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In this paper we study the symbolic calculus for a Banach function algebra
with certain conditions. First we define a class of Banach function algebras
which contains the class of all function algebras and the class of all ultraseparating
Banach function algebras. Our purpose is to prove the theorem asserting that if
$A$ is a non-trivial Banach function algebra in the class, then only analytic func-
tions can operate on $A$ . It is a generalization of theorems of de Leeuw and
Katznelson [6], Bernard [2] and Bernard and Dufresnoy [3].

1. Introduction.

Let $A$ be a Banach function algebra on a compact Hausdorff space $X$, that
is, a point separating unital subalgebra of $C(X)$ (the algebra of all complex
valued continuous functions on $X$ ) with the Banach algebraic norm $N(\cdot)$ . We
say that $A$ is a function algebra if $N(\cdot)$ is the supremum norm $\Vert\cdot\Vert_{\infty}$ . Suppose
that $h$ is a complex valued continuous function on an open subset $D$ of the
complex plane. We say that $h$ operates by composition on $A$ if $h\circ f$ is in $A$

whenever $f\in A$ has the range contained in $D$ .
de Leeuw-Katznelson [6] proved that if $A$ is a non-trivial function algebra

$(=nonC(X))$ , the nany non-analytic function does not operate by composition on
$A$ . But it is not the case for Banach function algebras as many examples show.
For example the algebra

$A( \Gamma)=\{f\in C(\Gamma):\sum|f(n)|<\infty\}$

of all continuous functions on the unit circle $\Gamma$ with absolutely convergent
Fourier series with the norm

$N(f)= \sum|;(n)|$

for $f$ in $A(\Gamma)$ , where $\hat{f}(n)$ denotes n-th Fourier coefficients, is conjugate closed
non-trivial Banach function algebra. Bernard [2] defined ultraseparability for
Banach function algebras and showed that $\overline{z}$ does not operate by composition on
a non-trivial ultraseparating Banach function algebra. Bernard-Dufresnoy [3]
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also showed that if a non-analytic function $h$ operates boundedly on an ultra-
separating Banach function algebra, then it is trivial one. Our result is a
generalization of above results by de Leeuw-Katznelson and Bernard and Bernard-
Dufresnoy.

We denote the uniform closure of $A$ in $C(X)$ by c1A in this paper.

2. Definition and examples.

Let $E$ be a normed space with the norm $n(\cdot)$ . $\tilde{E}$ denotes the space of all
bounded sequences in $E$ . Suppose that $A$ is a Banach function algebra on $X$

with the norm $N(\cdot)$ . We may consider that $\tilde{A}$ is a subalgebra of $C(\tilde{X})$ , where
$\tilde{X}$ is the Stone-Cech compactification of the direct product of the space of all
positive integers $N$ and the compact Hausdorff space $X$, with the Banach alge-
braic norm $\tilde{N}(\cdot)$ which is defined as follows:

$\tilde{N}(f)=\sup\{N(f_{n}):n=1, 2, \}$

for $\tilde{f}=(f_{n})$ in $\tilde{A}$ . If $\tilde{A}$ separates the points of $\tilde{X}$, we say that $A$ is ultra-
separating on $X$. Suppose that $Y$ is a compact subset of $X$. Put

$A|Y=$ { $f\in C(Y):F|Y=f$ for $\exists_{F}\in A$ },

where $F|Y$ is the restriction of $F$ to $Y$ . Then $A|Y$ is a Banach function
algebra on $Y$ with the norm

$N_{Y}(f)= \inf$ { $N(F):F\in A$ and $F|Y=f$}

for $f$ in $A|Y$ . If $A$ is ultraseparating on $X$, then $\tilde{A}$ is ultraseparating on $\tilde{X}$

with $\tilde{N}(\cdot)[1]$ and $A|Y$ is also ultraseparating on $Y$ with $N_{Y}(\cdot)$ . We may
suppose that $(A|Y)^{\sim}=\tilde{A}|\tilde{Y}$ $and\tilde{N}_{Y}^{\sim}(\cdot)=(N_{Y})^{\sim}(\cdot)$ . We denote $(\tilde{A})^{\sim}$ by $A^{\approx}$ and
$(\tilde{N})^{\sim}(\cdot)$ by $N^{\approx}(\cdot)$ and $(\tilde{X})^{\sim}$ by $X$ respectively. For further information for ultra-
separability, see [1], [2] and [3].

DEFINITION. Let $A$ and $B$ be Banach function algebras on $X$. We say that
$A$ is B-ultraseparating if $\tilde{A}$ separates the points in $\tilde{X}$ which are separated by $\tilde{B}$ .

