Remarks on the fixed point algebras of product type actions on UHF-algebras

By Yoshikazu KATAYAMA

(Received Sept. 19, 1984) (Revised Nov. 5, 1984)

1. Introduction.

In this note we consider a C^* -dynamical system (A, G, α) of product type action, where A is a UHF-algebra and G is a finite group. In [5] and [6], A. Kishimoto and A. J. Munch investigated properties of the C^* -dynamical system (A, G, α) . One of their results is that if G is abelian, then the space of tracial states on the fixed point algebra A^G is n-simplex where the number n is the cardinality of the subgroup of G which is weakly inner in the trace representation of G. If G is a (non-abelian) finite group, the structure of ideals in G^G was investigated in [7] by G is G-invariant, the G-dynamical system G is a UHF-algebra. Since the trace G is G-invariant, the G-dynamical system G is the G-dynamical system of G is an inner automorphism of G we obtain a G-space G is with the action,

$$(g\pi)(k)=\pi(g^{-1}kg)$$

for $k \in K$, $g \in G$ and $\pi \in \hat{K}$. By giving an equivalence \sim by $\pi \sim \rho$ $(\pi, \rho \in \hat{K})$ iff $g\pi = \rho$ for some $g \in G$, we have an orbit space \hat{K}/\sim (denoted by \hat{K}/G).

In this note we show that the number of extremal traces on the fixed point algebra A^G is the cardinality of the orbit space \hat{K}/G and we give some conditions under which A^G is a UHF-algebra.

The author wishes to thank Dr. T. Kajiwara for some useful conversation.

2. Main results.

Let A_n be a matrix factor and π_n be a unitary representation of a finite group G into A_n . We define an action α of G on a UHF-algebra $A \equiv \bigotimes_{n=1}^{\infty} A_n$ by $\alpha_g = \bigotimes_{n=1}^{\infty} A d\pi_n(g)$.

We assume throughout that the automorphisms α_s are not inner in A except g=e, the unit in G.

By [7] N. Riedel § 3, we may assume that the families $J(\pi_n)$ of all irreducible subrepresentations of π_n are a common invariant set of \hat{G} , say Ω , for any $n \ge 2$. By [4] R. Iltis Proposition 2.7 (vii), there is a normal subgroup H of G such that the set Ω is equal to $\{\pi \in \hat{G} : \pi|_H \text{ is trivial}\}$. By the above assumption and [2] Lemma 3.5, the invariant set Ω must be the whole space of \hat{G} . Since $J(\pi_3) = \hat{G}$ and $\pi_1 \otimes \pi_2$ contains the trivial representation of G, we have $J(\pi_1 \otimes \pi_2 \otimes \pi_3) = \hat{G}$. After "compressing" $A'_1 = A_1 \otimes A_2 \otimes A_3$, we may assume that $J(\pi_n) = \hat{G}$ for all $n \ge 1$. Then we can show, by [7] Theorem 3.1, that the fixed point algebra A^G is simple.

Let τ be the unique tracial state on A. We set unitary representations of G,

$$W(n, m)(g) = \bigotimes_{i=n+1}^{m} \pi_i(g) \qquad (n < m)$$

for all $g \in G$. Let $W(n, m) = \sum_{\pi \in \hat{G}} \lambda(n, m)(\pi)\pi$ be the irreducible decomposition of W(n, m) where $\lambda(n, m)(\pi)$ is the multiplicity of π in W(n, m). Then the finite dimensional algebra $(\bigotimes_{i=1}^n A_i) \cap \{W(0, n)(g); g \in G\}'$ is isomorphic to $\sum_{\pi \in \hat{G}}^{\oplus} B_{\pi}^n$ where B_{π}^n is a non-zero factor of type $I_{\lambda(1, n)(\pi)}$ because of $J(\pi_i) = \hat{G}$ for all $i \in N$. We define a positive operator $E(n, m)_{\rho, \pi}$,

$$E(n, m)_{\rho, \bar{\pi}} = \int_{\mathcal{G}} \overline{\chi_{\rho}(g)} \chi_{\pi}(g) W(n, m)(g) dg$$

where χ_{π} is the character of G associated with π and dg is a normalized Haar measure on G. The way how to prove the main theorem is essentially due to the one adopted in [6].

