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1. Introduction.

~In this note we consider a C*-dynamical system (A4, G, ) of product type
action, where A is a UHF-algebra and G is a finite group. In [5] and [6],
A. Kishimoto and N. J. Munch investigated properties of the C*-dynamical system
(A, G, a). One of their results is that if G is abelian, then the space of tracial
states on the fixed point algebra A€ is n-simplex where the number n is the
cardinality of the subgroup of G which is weakly inner in the trace representa-
tion of A. If G is a (non-abelian) finite group, the structure of ideals in A€
was investigated in by N. Riedel. Let 7 be the unique tracial state on a
UHF-algebra. Since the trace r is a-invariant, the C*-dynamical system (4, G, a)
extends to the W*-dynamical system (n.(A)”, G, @) where =, is the G.N. S. rep-
resentation associated with 7. We set K={geG; @, is an inner automorphism
of 7.(A)”}. Let K be the dual object of K. Since K is a normal subgroup of
G, we obtain a G-space (G, K) with the action,

(gr)(k)=n(g*kg)

for keK, geG and r=K. By giving an equivalence ~ by n~p (r, pK) iff
gr=p for some gG, we have an orbit space K/~ (denoted by K/G).

In this note we show that the number of extremal traces on the fixed point
algebra A€ is the cardinality of the orbit space K/G and we give some condi-
tions under which A¢ is a UHF-algebra.

The author wishes to thank Dr. T. Kajiwara for some useful conversation.

2. Main results.

Let A, be a matrix factor and =, be a unitary representation of a finite
group G into A4,. We define an action a of G on a UHF-algebra A=®3-,A,
by a,=@%-Adx,(g).

We assume throughout that the automorphisms a, are not inner in A ex-
cept g=e, the unit in G.
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By N. Riedel § 3, we may assume that the families J(x,) of all irreducible
subrepresentations of 7, are a common invariant set of G, say 2, for any n=2.
By R. Iltis Proposition 2.7 (vii), there is a normal subgroup H of G such
that the set 2 is equal to {r=G; x|y is trivial}. By the above assumption and
Lemma 3.5, the invariant set 2 must be the whole space of G. Since J(rs)
:C:? and n,Xr, contains the trivial representation of G, we have j(7r1®7r2@7r3)
=G. After “compressing” A;=A4,QA4,QA,;, we may assume that J(x,)=G for
all n=1. Then we can show, by Theorem 3.1, that the fixed point algebra
A% is simple.

Let v be the unique tracial state on A. We set unitary representations of G,

Wn, m)(g)= é w(g) (n<m)

i=n+1

for all g=G. Let W(n, m)=3:c64(n, m)(z)r be the irreducible decomposition of
W(n, m) where A(n, m)(z) is the multiplicity of = in W(n, m). Then the finite
dimensional algebra (R, A,)N{W(0, n)(g); g=G}’ is isomorphic to 2 ic4Br where
B" is a non-zero factor of type ;. n s, because of J(x;)=G for all i€ N. We
define a positive operator E(n, m),, z

E(n, m)p.s=\ T{@:(gIW (n, m)g)dg

where X, is the character of G associated with = and dg is a normalized Haar
measure on G. The way how to prove the main theorem is essentially due to
the one adopted in [6].

LEMMA 2.1. The partial embedding Bi—Bp*' (=, p€G) has multiplicity

| Ansille(E(n, n41),,2) where |Ansill is the rank on matrix factor Anss i.e.
[ Mn(C)]|=n.

PROOF. Let 7@n,.1=2 ocsA(w)w be the irreducible decomposition of 77 ,+;
where A(w) is the multiplicity of @ in 7&®n,,,. We denote by Tr a canonical
trace on the full operator algebra B(4). Then we obtain

SGZ—,,(g)X”(g)Tl'(ﬂnﬂ(g))dg
:ngp(g) TrRTr(zQmn+1(g))dg

= w@é SGZ:@Z(Q))xw(g)dg

where 6,,, is Kronecker’s delta. Since the unique trace r on A is equal to
Qrei(Tr/ | Al), we get ,
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Z(P):“An+'1”T(E(n, n+1)p,ﬁ)'

REMARK 2.2. The partial embedding BX— B} (n<m) has multiplicity
[Apilll Ansell -+ [ Anlle(E(n, m),, 2).

