Limits on $P(\omega)$ /finite

By Shizuo KAMO

(Received June 18, 1984) (Revised Sept. 17, 1984)

§ 1. Introduction.

Define the quasi-order $\leq *$ on $P(\omega)$ by $x \leq *y$, if $x \setminus y$ is finite. x < *y means that $x \le y$ and not $y \le x$. $x \sim y$ means that $x \le y$ and $y \le x$. $x \not\sim y$ means that not $x \sim y$. For any cardinal κ , a κ -sequence $X = \langle a_{\alpha} | \alpha < \kappa \rangle$ is said to be a κ -limit, if X is a <*-descending sequence and, whenever $y \subset \omega$ and $\forall \alpha < \kappa$ $(y < *a_{\alpha}), y \sim \emptyset$. We abbreviate the statement "There is a κ -limit" by $\exists \kappa$ -limit. Since $\exists \kappa$ -limit holds for some cardinal κ , under the continuum hypothesis (CH), ω_1 is the unique cardinal κ such that $\exists \kappa$ -limit. And, if $2^{\omega} = \omega_2$ holds, then the following (A), (B) and (C) are the only possible cases. (A) $\exists \omega_1$ -limit $+ \neg \exists \omega_2$ -limit. (B) $\neg \exists \omega_1$ -limit $+ \exists \omega_2$ -limit. (C) $\exists \omega_1$ -limit $+ \exists \omega_2$ -limit. In fact, each of them is known to be compatible with $2^{\omega} = \omega_2$. If we start with a ground model of CH and add ω_2 Cohen reals, then we get a model of (A) (see [3]). The Martin's Axiom (MA) $+2^{\omega}=\omega_2$ implies (B). And, if we start with a ground model of (B) and add ω_1 Cohen reals, then we get a model of (C). The existence of κ -limits provides still a few problems when 2^{ω} is much more large. In this paper, we would like to make a contribution to this subject. Since $\exists \kappa$ -limit implies $\exists c f_{\kappa}$ limit, we may restrict our interest to regular cardinals. Our result is the following.

THEOREM 1 (GCH). Let n be a natural number. Let $\kappa_0, \dots, \kappa_n$ and λ be regular cardinals such that $\omega_1 \leq \kappa_0 < \dots < \kappa_n \leq \lambda$. Then, there exists a poset P which satisfies the following (i)~(iv).

- (i) P satisfies the countable chain condition (the c.c.c.).
- (ii) \Vdash_P " $2^{\omega} = \check{\lambda}$ ".
- (iii) $\forall m \leq n \ (\Vdash_P \text{"}\exists \check{k}_m\text{-limit"}).$
- (iv) $\forall \theta : regular \ (\forall m \leq n \ (\theta \neq \kappa_m) \Rightarrow \Vdash_P \text{``} \neg \exists \check{\theta} \text{-limit''}).$

The rest of the paper consists of three sections. Section 2 is for preliminaries. Sections 3 and 4 are entirely devoted to the proof of the theorem.

§ 2. Notions and notations.

We shall use current set theoretical notions and notations (see [1] or [2]). We assume that the reader is familiar with notions of finite support (FS)-iterated forcing. k, m and n denote natural numbers. α , β , η , ξ , δ , τ and σ denote ordinals. κ , λ and θ denote regular cardinals. For any set X, $P_{<\lambda}(X)$ denotes $\{x \subset X; |x| \le \lambda\}$ and $P_{\le \lambda}(X)$ denotes $\{x \subset X; |x| \le \lambda\}$. Let X be a subset of $P(\omega)$. X has the strong finite intersection property (the sfip), if $\forall x \subset X (|x| < \omega \Rightarrow \bigcap x \not\sim \emptyset)$. Let P and P be posets. For any P, P in P, $P \Rightarrow P$ in P means that P and P are compatible in P. P satisfies the strong countable chain condition (the strong P, P if P if P is pairwise compatible). The complete Boolean algebra consisting of all regular open subsets of P is denoted by P. We call elements in P in P in P in P is an isomorphism from P to P, then P denotes the isomorphism from P to P, then P denotes the isomorphism from P to P induced by P which is defined by the following:

For any x in $V^{r,o,(P)}$,

$$\operatorname{dom}(\tilde{\varphi}(x)) = {\{\tilde{\varphi}(t); t \in \operatorname{dom}(x)\}},$$

$$\tilde{\varphi}(x)(\tilde{\varphi}(t)) = \varphi''x(t) \quad \text{for any} \quad t \in \operatorname{dom}(x).$$

P is a complete subposet of Q (denoted by $P \subset_{\mathbf{c}} Q$), if the following (i) \sim (iii) are satisfied.