LEMMA 2.1. The partial embedding $B_{\pi}^{n} \to B_{\rho}^{n+1}$ $(\pi, \rho \in \hat{G})$ has multiplicity $\|A_{n+1}\| \tau(E(n, n+1)_{\rho, \bar{\pi}})$ where $\|A_{n+1}\|$ is the rank on matrix factor A_{n+1} , i.e. $\|M_{n}(C)\| = n$.

PROOF. Let $\pi \otimes \pi_{n+1} = \sum_{\omega \in \hat{G}}^{\oplus} \lambda(\omega) \omega$ be the irreducible decomposition of $\pi \otimes \pi_{n+1}$ where $\lambda(\omega)$ is the multiplicity of ω in $\pi \otimes \pi_{n+1}$. We denote by Tr a canonical trace on the full operator algebra $B(\mathcal{H})$. Then we obtain

$$\int_{G} \overline{\chi_{\rho}(g)} \chi_{\pi}(g) \operatorname{Tr}(\pi_{n+1}(g)) dg$$

$$= \int_{G} \chi_{\rho}(g) \operatorname{Tr} \otimes \operatorname{Tr}(\pi \otimes \pi_{n+1}(g)) dg$$

$$= \sum_{\omega \in G} \int_{G} \overline{\chi_{\rho}(g)} \lambda(\omega) \chi_{\omega}(g) dg$$

$$= \sum_{\omega \in G} \lambda(\omega) \delta_{\rho, \omega} = \lambda(\rho)$$

where $\delta_{\rho,\omega}$ is Kronecker's delta. Since the unique trace τ on A is equal to $\bigotimes_{i=1}^{\infty} (\operatorname{Tr}/\|A_i\|)$, we get

$$\lambda(\rho) = ||A_{n+1}||\tau(E(n, n+1)_{\rho, \bar{\pi}}).$$

REMARK 2.2. The partial embedding $B_{\pi}^{n} \to B_{\rho}^{m}$ (n < m) has multiplicity $||A_{n+1}|| ||A_{n+2}|| \cdots ||A_{m}|| \tau(E(n, m)_{\rho, \bar{\pi}}).$

By quite the same reason as given at the beginning of § 3 in [6], we may require that $W(n,\infty)(k)=\text{st-lim}_{m\to\infty}W(n,m)(k)$ exists for $k\in K$ and $n\in N$. The restriction $\pi|_K$ to K of an irreducible representation π of G is $\sum_{\omega\in\hat{K}}\beta_\omega\omega$ as an irreducible decomposition. Since K is a normal subgroup of G, the multiplicity β_ω is

$$\beta_{\omega} = \begin{cases} d_{\pi} > 0, & \omega \in G\omega' \text{ for some } \omega' \in \hat{K} \\ 0, & \text{otherwise.} \end{cases}$$

We denote this orbit $G\omega'$ by $s(\pi)$.

LEMMA 2.3.

$$\begin{split} &\lim_{m\to\infty}\tau(E(n,m)_{\rho,\,\bar{\pi}}) = \int_K \overline{\chi_{\rho}(g)} \chi_{\pi}(g) \tau(W(n,\,\infty)(g)) dg \\ &\lim_{n\to\infty} (\lim_{m\to\infty}\tau(E(n,\,m)_{\rho,\,\bar{\pi}})) = \begin{cases} \frac{|K|}{|G|} \, d_{\rho} d_{\pi} |s(\pi)| \,, & s(\pi) = s(\rho) \\ 0 \,, & otherwise \end{cases} \end{split}$$

where $|\cdot|$ is the cardinality of a set.

