’}+3f_{3}^{*}(K_{X})))=0$ .
Thus the homomorphism

$H^{0}(X’, O_{X’}(K_{X’}+3f_{3}^{*}(K_{X})+S_{m}))arrow H^{0}(S_{m}, O_{s_{m}}(K_{m}+3R_{m}))$

is surjective, which implies $\psi_{m}|_{S_{m}}=\Phi_{1K_{m}+3R_{m^{1}}}$ .

CLAIM 8.6. For a general member $S_{m}$ , we get $h^{0}(S_{m}, O_{s_{m}}(3R_{m}))\geqq 10$ and $R_{m}^{2}$

$\geqq 3$ . Thus aPplying Theorem 5, we obtain that $\Phi_{|K_{m}+3R_{m}|}$ is birational.
Proof. Since $S_{m}|$ is not composed of pencils, we have $h_{3}(S_{m})=W_{3}’$ . More-

over, $S_{m}$ and $S_{\theta}$ are nef. Combining these together, we obtain that $f_{3}^{*}(K_{X})\cdot S_{m}\cdot S_{3}$

$\geqq 1$ . Restricting the numerical equivalence $f_{3}^{*}(3K_{X})\equiv 18S_{3}(or9S_{3})+E’,+f_{3}^{*}(Z_{s})$ to
$S_{m}$ , we have

$3R_{m}\equiv 18S_{3}|_{S_{m}}(or9S_{3}|_{S_{m}})+E_{3}’|_{S_{m}}+f_{3}^{*}(Z_{3})|_{S_{m}}$ .

We may assume that $E_{3}’|_{S_{m}}$ and $f_{3}^{*}(Z_{3})|_{S_{m}}$ are effective, since $S_{m}$ is a general
member. Thus multiplying the above by $R_{m}$ , we have $3R_{m}^{2}\geqq 18$ or 9. Thus
$R_{m}^{2}\geqq 3$ . We have an exact sequence

$0arrow O_{X’}(3f_{3}^{*}(K_{X})-S_{m})arrow O_{X’}(3f_{3}^{*}(K_{X}))arrow \mathcal{O}_{s_{m}}(3R_{m})arrow 0$ ,

which leads to the long exact cohomology sequence

$0arrow H^{0}(X’, O_{X’}(3f_{3}^{*}(K_{X})-S_{m}))arrow H^{0}(X’, O_{X’}(3f_{3}^{*}(K_{X})))$

$arrow H^{0}(S_{m}, O_{S_{m}}(3R_{m}))$ .
Since $|3f_{3}^{*}(K_{X})|$ is composed of pencils in Case 4, and since $|S_{m}|$ is not composed
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of pencils, we have
$H^{0}(X’, O_{X’}(3f_{3}^{*}(K_{X})-S_{m}))=0$ .

Thus the homomorphism

$H^{0}(X’, O_{X’}(3f_{3}^{*}(K_{X})))arrow H^{0}(S_{m}, \mathcal{O}_{s_{m}}(3R_{m}))$

is injective. Furthermore

$h^{0}(X’, O_{X’}(3f_{s}^{*}(K_{X})))=h^{0}(X, O_{X}(3K_{X}))$

$=(2\cdot 3-1)\{3(3-1)K_{X}^{3}/12-\chi(\mathcal{O}_{X})\}---10$ .

Thus $h^{0}(S_{m}, O_{s_{m}}(3R_{m}))\geqq 10$ .

Claim 8.5 and Claim 8.6 are contradictory to each other. Thus we finish
the proof in Case 4, which completes the proof of the main theorem.

COROLLARY 9. We fix the situation as in Theorem 8. Assume further that
$\chi(O_{X})<0$. Then $\Phi_{|nK_{X}|}$ is birational for $n\geqq 7$ .

REMARK. When $K_{X}$ is ample, we have the inequality $\chi(O_{X})\leqq-K_{X}^{3}/64<0$

(cf. Yau [13]).

PROOF OF COROLLARY 9. When dim $W_{3}\geqq 2$, we know that $\Phi_{InK_{X}1}$ is birational
for $n\geqq 7$ as in Case 1 and Case 2 of the proof of Theorem 8, noting that our
assumption $\chi(O_{X})<0$ implies the condition $\chi(O_{X})\neq 0$ of Case 2.

