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Introduction.

The tightness criterion by Kolmogorov-Chentsov (Chentsov [2]) plays an im-
portant role in various limit theorems of stochastic processes with discontinuities
of at most the first kind. The criterion is stated as follows: A sequence of
stochastic processes X7, t=[0, T], n=1, 2, ---, right continuous with the left
hand limits is tight if there are positive constants K, y and a not depending on
n such that

E[|Xp— X3 X8 — X2 ]S Klt,—t",  0SH<t<L,=T,
E[Xp]<K, O0=t<T.

In this paper, we shall give analogous tightness criteria for sequences of
stochastic processes X7, n=1, 2, ---, taking values in C=C(R%; R%) and D=
D([0, T]; C) with discontinuities of at most the first kind. Here C is the space
of continuous maps from R¢ into itself and D is the set of all maps from [0, T']
into C, right continuous with the left hand limits. A main object of considering
such processes is to obtain tightness criteria for sequences of stochastic flows,
which will be discussed in the latter half of this paper.

In case that X7 are C-valued processes, X?(x), x =R% can be regarded as a
continuous random field with values in R¢ if ¢ is fixed. Then Kolmogorov-
Prohorov’s tightness criterion for continuous random field is applicable: There
are positive constants K, y and 8 not depending on 7 such that

E[X¢0)—XEDI]sKlx—y|*+?,
E[IX}(x)|"]=K.

See Totoki [9]. However, since we consider X?(x) as random fields with two
parameters ¢ and x, the tightness criterion should be given in the mixed form
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of the above two criteria. OQur criterion is in fact related to Chentsov [3].

In Section 1, we discuss the tightness of C-valued processes, right continuous
with the left hand limits. Since their laws are given as probability measures
in D=D(0, T];C), the criterion will be given to a sequence of probability
measures in D. (Theorem 1.I). In Section 2, we discuss the tightness of D-
valued processes, right continuous with the left hand limits. The criterion will
be given to a sequence of probability measures in D([0, T]; D).

In the latter half of the paper, we shall apply these criteria to obtain a
tightness condition for Lévy processes with values in C. The criterion is stated
in terms of the means, covariances and characteristic measures of the Lévy
processes, called the characteristics of the processes. (Theorem 3.1). We then
discuss the tightness of stochastic flows generated by C-valued Lévy processes.
Let X, be a C-valued Lévy process with some additional regularity conditions.
We consider the stochastic differential equation of the jump type d&é,=dX,(&,.).
The solution defines a stochastic flow or a G,-valued Lévy process, where G,
is the semi-group consisting of continuous maps. See Fujiwara-Kunita [5].
Tightness condition of stochastic flows is given in terms of the characteristics
of their generators. (Theorems 4.1 and 4.3).

The convergence problem of stochastic flows will be discussed in a separate

paper. [10].

1. Tightness of C-valued processes.

Let C=C(R%; R%) be the totality of continuous maps from d-dimensional
Euclidean space R? into itself. It is a Fréchet space by the compact uniform
metric p. Let D=D([0, T]; C) be the totality of maps X; [0, T]>C(R%; R?)
such that X,=X(¢) is right continuous with the left hand limits with respect to
the metric p and X;=lim,,r X,, where T is a fixed positive integer. For X, YV
of D, we define the Skorohod metric 8 by

s(X, Y)=inf sup {o(X;, Yi)+|At)—1l},

€H te[o, T]

where H is the set of all homeomorphisms on [0, T7]. Then D is a complete
separable space with respect to a metric equivalent to s. We denote by 8, the
topological Borel field of D.

Suppose we are given a sequence of probability measures {P,, n=1, 2, ---}
on (D, Bp). It is called tight if for any >0, there is a compact subset A of
D such that P,(A)>1—y holds for all n. The object of this section is to give
a tightness criterion, which is a combination of the well known Kolmogorov-
Prohorov’s tightness criterion for continuous processes or Totoki’s theorem for
continuous random fields ([9]) and Kolmogorov-Chentsov’s criterion for discon-
tinuous processes ([2].
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For each ¢, X,(x) denotes the value of the map X,=C at the point xR
The following notations will be used.

A(tl,tZ)X(x)=Xt2(x)—Xt1(x); A(x, y)Xc:Xz(J’)—Xz(x>y
A(tl,cz), (z, y)X:Aul, zzan(y)“A(cl, tg)X(x)'

THEOREM 1.1. Let {P,} be a sequence of probability measures on (D, Bp).
Suppose that for each hypercube I with the center 0 there are positive constants
K, a, B, v with y=1 and a positive non-decreasing function (1), t>0 with
lim,,,&(t)=0 such that

1.1 Eullday.o. @ X i, o,y XI7]
SK[t,—t || x—y|¢tB|x —y'|2*8, x, ¥, ', y'el, t,<t<t,,

(1-2) En[IA(c,,t).(x,y)XmA(z.zz)X(O)V]§Klt2“‘t1!1+a|x—y|d+ﬁ,

x, yel, t,<tlti, or x, y&l, t,<t<t,,
(1.3) E 4, o XO|| X (2, 1) XO)NTTZ Kt 14|14, 1, <t<t,,
(1.4) E [ X(x)—XI=K|x—y|**F,  x,yel, t=0,T,
(1'5) En[lXt(O)lr]éKr t=0y Tr
(1.6) En[ldm,s),(z,y)XV"f‘]A(T-a,T).(x.y)X|q§5(5)|x—y|d+ﬁ,

E[1d0,6XO0)"+14 -5 X(0)|"]1=(0)
hold for all n, where E, denotes the expectation based on P,. Then {Py} is tight.

Before we proceed to the proof of the theorem, we shall give a rather
abstract and intermediate criterion of the tightness. The following notations
will be used in the statements:

Il r=sup I(x)I, II¢II9=$§ggI lo(x)—a(),

where [ is a hypercube. The inequality ¢l ;=l@lj+|4(0)| holds if 0 is the
center of I.

PrROPOSITION 1.1. Let {P,} be a sequence of probability measures on (D, Bp).
Suppose that for each hypercube I with the center 0, there are positive constants
K, a, B8, v and a positive non-decreasing function e(t), t>0 with lim,,,(t)=0 such
that

(L7 E.[{IX—= X 11 X, — Xl IS Klt—t,  6<t<t,
(1.8) En[sgple<x)—Xz(y>lf]éKIX~yl‘“", x, y&I,
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(1.9) Eafsup | X0 ]=K,
(1.10) En["A(o,J)X“;‘f‘”A(T—ﬁ,T)X”;]§5(5)
hold for all n. Then {P,} is tight.

For the proof of the above proposition, it is convenient to characterize a
relatively compact subset of D. For each hypercube I and positive number 4,
we define the modulus of the continuity of XD as

wi(X; )=sup | X;, — Xell /A1 X — X, |l

where the supremum extends over all ¢,, ¢, ¢, such that ¢, <¢t<t, and t{,—¢,<ad.
Also, we put
w(X; [z, e])= sup ”XtZ‘XLl“I-
ty, to€lT, 0]

LEMMA 1.1. A subset A of D is relatively compact if the following two con-
ditions are satisfied.
(a) There is a compact subset K of C such that X,=K holds for all XE A,
(b) For any hypercube I,

lim sup w?(X; 0)=0,

00 Xe€Ad

lim supw ;(X; [0, 6])=0,

0~0 XA

limsupw,;(X; [T—0o, T])=0.