PROOF. By [6] Lemma 2.2, we have

$$\begin{split} &\lim_{m\to\infty}\tau(E(n,\ \dot{m})_{\rho,\ \ddot{\pi}})\\ &=\lim_{m\to\infty}\int_{G}\overline{\chi_{\rho}(g)}\chi_{\pi}(g)\tau\Big(\underset{i=n+1}{\overset{m}{\bigotimes}}\pi_{i}(g)\Big)dg\\ &=\lim_{m\to\infty}\int_{G}\overline{\chi_{\rho}(g)}\chi_{\pi}(g)\Big(\underset{i=n+1}{\overset{m}{\prod}}\tau(\pi_{i}(g))\Big)dg\\ &=\int_{K}\overline{\chi_{\rho}(g)}\chi_{\pi}(g)\tau(W(n,\ \infty)(g))dg\,. \end{split}$$

Since

$$\lim_{n\to\infty}\prod_{i=n}^{\infty}\tau(\pi_i(g))=1 \quad \text{for } g\in K,$$

we have

$$\lim_{n\to\infty} (\lim_{m\to\infty} \tau(E(n, m)_{\rho, \bar{\pi}})) = \int_K \overline{\chi_{\rho}(g)} \chi_{\pi}(g) dg.$$

By the orthogonality of characters of a compact group, we obtain

$$\int_{K} \overline{\chi_{\rho}(g)} \chi_{\pi}(g) dg = \begin{cases} \frac{|K|}{|G|} d_{\rho} d_{\pi} |s(\pi)|, & s(\pi) = s(\rho) \\ 0, & \text{otherwise.} \end{cases}$$

Let τ' be another normalized trace on A^{G} . Then for minimal projections

 F_{π}^{n} $(\pi \in \hat{G})$ in the matrix factors B_{π}^{n} , their positive values $\tau'(F_{\pi}^{n})$ of the trace τ' are denoted by ξ_{π}^{n} . By Lemma 2.1, the vectors $\xi^{n} = (\xi_{\pi}^{n})_{\pi \in \hat{G}}$ and $\xi^{n+1} = (\xi_{\pi}^{n+1})_{\pi \in \hat{G}}$ satisfy a relation,

(2.0)
$$\xi_{\pi}^{n} = \sum_{\rho \in \mathcal{G}} \|A_{n+1}\| \tau(E(n, n+1)_{\rho, \pi}) \xi_{\rho}^{n+1}.$$

Then by setting $\eta_{\pi}^{n} = (\prod_{i=1}^{n} ||A_{i}||) \xi_{\pi}^{n}$, we have

$$\eta_{\pi}^{n} = \sum_{\rho \in \hat{G}} \tau(E(n, n+1)_{\rho, \bar{\pi}}) \eta_{\rho}^{n+1},$$

that is,

$$\eta^{n} = \eta^{n+1}C(n, n+1)$$

where $\eta^n = (\eta^n_\pi)_{\pi \in \hat{G}}$ and the matrix $C(n, n+1) = (\tau(E(n, n+1)_{\rho, \pi}))_{\rho, \pi \in \hat{G}}$.

REMARK 2.4. For n < m < 1,

(2.1)
$$\eta^{n} = \eta^{m} C(n, m)$$

$$C(m, 1)C(n, m) = C(n, 1)$$

where the matrix $C(n, m) = (\tau(E(n, m)_{\rho, \bar{\pi}}))_{\rho, \pi \in \hat{G}}$.

We compute

$$\begin{split} |G|^{-1} & \sum_{\pi \in \hat{G}} \dim \pi \ \eta_{\pi}^{n} = |G|^{-1} \sum_{\pi \in \hat{G}} \dim \pi \ (\sum_{\rho \in \hat{G}} \tau(E(n, n+1)_{\rho, \pi}) \eta_{\rho}^{n+1}) \\ &= \sum_{\rho \in \hat{G}} (|G|^{-1} \sum_{\rho \in \hat{G}} \dim \pi \ \tau(E(n, n+1)_{\rho, \pi})) \eta_{\rho}^{n+1} \\ &= \sum_{\rho \in \hat{G}} \left(\int_{G} \overline{\chi_{\rho}(g)} (|G|^{-1} \sum_{\pi \in \hat{G}} \dim \pi \ \chi_{\pi}(g)) \tau(W(n, n+1)(g)) dg \right) \eta_{\rho}^{n+1}. \end{split}$$