Let $A$ be an ultraseparating Banach function algebra on $X$ with the norm
$N(\cdot)$ . Then $A$ is $C(X)$-ultraseparating and clA-ultraseparating on $X$. If $A$ is a
function algebra, then $A$ is clearly clA-ultraseparating by definition. If $A$ is
B-ultraseparating on $X$ and $Y$ is a closed subset of $X$, then $A|Y$ is $B|$ Y-ultra-
separating on $Y$ .

Let $H^{\infty}$ be the uniformly closed subalgebra of $L^{\infty}$ (the algebra of all bounded
measurable functions on the unit circle $\Gamma$ in the complex plane) consisting of
$L^{\infty}$ functions whose negative Fourier coefficients vanish. Then $H^{\infty}$ is ultra-
separating on the maximal ideal space of $L^{\infty}$ since $H^{\infty}$ is a logmodular sub-
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algebra of $L^{\infty}$ .
PROPOSITION 1. Let $B$ be a Douglas algebra on $\Gamma$ (uniformly closed algebra

lying between $H^{\infty}$ and $L^{\infty}$). We consider that $H^{\infty}$ and $B$ are function algebras
on the maximal ideal space $M(B)$ of B. Then $H^{\infty}$ is $B$-ultraseparating. SuPpose
that $Y$ is a closed restriction set for $B$ ( $B|Y$ is uniformly closed); then $H^{\infty}|Y$ is
cl $(H^{\infty}|Y)$-ultraseparating.

PROOF. Suppose that $\tilde{x}$ and $\tilde{y}$ are different points in $\tilde{M}(B)$ and $\tilde{f}=(f_{n})\in\tilde{B}$

separates them. Let $C_{B}$ be the $c*$-algebra generated by invertible Blaschke
products in $B$ . In [5] it is shown that the linear span $H^{\infty}+C_{B}$ equals $B$ . By

the open mapping theorem there is a constant $K$ which depends only on $B$ with
the property that for every $f$ in $B$ there are a $g\in H^{\infty}$ and an $h\in C_{B}$ such that
$f=g+h$ and $\Vert g\Vert_{\infty}\leqq K\Vert f\Vert_{\infty}$ and $\Vert h\Vert_{\infty}\leqq K\Vert f\Vert_{\infty}$ . Thus we have an expression
$f_{n}=g_{n}+h_{n}$ with $\Vert g_{n}\Vert_{\infty}\leqq K\Vert f_{n}\Vert_{\infty}$ and $\Vert h_{n}\Vert_{\infty}\leqq K\Vert f_{n}\Vert_{\infty}$ for $g_{n}\in H^{\infty}$ and $h_{n}\in C_{B}$

for every positive integer $n$ . So $\tilde{g}=(g_{n})\in\tilde{H}^{\infty}$ or $\hslash=(h_{n})\in\tilde{C}_{B}$ separates $\tilde{x}$ and
$\tilde{y}$ . Suppose that $\tilde{g}$ does not separate them. Without loss of generality we may
assume $\tilde{h}(\tilde{x})=0$ and $\tilde{h}(\tilde{y})=1$ . Put

$X_{n}^{(1)}=(\{n\}\cross M(B))\cap\{z\in\tilde{M}(B):|\tilde{h}(z)|\leqq 1/3\}$

and
$X_{n}^{(2)}=(\{n\}\cross M(B))\cap\{z\in\tilde{M}(B):|\hslash(z)|\geqq 1/2\}$ .

Let us denote

$PX_{n}^{(1)}=\{p\in M(C_{B}):\exists_{z\in X_{n}^{(1)}}$ such that $f(z)=f(p)$ for $\forall_{f\in C_{B}\}}$

and
$PX_{n}^{(2)}=\{p\in M(C_{B}):\exists_{z\in X_{n}^{(2)}}$ such that $f(z)=f(p)$ for $\forall_{f\in C_{B}\}}$

Since we may consider that the maximal ideal space $M(C_{B})$ of $C_{B}$ is the equiva-
lent class of the points of $M(B)$ which is not separated by functions in $C_{B}$ , it is
easy to see that we may suppose that $PX_{n}^{(1)}$ and $PX_{n}^{(2)}$ are disjoint compact
subsets of $M(C_{B})$ . Since $H^{\infty}\cap C_{B}$ is a logmodular subalgebra of $C_{B}$ on $M(C_{B})$

[5], we can take functions $j_{n}$ in $H^{\infty}\cap C_{B}$ with $\Vert j_{n}\Vert_{\infty}\leqq 3$ and $J_{n}|\leqq 1$ on $PX_{n}^{(1)}$

and $|j_{n}|\geqq 2$ on $PX_{n}^{(2)}$ for every $n$ . It follows that $I=(j_{n})\in(H^{\infty}\cap C_{B})^{\sim}$ separates
$\tilde{x}$ and $\tilde{y}$ as a function on $\tilde{M}(B)$ . Thus we have concluded that $H^{\infty}$ is B-ultra-
separating.