0-0 Xc4

The lemma can be proved by modifying the appropriate theorem in Bil-
lingsley [1]. It is omitted. Now, in the proof of Proposition 1.1, Garsia’s in-
equality giving a priori estimate for modulus of continuity of functions plays an
important role. We shall give its special form.

LEMMA 1.2. Let ¢(x) be a continuous map from the hypercube I of R® into
R¢. Then for any >0 and £>2d

19E)—d(II" Ur

S — (-2d)/r

L) IBW—g0NI< gy li—o1 o] | PE=E M azaz)
PROOF. Garsia’s lemma [6] is stated as follows: Let p and @ be con-

tinuous, strlctly increasing functions on [0, o0) such that p(0)=@(0)=0 and

lim; 1. @(t)=00. Suppose

[, o(BE ey

where ¢(/) denotes the common length of the edge of the hypercube. Then

p—g1 =8| " 0 (- Yapt.
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Now set @(t)=t" and p(t)=t*7. Then

[, 2 i | 9 iy

and

Siz—yl (p—l(;Bé?)p(du)§(K_x2d

0

)lx___yl(/c--2cl)/rBl/r‘Y
so that (1.11) follows.

PrROOF OF PROPOSITION 1.1. What we have to show is that given a positive
7 there is a subset A of D satisfying (a), (b) and P,(A)>1—y for all n. First
we shall construct a subset B=B(y) satisfying (a) and P,(B)>1—y/2 for all n.
Define the modulus of continuity of ¢<=C(I; R%) by
wig;0)=_ _sup _ |¢(x)—g()l.

By Garsia’s inequality (1.11),

I sup; | X, (x)—X.(»)]"
A< k-2d
supw (X;; 0 =Cid ul T

By the expected values of the above double integral with respect to P,

dxdy.

n=1,2, - are all dominated by the same finite number KSISII’”_ yl+E-2dxdy
if k=(2d, 2d+B). Therefore we have
En[Sltlp w (X, ; 0 ]=C,y0°2¢

for all n. Now let » and { be arbitrary positive numbers. Then Chebischev’s
inequality yields that there is d=4({, ) such that

(1.12) Pulsup w (X, ; agc]g%, n=1.
By the similar consideration, we obtain from [1.8]
E.[(sup | XI9T1=Cs, izl
The above and imply
Eufsup | X7 ]=Cy,  nzl.
Consequently, there is a positive constant a such that

(1.13) : Pulsup|| Xl ; za]si n=>1.

The above two inequalities Rl 12) and (1.13) lead to P.(B ,(C p)=1—n/2 for all
n, where

B¢, n)={XeD ; sgpr(Xn;BKC, Slngthlz<a}.
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Let I,, =1, 2, --- be a sequence of hypercubes with the center 0 and the length
l. Set

Then P,(B(5))>1—%/2 for all n. Consider now a subset of C:
K& n)=1{oeC ; wi(d; <L, lol:<al}

and set

K= (Ko gk

m 2m+l

By Ascoli-Arzela’s theorem, K(7) is relatively compact in C. Since X,eK(yp)
holds for all ¢t if X€B(y), the condition (a) is fulfilled.

We shall next construct a subset C=C(y) of D satisfying (b) and P,(B)>
1—x/2 for all n. For any {>0, there is d=0({, ) such that

Plwf(X; B)gcjé_z_

holds for all n by [I.7). See Billingsley [1], Theorem 15.6 and its proof. Also
by there is 6>0 such that

Pl Xo— Xl /=€ or uXT—XT-su,gCJg% n=1.

Let 6 be the minimum of the above two 4’s. Then the set
Ci€, mM={XeD ; wi{(X; )< 1Xs—Xoll 1<, | Xr—Xr-5: <}

satisfies Pn(C;(, 9))>1—x/2. Note that w7(X;0)<{ and [X;—X,|;<{ implies
| Xs—Xoll 1 <2 for any s in [0, 6] and hence w,;(X; [0, 6])<4{. Similarly it holds
wi(X; [T—0, T)<4 if XeCy(§, ). Consequently, the set

®© o 1
Cip= Q "Q Clz(m 2n?+l

satisfies the condition (b). The inequality P,(C(5))=1—%/2 holds for all n.
Now the set A(y)=B(n)NC(n) satisfies conditions (a) and (b) and P,(A(%))=
1— for all n. This proves the proposition.

We can now complete the proof of

PROOF OF THEOREM l.1. It is enough to prove (1.7)-(1.10) of [Proposition 1.1
We first consider By Garsia’s inequality,

4 2 X7
MaoXisc |, el gy,

The same inequality is valid to |4, X|}. Therefore yields
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Enl{lde,, o X214 00 X1517]

<C2§ S S S En[l‘l_’g;ig,(z.y)XITIA(t.tg),(i(,y')Xlrldxd dx’dv’
=) 1)i1): [x—y|Flx"—y'|* Y Y

éC%Kltz—tll““S,S,glgl |x =yl F 5 x" =y’ |4+ E-*dxdydx'dy’

écsltz_tlll+a-

315

The above 4-ple integral is finite if we choose « from (2d, 2d+8). Apply the

similar argument to (1.2) Then we have
E.[{lde, o X4, ip XON TS Colta—t, ]+, 1, <t<t, or t,<t<t;.
These two inequalities and imply [(L.7)

For the proof of [(1.8), we will make use of a real variable lemma due to
Kéno [7]. Let O=t{™ <t{™ < .- <t{m=T be a partition of [0, T] such that
tim=k2-™"T, For an R%-valued function f(¢), t<[0, T] right continuous with

the left hand limits, set

Om, o (f)=min{| ftR)— ft], | [Crs)— DI}
where t,=t{™ and t,=(t,+1tr+,)/2, and

Z’m(f): max 5mk(f)

0sksem-1

Then for any positive integers p and [,
(27 )= FOIALF(p27T) = f(DIIS 3 A ).

See Lemma 3 and its proof in [7]. This implies in particular

supl SO 3 In(HHIFQOI+ISD.
Now, setting f(t)=4(s,,,X: and taking L7-norm, we have

(L.14) Ealsup | Xu(x)— X ()IT ]

=< "élEnEZm(A(z. XV +E[1d iz, Xl 1T+ E R[4z, Xp|F 17

Note that
6m. k(A(z. y)X)é IA(J:. y)Xt;,—A(x. y)Xt'kll/2|A(z. y)th.H—A(z, y)Xt'],lllzx
and

- gm-1
Am(A(z. V)X)zré k2=0 5m, k(A(z.y)X)zr.
Then we have by
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_ om~1
E'n[Am(A(z y)X)eré k2=0 En[am k(Aw, y)X)ZT]

éZ1ﬂK(2—mT)l+alx__yIZ(d+,3)
éKT(le)lx_vIz(dﬂS)z-m«.
Therefore by Schwarz’s inequality,

—a/ep)
2

S Enldn(deep XY= (KT 0+)0 gy,

= 1_9-alp

Substitute this and to (1.14). Then we obtain [1.8). Inequality [1.9) can be
shown similarly using and [(1.5) The property follows from

immediately, using Garsia’s inequality. The proof is complete.