Since the left regular representation of G is $\sum_{\pi \in \hat{G}} (\dim \pi)\pi$,

$$\begin{split} \mid G \mid^{-1} \sum_{\pi \in \hat{G}} \dim \pi \, \eta_{\pi}^{n} &= \sum_{\rho \in \hat{G}} \int_{G} \overline{\chi_{\rho}(g)} \delta_{g,e} \tau(W(n, n+1)(g)) dg \, \eta_{\rho}^{n+1} \\ &= \sum_{\rho \in \hat{G}} \mid G \mid^{-1} \dim \rho \, \eta_{\rho}^{n+1}. \end{split}$$

Therefore we have

$$|G|^{-1}\dim\rho$$
 $\eta_{\rho}^{n} \leq \sum_{\rho \in \hat{G}} |G|^{-1}\dim\rho$ $\eta_{\rho}^{n} = \sum_{\rho \in \hat{G}} |G|^{-1}\dim\rho$ η_{ρ}^{1}

and

$$\sup_{\rho \in \hat{\mathcal{G}}} |\eta_{\rho}^{n}| \leq \sum_{\rho \in \hat{\mathcal{G}}} \dim \rho \ \eta_{\rho}^{1}$$

for all $n \in \mathbb{N}$. Hence we may take a subsequence $\{\eta^{n_p}\}$ of $\{\eta^n\}$ which converges to a vector $\eta = (\eta_{\pi})_{\pi \in \hat{G}}$. It follows from (2.1) that

$$\lim_{n_q \rightarrow \infty} \eta^{n_p} - \eta^{n_q} = \lim_{n_q \rightarrow \infty} \eta^{n_q} (C(n_p, n_q) - I)$$

where I is an identity matrix. By Lemma 2.3, we get

$$0 = \lim_{n_p \to \infty} (\lim_{n_q \to \infty} \eta^{n_p} - \eta^{n_q}) = \eta(C - I)$$

where the matrix C is equal to $((|K|/|G|)d_{\rho}d_{\pi}|s(\pi)|\delta_{s(\pi),s(\rho)})_{\rho,\pi\in\hat{G}}$. Then the vector η satisfies a relation,

$$\eta_{\pi} = (|K|/(|G|) \sum_{s(\rho)=s(\pi)} d_{\rho} d_{\pi} |s(\pi)| \eta_{\rho}.$$

We set

$$x_{s(\pi)} = \sum_{\rho \in \hat{G}, s(\rho) = s(\pi)} d_{\rho} \eta_{\rho}.$$

Hence we obtain a vector $(x_{s(\pi)})_{s(\pi) \in \hat{R}/G}$ such that

(2.2)
$$\eta_{\pi} = (|K|/|G|)d_{\pi}|s(\pi)|x_{s(\pi)}.$$

On the other hand, since $\eta^{n_p} = \eta^{n_q} C(n_p, n_q)$ $(n_p < n_q)$, $\eta^{n_p} = \lim_{n_q \to \infty} \eta^{n_p} C(n_p, n_q)$ $= \eta C(n_p, \infty)$. Therefore, for all n, we have

(2.3)
$$\eta^{n} = \eta^{n_{p}} C(n, n_{p})$$
$$= \eta C(n_{p}, \infty) C(n, n_{p})$$
$$= \eta C(n, \infty).$$

THEOREM 2.5. Let (A, G, α) and K be as above. Then the number of extremal traces on the fixed point algebra A^G equals the cardinality of the orbit space \hat{K}/G .