- (i) $P \subset Q \& \forall p, p' \in P \ (p \leq p' \text{ in } P \Leftrightarrow p \leq p' \text{ in } Q).$
- (ii) $\forall p, p' \in P (p \uparrow p' \text{ in } Q \Rightarrow p \uparrow p' \text{ in } P).$
- (iii) $\forall q \in Q \ \exists p \in P \ \forall p' \in P \ (p' \leq p \Rightarrow p' \uparrow q).$

Let $P \subset_{\mathbf{c}} Q$. Then, we regard r.o.(P) as a complete subalgebra of r.o.(Q). So, $V^{r.o.(P)}$ is a subclass of $V^{r.o.(Q)}$. The Boolean subclass associated with $V^{r.o.(P)}$ in $V^{r.o.(Q)}$ is the Boolean subclass U of $V^{r.o.(Q)}$ which is defined by

$$||x \in U|| = \sum_{y \in V_{r,o}(Q)} ||x = y||,$$
 for any $x \in V_{r,o}(Q)$.

For any posets $\langle P_i | i \in I \rangle$, the finite-product of $\langle P_i | i \in I \rangle$ is the poset $\{f; \exists J \subset I \}$ $\{f \in I \} \in I \}$. Let P be a κ -stage FS-iteration. For any p in P, the support of p (= $\{\alpha < \kappa; p(\alpha) \neq 1\}$) is denoted by supp(p).

$\S 3$. Definition of the poset P.

Henceforth, in order to prove Theorem 1, we assume the generalized continuum hypothesis (GCH). Let n be any natural number. Let $\kappa_0, \dots, \kappa_n$ and λ be any regular cardinals such that $\omega_1 \leq \kappa_0 < \dots < \kappa_n \leq \lambda$. Set $\kappa = \kappa_n$ and $\bar{\kappa} = \kappa_0$.

Define the κ -stage FS-iteration S_{ξ} ($\xi \leq \kappa$) associated with T_{ξ} ($\xi < \kappa$) and the

 $S_{\xi+1}$ -name a_{ξ} ($\xi < \kappa$) by the following induction on ξ .

Case 1. $\xi=0$. Define T_0 and a_0 by

$$T_0 = 2^{<\omega} \ (=\{t; \exists k < \omega \ (t: k \to 2)\}),$$
 $\| = a_0 = \{s \in S_1; \ s(0)(\check{k}) = 1\}, \quad \text{for any} \quad k < \omega.$

Case 2. $\xi = \eta + 1$ for some η . Define T_{ξ} and a_{ξ} by

$$\Vdash_{\xi}$$
 " $T_{\xi}=2^{<\omega}$ ",
 $\Vdash_{\xi+1}$ " $a_{\xi}\subset\omega$ ",

$$\|\check{k} \in a_{\xi}\| = \{s \in S_{\xi+1}; s \upharpoonright \xi \Vdash_{\xi} ``\check{k} \in a_{\eta} \& s(\xi)(\check{k}) = 1"\},$$

for any $k < \omega$.

Case 3. ξ is a limit ordinal. Define T_{ξ} and a_{ξ} by

$$\begin{split} & \Vdash_{\xi} "T_{\xi} = P_{<\omega}(\omega) \times P_{<\omega}(\check{\xi})", \\ & \Vdash_{\xi} "(u, x) \leqq (v, y) \text{ in } T_{\xi} \iff u \supset v \& x \supset y \& u \setminus v \subset \bigcap_{\eta \in y} a_{\eta}", \\ & \Vdash_{\xi+1} "a_{\xi} \subset \omega", \\ & \|\check{k} \in a_{\xi}\| = \{s \in S_{\xi+1}; \ s \upharpoonright \xi \Vdash_{\xi} "\check{k} \in \text{dom}(s(\xi))"\}, \quad \text{ for any } \ k < \omega. \end{split}$$

For any $\xi \leq \kappa$, set

$$\bar{S}_{\xi} = \{ s \in S_{\xi}; \forall \eta \in \text{supp}(s) \setminus \{0\} \exists x (s(\eta) = \check{x}) \}.$$

The following Lemmas 1 and 2 are easy. We omit proofs.

LEMMA 1. Let ξ and η be ordinals such that $\xi < \eta < \kappa$. Then,

- (i) $\Vdash_{\eta+1}$ " $a_{\eta} \nsim \emptyset \& a_{\eta} < *a_{\xi}$ ",
- (ii) \bar{S}_{η} is dense in S_{η} & $|\bar{S}_{\eta}| \leq |\eta| + \omega$.