As an application of [Theorem 1.1, we shall give a criterion of the existence
of the right continuous C-valued process with the left hand limits.

THEOREM 1.2. Let X, (x), 0=Zt<T, x=R? be an R%valued random field.
Suppose that for any hypercube I of R®, there are positive constants K, a, B, 1
with y=1 satisfying these properties:

(115) E[IA(tl,t),(x‘,y)XV‘A(t.tg).(z"y’)XIT.-J
éKltZ—“tl‘1+a]x_y|d+ﬁlx,—y/[d+ﬁr x: y: x/x y,elr t1<t<t2,

(1.16) Ellday . @ pXM e, XO IS Klt,— 4] x—y[¢+2,

x, yel, t,<t<t, or x, yel, L<t<t,
(1.17) Elldq, o XO) X, i(p XOW IS K[t —t,|" 7, L<t<t,,
(1.18) E[lX(x)—XI=Klx—yl**?,  x,yel, t=0,T,
(1.19) E[XO]=K, t=0, T,
(1.20) 511‘31 ET|d, 46 X(x)]7]=0, xel, 0=t=T.

Then there is a right continuous C-valued process )?l(x) such that )?t(x):X,(x)
holds a.s. P for any x and t.

PrROOF. Let 0,={(j/2")T; j=1, 2, ---, 2"} be a sequence of the partitions of
[0, T]. By (1.15)-(1.18), there is a constant K’ such that

Elsup | X, (x)— X, (M=K |x—y|9*F,  x, yel,
tdp

Elsup | X (0)]" 1=K’

tedy,

hold for all n, The proof can be carried- out similarly ‘as in the ‘proof of
Theorem 1.1. Then by Totoki’s theorem [9], X,, t€d, may be regarded as a

C-valued process with the discrete parameter. For each n, we define a right
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continuous C-valued process X? by setting X(j.nyr if t<[(j/2"T, (7+1)/2MT),
7=0,1,2, ---. Let P, be the law of X} defined on (D, 8p,). We shall prove
that the sequence {P,} is tight, assuming temporally that there is §,>0 satisfying

(1.21) P(Xs(x)=X,(x) and Xr_s(x)=Xr(x))=1, x€R? 0=0=0,.

The argument below is close to that of and Proposition 1.1. Ob-
viously, the law P, satisfies (1.1)-(1.6) if we restrict ¢ and J to the points of J,.
Then we can prove similarly as in the proof of [Theorem 1.1l and [Proposition 1.1}
that for any >0, {>0 there are >0, a>0 such that P(BZ{, n))>1—»/4 holds
for all n, where B}, 7) is the set of all w satisfying the following two con-
ditions '

supw(X¢;0)<C,  supl|lX?[;<a.

Also, there is d<[0, d,] such that P(CF(, 5))>1—%/4 holds for all n, where
C?(&, n) is the set of all w satisfying

wi(X"; <, I1XF—-X0:<C, XXl <C.

These two properties conclude that {P,} is tight as before. Now let P. be any
limit point of {P,}. Restricting the time parameter to the countable dense subset
\Ur0s, the finite dimensional distribution of P.. coincides with that of the proc-
ess X;(x) with respect to P. Since X,(x) is right continuous in ¢ in propability
by any finite dimensional distribution of P. coincides with that of X,(x).
Therefore P. is the law of (X, P). This implies in particular that for almost
all o, lim;, s, :,eu,8,X:, (@) exists for all £ and the limit )?t(w) is a right con-
tinuous C-valued process with the left hand limits. This X: is the desired
modification of X,(x). Finally we can remove the restriction (1.21) by the
change of time. See the proof of Theorem 15.7 in Billengsley [I].

2. Tightness of C-valued processes with double time parameters.

In this section, we shall discuss the tightness of C-valued processes with double
time parameters (s, t)e[0, S]X[0, T]. Such a process appears, for example, as
a solution of a stochastic differential equation or a stochastic flow, where the time
s stands for the initial time of the solution. The tightness criterion given in
this section will be applied to get a tightness criterion for stochastic flows in
Section 4.

Let W be the totality of maps; [0, S]»D=D([0, T];C) such that X, is
right continuous with the left hand limits with respect to the Skorohod topology
s. We define the another Skorohod metric § on W by

s(X, Y)=jn§sup{S(Xs, Yis)+A(s)—sl},
(S 8
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where H is the set of all homeomorphisms of [0, S1. We denote by X, .(x) the

restriction of X, to the point (¢, x)[0, T]X R¢. These notations will be used
in the following.

sy sp Xo(x)= X, (x)— X5, o(x), Aty 19 Xs(x)= X, 1,(2)— X, 1, (%),
A(sl,sz),(z,y)XL:A(sl,SZ)Xt(y)_A(sl,sZ)Xt(x);
A(zl.zz),(x,y)Xs:A(zl,zz)Xs(y)‘Aul,tz)Xs(x),
A(sl,sg).(tl,tg),(z‘.y)X:A(tl,tZ),(x,y)st_A(tl,tg),(z,y)X31°
THEOREM 2.1. Let {13,,} be a sequence of probability measures on (W, By).
Suppose that for any hypercube I with the center 0 there are positive constants

K, a, B, r with y=1 satisfying the following (2.1)-(2.6) for any s,<5<S,, 1,;<t<t,,
t:<t'<t, and x;, y;€I, j=1, 2, 3, 4.

(2‘1) En[A1i1A2i2A3i3A4i4] )
§Ka15102i203i304i4{52_31|1+alt2"t1[1+a|t4"‘f3ll+a if (t, tdN(ts, L)=0Q,
§K01i1(121~203i3a4i4lSg—sllH"]l‘Z——tl]”“ if (L, 1)C (s, 14,

where

Allzld(sl,s),(t],t),(zl,yl)Xlr, A12:[A(81,8),(tl,t)X(O)lr’
A21:]A(81,S),(l,tz).(Iz,yz)Xlr’ A22=M(s1,s),(z,t2>X(0)]ry
A31:!A($,32).(t3, t'),(x3,y3)Xlr, A32:IA(8.82),(tg,t’)X(O)‘T,
A41:|A<s,sz).(t',z4),(z4,y4>XlT; A42:lA(s,82),(t’,t4)XC0)ITy
and aj;=|x;—y;|**%, a;,=1, j=1, 2, 3, 4.
(2.2) Enl Bl AvigAus JS Kb Gaiy 0| ss—sa o lt— 12,

En[B§i3A1i1Azi2]§Kb§isaxilazi2l52"5111+a|t2_t111+a ’
where

Byu=|d, 0, @ upXel’s  Bu=|du,» X0,
Bay=|ds, 59, agupXel's  Ba=|d(s,5p X0,
and by=|x;—v;|%*, by=1, j=1, 3.
(2.3) Eo[B1i Bsi, )< Kby basy|s:—s: /',
(2.4) EnlCri,Cot, 1S Keys Casylta—t:] 12,
where
Co=lday 0. anypXsl’s  Ca=|da, X0,
C21:]A(L,t2),(rz,yg)Xslr: CZZ—':IA(t,tg)Xs(O)IY)

and le"—"ix]'_yﬂdﬂs, 6.72:1) ]:1) 2!
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(2.5) Bl X, )= X, (0TS K | x—y|+D,
(2.6) E.[1 X, (01K,

Suppose further that there is a positive non-decreasing function e(t), t>0 with
lim,,, (t)=0 satisfying the following (2.7)-(2.9) for any t,<t<t, and x;, y;<l.