PROOF. We have already proved (2.2). For an orbit $s(\pi) \in \hat{K}/G$, we set, for a positive number x,

$$x_{s(\rho)} = \begin{cases} x, & s(\rho) = s(\pi) \\ 0, & \text{otherwise,} \end{cases}$$

and we define a vector $\eta_{s(\pi)} = (d_\pi | s(\pi) | \delta_{s(\pi),s(\rho)})_{\rho \in \hat{G}}$ and

$$\eta^n = (|K|x/|G|)\eta_{s(\pi)}C(n, \infty)$$

where $C(n, \infty) = \lim_{m \to \infty} C(n, m)$. Therefore we also set

$$\xi^n = \left(1 / \prod_{i=1}^n \|A_i\|\right) \eta^n.$$

Since $C(n+1, \infty)C(n, n+1)=C(n, \infty)$ by (2.1), we get

(2.4)
$$\xi^{n} = \left(1 / \prod_{i=1}^{n} ||A_{i}||\right) (|K|x/|G|) \eta_{s(\pi)} C(n, \infty)$$
$$= \left(1 / \prod_{i=1}^{n} ||A_{i}||\right) (|K|x/|G|) \eta_{s(\pi)} C(n+1, \infty) C(n, n+1)$$

$$= \left(1 / \prod_{i=1}^{n} ||A_i|| \right) \eta^{n+1} C(n, n+1)$$

$$= ||A_{n+1}|| \xi^{n+1} C(n, n+1),$$

which is the relation (2.0). If $\pi_1 = \sum_{\rho \in \hat{G}} \lambda(0, 1)(\rho) \rho$ as an irreducible decomposition, then

$$\sum_{\rho=\hat{G}}^{\oplus} B_{\rho}^{1} = \sum_{\rho=\hat{G}}^{\oplus} M_{\lambda(0,1)(\rho)}(C) \otimes 1_{\dim \rho}.$$

Since $||A_1||\xi^1 = (x|K|/|G|)\eta_{s(\pi)}C(1, \infty)$ and x is an arbitrary positive number, we can decide x uniquely such that $\sum_{\rho \in \hat{G}} \xi_{\rho}^1 \lambda(0, 1)(\rho) = 1$. Hence for each $\sum_{\pi \in \hat{G}} B_{\pi}^n$, we set a trace $\tau_{s(\pi)}^n$ by

$$\tau_{s(\pi)}^n = \sum_{\rho \in \hat{G}} (\hat{\xi}_{\rho}^n) \operatorname{Tr}$$

where Tr are canonical traces on $M_{\lambda(1, n)(\rho)}(C)$ for all $\rho \in \hat{G}$. Then $\{\tau_{s(\pi)}^n\}$ gives a tracial state (denoted by $\tau_{s(\pi)}$) on A^G by (2.4). By (2.2) and (2.3), the tracial states $\{\tau_{s(\pi)}\}_{s(\pi)\in \hat{K}/G}$ are extremal on A^G .

PROPOSITION 2.6. The center of the fixed point algebra $\{x \in \pi_{\tau}(A)'' : \tilde{\alpha}_{g}(x) = x, g \in G\}$ is $|\hat{K}/G|$ -dimensional.

PROOF. At first, we must compute $\eta = (\eta_{\pi})_{\pi \in \hat{G}}$ in (2.2) for the restricted trace $\tau|_{A^G}$ of the unique trace τ to A^G . By easy computation, we have

$$\xi_{\pi}^{n} = \dim \pi / \prod_{i=1}^{n} \|A_{i}\|$$

$$\eta_{\pi}^{n} = \dim \pi$$
,

therefore $\eta_{\pi} = \dim \pi$ for all $\pi \in \hat{G}$. Then we may set $x_{s(\pi)}$ in (2.2) by

$$x_{s(\pi)} = \frac{|G| \dim \pi}{|K| d_{\pi} s(\pi)}$$

which is dependent only on the orbit $s(\pi)$. Hence the trace $\tau|_{AG}$ is of the form $\sum_{s(\pi)\in\hat{R}/G}a_{s(\pi)}\tau_{s(\pi)}$, $a_{s(\pi)}>0$, $\sum_{s(\pi)\in\hat{R}/G}a_{s(\pi)}=1$. Since, by Theorem 2.5, the center of $\pi_{\tau}(A)''^{G}$ is less than $|\hat{K}/G|$ -dimensional, it must be $|\hat{K}/G|$ -dimensional. Note that the minimal projections of its center correspond to $\{\tau_{s(\pi)}\}_{s(\pi)\in\hat{R}/G}$.