When dim $W_{3}=1$ , we have the two cases a) and $\beta$ ) as in Theorem 7. The
case a) does not occur because the derived condition of this case that $\chi(O_{X})=1$

and $K_{X}^{3}=6$ contradicts the assumption $\chi(O_{X})<0$.
Therefore the remaining case to be considered is the one with dim $W_{8}=1$

and $\beta$ ) as described in Theorem 7. Since dim $W_{3}=1$ and $b_{3}c_{3}=1$ , putting $n=3$

in the following formula stated in the first part of the proof of Theorem 7,

$(2n-1)\{n(n-1)K_{X}^{3}/12-\chi(\mathcal{O}_{X})\}-nK_{X}^{3}/b_{n}c_{n}\leqq 1$ ,

we obtain that
$-2-10\chi(\mathcal{O}_{X})\leqq K_{X}^{3}$ .

Case: dim $W_{2}\geqq 2$ . We use the same notation and argument as in Case 1 of
the proof of Theorem 8, replacing the number 3 there by the number 2 here
and letting $m:=n-3$ in this case. We shall derive a contradiction assuming
that $\Phi_{1nK_{X}I}$ is not birational. Under this assumptim $\psi_{m}$ is not birational and we
can show that $\psi_{m}|_{S_{2}}$ is not birational as in Claim 8.1. Since

$0arrow O_{X’}(K_{X’}+mf_{2}^{*}(K_{X}))arrow O_{X’}(K_{X’}+mf_{2}^{*}(K_{X})+S_{l})$

$arrow O_{S_{2}}(K_{S_{2}}+mR_{2})arrow 0$

is exact and
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$H^{1}(X’, O_{X’}(K_{X’}+mf_{2}^{*}(K_{X})))=0$

by Proposition 1, we have $\psi_{m}|_{S_{2}}=\Phi_{1K_{S_{2}}+mR_{2}\mathfrak{l}}$ . Therefore it is sufficient to show
that $\Phi_{1K_{S_{2}+mR_{2}1}}$ is birational as in Claim 8.2. Since in: $=n-3\geqq 4$ ,

$h^{0}(X’, O_{X’}(n\psi^{*}f_{2}^{*}(K_{X})))\geqq 14$ .
Since $8\leqq-2-10\chi(O_{X})\leqq K_{X}^{3}$ ,

$h^{0}(X’’, \mathcal{O}_{X}(S_{2}’’))=h^{0}(X^{\parallel}, O_{X}\cdot(\psi^{*}g_{2}^{*}(H_{2})-.1I_{1}-ff_{2}))$

$\geqq h^{0}(X, O_{X}(2K_{X}))-1-1$

$\geqq(2\cdot 2-1)\{2(2-1)8/12+1\}-1-1=5$ .

The remaining part of the argument is just the same as in Claim 8.2, and we
are done.

Case: dim $W_{2}=1$ . We use the notation as in the first part of the proof of
Theorem 7. Putting $n=2$ in the formula

$(2n-1)\{n(n-1)K_{X}^{3}/12-\chi(\mathcal{O}_{X})\}-nK_{X}^{3}/b_{n}c_{n}\leqq 1$ ,

we obtain
$(1-4/b_{2}c_{2})K_{X}^{3}/2-3\chi(O_{X})\leqq 1$ ,

which implies $b_{2}c_{2}\leqq 3$ since $\chi(O_{X})<0$ .

CLAIM 9.1. $S_{2}$ is a nonsingular projective surface of general type, and thus
letting $\pi_{2}$ : $S_{2}arrow S_{2,0}$ be the morphjsm onto the mmmmal model $S_{2,0}$ of $S_{2}$ ,

$O_{S_{2}}(\pi_{2}^{*}(K_{2.0}))=O_{S_{2}}(f_{2}^{*}(K_{X})|_{S_{2}})$

where $K_{2.0}$ is the canonical divisor of $S_{2.0}$ .
Proof. We apply the argument of the proof of the latter part of $\beta$ ) in

Theorem 7 replacing the number 3 there by the number 2 here. We will name
the corresponding formulas with the same numbers. We obtain

$2c_{2}\geqq a_{2}b_{2}K_{X}\cdot F_{2}^{2}$ (3)

and
$a_{2}\geqq P(2)-1\geqq 3$ .