By quite the same reason as given at the beginning of §3 in [6], we may
require that W(n, oo)(k)=st-lim,_.W(n, m)(k) exists for k€K and neN. The
restriction 7|x to K of an irreducible representation = of G is ¥ ,cz8.,0 as an
irreducible decomposition. Since K is a normal subgroup of G, the multiplicity

B. is

5 >_{d,.,>0, wsGo’ for some o’ €K
o, otherwise.
We denote this orbit Gw’ by s(z).

LEMMma 2.3.

lim 2(E(n, m),,,,?):SKX,,(g)X::(g)T(W(n, c0)(g))dg

m->o0

lim (hm t(E(n, m),, z)=

K| _
i {1 gl dedsls®l,  s@=s(p)

0, otherwise
where || is the cardinality of a set.

ProoF. By [6] Lemma 2.2, we have

1"131 (E(n, m),, z)
=tim | Z@.(a)( J1_r(ru(a))de

= SKZ-_—P(g)X,,(g)z'(W(n, o0)(g))dg .

Since

lim H (mi(g)=1 for gekK,

N0 t=7

we have

lim (im 7(E(n, m),, 2))= S X,(g):(g)dg.

T —co M —*co

By the orthogonality of characters of a compact group, we obtain
~ |K| 3
Sxxng)xa(g)dg {IGI dedx|s(m)|,  s(z)=s(p)
0, otherwise.

Let 7’ be another normalized trace on A®. Then for minimal projections
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F (z=(G) in the matrix factors B?, their positive values z/(F2) of the trace 7’
are denoted by &% By Lemma 2.1, the vectors §"=(£%),c¢ and &""'=(§%""):cq
satisfy a relation,

(2.0 §r= Z)aIIAnHIIr(E(n, n+1), =&,
pE

Then by setting ni=1%.llA:)&%, we have
= 2 o(En, n+1), )",
PEG

that is,
n*=n""C(n, n+1)

where 7"=(92%)zc¢ and the matrix C(n, n+1)=(v(E(n, n+1),,2)),, zcé-
REMARK 2.4. For n<m<],
2.1) nt=n"C(n, m)
C(m, )C(n, m)=C(n, 1)

where the matrix C(n, m)=(z(E(n, m),,2))p. zeé-

We compute
|G| 3 dimr 7=|G|"' 2 dimz (3 o(E(n, n+1), z)np*")
reG el PEG

= 2 (1G] 2 dimz 7(E(n, n+1), )"
el pECG

= 3,(], T0@61- Sdima L)V (n, n-+1(g)dg)n"
Since the left regular representation of G is 3 ce(dim )z,

1617 Sdimayi= X, | L@ <V (n, n-+1)g)dgn;

pE
=2 |G['dim p pp**.
0EG
Therefore we have
|Gl'dimp pp = X2 |G|-'dimp = X |G| "'dimp 7},
peC pEG

and
sup |pp|= 2 dimp 7;
pECG pEG

for all neN. Hence we may take a subsequence {y"»} of {7"} which con-
verges to a vector p=(7:)zcs. It follows from that

lim p"p—pme=lim p™(C(n,, n)—1I)
nq-»oo

ﬂq-oo
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where [ is an identity matrix. By Lemma 2.3 we get

0= lim (lim p"»—9")=n(C-—1I)

np-’w nq—'an

where the matrix C is equal to ((|K|/|G)d,dz|s(7)|0scz). s¢01)p.ze¢- Then the
vector 7 satisfies a relation,

n-=(KI/GD, 3 dodsls(@ln,.
We set
do7p-

Xsmy=
pEG, s(p)=5(x)

Hence we obtain a vector (Xgz)scmekre Such that
(2.2) 7]n:<lK|/|Gl)dnls(n')lxs(r:) .

On the other hand, since n"r=9"C(n,, ny) (n,<ng), P"P=limy .en"?C(n,, ng)
=9C(ny, ). Therefore, for all n, we have

(2.3) pr=n"2C(n, np)
=9C(ny, 00)C(n, np)
=9C(n, ).

THEOREM 2.5. Let (A, G, a) and K be as above. Then the number of ex-

tremal traces on the fixed point algebra A® equals the cardinality of the orbit
space K/G.

PrOOF. We have already proved [2.2). For an orbit s(x)eK/G, we set,
for a positive number x,

. __{x, s(p)=s(m)
¥, otherwise,

and we define a vector ;¢ =(d.|s(7)|0sz),s¢p))peé and
n"=(IK|x/|GN)nsxC(n, o0)

where C(n, o0)=Ilim,.-C(n, m). Therefore we also set

er=(1/T 1 40)7".