LEMMA 2. Let $\xi < \kappa$ and W be a set. Suppose that $|W| = \omega_1$ and $\forall w \in W$ $(\Vdash_{\xi} \text{``}\check{w} \in T_{\xi}\text{''})$. Then, there is $W' \subset W$ such that

- (i) $|W'| = \omega_1$,
- (ii) $\forall w, z \in W' \ (\Vdash_{\varepsilon} \text{"}\check{w} \uparrow \check{z} \text{ in } T_{\varepsilon}\text{"}).$

LEMMA 3. S_{κ} satisfies the strong c.c.c.

PROOF. By Lemma 1 (ii), it suffices to show that \bar{S}_{κ} satisfies the strong c.c.c. To show this, let W be any subset of \bar{S}_{κ} with $|W| = \omega_1$. By the Δ -system lemma, there exist $W_1 \subset W$ and $u \subset \kappa$ such that

$$|W_1| = \omega_1 \& \forall s, s' \in W_1 (s \neq s' \Rightarrow \text{supp}(s) \cap \text{supp}(s') = u).$$

Since u is finite, by using Lemma 2 |u| times, we can obtain $W' \subset W_1$ such that

$$|W'| = \omega_1 \quad \& \quad \forall s, \ s' \in W' \ \forall \xi \in u \ (\Vdash_{\xi} "s(\xi) \uparrow s'(\xi) \ \text{in} \ T_{\xi}").$$

Then, W' is pairwise compatible in \bar{S}_{κ} .

Define the poset $I=(I, \leq)$ by

$$I = \kappa_0 \times \cdots \times \kappa_n \times P_{\leq \kappa}(\lambda)$$
,

$$(\xi_0, \dots, \xi_n, A) \leq (\eta_0, \dots, \eta_n, B) \iff \forall m \leq n (\xi_m \leq \eta_m) \& A \subset B.$$

It holds that $\forall i, i' \in I \ \exists j \in I \ (i \leq j \ \& \ i' \leq j)$.

DEFINITION. For any subset X of $P(\omega)$ with the sfip, define the poset $R_X = (P_{<\omega}(\omega) \times P_{<\omega}(X), \leq)$ by

$$(u, x) \leq (v, y) \iff u \supset v \& x \supset y \& u \lor v \subset \bigcap y.$$

LEMMA 4. Let X be a subset of $P(\omega)$ with the sfip. Then,

- (i) R_X satisfies the strong c.c.c.,
- (ii) there exists an R_X -name b such that

$$\Vdash$$
 " $b \subset \omega \& b \not\sim \emptyset$ " and $\forall x \in X (\Vdash "b \leq *\check{x}").$

PROOF. Let $X \subset P(\omega)$ with the sfip.

(i) This follows from the fact that

$$\forall (u, x), (u, y) \in R_X \ ((u, x \cup y) \leq (u, x) \& (u, x \cup y) \leq (u, y)).$$

(ii) Define the R_X -name b by

$$\Vdash$$
 " $b \subset \omega$ ",

$$\|\check{k} \in b\| = \{r \in R_X; k \in \text{dom}(r)\}$$
 for any $k < \omega$.

Then, since X has the sfip, it is easy to see that b is as required. \Box

For each $i=(\xi_0, \dots, \xi_n, A) \in I$, define the $\bar{\kappa}$ -stage FS-iteration $P_{\alpha}(i)$ ($\alpha \leq \bar{\kappa}$) associated with $Q_{\alpha}(i)$ ($\alpha < \bar{\kappa}$) by

$$Q_0(i) = \overline{S}_{\varepsilon_0} \times \cdots \times \overline{S}_{\varepsilon_n} \times \{f ; \exists x \subset A (|x| < \omega \& f : x \rightarrow 2)\}$$

and, for $0 < \alpha < \bar{\kappa}$,

$$\Vdash_{\alpha} "\Gamma_{\alpha}(i) = \{X \subset P(\omega); |X| < \check{\kappa} \& X \text{ has the sfip}\}",$$

$$\Vdash_{\alpha}$$
 " $Q_{\alpha}(i)$ =the finite-product of $\langle R_X | X \in \Gamma_{\alpha}(i) \rangle$ ".

Set $P(i) = P_{\bar{\kappa}}(i)$.

LEMMA 5. $\forall i \in I \ (P(i) \ satisfies \ the \ c. \ c. \ c. \ \& \ |P(i)| \leq \kappa$).