Let $\tilde{x}$ and $\tilde{y}$ be a point in $Y$ and suppose that $(cl(H^{\infty}|Y))^{\sim}$ separates them.
Then $(B|Y)^{\sim}$ separates $\tilde{x}$ and $\overline{y}$ since $\tilde{Y}$ is a closed restriction set for $\tilde{B}$ . Thus
\langle $H^{\infty}|Y)^{\sim}$ separates $\tilde{x}$ and $\tilde{y}$ since $H^{\infty}$ is B-ultraseparating.

Generally $H^{\infty}|Y$ is not uniformly closed nor ultraseparating, because $Y$ may
not be a closed restriction set for $H^{\infty}$ and because $Y$ may contain analytic disks.

Let $A_{l}$ be $B_{i}$-ultraseparating Banach function algebra on $X_{i}$ with the norm
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$N_{i}(\cdot)$ for $i=1,2$ . Suppose that $X$ is the formal union $X_{1}\cup X_{2}$ . Then we see that

$A=$ { $f\in C(X):f|X_{1}\in A_{1}$ and $f|X_{2}\in A_{2}$ }

is a Banach function algebra on $X$ with respect to the norm

$N_{A}(f)= \max\{N_{1}(f|X_{1}), N_{2}(f|X_{2})\}$

and B-ultraseparating on $X$ where $B$ denotes the Banach algebra

{ $f\in C(X):f|X_{1}\in B_{1}$ and $f|X_{2}\in B_{2}$ }
with the norm

$N_{B}(f)= \max\{N_{1}’(f|X_{1}), N_{2}’(f|X_{2})\}$ .
( $N_{i}’(\cdot)$ denotes the norm of $B_{i}$ for $i=1,2.$ )

There are many other examples of $B(c1A)$-ultraseparating Banach function
algebra $A$ which is not uniformly closed nor ultraseparating.

PROPOSITION 2. Let $A$ and $B$ be Banach function algebras on X. Then
$A$ is $B$-ultraseparating on $X$ if and only if for every $po\alpha tive$ integer $m$ , there
exist a $po\alpha tive\delta$ and a $po\alpha tive$ integer $l$ with the following property $(*)$ ;

Proposition 2 is a generalization of the characterization for ultraseparating
Banach function algebras [1] and we can prove it almost in the same way as
Theorem in [1].

3. Main result.

In this section we show a generalization of the theorems of de Leeuw-
Katznelson [6], Bernard [2] and Bernard-Dufresnoy [3].

THEOREM. Let $A$ be a clA-ultraseparatjng Banach function algebra on $X$

with the norm $N(\cdot)$ and $h$ be a cmtinuous but non-analytic function on an open
subset of the complex plane. SuPpose that $h$ operates by $compo\alpha tion$ on $A$ ; then
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we have $A=C(X)$ .
PROOF. It is trivial that $h$ operates by composition on c1A. It follows that

c1A $=C(X)$ by the theorem of de Leeuw-Katznelson. So we may consider only
the case of ultraseparating Banach function algebras. Without loss of generality
we may assume that $h$ is defined on the closed unit disk and that $h$ is not
analytic at the origin. Let $\Delta_{\delta}$ be a positive $C^{\infty}$-function on the complex plane

$C$ supported in $\{w\in C:|w|<\delta\}$ with a small positive $\delta$ such that $\int\int\Delta_{\delta}(w)dxdy=1$ ,

where $w=x+yi$ . Put

$H_{\delta}(z_{1}, z_{2})= \int\int h(z_{1}-z_{2}w)\Delta_{\delta}(w)dxdy$ $|z_{1}|<1-\delta$ , $|z_{2}|<1$ .

Then $H_{\delta}(z_{1}, z_{2})$ is a $C^{\infty}$-function and tends to $h(z_{1})$ uniformly on a compact sub-
set of

$\{(z_{1}, z_{2})\in C^{2} : |z_{1}|<1,0<|z_{2}|<1\}$

as $\delta$ tends to $0$ . We consider the following two cases:
(1) For some $z_{2}$ with $0<|z_{2}|<1$ , there exists a $\eta>0$ such that $\partial/\partial\overline{z}_{1}H_{\delta}(z_{1}, z_{2})$

$=c_{\delta}$ for every small $\delta$ on $\{z_{1}\in C:|z_{1}|<\eta\}$ .
(2) For every $z_{2}$ with $0<|z_{2}|<1$ and for every small $\eta>0$ , there exists a

small $\delta_{0}$ such that for every $\delta_{1}$ with $0<\delta_{1}<\delta_{0}$ there exists $\delta$ with $0<\delta<\delta_{1}$ such
that $\partial/\partial\overline{z}_{1}H_{\delta}(z_{1}, z_{2})$ is not a constant on $\{z_{1}\in C:|z_{1}|<\eta\}$ with respect to $z_{1}$ .