@2.7) B[ Ay, An 160 a0, ta— 1™, if (s1, $)=(0, 8) or (S—8, S),
(2.8) E.[Bil=e@by  if (s1, 9)=(0, ) or (S—3, S),

2.9) E. [CA<e@) ey if (ty, )=(0, &) or (T—6, T).

Then {P,} is tight.

Before we proceed to the proof of the theorem, we shall give an inter-
mediate criterion for the tightness.

PRrOPOSITION 2.1. Let {ﬁn} be a sequence of probability measures on (W, 3w)
such that for any hypercube I there are positive constants K, a, B, r and a positive
non-decreasing function &(t), 1>0 with lim,,,e(t)=0 such that

(2.10) Enl{sup e, 0 Xill1-sup [ de,sp Xl } IS Kl si—sil™, 5,<5<ss,
2.11) Eallday, o Xl de iy XFISK [ta—t,re,  ,<t<ty,

(2.12) Enlsup|Xe ()Xo (I ISK|x—y| P, x, yel, 0=s=S,
(2.13) Eq[sup | X, (OIF]ZK,  0=s=S,

214)  Eu[suplldoaXilitsupldes-s s XA Ze(0),

(2.15) EulldwoX i+ 14000 Xl71Se),  0<s<T.

Then {ﬁn} 1s tight.

For the proof of the proposition it is necessary to characterize a relatively
compact subset of W. We shall introduce modulus of continuities

(2.16) w7(X; 6)=sup sup IIAul,s)XzIIz/\sgp 14, s Xellrs

where the supremum extends over all s;<s<s, and s,—s,<d. Set.

(2.17) w(X; [T, "]):T;;SE& ,sup e, 0 Xl -

LEMMA 2.1. A subset A of W is relatively compact if these two conditions
are satisfied.
@) For each rational s of [0, S], there is a compact subset K(s) of D such that
X,=K(s) for all X€A.
(b’) For any hypercube I, it holds
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(2.18) limsup @7(X; §)=0,
-0 X4

(2.19) lim {sup @ ;(X; [0, 1)+ sup @ (X ; [S—5, S])}=0.
00 X€E4 XEA

The proof is omitted, since it is analogous to that of Lemma 1.1

PROOF OF PROPOSITION 2.1. It is sufficient to prove two properties (a’) and
(b’) of Lemma 2.1. We first consider (a’). The following argument is close to

that of [Proposition 1.1. - Let { and 3 be any positive numbers. From [2.12),
there is 0=0(, ») such that

[

(2.20) Pn[s%p wi(Xs,.; 0= 3 ¥s<[0, S].
From [2.12) and [2.13), there is a=a({, 5) such that

2.21) P, [sup ||X3,,||,ga]g%, ¥se[o, S1.
From there is d=0({, ) such that

2.22) PlwiX,; 9=0=2,  vse[o, ST
From [2.15), there is =46(, 5) such that

(2.23) PulldanXlrz8 or |da-sn Xzt 5

Now let ¢ be the minimum of the above three d’s. Consider the subset of D:

224) K¢ p={9ED ; supwy(g; §)<L, suplgull <a,

wi($;0)<E 1w, »Pll 1 <&, 14 r-5,11l 1 <C}.

Let I,, /=1, 2, --- be a sequence of hypercubes with the center 0 and the length
l. Set

~ ~ o1
Ren=0Ru( 470)
Then I?(n) satisfies conditions (a) and (b) of and hence it is relatively
compact in D as is shown in the proof of [Proposition 1.1. It holds f’n(Xse
k(ﬂ))>1—ﬂ/2 for all n by (2.20)-(2.23). Let {s:, k=1, 2, ---} be the set of all
rational numbers in [0, S] and let %,, k=1, 2, --- be positive numbers such that
Sene=7. Set K(sy)=K(x,). Then it holds P,(X,, €K(s,) for all k)=1—z/2.
Consequently, the set E:{X ; Xske[?(sk) for all k} satisfies condition (a’) and
P.(B)=1—7/2 for all n.
We shall next consider (b’). Let { and » be any positive numbers. From
there is a positive d=4({, ») such that

P.IwyX; 5)2&];}.
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From [2.14), there is a positive =4({, ) such that
Plsup o0 Xil1=C or suplldis-s.0 Xl Z01= 2.
Let 0 be the minimum of the above two d’s. Set
Co& =1XeW ; ®1(X;8)<C, suplduw.aX.l:<C

and sup 14 s-3,8X:<C}
and

~ oo

o=\ N Er(om o)

1=1 m’ 2m*t

Then it holds ﬁn(CNT(r)))>1-—n/2. The set 5(77) clearly satisfies (b’). Con-
sequently, the set A(g)=B(n)NC(p) is relatively compact by Lemma 2.1 and
satisfies P,(A(n))>1—7, proving that {ﬁn} is tight. The proof is complete.

PROOF OF THEOREM 2.1. It is enough to prove (2.10)-(2.15). We first con-
sider [2.10) Making use of Garsia’s inequality, (2.1) yields similarly as in the
proof of [lheorem 1.1|,

(2.25) En[{ud(sl,s).(tl,t)Xlllnd(sl,s).(t,tz)X”I”A(s,sz).(tg.t’)X”I”A(s,sz).(z’,t4)X”I}7]
§61|32_31|1+alt2_t1|1+aIt4_t3|1+a if (ti, tz)m(ts; t4):®;
§62,52—31|1+altz_tlll+a if (t], Zg)c(tg, t4).

Next, implies similarly as the above

(2.26) Ealldey 9 Xolild e, sp XeF1SCol s— 5312

Now let 0=t{™ < --- <t{W’=T be a partition such that {{”=£k2""T. For a
C-valued function f, set

Om, o )=min{[[ fte)—fl 1, 1fEed—f @R
Jm(f):ml?-x am. k(f) ’

where {,=t{™ and t,;=(,+tz+.)/2. Then it holds
sup /D= 3 In(HHIFOI+IFDI,  FEDO, TT;0).