PROOF. This is easy.

LEMMA 6. $\forall i, j \in I \ (i \leq j \Rightarrow P(i) \subset_{c} P(j)).$

PROOF. Let i and j be in I such that $i \le j$. We shall show by induction

on $\alpha \ (\leq \bar{k})$ that

$$(*) P_{\alpha}(i) \subset_{\mathbf{c}} P_{\alpha}(j).$$

The case which $\alpha \leq 1$ or α is limit is easily checked. So, suppose that $\alpha = \beta + 1$ (≥ 2). By the induction hypothesis, $V^{\text{r.o.}(P_{\beta}(i))}$ is a subclass of $V^{\text{r.o.}(P_{\beta}(j))}$. Set U to be the Boolean subclass associated with $V^{\text{r.o.}(P_{\beta}(i))}$ in $V^{\text{r.o.}(P_{\beta}(j))}$. Since $\Vdash_{\beta} "\Gamma_{\beta}(j) \cap U = \Gamma_{\beta}(i)"$, it holds that

$$\Vdash_{\beta} "Q_{\beta}(j) \cap U = Q_{\beta}(i) \& Q_{\beta}(i) \subset_{\mathbf{c}} Q_{\beta}(j)".$$

We show first that $\forall p$, $p' \in P_{\alpha}(i)$ $(p \uparrow p')$ in $P_{\alpha}(j) \Rightarrow p \uparrow p'$ in $P_{\alpha}(i)$. Let p and p' be any elements of $P_{\alpha}(i)$ such that $p \uparrow p'$ in $P_{\alpha}(j)$. Take $r \in P_{\alpha}(j)$ such that $r \leq p$ and $r \leq p'$. Then, it holds that

$$r \upharpoonright \beta \leq p \upharpoonright \beta$$
 & $r \upharpoonright \beta \leq p' \upharpoonright \beta$ & $r \upharpoonright \beta \Vdash "p(\beta) \uparrow p'(\beta)$ in $Q_{\beta}(j)$ ".

Since \Vdash_{β} " $Q_{\beta}(i) \subset_{\mathbf{c}} Q_{\beta}(j)$ ", we have that

$$r \upharpoonright \beta \Vdash_{\beta} \text{"} p(\beta) \uparrow p'(\beta) \text{ in } Q_{\beta}(i)$$
".

So, there are $\bar{r} \in P_{\beta}(j)$ and a $P_{\beta}(i)$ -name q such that

$$\Vdash$$
 " $q \in Q_{\beta}(i)$ " & $\bar{r} \leq r \upharpoonright \beta$ & $\bar{r} \Vdash$ " $q \leq p(\beta)$ & $q \leq p'(\beta)$ ".

By the induction hypothesis, take $\bar{p} \in P_{\beta}(i)$ such that

$$\forall p'' \in P_{\beta}(i) \ (p'' \leq \bar{p} \Rightarrow p'' \uparrow \bar{r}).$$

Since $\bar{r} \leq r \upharpoonright \beta \leq p \upharpoonright \beta$, $p' \upharpoonright \beta$, exchanging \bar{p} if necessary, we may assume that $\bar{p} \leq p \upharpoonright \beta$ and $\bar{p} \leq p' \upharpoonright \beta$. Set $p_1 = \bar{p} \smallfrown \langle q \rangle$. Then, it is easy to see that $\bar{p} \Vdash "q \leq p(\beta)$ & $q \leq p'(\beta)$ ". Thus, p_1 is as required.

Now, we show that $\forall p \in P_{\alpha}(j) \exists p_1 \in P_{\alpha}(i) \forall p' \in P_{\alpha}(i) \ (p' \leq p_1 \Rightarrow p' \uparrow p)$. Let p be in $P_{\alpha}(j)$. Since

$$\Vdash_{\beta}$$
 " $p(\beta) \cap U \in Q_{\beta}(j) \& p(\beta)$ is finite",

we have that

$$\Vdash_{\beta} \text{"}p(\beta) \cap U \in Q_{\beta}(i)$$
".

Take $\bar{p} \in P_{\beta}(j)$ and a $P_{\beta}(i)$ -name q_1 such that

$$\bar{p} \leq p \upharpoonright \beta$$
 & \Vdash_{β} " $q_1 \in Q_{\beta}(i)$ " & $\bar{p} \Vdash \text{"}p(\beta) \cap U = q_1$ ".