Case (1). We may suppose that $H_{\delta}(z_{1}, z_{2})-c_{\delta}\overline{z}_{1}=P_{\delta}(z_{1})$ is analytic on
$\{z_{1}\in C : |z_{1}|<\eta/2\}$ and continuous on $\{z_{1}\in C:|z_{1}|\leqq\eta/2\}$ . SuPpose that

$\sup\Vert P_{\delta}\Vert_{\infty}=\infty$ (supremum takes for all small $\delta>0$). Then $\sup|c_{\delta}|=\infty$ . So
sup $inf\{\Vert c_{\delta}\overline{z}+f\Vert_{\infty} : f\in A_{0}\}=\infty$ , where $A_{0}$ is a disk algebra on $\{z_{1}\in C:|z_{1}|\leqq\eta/2\}$ .
It is a contradiction since $H_{\delta}(z_{1}, z_{2})=c_{\delta}\overline{z}_{1}+P_{\delta}(z_{1})$ and

sup $sup\{|H_{\delta}(z_{1}, z_{2})| : |z_{1}|\leqq\eta/2\}\leqq\sup\{|h(z)| : |z|\leqq\eta/2\}<\infty$ .

Thus we have $\sup\Vert P_{\delta}\Vert_{\infty}<\infty$ and it follows by the normal family argument that
there is a sequence $\{\delta(n)\}$ of positive numbers converging to $0$ which satisfies
that $P_{\delta(n)}$ tends to an analytic function $P$ as $n$ tends to $0$ . So left hand side of

$H_{\delta(n)}(z_{1}, z_{2})-P_{\delta(n)}(z_{1})=c_{\delta(n)}\overline{z}_{1}$

tends to $h(z_{1})-P(z_{1})$ and thus right hand side to $c\overline{z}_{1}$ as $n$ tends to $\infty$ . We con-
clude that $h(z)=c\overline{z}+P(z)$ on $\{z\in C:|z|\leqq\eta/3\}$ where $P(z)$ is analytic near
$\{z\in C:|z|\leqq\eta/3\}$ and we may suppose that $c\neq 0$ since $h$ is not analytic at the
origin. Let $f$ be a function in $A$ . Put a sufficiently small positive real number
$\alpha$ with

$\alpha f(M_{A})\subset\{z\in C:|z|\leqq\eta/4\}$
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for the maximal ideal space $1$]$/I_{A}$ of $A$ . Then

$h(\alpha f)=c\cdot\overline{\alpha f}+P(\alpha f)$

and
$P(\alpha f)$

are functions in $A$ since $P(z)$ is analytic near $\{z\in C:|z|\leqq\eta/3\}$ . So we see that
$\overline{f}$ is in $A$ since $c\cdot\overline{\alpha f}$ is in $A$ and $c\overline{\alpha}\neq 0$ . Thus we conclude that $A=C(X)$ by
a theorem of Bernard [2] since we have shown that $A$ is conjugate closed and
since $A$ is ultraseparating.

Case (2). Put
$A_{x}=\{f\in A:f(x)=0\}$

and $A_{x}’=\{f\in A_{x} : \Vert f\Vert_{\infty}\leqq 1\}$ for a point $x$ in $X$. Then we have

$A_{x}’= \bigcup_{n}\{f\in A_{x}’ : N(h\circ f)<n\}$

and it follows that there is an integer $n_{0}$ such that the closure of { $f\in A_{x}’$ :
$N(h\circ f)<n_{0}\}$ with respect to the topology on $A_{x}$ induced by the norm $N(\cdot)$

contains an open subset by the Baire’s category theorem. Therefore there exist
an $\epsilon>0$ and a $g$ in $A_{x}’$ and a dense subset $U$ of

$\{f+g\in A_{x} : N(f)<2\epsilon\}$

such that $N(h\circ F)<n_{0}$ for every $F$ in $U$ . Since $A$ is ultraseparating, $\tilde{A}$ and $A^{\approx}$

are ultraseparating on $\tilde{X}$ and $X^{\approx}$ respectively. So we have

inf $sup\{|f(y_{1})| : f\in A^{\approx}, f(y_{2})=0, N^{\approx}(f)\leqq 1\}=2M>0$ ,

where infimum takes for all different points $y_{1}$ and $y_{2}$ in $X[2]$ . Put a compact
neighborhood