EXAMPLE 2.7. Let S_3 be a symmetric group of three elements. It is well known that S_3 has two one-dimensional irreducible representations ι and sgn, and one two-dimensional irreducible representation π (See [3] 27.61). Let A_n be a $(n^2+n^2+2)\times(n^2+n^2+2)$ -matrix factor and π_n be a representation of S_3 into A_n with $\pi_n=n^2\iota\oplus n^2\operatorname{sgn}\oplus \pi$. Then we have, by [3] (27.61),

$$(1/2n^2+2)\operatorname{Tr}(\pi_n(g)) = \begin{cases} 1 & g=e \\ \frac{n^2-n^2+1\cdot 0}{2n^2+2} = 0 & g=(1,2), \ (1,3) \ \text{or} \ (2,3) \\ \frac{2n^2-1}{2n^2+2} & g=(1,2,3) \ \text{or} \ (1,3,2). \end{cases}$$

Since the normal subgroup K of S_3 is $\{g \in S_3 : \sum_{n=1}^{\infty} 1 - \tau(\pi_n(g)) < +\infty\}$, K is the alternating subgroup \mathfrak{A}_3 of S_3 . By an easy computation, the dual group $\hat{\mathfrak{A}}_3$ of \mathfrak{A}_3 consists of three points and the orbit space $\hat{\mathfrak{A}}_3/S_3$ consists of two orbits. Therefore this fixed point AF-algebra A^{S_3} is simple and it has two extremal tracial states.

REMARK 2.8. Let (A, G, α) be as in Theorem 2.5. If G is abelian, the orbit space \widehat{K}/G is equal to \widehat{K} . Since $|\widehat{K}| = |K|$, Theorem 4.2 in [6] follows from Theorem 2.5.

REMARK 2.9. Let (A, G, α) be as in Theorem 2.5. The fixed point algebra $\pi_{\tau}(A)''^G$ is a factor if and only if the automorphisms $\tilde{\alpha}_g$ are not inner in $\pi_{\tau}(A)''$ except g=e.

Next we want to get conditions under which the fixed point algebra A^G is a UHF-algebra. Let $B(l^2(G))$ be the full operator algebra on $l^2(G)$ and $|G|^{-1}\mathrm{Tr}$ be the normalized trace on $B(l^2(G))$. We define a left regular representation λ of G on $l^2(G)$ by $(\lambda(g)\xi)(h)=\xi(g^{-1}h)$ for $g, h\in G$ and $\xi\in l^2(G)$. The action α of G on $B(l^2(G))$ is defined by $\alpha_g(x)=\mathrm{Ad}\,\lambda(g)(x)$ for $x\in B(l^2(G))$. The infinite tensor product $\bigotimes_{n=1}^\infty B(l^2(G))$ of $B(l^2(G))$ is denoted by A_G and the tensor product type action $\bigotimes_{n=1}^\infty \alpha_g$ is by α_g^G .

LEMMA 2.10. The fixed point algebra $(A_G)^G$ is isomorphic to A_G .

PROOF. Only in this lemma, we use the same notations (A, G, α) for (A_G, G, α^G) . By using Lemma 2.1, we compute the multiplicity of partial embedding $B^n_\pi \to B^{n+1}_\rho$ $(\pi, \rho \in \hat{G})$ as follows,

$$||B(l^{2}(G))|||G|^{-1}\operatorname{Tr}(E(n, n+1)_{\rho, \bar{\pi}})$$

$$=\operatorname{Tr}\left(\int_{G}\overline{\chi_{\rho}(g)}\chi_{\pi}(g)\lambda(g)dg\right)$$

$$=\int_{G}\overline{\chi_{\rho}(g)}\chi_{\pi}(g)\operatorname{Tr}(\lambda(g))dg=\dim \pi \dim \rho$$

because of $\operatorname{Tr}(\lambda(g)) = |G|\delta_{g,e}$. Then the Bratteli diagram for $(A_G)^G$ is Figure 1.