Then, by the induction hypothesis, there is $\bar{p}_1 \in P_{\beta}(i)$ such that

$$\forall p' \in P_{\beta}(i) \ (p' \leq \bar{p}_1 \Rightarrow p' \uparrow \bar{p}).$$

Set $p_1 = \bar{p}_1 \wedge \langle q_1 \rangle$. Then, p_1 is as required.

Set $P = \dim \langle P(i) | i \in I \rangle$, i. e.,

$$\begin{split} P &= \bigcup_{i \in I} P(i) \,, \\ p &\leq p' \text{ in } P \iff \exists i \in I \ (p, \ p' \in P(i) \ \& \ p \leq p' \text{ in } P(i)) \,. \end{split}$$

Convention. For each $p \in P$, let $p(0) = (s_0^p, \dots, s_n^p, f^p)$.

By Lemmas 5 and 6 and by the fact that $\forall J \subset I \ (|J| \leq \omega \Rightarrow \exists i \in I \ \forall j \in J \ (j \leq i))$, it holds that P satisfies the c. c. c. and $\forall i \in I \ (P(i) \subset_{c} P)$.

In the rest of this section, we shall show that P satisfies Theorem 1 (ii). First, since $|P| \leq \sum_{i \in I} |P(i)| \leq \kappa |I| = \lambda$, it holds that

$$\Vdash_P$$
 " $2^{\omega} \leq \check{\lambda}$ ".

The following Lemma shows that \Vdash_P " $2^\omega \ge \check{\lambda}$ ".

LEMMA 7. \Vdash_P "There are $\check{\lambda}$ Cohen generic reals over \check{V} ".

PROOF. Set $Q = \{ p \in P ; \text{ supp}(p) = \{0\} \& \forall m \leq n \ (s_m^p = 1) \}$. Then, Q is order isomorphic to the poset adding λ Cohen generic reals. And it is easy to see that $Q \subset_{\mathbf{c}} P$. This lemma follows immediately from these facts.

§ 4. Proofs of Theorem 1 (iii) and (iv).

LEMMA 8. Let x be a P-name such that \Vdash_P " $x \subset \omega$ ". "Then, there are $i \in I$ and a P(i)-name \bar{x} such that \Vdash_P " $x = \bar{x}$ ".

PROOF. This lemma follows from the facts that P satisfies the c.c.c. and that $\forall J \subset I \ (|J| \leq \omega \Rightarrow \exists i \in I \ \forall j \in J \ (j \leq i)).$

For each $\alpha \leq \bar{k}$ and $i \in I$, since $P_{\alpha}(i) \subset_{\mathbf{c}} P$, we denote by $U_{\alpha}(i)$ the Boolean subclass in $V^{r.o.(P)}$ associated with $V^{r.o.(P_{\alpha}(i))}$. For each $i \in I$, define the subset E_i of P by

 $E_i = \{ p \in P; \forall \alpha \in \text{supp}(p) \setminus \{0\} \exists q : P_\alpha(i) \text{-name} (p \upharpoonright \alpha \Vdash "p(\alpha) \cap U_\alpha(i) = q") \}.$

LEMMA 9. $\forall i, j \in I \ (i \leq j \Rightarrow \forall \beta \leq \bar{k} \ (E_i \cap P_\beta(j) \ is \ dense \ in \ P_\beta(j))).$

PROOF. Let $i, j \in I$ such that $i \leq j$. We shall show by induction on $\beta \leq \bar{k}$ that

$$(*)'$$
 $E_i \cap P_{\beta}(j)$ is dense in $P_{\beta}(j)$.

Since (*)' is clear in cases that $\beta \leq 1$ and that β is limit, we suppose that $\beta = \alpha + 1$. Let $p \in P_{\beta}(j)$. By a similar argument to the proof of Lemma 6, there are $\bar{p} \in P_{\alpha}(j)$ and a $P_{\alpha}(i)$ -name q such that

$$\bar{p} \leq p \upharpoonright \alpha \& \bar{p} \Vdash "p(\alpha) \cap U_{\alpha}(i) = q".$$

By the induction hypothesis, take \bar{p}_1 in $P_a(j)$ such that $\bar{p}_1 \leq \bar{p}$ and $\bar{p}_1 \in E_i$. Put $\tilde{p} = \bar{p}_1 \land \langle p(\alpha) \rangle$. Then, \tilde{p} is as required.

LEMMA 10. Let $i=(\xi_0, \dots, \xi_n, A) \in I$ and $p \in E_i$. Then, there is $p_1 \in P(i)$ which satisfies the following $(R)_p$.