$Y=\{y\in X:|g(y)|\leqq M^{2}\epsilon/6\}$

of $x$ . We will show that $Y$ is an interpolation set for $A$ , that is, $A|Y=C(Y)$ .
Suppose that it follows that $A|Y=C(Y)$ for each point $x$ in $X$. Then we have
a finite number of interpolating compact subsets $Y_{1},$ $Y_{2},$ $\cdots*Y_{n}$ of $X$ which
cover $X$. Since $\tilde{X}=\cup\tilde{Y}_{i}$ and

c1A $|\tilde{Y}_{i}\supset\tilde{A}|\tilde{Y}_{i}=(A|Y_{i})^{\sim}=C(\tilde{Y}_{i})$

for $i=1,2,$ $\cdots$ , $n$ , we see that c1A $=C(\tilde{X})$ . So we have $A=C(X)$ by Bernard’s
lemma.

Let $Y_{x}$ be the quotient space reduced by identifying the points of $\tilde{Y}$ which
are not separated by $A_{x}|\tilde{Y}$ . Let $\tilde{x}_{0}$ be the point in $Y_{x}$ which corresponds to

$J=$ { $\tilde{x}\in\tilde{Y}$ : $\tilde{f}(\tilde{x})=0$ for $\forall f\in\tilde{A}_{x}|\tilde{Y}$ }.

In fact $\tilde{x}_{0}$ is the only point in $\tilde{Y}_{x}$ which is identified more than one points in
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Y. Let $\tilde{X}_{1}$ and $\tilde{x}_{2}$ be points in $\tilde{Y}\backslash J$, then we see that an $\tilde{f}=(f_{n})$ in $\tilde{A}$ separates
$\tilde{x}_{1}$ and $\tilde{x}_{2}$ since $A$ is ultraseparating on $X$ and since we may suppose that $\tilde{x}_{1}$

and $\tilde{x}_{2}$ are points in $\tilde{X}$. Suppose that $(f-(f_{n}(x)))|\tilde{Y}$ separates $\tilde{x}_{1}$ and $\tilde{x}_{2}$ . It
shows that $A_{x}|\tilde{Y}$ separates $\tilde{x}_{1}$ and $\tilde{x}_{2}$ since $(f-(f_{n}(x)))|\tilde{Y}$ is in $\tilde{A}_{x}|\tilde{Y}$ . Suppose
that $(\tilde{f}-(f_{n}(x)))(\tilde{x}_{1})=(\tilde{f}-(f_{n}(x)))(\tilde{x}_{2})$ , it follows that $(f_{n}(x))(\tilde{x}_{1})\neq(f_{n}(x))(\tilde{x}_{2})$ .
There is a $\tilde{k}$ in $A_{x}|\tilde{Y}$ such that $\tilde{k}(\tilde{x}_{1})\neq 0$ , because $\tilde{x}_{1}$ is in $\tilde{Y}\backslash J$. Thus $\tilde{k}$ or
$(f_{n}(x))\tilde{k}$ separates $\tilde{x}_{1}$ and $\tilde{x}_{2}$ . We have just shown that $A_{x}|\tilde{Y}$ separates the
points of $\tilde{Y}\backslash J$. Let $I$ be the uniform closed subalgebra of $C(\tilde{Y})$ which is
generated by $A_{x}|\tilde{Y}$ and constant functions. Then we may suppose that $I$ is a
function algebra on $Y_{x}$ . By the definition of $J$ and $\tilde{x}_{0}$ , for each $\tilde{y}$ in $\tilde{Y}_{x}\backslash \{\tilde{x}_{0}\}$

there exists an $f_{0}$ in $A_{x}|\tilde{Y}$ such that $\tilde{f}_{0}(\tilde{y})\neq 0$ and $\tilde{N}_{Y}^{\sim}(\tilde{f}_{0}-(g))<\epsilon/3$ where $(g)$

denotes $(g|Y, g|Y, )$ in $\tilde{A}_{x}|\tilde{Y}$ . We put a compact neighborhood

$G=\{\tilde{z}\in\tilde{Y}_{x} : |f_{0}(\hat{z})|\geqq(1/2)|f_{0}(\tilde{y})|\}$

of $\tilde{y}$ in $Y_{x}$ and we may suppose that $G$ is also a compact subset of $\tilde{Y}$ since $\tilde{x}_{0}$

is the only point which is identified more than one point in $\tilde{Y}$ and $\tilde{f}_{0}(\tilde{x}_{0})=0$ .
Put