Since C(n+1, )C(n, n+1)=C(n, o) by we get

2.4) & =(L/TLIAM)IKIx/1GDscnsCln, 00)

=(1/TLIAM)IKIx/IGI s, Cnt1, 0)Cln, n+1
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=(1/TL 14 )9 Cn, nt-1)
=| Ans, "1 Cn, nt-1),

which is the relation [2.0). If 7,=3,c¢4(0, 1)(p)p as an irreducible decomposi-
tion, then

@
pgﬁ Bi= 2. M;0.10(C)&@Ldim, -

e

Since || A,[&'=(x|K|/|G)psC(1, o) and x is an arbitrary positive number, we
can decide x uniquely such that 3,c6£54(0, 1)(0)=1. Hence for each 3 .cs B%,
we set a trace i, by

Thm= 2 ENTr
pEC

where Tr are canonical traces on M;, a) ) (C) for all peG. Then {t,,} gives
a tracial state (denoted by 7,.x,) on A¢ by [2.4). By [2.2) and [2.3}, the tracial
states {Tscx }scmyekic are extremal on A%

PROPOSITION 2.6. The center of the fixed point algebra {x€n(A)": d@ (x)=x,
g€GY} is |K/G|-dimensional.

PROOF. At first, we must compute 7=(7.)e¢ in for the restricted
trace r|4¢ of the unique trace v to A°. By easy computation, we have

r=dimz /11 | A
pr=dimr,

therefore y,=dimz for all r&G. Then we may set x,, in by

_ |Gldim=
H T Kl des(a)

which is dependent only on the orbit s(z). Hence the trace 7|, is of the form
Ssmekic Gy Tsian Gsm >0, Dsmekic @scy=1. Since, by Theorem 2.5, the cen-
ter of 7.(A)"¢ is less than |K/G|-dimensional, it must be |K/G|-dimensional.
Note that the minimal projections of its center correspond to {Tg(z)}scxrekro-

ExaMPLE 2.7. Let S: be a symmetric group of three elements. It is well
known that S; has two one-dimensional irreducible representations ¢ and sgn,
and one two-dimensional irreducible representation z (See 27.61). Let A, be
a (n*+n*+2)X(n*+n®*+2)-matrix factor and =, be a representation of S, into
A, with m,=n%®n?sgn®dxr. Then we have, by (27.61),
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)/ 1 g:e
nt—n?+1-0
(/20 +2) Triza(@)=] 2pigz 0 &=L2, L3 or 23
2n2—1
L 22'2'4;2” g=(1,2,3) or (1,3,2).

Since the normal subgroup K of S, is {g€8,;: 2 5-11—1r(r,(g))<+oo}, K is the
alternating subgroup U, of S;. By an easy computation, the dual group A, of
A, consists of three points and the orbit space QAIa/S3 consists of two orbits.
Therefore this fixed point AF-algebra AS: is simple and it has two extremal
tracial states.

REMARK 2.8. Let (A, G, @) be as in Theorem 2.5. If G is abelian, the
orbit space K/G is equal to K. Since |K|=|K]|, Theorem 4.2 in [6] follows
from Theorem 2.5.

REMARK 2.9. Let (A, G, a) be as in Theorem 2.5. The fixed point algebra
7-(A)"% is a factor if and only if the automorphisms &, are not inner in z.(A)”
except g=—e.

Next we want to get conditions under which the fixed point algebra A¢ is
a UHF-algebra. Let B(/*G)) be the full operator algebra on (*(G) and |G|~'Tr
be the normalized trace on B(/*(G)). We define a left regular representation 2
of G on [*(G) by (A(@)&)(h)=E&(g~*h) for g, heG and £€<!*G). The action « of
G on B(I*(G)) is defined by a,(x)=Ad A(g)(x) for x = B(/*G)). The infinite tensor
product ®%-, B(*G)) of B(I*(G)) is denoted by As and the tensor product type
action ®%-,a, is by a§.

LEMMA 2.10. The fixed point algebra (Ag)® is isomorphic to Ag.