"For any $p' \in P(i)$ such that $p' \leq p_1$, there is $q \in P$ such that

(i) $q \leq p \& q \leq p'$,

 $(R)_p$

- (ii) $\forall m \leq n \ (s_m^q \upharpoonright [\xi_m, \kappa_m) = s_m^p \upharpoonright [\xi_m, \kappa_m)),$
- (iii) $f^q \upharpoonright (\lambda \setminus A) = f^p \upharpoonright (\lambda \setminus A)$."

PROOF. Let $i=(\xi_0, \dots, \xi_n, A) \in I$ and $p \in E_i$. For each $\alpha \in \text{supp}(p) \setminus \{0\}$, take a $P_{\alpha}(i)$ -name r_{α} such that

$$\Vdash$$
 " $r_{\alpha} \in Q_{\alpha}(i)$ " and $p \upharpoonright \alpha \Vdash$ " $p(\alpha) \cap U_{\alpha}(i) = r_{\alpha}$ ".

Define $p_1 \in P(i)$ by

$$supp(p_1) = supp(p),$$

$$p_{1}(\alpha) = \begin{cases} r_{\alpha}, & \text{if } \alpha \in \text{supp}(p) \setminus \{0\}, \\ (s_{0}^{n} \upharpoonright \xi_{0}, \cdots, s_{n}^{n} \upharpoonright \xi_{n}, f^{n} \upharpoonright A), & \text{if } \alpha = 0. \end{cases}$$

Then, p_1 is as required.

PROOF OF THEOREM 1 (iii). Let $m \le n$. For each $\delta < \kappa_m$, define the P-name b_{δ} by

$$\parallel$$
 " $b_{\delta} \subset \omega$ ",
 $\parallel \check{k} \in b_{\delta} \parallel = \{ p \in P ; s_m^p \parallel_{S_{-}} "\check{k} \in a_{\delta} " \}, \quad \text{for any } k < \omega.$

LEMMA 11. $\forall \delta < \forall \tau < \kappa_m \ (\Vdash_P "b_\tau \not\sim \emptyset \& b_\tau < *b_\delta").$

PROOF. Let δ and τ be ordinals such that $\delta < \tau < \kappa_m$. Set $i = (0, \dots, 0, \tau + 1, 0, \dots, 0) \in I$. Define $\varphi : \overline{S}_{\tau+1} \to P_1(i)$ by

$$\varphi(s)=(0, \dots, 0, s, 0, \dots, 0)$$
 for any $s \in \overline{S}_{\tau+1}$.

Then, φ is an order isomorphism from $\bar{S}_{\tau+1}$ to $P_{\mathbf{i}}(i)$ and $\tilde{\varphi}(a_{\xi})=b_{\xi}$ for any $\xi \leq \tau$. So, by Lemma 1, we have that

$$\Vdash$$
 " $b_{\tau} \not\sim \emptyset \& b_{\tau} < *b_{\delta}$ ".

We claim that \Vdash_P "X is a $\check{\kappa}_m$ -limit", where X is the P-name $\{(\check{\delta}, b_{\delta})^{r.o.(P)}; \delta < \kappa_m\} \times \{1\}$. In order to show this claim, let x be any P-name such that

$$\Vdash$$
 " $x \subset \omega \& x \not\sim \emptyset$ ".

We need to show that there is $\delta < \kappa_m$ such that \Vdash " $x \setminus b_{\delta} \not\sim \emptyset$ ". Using Lemma 8, if necessary, take $i = (\xi_0, \dots, \xi_n, A) \in I$ such that x is a P(i)-name. Set $\delta = \xi_m + 1$. We shall show that \Vdash " $x \setminus b_{\delta} \not\sim \emptyset$ ". To see this, let p be any element in P and k be any element in ω . Take $j = (\eta_0, \dots, \eta_n, B) \in I$ such that

$$i \leq j$$
 & $\delta < \eta_m$ & $p \in P(j)$.

By Lemma 9, there is $q \in P(j) \cap E_i$ such that $q \leq p$. Take $k_1 < \omega$ such that $k \leq k_1$ & $s_m^q \upharpoonright \delta \Vdash \text{``dom}(s_m^q(\delta)) \subset \check{k}_1$ ''. Applying Lemma 10 to q, take $p_1 \in P(i)$ satisfying $(R)_q$. Since $p_1 \in P(i)$, x is a P(i)-name and $\Vdash \text{``} x \not\sim \emptyset$ '', there exist $p' \in P(i)$ and $k' < \omega$ such that

$$k_1 \leq k'$$
 & $p' \leq p_1$ & $p' \Vdash "\check{k}' \in x$ ".