Setting f(t)=4,, X or 4, s, X, we have
(2.27) sup ¢, Xel 1 *SUP | 4o, s Xel 1

é %,Zm(d(sl,s)X)Zm’<A(s, sg)X)
H(E Adn(d s, s X)) Aoy, 0 Xoll 11 sy, 09 X2l 1)
F(Z A (disy, 55 X)) s, 50 Xoll 1+ s, 50 Xl 1) -

8

>
>3
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We shall prove

(2.28) E.J{ 2 ,Zm(dul,s)X)Zm'(d(s e X)PERIED SC [ 5,—s, | Arar/@n
The left hand side is dominated by

3 3 a1,

m,m'
where
a;r?,>k,m',k':En[am,k(A(sl,s)X)2r5m',k’(d(s,sz)X>2T]-
By (2.25),
QT e, SCilsys[FORTmAROQ AR (1, NN, () =0

ZClsy—s | re2-m e - qf mzm” and (™, t{F)CEMD, D).
Therefore if m=m’ we have

kZ A me w =Cslsp—s,|"Fe2-ma2-m e 2-me),
vy

so that
5} 3 (2 i w0 ZColsy—s, [ 1D
m=1m'=1 , B!

We have similarly

oo

m’
Z E (kz;,;:a’%k"m'rk')”(z”écﬂsz—sl (+ay/ e

m'=1m=1

These two inequalities imply [2.28).
We shall next prove

229 Eul(E Dnlllaep X)) ooy 0 XlFT1OP ZCol =50l 5010, =0 or T,
(2.30) En[(§Z’m(dcsl.s)X))”llA(s.s2>Xn[l?’]”(2”éCQISa—"Sl!‘”"”‘Z”, t=0or T.
The left hand side of (2.29) is dominated by

(2.31) ST Ealbm, s, op X0 | sy XTI} 0 .

We have from [2.2),

Eollldes, s, oy XNT s, 50, cor ey XN D sy 59 XellF]
=Coolsa—s, | [t — 15|17,

making use of Garsia’s inequality. This implies
Euldm, sl sp X071 4oy XN FIZC oyl 5,5, HHe2-mrer

Then is dominated by Ci,|s,—s,;|*** /% and (2.29) follows. Inequality (2.30)
can be proved similarly. Then (2.28)-(2.30) prove in view of
Inequality (2.11) follows from immediately using Garsia’s inequality.
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Inequality follows from and as is shown in the proof of
1.1. Similarly [2.13) follows from and [2.6). From (2.7) and (2.8), we have

similarly
En[S?p 40,5 X: [[;+'51t1p 14 s-5 X NT1=C1:¢(0).

This proves [2.14). From (2.9) we get immediately. The proof is complete.

As an application of [Theorem 2.1, we shall show that the random field
X, (x), (s, 1[0, SIX[0, T], x=R? satisfying the moment inequalities like
(2.1)-(2.6) (replacing E~n by E) has a modification )?M, which is a C-valued proc-
ess right continuous with the left limits both in s and ¢. In order to state the
property of the modification more precisely, we shall introduce a subspace W of
W equipped with a topology stronger than the Skorohod topology § introduced
before.

Let D=D([0, T];C). For X, YD we introduce the uniform topology
(X, Y)=sup, p(X,, Y,), where p is the compact uniform metric on C=C(R%; R%).
Let W be the totality of maps X; [0, S]—D which is right continuous with the
left limits relative to . We define another Skorohod metric § on W by

s(X, Y):/ilnf?sup{ﬁ(Xz w» Ys)+[A(s)=sl},

where H is the totality of homeomorphisms of [0, S1. Then Wc W and s(X,Y)
>3(X,Y) if X, YeW. Hence the s-topology is stronger than 3-topology. Now
let z,; D—C be the projection defined by x.,(¢)=¢(), ¢=D. Then =, is a con-
tinuous map from (D, p) into (C, p). Hence if X, W, then X, ,==,(X,) is right
continuous with the left limits not only in ¢ but also in s with respect to p.

THEOREM 2.2. Let X (x), (s, )e[0, SIJX[0, T], x=R?* be an R4%valued
random field such that for any hypercube I with the center 0, there are positive
constants K, a, B, r with y=1 satisfying (2.1)-(2.6) for any s,<s<s, 1,<t<t,

L, <t'<t, and x;, v:<I, i=1, ---, 4, where En is replaced by E. Suppose further
that

(2.32) im EL|Xovs, 00 (60— X, (17I=0, Vs, 8, 2.

0'-0+
Then there is a random field }?s,t(x) such that for almost all w, X.,.(-, @) is an
element of W and X, (x)=X, (x) holds a.s. P for any s, t, x.

PROOF. Let us temporally fix s and consider X ,(x) as a random field with
parameters i<[0, T] and x=R¢. Then it satisfies conditions (1.15)-(1.20) of
because of [2.4), [2.5), [2.6) and [2.32). Consequently, in view of
there is a C-valued process with time parameter ¢ denoting X, .
which is right continuous with the left limit relative to ¢ and satisfies )?s_,(x)
=X, ,(x) a.s. P for any s, t, x. Then similarly as in the proof of Proposition




324 H. KuniTa

2.1 we can prove that the process )2'” satisfies (2.10)-(2.15) replacing F?n by E.

Let now @ be the totality of positive numbers rS, where r’s are dyadic
rationals in [0, 1]. Let f(s), s€Q be a D=D([0, T]; C)-valued function. Given
a partition 0=s§{™ < -+ <s{W=S where s{™=£k2"™S, we define

O, s(N)=UmAf (s)—F(sDlllz, I/ (saen)—F(sDIs},

Zﬂn(f)zmgx 6L x(f),

where [ is a hypercube and [lgll;=supzer.icro,r1l@.(x)] and sp=si, $i=(Si+
+s,)/2. Then f(t), t€Q has the discontinuities of at most the first kind if

= _dh(f)<co holds for any hypercube I. See Kéno [7], Lemma 3. Now
setting f(s)z)?_,,.(-), s, we have by

ELJ(X)TIS S ELSh o X ISK-2m 2t <K 2ome

A

Consequently we have o _dL(X)<oo a.s. for any hypercube I, proving that
Xs,.(-) has the discontinuities of at most the first kind with respect to the
topology p. Define now )?szlims'eq,s,”)f}, for any s<[0, S]. Then )?s is a
D-valued process right continuous with the left limits with respect to the metric
p of D. Hence )?s(w) is an element of W for almost all . On the other hand,
note that Xs,n(x) is continuous in s in probability for each ¢ and x in view of
[2.32). Then it turns out that X, ,(x)=2X, ,(x) holds a.s. P for each s, ¢ and x.
Hence this )?M(x) is the desired modification of X, ,(x).

and

> A(X)

m=1

2771/ (27) s
SKUED Y 9-maln oo,
- m=1

REMARK. Owing to the above theorem, probability measures £, of
2.1 are supported by the subset W, i.e., P,(W)=1 holds. However, the tight-
ness of {P,} with respect to the s-topology is false in general.

Now, the solution of a stochastic differential equation X, , (denoted by §&;,
in Section 4) has the time parameter 0=<s=<¢t<7, where s stands for the initial
time and X; , denotes the state of the solution at time ¢, ¢{=s. Defining X, .=
X;,s for t<s, we may consider that X, , has the parameter in [0, T]x[0, T].
Then the law of X,, is a probability measure on W=D([0, T]; D), D=
D([0, T];C) supported by the closed subset Wz{XeW;Xs,,sz,Ns for any
s, 1[0, T]} of W. Let By be the topological Borel field of W. Then the law
of X, . is defined as a probability measure on (W, Bp).