We transform Figure 1 to Figure 2 and Figure 3 without changing the corresponding algebra. Since Figure 3 is a Bratteli diagram for A_G , $(A_G)^G$ is isomorphic to A_G .

THEOREM 2.11. Let (A, G, α) be as in Theorem 2.5. Then the following statements are equivalent,

- (i) A^{G} is isomorphic to A
- (ii) A^{G} is a UHF-algebra
- (iii) (A, G, α) is isomorphic to $(A_0 \otimes A_G, G, \iota \otimes \alpha^G)$ where ι is the trivial automorphism of a UHF-algebra A_0
- (iv) there exists a subsequence $\{n_k\}_{k=1}^{\infty}$ of non-negative integers such that $n_1=0$ and $C(n_k, n_{k+1})=(|G|^{-1}\dim\rho\dim\pi)_{\rho, \pi\in\hat{G}}$.

PROOF. By Lemma 2.10, the implications (iii) \Rightarrow (ii) are clear. Suppose (ii) holds. By [1] 2.5 and 2.6, there are an increasing sequence $\{B(k)\}$ of type I factor and $\{n_k\}$ of non-negative integer $(n_1=0)$ such that $\sum_{\pi\in\hat{G}}^{\oplus}B_{\pi}^{n_k}\subset B(k)\subset\sum_{\pi\in\hat{G}}^{\oplus}B_{\pi}^{n_k+1}$. Let a_{π}^k (resp. b_{π}^k) be the multiplicity of $B_{\pi}^{n_k}\to B(k)$ (resp. $B(k)\to B_{\pi}^{n_k+1}$). Since the multiplicity $a_{\pi}^kb_{\rho}^k$ of $B_{\pi}^{n_k}\to B_{\rho}^{n_k+1}$ is $(\prod_{i=n_k+1}^{n_{k+1}}\|A_i\|)\tau(E(n_k,n_{k+1})_{\rho,\pi})$,

$$(2.5) \qquad \sum_{\pi \in \hat{G}} \dim \pi \ a_{\pi}^{k} b_{\rho}^{k}$$

$$= \left(\prod_{i=n_{k+1}}^{n_{k+1}} \|A_{i}\|\right) \int_{G} \overline{\chi_{\rho}(g)} \left(\sum_{\pi \in \hat{G}} \dim \pi \ \chi_{\pi}(g)\right) \tau(W(n_{k}, n_{k+1}(g)) dg$$

$$= \left(\prod_{i=n_{k+1}}^{n_{k+1}} \|A_{i}\|\right) \int_{G} \overline{\chi_{\rho}(g)} |G| \delta_{g, e} \tau(W(n_{k}, n_{k+1})(g)) dg$$

$$= \left(\prod_{i=n_{k+1}}^{n_{k+1}} \|A_{i}\|\right) \dim \rho.$$

Therefore $b_{\rho}^{k} = b^{k} \dim \rho$ for all $\rho \in \hat{G}$ (some constant b^{k}). Similarly we obtain

 $a_{\pi}^{k} = a^{k} \dim \pi$ for all $\pi \in \hat{G}$ (some constant a^{k}). By (2.5), we get $a^{k}b^{k} = (\prod_{i=n_{k}+1}^{n_{k+1}} \|A_{i}\|)/|G|$. The matrix $C(n_{k}, n_{k+1}) = (\prod_{i=n_{k}+1}^{n_{k+1}} \|A_{i}\|)^{-1} (a^{k}b^{k} \dim \pi \dim \rho)_{\rho, \pi \in \hat{G}}$ is equal to $(|G|^{-1} \dim \rho \dim \pi)_{\rho, \pi \in \hat{G}}$. Suppose (iv) holds. Then we have