Since $p' \leq p_1$ and $p' \in P(i)$, by virtue of the fact that p_1 satisfies $(R)_q$, there is $q_1 \in P$ such that

$$q_1 \leq p'$$
 & $q_1 \leq q$ & $s_m^{q_1} \upharpoonright [\xi_m, \kappa_m) = s_m^q \upharpoonright [\xi_m, \kappa_m)$.

Especially, $s_m^{q_1}(\delta) = s_m^q(\delta)$. So, take $s \in S_{\kappa_m}$ such that $s \le s_m^{q_1}$ and $s \upharpoonright \delta \Vdash "s(\delta)(\check{k}') = 0"$. Take $q_2 \in P$ such that $q_2 \le q_1$ and $s_m^{q_2} = s$. Since $s \Vdash "\check{k}' \notin a_\delta$ ", it holds that

$$q_2 \Vdash \text{``}\check{k}' \notin b_{\delta}$$
".

By this and by the fact that $q_2 \leq p'$, we have that

$$q_2 \Vdash \text{``}\check{k}' \in x \setminus b_\delta\text{''} \& q_2 \leq p.$$

The proof of our claim completes.

PROOF OF THEOREM 1 (iv). Suppose that

- (1) θ is a regular cardinal and $\forall m \leq n \ (\theta \neq \kappa_m)$,
- (2) $p \in P$ and Y is a P-name,
- (3) \Vdash " $Y : \dot{\theta} \rightarrow P(\omega)$ " and $p \Vdash$ "Y is a $\dot{\theta}$ -limit".

We shall derive a contradiction. Take $i \in I$ such that $p \in P(i)$. By Lemma 8, for each $\delta < \theta$, take y_{δ} and i_{δ} such that

$$i_{\delta} \in I$$
 & $i \leq i_{\delta}$ & y_{δ} is a $P(i_{\delta})$ -name & $\Vdash "Y(\check{\delta}) = y_{\delta}"$.

Let $i_{\delta} = (\xi_0^{\delta}, \dots, \xi_n^{\delta}, A^{\delta})$ for each $\delta < \theta$.

LEMMA 12. There are $D \subset \theta$, $(\xi_0, \dots, \xi_n) \in \kappa_0 \times \dots \times \kappa_n$ and $\alpha < \bar{\kappa}$ such that

- (i) $|D| = \theta$,
- (ii) $\forall \delta \in D \ (\xi_0^{\delta} \leq \xi_0 \& \cdots \& \xi_n^{\delta} \leq \xi_n \& y_{\delta} \ is \ a \ P_{\alpha}(i_{\delta})-name).$

PROOF. This lemma follows easily from (1).

Take $D \subset \theta$, $(\xi_0, \dots, \xi_n) \in \kappa_0 \times \dots \times \kappa_n$ and $\alpha < \bar{\kappa}$ which satisfy Lemma 12 (i) and (ii). Extending i_{δ} ($\delta \in D$), we may assume that

$$i_{\delta} = (\xi_0, \dots, \xi_n, A^{\delta})$$
 for each $\delta \in D$.

Case 1. $\theta < \kappa$. Set $A = \bigcup_{\delta \in D} A^{\delta}$ and $\overline{i} = (\xi_0, \dots, \xi_n, A)$. Since $|A| < \theta \cdot \kappa = \kappa$, it holds that $\overline{i} \in I$ and $i \leq \overline{i}$. Define the $P_{\alpha}(\overline{i})$ -name X by

$$dom(X) = \{y_{\delta}; \delta \in D\},$$

$$X(y_{\delta})=1$$
 for any $\delta \in D$.

Since $p \Vdash "X \in \Gamma_{\alpha}(\bar{i})"$ in $P_{\alpha}(\bar{i})$, there exists a $P_{\alpha+1}(\bar{i})$ -name b such that

$$b \Vdash "b \subset \omega \& b \not\sim \emptyset \& \forall x \in X (b \leq *x)".$$

Since D is cofinal in θ , we have that

$$p \Vdash \text{``}\forall \delta < \check{\theta} (b \leq *Y(\delta))\text{''}.$$

This is a contradiction.

Case 2. $\kappa < \theta$. Since $\forall \delta \in D \ (|A^{\delta}| < \kappa < \theta)$, by the Δ -system lemma, there exist $\overline{D} \subset D$ and $\overline{A} \subset \lambda$ such that

$$|\overline{D}| = \theta$$
 and $\forall \delta, \tau \in \overline{D} \ (\delta \neq \tau \Rightarrow A^{\delta} \cap A^{\tau} = \overline{A}).$

Thinning out \overline{D} , we may assume that

$$\forall \delta, \tau \in \overline{D} (|A^{\delta} \setminus \overline{A}| = |A^{\tau} \setminus \overline{A}|).$$

Set $j=(\xi_0, \dots, \xi_n, \overline{A})$ and $\sigma=\min(\overline{D})$. Then, p is in P(j).