The next theorem gives a tightness criterion for a sequence of C-valued
processes with parameters 0=s=<t=T.

THEOREM 2.3. Let ﬁn, n=1, 2, --- be a sequence of probability measures on
W, Bp) such that for any hypercube I with the center 0 there are positive con-
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stants K, a, B, v with y=1 satisfying (2.1)-(2.6) for any x;, y;€1, i=1, ---, 4 and
0=5,<8<$, = <I<HLET and 0=s,<s<s,=t;<t'<t,. Suppose further there is
e(#)>0, >0 with lim,.,e(t)=0 satisfying (2.7)-(2.9) for any x;, y,;1I and t,<t<t,.
Then {P,} is tight.

PROOF. Set for any s, ?, 1,<t, $:<S,

A(tl,tz)X.‘!:A(tl,tg)Xs/\tp A(sl,sz)Xt:A(sl,s2>XtVs2,

A(sl,sz), (ty, tZ)X:A(sl.SZ), (t1Vsg, £2V82)X-

Then similarly as in the proof of Proposition 2.1, we can show that the above
4 (5.t Xs €tc. satisfy (2.10)-(2.17) of Proposition 2.1. Then P,, n=1,2, - are
tight. Indeed, in the proof of Proposition 2.1, replace 4., ,X etc. by 4 X
etc. Then we see that the whole argument is applicable to the present case
without any essential change.

Finally we give a criterion of the existence of the C-valued process with
two parameters 0=s=<t<T.

THEOREM 2.4. Let X, (x), 0<s=t<T, x&R? be an R%valued random field
such that for any hypercube I there are positive constants K, a, B, 7 with y=1
satisfying (2.1)-(2.6) for any x;, vi<I, i=1, -+, 4 and 0<s5,<s <8, <t <t<t,<T,
where E., is replaced by E. Suppose further (2.32) holds. Then there is a C-valued
process X” right continuous with the left limits in both s and t such that X, (x)
:)?s,t(x) holds a.s. P for any s, t and x.

3. Tightness of C-valued Lévy processes.

Let X;=X,(w), t[0, T] be a C-valued process defined on a probability
space (2, &, P), right continuous with left limits a.s. It is called a C-valued
Lévy process if it is continuous in probability and has the independent incre-
ments; X, —X,, i=0, ---, n—1 are independent for any 0=¢#,< - <{,=7T. In
particular, if X, is continuous in ¢, it is called a C-valued Brownian motion. In
the followings, we always assume that X, is stationary, i.e., the law of X,— X,
depends on t—s, X,=0 and E[|X,(x)|?] is finite for all £, x.

Given a C-valued Lévy process X;, we define the Poisson random measure
N((O, t], A) associated with X, by

3.1 N(O, ], A=#{s; X, A}, AX,=X—X,,

where A is a Borel set of C excluding 0. The intensity measure v’ is defined
by v'((0, t], A)=E[N(O, t], A)]. Since X, is stationary, v’ is the product measure
dt@v(df). The measure y is called the characteristic measure of X,.

Let x,, ---, xy be N points in R? and consider the N-point motion X,(x)=
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(X (x,), -, X(xy)). Its characteristic function E[exps 2i(as, X(x,))] is rep-
resented by Lévy-Khinchin’s formula:

1

N
expt]i 3 (an, b)) 5,

N
§1aka<xk, x)a,

—i-gc{exp(iél(ak, f(xk))>—1—i él(ak, f(xk»}v(df)],

where
(3.2) b(x) is an R<%-valued function,

(3.3) a(x, y) is a dxd-matrix valued function such that a*!(x, y)=a'*(y, x)
for any k,[=1, ---,d and x, yeR? and XV ,.,a;a(x;, x)a;=0 for any
Xis ajERd, Z., ]:]., ey N.

(3.4) v is a ¢-finite measure on C such that »({0})=0 and Sc\f(x)}zu(df)<oo
for any x= R4,

Hence the law of a C-valued process is uniquely determined by the triple (q, b, v).
It is called the characteristics of the C-valued Lévy process.
The following proposition is shown in Fujiwara-Kunita [5].

PROPOSITION 3.1. Let (a, b, v) be a triple satisfying (3.1), (3.2) and (3.3).
Suppose that there are positive constants L and e satisfying the followings:

(35) [Trace aCx, IS LA+ {1+,

(3.6) |Trace (a(x, x)—2a(x, y)+a(y, y)ISL|x—yl*,
(37 b6 S L(L+x]),

(38) b)) —=b()| S Llx—31,

(3.9 [ L remmdn=Laizpr,

(310 [ 10— rman=Lis—yrr,

for all x, yeR® and y=[2, 2V d+¢). Then there is a C-valued Lévy process X,
with characteristics (a, b, v). Furthermore, it satisfies

3.11) E[ sup | X(x)= X, ()< Ktlx—317,
(3.12) EL sup | X,(x) "I S Kt(1+] x|,

for all x, yeR?, t<[0, T] and y<[2, 2Vd+e), where K is a positive number
depending only on L and e.

Conversely let X, be a C-valued Lévy process satisfying (3.11)-(3.12) for all
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x, yER?, t=[0, T] and y<[2, 2Vd-+e). Then the associated characteristics
satisfies (3.5)-(3.10) for all x, ye R* and y<[2, 2V d+e).

We shall give a tightness criterion for the sequence of C-valued Lévy proc-
ess in terms of its characteristics.

THEOREM 3.1. Let X7, n=1, 2, --- be a sequence of C-valued Lévy processes
with characteristics (an, by, va), respectively. Suppose that there are positive con-
stants L and ¢ not depending on n such that (3.5)-(3.10) are satisfied for all x, y
eR4, re[2,2Vd+e) and n. Then {X}} is tz'ght.‘

ProoF. It is enough to prove conditions (1.1)-(1.6) of [Theorem 1.1. We
can calculate these moments easily making use of inequalities [3.11) and [3.12).
Indeed, since the law of 4,1, (2, X" coincides with that of X7, (y)—X7-;,(x),
we have from [3.11)

Elld¢, 0, X IS K=t x—y|".

Note that 4, 4, X" and A, 4,, v,y X™ are independent if ¢, <t<t,. Then
we get
E[M(zl.t).(r.y)XnmA(t,zz).<z'.y'>Xn]T]

SKt,—t)@—tolx—yl"x"—y']".
This proves taking y from (2Vvd, 2Vd+e¢). Inequalities [1.2)] and [1.3)

can be shown similarly using [3.12). Inequalities and are obvious from
(3.11) and [3.12). Inequality is immediate from [3.11) and [3.12)

4. Tightness of G.-valued Lévy processes.

In this section we shall discuss the tightness and the regularity of stochastic
flows generated by C-valued Lévy processes. Let X, be a C-valued Lévy process
satisfying [3.11) and [3.12) for any y<[2, 2V d-+¢) where ¢>0. Let s<t¢ and
s, be the least sub ¢-field of & for which X,—X,, sSu=<v=t are measurable.
Suppose that f, is a right continuous R¢-valued process with the left hand limits,
adapted to &, ,. The stochastic integral of f, by dX,(x) is defined by

(4.1) | aX )= lim 8 Koy, (o) =Kol o),

where 4 are partitions 4={s=t,<t,< - <f,=t}. As to the existence and some
basic properties of the stochastic integral, we refer to Fujiwara-Kunita [5].