$V=$ { $f\in C(\tilde{G}):f\overline{F}\in c1(A_{x}|\tilde{G})$ for $\forall_{F\in c1(A_{x}}|\tilde{G})$ }

and let $[V\overline{V}+((c_{nk}))]$ be the uniformly closed subalgebra of $C(\tilde{G})$ which is
generated by

$\{F_{1}\overline{F}_{2}+((c_{nk})):F_{1}, F_{2}\in V, ((c_{nk}))\in l^{\infty}\}\sim$

where $\overline{F}$ denotes the complex conjugation of $F$. Let $F_{1},$ $F_{2},$ $\cdots$ , $F_{m}$ and $G_{1},$ $G_{2}$ ,
.. , $G_{m}$ be functions in $V$ and let $((c_{nk}))$ be in $\tilde{1}^{\infty}$ . Then $G_{1}(\overline{(c_{nk})})\overline{(\tilde{f}_{0})}$ is in
cl $(A_{x}|\tilde{G})$ by dePnition of $V$ since $((c_{nk}))(f_{0})$ is in $A_{x}^{\approx}|\tilde{G}$ where $(f_{0})$

$=(f_{0}|G, f_{0}|G, \cdots)$ in $A_{x}|\tilde{G}$ . By the same way we see that $F_{1}\overline{G}_{1}((c_{nk}))(f_{0})$ is in
cl $(A_{x}^{\approx}|\tilde{G})$ , so we have

$F_{1}F_{2}\cdots F_{m}\overline{G}_{1}\overline{G}_{2}\cdots\overline{G}_{m}((c_{nk}))(;_{0})\in c1(A_{x}^{\approx}|\tilde{G})$

in general. Thus we have

[V $\overline{V}+((c_{nk}))$ ] $\cross(f_{0})\subset c1(A_{x}^{\approx}|\tilde{G})$ .
Since $[V\overline{V}+((c_{nk}))]$ is a self-adjoint closed unital subalgebra of $C(\tilde{G})$ , if we prove
that $[V\overline{V}+((c_{nk}))]$ separates the points of $\tilde{G}$ , it follows that $[V\overline{V}+((c_{nk}))]=C(\tilde{G}\rangle$

by the Stone-Weierstrass theorem. Thus we have

[V $\overline{V}+((c_{nk}))$] $\cross(f_{0})=C(\tilde{G})$

since $(f_{0})$ is bounded away from $0$ on $\tilde{G}$ . It follows that cl $(A_{x}|\tilde{G})=C(\tilde{G})$ and
then $A_{x}|G=C(G)$ by Bernard’s lemma, so $I|G=C(G)$ . Since $I$ is a function
algebra on $Y_{x}$ and since there is an interpolating compact neighborhood of
every point in $Y_{x}\backslash \{\tilde{x}_{0}\}$ , we have $I=C(\tilde{Y}_{x})$ by Corollary 2.13 in [4]. So we
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have $A|Y=C(Y)$ by Bernard’s lemma since cl $(\tilde{A}|\tilde{Y})=[I, (c_{n})]$ is conjugate closed
and separates the points of $\tilde{Y}$ , where [I, $(c_{n})$ ] is the function algebra generated
by $I$ and $l^{\infty}$ . Thus it remains only to prove that $[V\overline{V}+((c_{nk}))]$ separates the
points of $\tilde{G}$ .

LEMMA. $[V\overline{V}+((c_{nk}))]$ separates the points of $\tilde{G}$ for case (2).

PROOF. Suppose that $f_{1}=((f_{n}^{(1}l)_{n})_{k}$ and $f_{2}=((f_{n}^{(2}d)_{n})_{k}$ are in $A_{x}^{\approx}|\tilde{G}$ with
$N_{\tilde{G}}^{\approx}(f_{1})<\epsilon$ . Then we have

$h(f_{1}+((g))-f_{2}w)\in c1$ (A. $|G$ )

for a complex number $w$ with the sufficiently small absolute value, where $((g))$

$=((g), (g),$ ) $|\tilde{G}$ . For, if $f_{nk}^{(1)}+g|Y-f_{nk}^{(2)}w$ is in $U$ for every $n$ and $k$ , then

$N_{Y}(h(f_{n}^{(1}l+g|Y-f_{n}^{(2}pw))<n_{0}$

for each $n$ and $k$ and we see that

$h(f_{1}+((g))-f_{2}w)=(h(f_{n}^{(1}l+g|Y-f_{n}^{(2}lw)_{n})_{k}$

is in $A_{x}|\tilde{G}$ , thus in cl $(A_{x}|\tilde{G})$ . For the general case, $f_{1}^{\approx}+((g))-f_{2}^{\approx}w$ is the uni-
form limit of the functions in $U\approx$, thus we have