PrROOF. Only in this lemma, we use the same notations (A, G, a) for
(Ag, G, a%. By using Lemma 2.1, we compute the multiplicity of partial embed-
ding B2—B:*' (x, pG) as follows,

| BUGHIIGI Tr(E(n, n+D),,7)
=Tx(|, T(@Me(e))dg)

:Scx‘r 2%:(2) Tr(A(g)dg=dim z dim p

because of Tr(A(g))=|G|d,... Then the Bratteli diagram for (As)¢ is Figure 1.
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dim x, dim p, -+, dim @ dim 7z, dim p, -+, dim @ C
am A v
(dim x)® dim 7 Xdim @ o

\ d%mN
) O ¢ e e v L O E (dim 72')2
el .
len/ =G|

(dim 7)* °

d

fo) [ R o) o O oo e o lGl

Figure 1. Figure 2. Figure 3.

We transform Figure 1 to Figure 2 and Figure 3 without changing the cor-
responding algebra. Since Figure 3 is a Bratteli diagram for Ag, (A4)¢ is iso-
morphic to Ag.

THEOREM 2.11. Let (A, G, a) be as in Theorem 2.5. Then the following
statements are equivalent,

(1) A€ s isomorphic to A

(ii) A€ is a UHF-algebra

(ii) (A, G, a) is isomorphic to (AQAg, G, (Ra®) where ¢ is the trivial auto-
morphism of a UHF-algebra A,

(iv) there exists a subsequence {n.}y., of non-negative integers such that n,=0
and C(ny, ny+)=(G|'dim p dim7),, s

Proor. By Lemma 2.10, the implications (iii)=(i)=(ii) are clear. Suppose

(ii) holds. By [1] 2.5 and 2.6, there are an increasing sequence {B(k)} of type I

factor and {n,} of non-negative integer (n,=0) such that >%.s B**C B(k)C

O Bk, Let a® (resp. b%) be the multiplicity of B?*— B(k) (resp. B(k)—

Brk+1). Since the multiplicity a%bfof Bré— Bre+tis (TI454 1l AdDT(E(ne, nasd)p, ),
(2.5) > dimzm akbk

el

=T 1440 To(@) S, dim Le(g)eW (na, me@)dg

I=np+1

=( 0140 T @I G1o0.xW (s, naeiXe)dg

=N}

=('Ii’ 14d)dimp.

i=np+

Therefore bi=b*dimp for all p=G (some constant b*). Similarly we obtain
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at=a*dimr for all z=G (some constant a*). By (2.5), we get a*bt=
(TT255L L AdD/IGl. The matrix C(ny, 1) =15 11 AslD)*(a*b* dima dimp) ,, zes
is equal to (|G| 'dimpdimn), .c4. Suppose (iv) holds. Then we have

617 dim p={_TT@ieW (ns, nani)g)dg,

which implies that the representation W (n,, n,;;) of G is equivalent to
(IT5% 1 | AGDIG| ~*-multiple of left regular representation 2. Therefore ®:*:% ., A;
=AR)RB(IXG)) and AdW(n,, n,., is transferred to :@AdA for all £ where
A(k) is a matrix factor. Hence A=A,XAs where A,=®5, A(k) and a is trans-
ferred to (Raq.

EXAMPLE 2.12. Let A, be a (a,+b,+2¢c,)X(a,+b,+2c,) matrix factor and
7w, be a representation of the symmetric group S, into A, with 7,=a,:Pb,sgn
&Be,w. If we take a,=n, b,=(n—1) and ¢,=1 for all n= N, then we have

1 g=ce
(1/2n4-2) Tr(z,(g)=1 1/2n-+2 g=(1,2), (1,3) or (2,3)
2n—2/2n+4-2 g=(1,2,3) or (1,3,2).

Therefore the normal subgroup K for the action a induced by =z, on A=
Q- A, is trivial. On the other hand, since the left regular representation 4 of S;
is (PsgnP2r and X =Psgn@r, the tensor product representations Q%4-, 7, of
{m,} L~ are not any multiple of 1. Hence the fixed point algebra AS: is not a
UHF-algebra with a unique tracial state by the proof of Theorem 2.11.

ExaMPLE 2.13. If we take a,=b,=n and c¢,,=1, cop+:=22k~+1) for &, nes
N, then, by an easy computation, we have 7,,Qms,4; 1S a 2(2k-+1)%-multiple of
A (w4, is not any multiple of 2). Therefore this fixed point algebra is a UHF-
algebra.
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After we typed out this manuscript, N. J. Munch informed us that Theorem 2.11
appears in [8].

787 D. Handelman and W. Rossmann, Product type actions of finite and compact groups,
Indiana Univ. Math. J., 33 (1984), 479-509.
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