Let us consider the stochastic differential equation defined by X,. Given
se€[0, T] and x=R?% an R¢valued &, ,-adapted process &, right continuous
with the left hand limits is called the solution of equation

dsz:dXz(ft—)
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if it satisfies
(4.2) 55:x+§:dxr<sr->.

It is known that the equation has a unique solution, which we denote by &, ,(x).
The solution admits the following modification.

PROPOSITION 4.1 ([5]). Suppose that X, is a stationary C-valued Lévy process
satisfying (3.11) and (3.12) for any y=[2, 2V d-+e¢), where ¢>0. Then the solu-
tion &, admits the following properties:

(i) & is stationary, i.e., the law of &, depends on t—s.

(ii) For each s, &, t<[s, T] is a right continuous C-valued process with the left
limits a.s.

(ili) For each s<t, & y=&; u°&s.¢ holds for all t<u a.s. Furthermore, &, ..,
1=0, -+, n—1 are independent for any 0=t,<t,< -+ <t,=T.

(iv) There is a positive constant M depending only on L and & in (3.5)-(3.10) such
that

(4.3) |EL&s, (x)— x| S M(t—s)1+|x]),
(4.4) E[siggtlés,r(x)—x—(ES,r(y)—y)lf]éM(t—S)Ix—ylf,
(4.5) E[ssgggtlés.r(x)—xl’]éM(t—S)(l+lx!)’

holds for all x, ye R, s,t<[0, T] and y=[2, 2V d-+e).
(v) The following limits exist:

4.6) A8z, 3)= lim - ECE aon ()~ 9 a0 =201,
@) bix)=lim - E[&} sen(x)—x°].

Conversely, let & (x), 0<s=Zt<T, x€R? be an R%-valued random field, right
continuous in t, satisfying (i)-(v). Then there is a unique C-valued Lévy process
X: satisfying (3.11) and (3.12) for any y<[2, 2V d-+e¢) such that &, is the solution
of (4.2) for each s.

Now the space C may be considered as a topological semigroup if we define
the product of f, g=C by the composition fog of the maps. We denote the
semigroup by G,. Then the solution &; , defines a Lévy process in the semigroup
G. because of properties (i)-(iii) of the proposition. The associated C-valued
Lévy process X, is the infinitesimal generator of &, ,.

REMARKS. 1. A¥(x, y) of [4.6) is represented by

A9(x, y)=ax, )+ FEF M.
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2. From there is a positive constant M such that
(4.8) E[ sup |&;,/(x) =55 (NI]=M|x—y|"
holds for all x, yeR? and t<=[s, T].

Consider now a sequence of G.-valued Lévy processes &7, generated by C-
valued Lévy processes X7. We shall give a tightness criterion of £, by means
of the characteristics of X7.

THEOREM 4.1. Suppose that there are positive constants L and e, e>2V d,
such that the sequence of characteristics associated with C-valued Lévy processes X7
satisfies (3.5)-(3.10) for all y<[2, 2\ d+¢€). Then for each s, the sequence of G-
valued Lévy processes {§% .} generated by {Xt} is tight.

ProoF. It is enough to prove that {&}.} satisfies (1.1)-(1.6) when s is fixed.
For simplicity, we shall write &7, as §f. Let s<¢,<t<t,and y=[2, 2V d+e)/2).
Then,

E[1dct, 1, 2, & T F s, J=ELIER (5) =82 1, () —(F—X)I"]

where §=&(y) and X¥=&}(x). The above is dominated by M({,—t)|7—%|" in
view of [4.4). Therefore,

E[[4d¢ 0, 2o &1ty 09, a0y §™17]

SM@—)ELIEX ) =82 D ey, b9,z &7

=M —)ELIEF(y)—E2 (0T VEL Doy 1y, cav,y § 1T ]VE.
Apply now [4.8) and to each member of the right hand side. Then the
above is dominated by

M2t — O —t) Py — x|y’ —x'|7.

Therefore is satisfied if ye@vd, 2Vvd-+e)/2]. We can prove and
similarly. The properties (1.4)-(1.6) are obvious. Hence {£7} is tight.

We have so far discussed the problems in case that the initial time s of G.-
valued Lévy process is fixed. In the following, we shall discuss the regularity
and the tightness problems of G,-valued Lévy process regarding it as a two
parameter process, applying

THEOREM 4.2. Suppose that the characteristics of the C-valued Lévy process
X, satisfies (3.5)-(3.10) for y=[2, 3d+¢) for somz ¢>0. Then the G -valued proc-
ess & (x, w) has a modification such that it is a Gi-valued process, right con-
tinuous with the left limits in both s and t.

It is enough to prove that &, , satisfies (2.1)-(2.6) and [2.32) We shall only
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prove the special case of (2.1), since other inequalities can be shown more or
less in the same way. Set

A= ]A(sl.s), (t1,8), (2, y1)5|r, A= ]A(sl,s). (L, tg), (zg, y2)5|7 ’
A= Mm,sz), (L3, t'), (3, y3)517, A= ]A(s,sz), (8, ty), (24, y4)EIT
where y>3d.

LeEMMA 4.1. For any hypercube I, there are positive constants K, a, 8 such
that for any s,<s<s, and 1, <t<t,=<t,<t’'<t, the following inequality holds:

49 ELAAAAISK(s—s) oty oty o(1T =)
Proor. We begin with proving
(4.10)  ELAF 0,0 ISClta— )5y o (X )—Esp 0 (YT F 165, 0 () —E5, 0 (307
Ay, v (¥2)=Es, 00 DI €5, 10 (X =&, (x9N}

The random variable A, is written as
A4:I(Et',t,;(j’et)"ét',t4<-724)~_3‘)4+724)”’<5t',£4(§4)_§L',t4(/§4)_§4+;€4)lr,

where 5’4:§sz,t'(y4), 924:532,8’(354): §4:$s,z'(3’4> and %,=§; . (x,). Since Eir .ty is
independent of %, ,, we have by

(4.11) ELANF o, 1=ELE v, 0(9)—E v, 1(X)— Fut£2)
— (&1, (P)—Ev 1, ()= D+ 2)I7]
SME—)| 20— 97+ £— D407
Also, is dominated by }
M=) 20— 2.7+ 9= D7)

Therefore (4.10) is satisfied.
We next prove that for any p>1 there is a positive constant C,=C(p) such
that

(4.12) E[A;AFo,:,]
S Gt VP HEs,, 15(X0) =&y 05T 1Es,05(x0)— &5, 1,307}
X {1€sg t3(X ) —Esp (YT H1Es, e5(x )= &5, t5(¥ I}
S Gt T YPHEs,, 05(X0)—=Es, 15X €5, 5(¥5) — s, 1, (¥0)|T}
X {1&sy, t5(x0)—Es, 13(X DT+ 1E55, 15(¥)—Es, (Y|}
Apply (4.10) and then Holder’s inequality. Then we have

(4.13) E[A3AF 0,0, 1S Ci(t—1)ELAS|F o, 0, ]V/7
X EIEsy 0 (x) =&y, e (D 1€, 00 (x) =&, o (DI} Fo, 0,11,
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where ¢ is the conjugate of p. It holds similarly as (4.10),
ELAR|Fo, 0, P SCo(t' —15)" P (1€ 55, 05(X0) =&y, 15(V )17 F 185, e5(x8)— &5, 1,(¥a)I7}.
The last member of (4.13) is dominated by
MYP{[Es,, o o(X )=y e(¥ T H1Es, 15(x) =6, 1y}

Therefore the first inequality of is verified. The second inequality can be
shown similarly.