$h(f_{1}^{\approx}+((g))-\tilde{f}_{2}w)\in c1(A_{x}^{\approx}|\tilde{G})$ .
Since $H_{\delta}(f_{1}^{\approx}+((g)), f_{2}^{\approx})$ is the uniform limit of linear combinations of $h(f_{1}^{\approx}+((g))$

$-f_{2}^{\approx}w)$ , it follows that
$H_{\delta}(f_{1}^{\approx}+((g)), f_{2}^{\approx})\in c1(A_{x}^{\approx}|\tilde{G})$

for sufficiently small $\delta$ and for $f_{1}^{\approx}$ and $f_{2}^{\approx}$ in $A_{x}^{\approx}|\tilde{G}$ with $N_{G}^{*}\sim(f_{1}^{\approx})<\epsilon$ . For the same
reason

$\{H_{\delta}(f_{1}+((g))+\Delta f_{3}^{\approx}, f_{2})-H_{\delta}(f_{1}+((g)), f_{2})\}/\Delta$

of sufficiently small $\delta$ is in cl $(A_{x}|\tilde{G})$ for $f_{1}^{\approx}$ in { $f^{\approx}\in A_{x}^{\approx}|\sim$ and for $f_{2}^{\approx}$

and $f_{3}^{\approx}$ in $A_{x}|\tilde{G}$ such that $f_{2}^{\approx}$ is bounded away from $0$ on $\tilde{G}$ and for a complex
number $\Delta$ with the small absolute value. If $\Delta$ is real number and tends to $0$ ,
then

$\{H_{\delta}(f_{1}^{\approx}+((g))+\Delta f_{3}^{\approx}, f_{2}^{\approx})-H_{\delta}(f_{1}^{\approx}+((g)), f_{2}^{\approx})\}/\Delta$

tends to
$({\rm Re} f_{3}^{\approx})\partial/\partial x_{1}H_{\delta}(f_{1}^{\approx}+((g)), f_{2}^{\approx})+({\rm Im} f_{3})\partial/\partial y{}_{1}H_{\delta}(F_{1}+((g)), f_{2})$

in cl $(A_{x}^{\approx}|\tilde{G})$ , where $z_{1}=x_{1}+y_{1}i$ . By the same way, if $\Delta$ is purely imaginary
number, then we see that

$i({\rm Im} f_{3}^{\approx})\partial/\partial x{}_{1}H_{\delta}(F_{1}+((g)), f_{2}\approx)-i({\rm Re} f_{8}^{\approx})\partial/\partial y_{1}H_{\delta}(f_{1}^{\approx}+((g))_{f}f_{2})$

is in cl $(A_{x}|\tilde{G})$ . Thus we have
$\partial_{1}H_{\delta}(f_{1}^{\approx}+((g)), f_{2}^{\approx})\overline{f_{3}}\in c1(A_{x}|\tilde{G})$
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for sufficiently small $\delta$ and for $f_{1}^{\approx},$ $f_{2}^{\approx}$ and $f_{3}^{\approx}$ in $A_{x}^{\approx}|\tilde{G}$ which satisfy that $N_{G}^{\sim}(f_{1})\approx\approx$

$<\epsilon$ and that $f_{2}^{\approx}$ is bounded away from $0$ on $\tilde{G}$ , where we denote $(1/2)(\partial/\partial x_{1}$

$+i\partial/\partial y_{1})$ by $\partial_{1}$ . So
$\partial_{1}H_{\delta}(F_{1}+((g)), f_{2})f_{3}^{-}\in c1(A_{x}|\tilde{G})$

for $f_{1}^{\approx}$ in $\{f^{\approx}\in A_{x}^{\simeq}|\tilde{G}:\tilde{N}_{G}^{\sim}(f^{\approx})<\epsilon\}$ and for $f_{2}^{\approx}$ in $A_{x}^{\approx}|\tilde{G}$ such that $f_{2}^{\approx}$ is bounded away
from $0$ on $\tilde{G}$ and for $\dot{f}_{3}$ in cl $(A_{x}^{\approx}|\tilde{G})$ . Thus we conclude that

$\partial_{1}H_{\delta}(f_{1}^{\approx}+((g)), f_{2})\in V$

for $f_{1}^{\approx}$ in $\{\dot{f}\in A_{x}^{\approx}|\tilde{G}:\dot{N}_{G}^{\sim}(f^{\approx})<\epsilon\}$ and for $f_{2}^{\approx}$ in $A_{x}|\tilde{G}$ such that $f_{2}^{\approx}$ is bounded away
from $0$ on $\tilde{G}$ .

