J. Math. Soc. Japan
Vol. 38, No. 1, 1986

Limits on P(»)/finite

By Shizuo KAMO

(Received June 18, 1984)
(Revised Sept. 17, 1984)

§1. Introduction.

Define the quasi-order <*on P(w) by x=*y, if x\y is finite. x<*y means
that x=*y and not y<*x. x~y means that x=*y and y=<*x. =x-*y means
that not x~y. For any cardinal £, a x-sequence X=<a,|a<k) is said to be a
k-limit, if X is a <*-descending sequence and, whenever yCw and Va<k
(y<*a,), y~@. We abbreviate the statement “There is a x-limit” by Jx-limit.
Since 3Jk-limit holds for some cardinal &, under the continuum hypothesis (CH),
®, is the unique cardinal £ such that Jg-limit. And, if 2°=w, holds, then the
following (A), (B) and (C) are the only possible cases. (A) Jw,-limit-+ —Jw,-limit.
(B) —3w,-limit+Jw,-limit. (C) Jw,-limit+Jw,-limit. In fact, each of them is
known to be compatible with 2°=w,. If we start with a ground model of CH
and add w, Cohen reals, then we get a model of (A) (see [3]). The Martin’s
Axiom (MA)+2°=w, implies (B). And, if we start with a ground model of (B)
and add w, Cohen reals, then we get a model of (C). The existence of -limits
provides still a few problems when 2 is much more large. In this paper, we
would like to make a contribution to this subject. Since Jg-limit implies Jcfx-
limit, we may restrict our interest to regular cardinals. Our result is the
following.

THEOREM 1 (GCH). Let n be a natural number. Let ko, -+, £, and A be
regular cardinals such that w,=k,< -+ <k,=A. Then, there exists a poset P
which satisfies the following (i)~(@v).

(i) P satisfies the countable chain condition (the c.c.c.).

(ii) Ip “20=2".

(iii) VYm=n (Fp “IEp-limit”).

(iv) YO :regular (Ym=n(0#kn) = I-p “—34-limit”).

The rest of the paper consists of three sections. Section 2 is for prelim-
inaries. Sections 3 and 4 are entirely devoted to the proof of the theorem.
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§2. Notions and notations.

We shall use current set theoretical notions and notations (see [1] or [2]).
We assume that the reader is familiar with notions of finite support (FS)-iterated
forcing. k&, m and n denote natural numbers. a, 3, 5, &, 0, r and ¢ denote
ordinals. &, 4 and # denote regular cardinals. For any set X, P<;(X) denotes
{xCX; |x|<a} and P :(X) denotes {xCX; |x|<4}. Let X be a subset of
P(w). X has the strong finite intersection property (the sfip), if VxCX (|x|<w
=\x»@). Let P and @ be posets. For any p, p’ in P, p9p’ in P means
that p and p’ are compatible in P. P satisfies the strong countable chain condi-
tion (the strong c.c.c.), if VWCP (|W|=w, = IWCW(W’'| =w, & W’ is pairwise
compatible)). The complete Boolean algebra consisting of all regular open subsets
of P is denoted by r.o.(P). The Boolean valued class associated with r.o.(P)
is denoted by V*>-®. We call elements in V= P-names. If ¢ is an iso-
morphism from P to @, then ¢ denotes the isomorphism from V©o-® to V0@
induced by ¢ which is defined by the following :

For any x in V™o,

dom(@(x))={¢(); tedom(x)},
G(x)g@)=¢"x(t)  for any tc=dom(x).

P is a complete subposet of Q (denoted by P C.Q), if the following (i)~(iii) are
satisfied.

(i) PCQ & Vp, p’eP (p=p’ in P & p=p’ in Q).

(ii) Vp, p’eP (p%p’ in Q = ptp’ in P).

(i) YgeQ JpeP Vp'eP (p’sp = p'19.
Let PC.Q. Then, we regard r.o.(P) as a complete subalgebra of r.o.(@). So,
yro-® is a subclass of V@,  The Boolean subclass associated with Vo9
in V@ jis the Boolean subclass U of V@ which is defined by

lxeUl= X lx=yl, for any xeV=>@,
YyEVI.0.(P)

For any posets <P;|i€I), the finite-product of {P;|i€I) is the poset {f; IjcI
(IJI<w & feIljesPj)}. Let P be a k-stage FS-iteration. For any p in P, the
support of p (={a<k; pla)+1}) is denoted by supp(p).

§ 3. Definition of the poset P.

Henceforth, in order to prove [Theorem I, we assume the generalized con-
tinuum hypothesis (GCH). Let n be any natural number. Let &, ---, £, and 4
be any regular cardinals such that w, <, < --- <k, =<A4. Set t=k, and F=«,.