$$|G|^{-1}\dim \rho = \int_G \overline{\chi_{\rho}(g)} \tau(W(n_k, n_{k+1})(g)) dg$$

which implies that the representation $W(n_k, n_{k+1})$ of G is equivalent to $(\prod_{i=n_k+1}^{n_{k+1}} \|A_i\|)|G|^{-1}$ -multiple of left regular representation λ . Therefore $\bigotimes_{i=n_k+1}^{n_{k+1}} A_i = A(k) \bigotimes B(l^2(G))$ and $AdW(n_k, n_{k+1})$ is transferred to $\iota \bigotimes Ad\lambda$ for all k where A(k) is a matrix factor. Hence $A = A_0 \bigotimes A_G$ where $A_0 = \bigotimes_{k=1}^{\infty} A(k)$ and α is transferred to $\iota \boxtimes \alpha_G$.

EXAMPLE 2.12. Let A_n be a $(a_n+b_n+2c_n)\times(a_n+b_n+2c_n)$ matrix factor and π_n be a representation of the symmetric group S_3 into A_n with $\pi_n=a_n\epsilon \oplus b_n \operatorname{sgn} \oplus c_n\pi$. If we take $a_n=n$, $b_n=(n-1)$ and $c_n=1$ for all $n\in \mathbb{N}$, then we have

$$(1/2n+2)\operatorname{Tr}(\pi_n(g)) = \begin{cases} 1 & g=e \\ 1/2n+2 & g=(1,2), \ (1,3) \ \text{or} \ (2,3) \\ 2n-2/2n+2 & g=(1,2,3) \ \text{or} \ (1,3,2). \end{cases}$$

Therefore the normal subgroup K for the action α induced by π_n on $A = \bigotimes_{n=1}^{\infty} A_n$ is trivial. On the other hand, since the left regular representation λ of S_3 is $\iota \oplus \operatorname{sgn} \oplus 2\pi$ and $\pi \otimes \pi = \iota \oplus \operatorname{sgn} \oplus \pi$, the tensor product representations $\bigotimes_{n=k}^{l} \pi_n$ of $\{\pi_n\}_{n=k}^{l}$ are not any multiple of λ . Hence the fixed point algebra A^{S_3} is not a UHF-algebra with a unique tracial state by the proof of Theorem 2.11.

EXAMPLE 2.13. If we take $a_n = b_n = n$ and $c_{2k} = 1$, $c_{2k+1} = 2(2k+1)$ for k, $n \in \mathbb{N}$, then, by an easy computation, we have $\pi_{2k} \otimes \pi_{2k+1}$ is a $2(2k+1)^2$ -multiple of λ (π_{2k} is not any multiple of λ). Therefore this fixed point algebra is a UHF-algebra.

References

- [1] O. Bratteli, Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math. Soc., 171 (1972), 195-234.
- [2] O. Bratteli, Crossed products of UHF-algebras by product type actions, Duke Math. J., 46 (1979), 1-23.
- [3] E. Hewitt and K. A. Ross, Abstract harmonic analysis II, Springer-Verlag, 1970.
- [4] R. Iltis, Some algebraic structure in the dual of compact group, Canad. J. Math., 20 (1968), 1499-1510.
- [5] A. Kishimoto, On the fixed-point-algebra of a UHF-algebra under a periodic automorphism of product type, Publ. Res. Inst. Math. Sci., 13 (1977), 777-791.
- [6] N. J. Munch, The fixed-point algebra of tensor-product actions of finite abelian groups on UHF-algebras, J. Funct. Anal., 52 (1983), 413-419.
- [7] N. Riedel, Remarks on the fixed point algebras of product type action, Monatsh. Math., 89 (1980), 235-242.

After we typed out this manuscript, N. J. Munch informed us that Theorem 2.11 appears in [8].

[8] D. Handelman and W. Rossmann, Product type actions of finite and compact groups, Indiana Univ. Math. J., 33 (1984), 479-509.

Yoshikazu KATAYAMA Shiga Prefectural Junior College Hikone, Shiga 522 Japan