Since
$K_{X}\cdot F_{2}^{2}\geqq 0$ (5)

and $K_{X}\cdot F_{2}^{2}$ is even by Proposition 3 (ii), we have

$K_{X}\cdot F_{2}^{2}=0$ . (6)

The remaining argument goes without any changes and we finally have the
result that

$S_{2}\cdot E_{2}$ . $\cdot f_{2}^{*}(K_{X})=0$ for any $i\in I_{2}$ .
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Therefore with the formula

$K_{S_{2}}\sim R_{2}+G_{2}\sim\pi_{2}^{*}(K_{2,0})+L_{2}$ ,

the uniqueness of the Zariski decomposition implies $R_{2}\sim\pi_{2}^{*}(K_{2.0}),$ $i.e.$ ,

$O_{S_{2}}(\pi_{2}^{*}(K_{2,0}))=O_{S_{2}}(f_{2}^{*}(K_{X})|_{S_{2}})$ .

This completes the proof of Claim 9.1.

Now we back to the proof of Corollary 9. Note that if $H_{?}$ is a general
hyperplane section, $g_{2}^{*}(H_{2})$ is a disjoint union of $S_{2.j}’ s(1\leqq j\leqq a_{2}b_{2})$ , each of which
is of the same kind as $S_{\underline{o}}$ in Claim 9.1. We use the notations $R_{2.j},$ $\pi_{2.j}$ and
$K_{2,0,j}$ for $S_{arrow}j$ to signify $R_{arrow}$

) $\pi_{2}$ and $K_{2,0}$ for $S_{2}$ . Since

$0arrow O_{X’}(K_{X’}+mf_{2}^{*}(K_{X}))$

$arrow o_{X’}(K_{X’}+mf_{2}^{*}(K_{X})+g_{2}^{*}(H_{2}))$

$arrow\oplus_{j\Rightarrow 1}^{a_{2}b_{2}}o_{s_{2\cdot j}}(K_{2,j}+mR_{2j})arrow 0$

is exact, and since Proposition 1 gives

$H^{1}(X’, O_{X’}(K_{X’}+mf_{2}^{*}(K_{X})))=0$ ,

we have that
$H^{0}(X^{f}, O_{X’}(K_{X’}+mf_{2}^{*}(K_{X})+g_{2}^{*}(H_{2})))$

$arrow\oplus_{j=1}^{a_{2}b_{2}}H^{0}(S_{2,j}, O_{S_{2j}}.(K_{S_{2j}}.+mR_{2,j}))$

is surjective. This means that $\Phi_{1K_{X}’+mf_{\dot{2}}(K_{X})+g_{2}^{*}(H_{2},1}$ separates the fibers of $g_{2}$

and the components on a fiber at least on some nonempty Zariski open subset of
$X’$ . Furthermore,

$\Phi_{1K_{S_{2}}+mR_{2\cdot j^{1}}}=\Phi_{|(m+1)K_{S_{2\cdot j}}|}$

since $R_{2,j}=\pi_{2.j}^{*}(K_{2,0,j})$ by Claim 9.1. Since $m:=n-3\geqq 4$, $\Phi_{|(m+1)K_{S_{2\cdot j}}|}$ is bira-
tional by Corollary 6. Thus $\Phi_{|K_{X}’+mf_{2}^{*}(K_{X})+g_{\dot{2}}(H_{2})1}$ restricted to $S_{2.j}$ is birational,
which altogether with the consideration above implies $\Phi_{1nK_{X}\mathfrak{l}}$ is birational for
$n\geqq 7$ . This completes the proof of Corollary 9.

REMARKS. (i) There is a conjecture that $\chi(O_{X})<0$ under the assumption
about $X$ in Theorem 8 (cf. Miyaoka [9]). Once this is established, with Corollary
9 we can get the result that $\Phi_{|nK_{X}|}$ is birational for $n\geqq 7$ under the situation
of Main Theorem.

(ii) When $X$ has only terminal singularities, and when $X$ is Gorenstein and
Q-factorial, we can carry out the same argument as above taking some special
resolution $f:X’arrow X$ as in Corollary (2.12) of M. Reid [11].
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