Define the k-stage FS-iteration S (§=k) associated with T, (§<#¢) and the
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Se+-name ag (6<k) by the following induction on &.
Case 1. &=0. Define T, and a, by

To=2%° (={t; k<o (t: k—2)}),
1 “aCw”,
lE€a,|={s€S,; s(O)k)=1}, for any k<w.
Case 2. &=5+1 for some 7. Define T; and a. by
g “Te=2<",
e “aeCo”,
k€ agl={s€Seus; sI¢ ¢ “k=a, & s@R)=1"},

for any k<w.
Case 3. & is a limit ordinal. Define T and a. by

¢ “Te=Pco(@) X P<u()”,
e “(u, )=, y) in T & uDv & xDy & w\wC () a,”,
€Y
I~g+1 “aec")”,
2 agll={sESes1; 51€ ¢ “bdom(s(8)”},  for any k<w.
For any &=k, set
352{8655; Vy esupp(s)\ {0} Tx(s(n)=%)}.

The following Lemmas 1 and 2 are easy. We omit proofs.

LEMMA 1. Let & and 7 be ordinals such that §<n<k. Then,
(i) ":q+1 “anq"Q & a,,<*(_15”,
(i) S, ¢s dense in S, & |S,|=|y|+o.

LEMMA 2. Let £€<k and W be a set. Suppose that |W|=w, and YweW
(e “weTe”). Then, there is W CW such that

(i) W' |=w,,

(i) Yw, zeW’ (e “04% in T

LEMMA 3. S, satisfies the strong c.c.c.

PrROOF. By Lemma 1 (ii), it suffices to show that S, satisfies the strong
c.c.c. To show this, let W be any subset of S, with |W|=w,. By the A-
system lemma, there exist W,CW and uC«k such that

W, l=w, & Vs, s’eW, (s#s’ = supp(s)Nsupp(s’)=u).

Since u is finite, by using Lemma 2 |u| times, we can obtain W’'CW, such that
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W' l=w, & Vs, s’eW’' Vécu (-¢ “s(§)4s’(€) in T¢”).
Then, W’ is pairwise compatible in S,. O
Define the poset I=(, <) by
I=kyX -+ Xk X Pei(R),
(&o, 5 &ny AV=(M0, =5 Yoy, B) &= Vm=nn=9n) & ACB.
It holds that Vi, 'l 35l (=] & i'<)).
DEFINITION. For any subset X of P(w) with the sfip, define the poset
Rx=(P<y(@)X P<o(X), =) by
(u, x)=(, v) & udv & xDy & w~\vC(\y.
LEMMA 4. Let X be a subset of P(w) with the sfip. Then,

(i) Ryx satisfies the strong c.c.c.,
(ii) there exists an Ry-name b such that

- “bCw & b*@”  and VxeX (- “b=*x”).

PrRoOOF. Let XCP(w) with the sfip.
(i) This follows from the fact that

Y(u, x), (u, ERxy (u, xJy)=(u, x) & (u, x\Vy)=(u, y)).
(ii) Define the Ry-name b by

“__ “bcw”’
ltebl|={reRy; kedom(r)}  for any k<.

Then, since X has the sfip, it is easy to see that b is as required. O

For each i=(&,, -, &,, A)el, define the E-stage FS-iteration P,(:) (a=Fk)
associated with Q,(/) (a<k) by
Qo@)=S8¢, X =+ xS, X {f; IxCA(|x|<0 & f:x—2)}
and, for 0<a<k,
o “I(@)={XCP); | X|<# & X has the sfip}”,
o “Q.(0)=the finite-product of (Ry| Xl ()>”.
Set P(1)=Px(2).
LEMMA 5. Viel (P(7) satisfies the c.c.c. & |P@)|Zk).
PROOF. This is easy. O

LEMMA 6. Vi, jel (i<j= P{@) CP()).
PROOF. Let 7 and j be in I such that 7<;. We shall show by induction
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on a (Zk) that
(%) P,(2) Cc Pa(y).

The case which a<1 or ais limit is easily checked. So, suppose that a=pS+1
(=2). By the induction hypothesis, Vg ig a subclass of V©o-PgU»  Set
U to be the Boolean subclass associated with V©0-(Fat) jpn Yro.Pgtd  Gince
-5 “Is()INU=TI()”, it holds that

g “Qe(NNU=Qs0) & Qs(t) Cc Qp(7)”.