We shall next prove that for any p>1 and p’>1, there is a positive con-
stant C,=C,(p, p’) such that

(414) E[A1A2A3A4:IéC4(t4_ts)“(l/p)(tz”‘tl)(l“l/p))(llp’)(ﬁ Ixi_yi|)r-
i=1
Indeed, note that
E[A1A2A3-44]:E{AlAzE[AaAAgo,tg:”‘
SEL(AA)Y TV E{E[AsAul F o, 1,17 117,

where ¢’ is the conjugate of p’. Replacing A; and A, of by A% and A%,
respectively and &, ., by 9, and taking the expectation of the first inequality

of we obtain
ELAY AR I=Cs(ta—t )M P E{(1sy, 0 (x ) —E&sp, o, (0 IP T+ 1E5, 0,(x ) =85, 0, (¥ ) P'T)
X(lssl,nl(xz)_‘Ssl,tl(y2>|p’T'H$s.zl(xz)—‘és.tl(yz)]plr)}-

By the above is dominated by Cy(t,—t)**Y?(|x,— .|| x:—¥.|)?'7. Further-
more we have similarly as the above

E{E[A;A%,, "}V SCt—t )P ([ xs— sl xs—ya]) .

These two estimates prove (4.14).

We shall next prove that for any p, p’>1, there is a positive constant C,
such that

(4‘15) E[A1A2A3A4]éCS(l‘4—t3)(l+(l/p))(llp’)(t2_t1)”q'(SZ—SI)1+(1,p')7
where ¢’ is the conjugate of p’. Since E[A;A%F,,.,] is Fs, r-measurable we have

E[AAAA]=E{E[A, AT, r]E[AA,| Fo, t3] b
Set

Z:IA(LI, t), (2y, x'l)Es_A(zl, t), (yy, y’l)EsITIA(c, tg), (Zg, z’z)ss—A(z, to), (Yo, y'2>$s|7 .

Then
ELA A, )= Zp(dxidxidyidsy),

where p(dxi, -+, dyi)=P (&, (x)Edx], -+, &, «(y2)Edy;). Therefore we have
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(416)  E[AAAA]=\E{ELA.AS0 )2} pld, -, dy)

v

=(EtEraa g, 3717 BLZY D0 s, -, dy).
We have by
E{E[AAJ 0,17} 107"
SColt—t) TP S B8 000,157 T
+ 3 Ell8u 199—E0 0077 37}
Setting p(d%;)=P(&; s,(x:)EdX,), we have
ET1Esy 150 —E0. (x)I77']
= (B0, 0= FOIT Tz
= M 2= 277 p(di

éME[Es,Q(xi)_xi[grp,]

Therefore we have
(4.17) E[E[AsAdF o, 0,17 1VP SChoty—ty) Pt PRI (g, —g YU P
On the other hand, we have from
Elldc 0. oy ep€sl 1= Crult—t)] x— x {77
etc. Therefore, using [(4.8), we get
(4.18) \Brze i paxs, -, dyy

SCot—t )V {ELSs, s(x)— x| I+ ELs,, (1) —317]
+E[|531,s(xz)-le”]+E[|§s1,s(yz)*y2|27]}
=CE—t)V (s—sy).

The inequality follows from (4.16), and [4.18).

We now proceed to the proof of [4.9). Let 0<e<1. Then from (4.14) and
(4.15) we get

(4.19) E[A1A; A3 A ] SCpy(ti—1,) /PO QPO QeQ/D) A= (1 g YU/ A4/ PH AP 1-0)

X (Sg—8) WP V(| x —y || X3— Vol | Xs— Vsl [ Xxa— 4] )97,

Choose p, p’, p” greater than 1 such that
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1 2 1 )
e << e AL
+5 <3 <=5 = 7orD)
and set ¢=2/3. Then we see that powers of (¢,—t¢,), ({,—t;) and (s,—s,) in (4.19)

are greater than 1. Hence is established with y>3d.

REMARK. By virtue of [Theorem 4.2, the G,-valued Lévy process has the
multiplicative property &, .=§&; ,&. ; for all s<t<u a.s.

Finally, we shall give a tightness criterion for the sequence of two parameter
G ,-valued processes &7 ,.

THEOREM 4.3. Suppose that there are positive constants L and & such that
the sequence of characteristics associated with C-valued Lévy processes X} satisfies
(3.5)-(3.10) for all y=[2, 3d-+¢). Then, the sequence of two parameter G.-valued
processes {£7 .} generated by {X}} is tight.

The proof is immediate from and the proof of

As an example, we shall consider the tightness of solutions of SDE which
is widely studied in the literatures. Let (U, 8y) be a measurable space and g
be a ¢-finite measure on it. Let o(x)=(¢%*(x)); R*—>R*QR?, b(x); R*—>R?* and
f(x, u); REXU—R? be measurable functions such that there are positive con-
stants L and e satisfying

(4.20) lo(x)|+b(x)|=L(1+[x]),

(4.21) lo(x)—a()|+[6x)—b(|S LIx—31,
(4.22) [, 17, wraaw=ra+isy,

(4.23) [, 17, w—F0, wirm@n S Lix—yI7,

for any ye[2, 3d+¢). Let B,=(Bi, -+, B}) be a standard Brownian motion and
Np(dt, du) be a stationary Poisson random measure on [0, T]XU with the
characteristic measure g. Set N,(dt, du)=N,(dt, du)—dtu(du) and

(4.24) Xw)= 3 o () Bib(+| fox, wR(O, 13, dw.
It is a C-valued Lévy process with characteristics (a, b, v), where
(4.25) a(x, y)= élai%x)a”(y),

(4.26) v(A)=plu; f(-, e A}, Ae B,.

The characteristics (a, b, v) satisfies (3.5)-(3.10). Therefore the solution of SDE
(4.27) di =3 0 *E)dBI+bEdt+ [ e, wN,(dt, du)
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defines a G.-valued Lévy process.
Now let (g,(x), ba(x), fo(x, w)), n=1, 2,--- be a sequence of functions such
that there are positive constants L and ¢ satisfying (4.20)-(4.23) for all n. Let
n pn=1, 2, --- be a sequence of C-valued Lévy processes defined by [4.24) using
(0,(x), ba(x), falx, u), and let ™ be the G.-valued Lévy processes generated
by X?. Then {£}.} is tight.
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