Let $a$ and $b$ be different points in $\tilde{G}$ and suppose that $\tilde{l}^{\infty}$ does not separate
them. By the definition of $M$, there is an $f^{\approx}=((f_{nk})_{n})_{k}$ in $A^{\approx}$ such that

$N(f)\leqq 1/M$ , $f(a)=1$ and $f^{\approx}(b)=0$

since we may suppose that $a$ and $b$ are points in $X^{\approx}$. So $\dot{f}’=f^{\approx}-((f_{nk})_{n})_{k}$ is in
$A_{x}^{\approx}$ and

$\tilde{f}’(a)-f’(b)=1\approx$ .

Without loss of generality we may assume $|\tilde{f}’(b)|\geqq 1/2$ . (If not, take $f^{\approx}$ instead
of $f’’\approx$ below and change $a$ and $b.$ ) There is $f’’\approx$ in $A^{\approx}$ such that

$N^{\approx}(f^{\approx_{\chi}})\leqq 1/M$ , $f^{\chi}(a)=0$ and $f^{\approx_{\chi}}(b)=1$ .

Thus we have $f’f’’\in A_{x}^{\approx}\approx\approx,$ $N(f’f’’)\leqq 2/M^{2}\approx\approx\approx,$ $|f’f’’(b)\approx\approx|\geqq 1/2$ and $f’f’’(a)=0\approx$ . Since
we may consider that $b$ is in $Y\approx$ , we have $|((g))(b)|\leqq M^{2}\epsilon/6$ by definition on $Y$ .

There exists a complex number $\alpha$ with $|\alpha|<1$ such that

$((g))(b)+f’f’(b)\cross\alpha M^{2}\epsilon/2=0\approx\approx$ .

Put $\eta=|((g))(b)+f’f’’(b)\cross\alpha M^{2}\epsilon/(2|\alpha|)|$ if $\alpha\neq 0$ and put $\eta=|f’f’’(b)\cross M^{2}\epsilon/2|$ if
$\alpha=0$ and put $z_{2}=(\tilde{f}_{0})(b)$ . Since we consider only the case (2), there is a
sufficiently small $\delta$ such that $\partial_{1}H_{\delta}(z_{1}, z_{2})$ is not a constant function on { $z_{1}\in C$ :
$|z_{1}|<\eta\}$ . Since $f’f^{\approx_{\chi}}(a)=0$ we can choose appropriate complex numbers $\alpha_{1}$ and

$\alpha_{2}$ with absolute values less than 1 which satisfy that

$F(\alpha_{1})(a)\overline{F(\alpha_{2})}(a)\neq F(\alpha_{1})(b)\overline{F(\alpha_{2})}(b)$ ,

where we denote

$F(\beta)(P)=\partial {}_{1}H_{\delta}(((g))+f’f^{\approx_{\chi}}\cross\beta M^{2}\epsilon/2, (\tilde{f}_{0}))(p)$ ,

which sbows that $V\overline{V}$ separates $a$ and $b$ . Thus we conclude that $[V\overline{V}+((c_{nk}))]$

separates the points of $\tilde{G}$ .



112 $0$ . HATORI

References

[1] B. T. Batikyan and E. A. Gorin, On ultraseparating algebras of continuous functions,
(English transl.), Moscow Univ. Math. Bull., 31 (1976), 71-75.

[2] A. Bernard, Espaces des parties r\’eelles des \’el\’ements d’une alg\‘ebre de Banach de
fonctions, J. Functional Analysis, 10 (1972), 387-409.

[3] A. Bernard and A. Dufresnoy, Calcul symbolique sur la fronti\‘ere de $\check{S}ilov$ de
certaines alg\‘ebres de fonctions holomorphes, Ann. Inst. Fourier (Grenoble), 25
(1975), 33-43.

[4] R. Burckel, Characterizations of C(X) among its subalgebras, Marcel Dekker,
New York, 1972.

[5] S.-Y. Chang and D. E. Marshall, Some algebras of bounded analytic functions con-
taining the disk algebra, Banach Spaces of Analytic Functions, Lecture Notes in
Math., 604, Springer, 1977, 12-20.

[6] K. de Leeuw and Y. Katznelson, Functions that operate on non-selfadjoint algebras.
J. Analyse Math., 11 (1963), 207-219.

Osamu HATORI
Department of Mathematics
School of Education
Waseda University
Shinjuku-ku, Tokyo 160
Japan


	1. Introduction.
	2. Definition and examples.
	3. Main result.
	THEOREM. Let ...

	References