In order to define the $P(i_{\sigma})$ -name x_{δ} ($\delta \in \overline{D}$), let δ be any element in \overline{D} . Take a bijection g_{δ} from $A^{\delta} \setminus \overline{A}$ to $A^{\sigma} \setminus \overline{A}$, and set $h_{\delta} = g_{\delta} \cup (\operatorname{id} \upharpoonright \overline{A})$. Define the order isomorphism ψ_{δ} from $P_{1}(i_{\delta})$ to $P_{1}(i_{\sigma})$ by

$$\psi_{\delta}(p)(0) = (s_0^p, \dots, s_n^p, f^p \circ h_{\delta}^{-1})$$
 for any $p \in P_1(i_{\delta})$.

 ψ_{δ} can be extended canonically to the order isomorphism from $P(i_{\delta})$ to $P(i_{\sigma})$. We denote this isomorphism by φ_{δ} . Set $x_{\delta} = \tilde{\varphi}_{\delta}(y_{\delta})$.

Since $\forall \delta \in \overline{D}$ (\Vdash " $x_{\delta} \subset \omega$ ") and $|P(i_{\sigma})| \leq \kappa < \theta$, there are δ and τ in \overline{D} such that $\delta < \tau$ and \Vdash " $x_{\delta} = x_{\tau}$ ". Set $\tilde{j} = (\xi_0, \dots, \xi_n, A^{\delta} \cup A^{\tau})$. Define the permutation H on $A^{\delta} \cup A^{\tau}$ by $H = ((g_{\tau})^{-1} \circ g_{\delta}) \cup ((g_{\delta})^{-1} \circ g_{\tau}) \cup (\operatorname{id} \upharpoonright \overline{A})$. Define the automorphism $\Psi : P_1(\tilde{j}) \to P_1(\tilde{j})$ by

$$\Psi(p)(0)=(s_0^p, \dots, s_n^p, f^p \circ H^{-1})$$
 for any $p \in P_1(\tilde{j})$.

Let $\Phi: P(\tilde{j}) \to P(\tilde{j})$ be the canonical extension of Ψ . Since $H \upharpoonright \overline{A} = \operatorname{id} \upharpoonright \overline{A}$, it holds that $\Phi \upharpoonright P(j) = \operatorname{id} \upharpoonright P(j)$. So, especially, $\Phi(p) = p$. Moreover, since $\Phi \upharpoonright P(i_{\tau}) = (\varphi_{\delta})^{-1} \circ \varphi_{\tau}$, it holds that

$$\tilde{\boldsymbol{\Phi}}(y_{\tau}) = (\tilde{\varphi}_{\delta})^{-1} \cdot \tilde{\varphi}_{\tau}(y_{\tau}) = (\tilde{\varphi}_{\delta})^{-1}(x_{\tau}).$$

Since \Vdash " $x_{\tau} = x_{\delta}$ ", we have that

$$\Vdash$$
 " $(\tilde{\varphi}_{\delta})^{-1}(x_{\tau}) = y_{\delta}$ ".

Hence,

$$\Vdash$$
 " $\tilde{\boldsymbol{\Phi}}(y_{\tau}) = y_{\delta}$ ".

Similarly, $\Vdash "\tilde{\boldsymbol{\Phi}}(y_{\delta}) = y_{\tau}"$. Since $p \Vdash "y_{\tau} < *y_{\delta}"$, it holds that $\boldsymbol{\Phi}(p) \Vdash "\tilde{\boldsymbol{\Phi}}(y_{\tau})$

 $<*\tilde{\Phi}(y_{\delta})$ ". So,

$$p \Vdash "y_{\delta} < *y_{\tau}".$$

This is a desired contradiction.

References

- [1] T. Jech, Set theory, Academic Press, New York, 1978.
- [2] K. Kunen, Set theory, An introduction to independence proofs, North-Holland, Amsterdam, 1980.
- [3] R. Laver, Linear orders in $(\omega)^{\omega}$ under eventual dominance, Logic Colloquium 78, M. Boffa (ed.), North-Holland, Amsterdam, 1978, 299-302.

Shizuo Kamo

Department of Mathematics University of Osaka Prefecture Sakai, Osaka 591 Japan