We show first that Vp, p’eP,(@) (p4p’ in P.(j) = p4p’ in P,(). Let p
and p’ be any elements of P,(z) such that p4p’ in P,(j). Take r&P,(j) such
that r<p and r=p’. Then, it holds that

rIB=piB & riB=p'IB & riB I=“p(B)4p'(B) in Qs(s)".
Since |5 “Qp() Cc Qs(y)”, we have that
rIB =g “p(B)FP’(B) in Qp)”.
So, there are F€Pg(y) and a Pg(i)-name ¢ such that
- “geQs(@)” & T=rif & 7 IF9=p(B) & ¢=p'(B)".
By the induction hypothesis, take p<Pg(i) such that
Vp"ePs()) (p"<hp = p"17).

Since F=riB=plB, p'IB, exchanging p if necessary, we may assume that
p=pip and p=<p’IB. Set p;=p"<¢g>. Then, itis easy tosee that p -“g=p(B)
& ¢=p’(B)’. Thus, p, is as required.

Now, we show that VpeP,(j) Ap,€P, (@) Vp'€P,(G) (p'<p,= p’4p). Let
p be in P,(5). Since

s “p(BNUEQs(j) & p(P) is finite”,
we have that

=5 “p(BINUEQG)".
Take pePs(j) and a Ps(i)-name ¢, such that
P=PIB & 5 “qEQp()” & P I “p(BINU=4,".
Then, by the induction hypothesis, there is p;< Ps(i) such that
Vp'€Ps(t) (p'Sp1= p'%Ph).
Set p;=p,"<¢g:>. Then, p, is as required. O
Set P=dirlim<P@)|ieD, i.e.,
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P=\JP@),

el

p=<p’ in P & 3Ficel (p, p’ePG) & p=p’ in P@)).
CONVENTION. For each peP, let p(0)=(s%, -, s&, f?).

By Lemmas 5 and 6 and by the fact that V/CI (|| = il Vje]
(7<17)), it holds that P satisfies the c.c.c. and Viel (P@F)C. P).
In the rest of this section, we shall show that P satisfies Theorem 1 (ii).
First, since |P|< Xier | PE)| Zx|l] =4, it holds that
”"P “zwéin.
The following Lemma shows that |-p “2¢=1".

LEMMA 7. |p “There are 2 Cohen generic reals over |72

PROOF. Set Q={p&P; supp(p)={0} & Vm=n(sh=1)}. Then, @ is order
isomorphic to the poset adding A Cohen generic reals. And it is easy to see
that Q C. P. This lemma follows immediately from these facts. O

§4. Proofs of Theorem 1 (iii) and (iv).

LEMMA 8. Let x be a P-name such that p“xCw”. “Then, there are i€l

and a P(i)-name X such that |-p“x=2%".

Proor. This lemma follows from the facts that P satisflies the c.c.c. and
that V/CI (|JI=2w = el Vje] (j<i)). ]

For each a=<k and /<], since P,({) C. P, we denote by U,(7) the Boolean
subclass in V=¥ associated with V™o®a  For each ;<I, define the subset
E; of P by

E;={peP; Yacsupp(p)\{0} dg: P,(?)-name (pla |~ “pla)N\U.()=q¢")}.
LEMMA 9. Vi, jel (<] = VB=F(E:NPs(j) is dense in Py(j))).

ProOF. Let 7, j&I such that ;/<;. We shall show by induction on B=F&
that

(x)’ E;NPg(y) is dense in Pg(j).

Since (*)” is clear in cases that S§=<1 and that f is limit, we suppose that
B=a+1. Let pePy(j). By a similar argument to the proof of Lemma 6, there
are peP,(j) and a P,(7)-name ¢ such that

pspla & p I “pla)NUal)=q".

By the induction hypothesis, take p; in P,(j) such that p;<p and p,€E..
Put p=p,"<p(a)>. Then, p is as required. O
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LEMMA 10. Let 1=(&, -, &n, A)EIl and peE,. Then, there is p,=P@P)
which satisfies the following (R),.

“For any p’eP(i) such that p’<p,, there is q€P such that
(1) ¢=p & q=p’,
(ii) Vm=n (shllén, £n)=sh!&n, &),
(iii) fIMANA)=fP[(ANA).”

R)p

PRrROOF. Let 7=(&,, -, &,, A)el and peE,; For each acssupp(p)\{0},
take a P,(7)-name r, such that

- “recQ.()” and  pla |- “pla)NU()=r,".
Define p,P(i) by
supp(p.)=supp(p),

Yar 1f a€supp(p)\{0},
(s81&o, ==+, sB1&n, fPTA), if a=0.

Then, p, is as required. O

pula)={

PROOF OF THEOREM 1 (iii). Let m<n. For each d<k,, define the P-name
ba by
”_ “b5Cw”,

|Eebs|={peP; s& s, “beas’), for any k<w.

LEMMA 11. Vo<Vr<kn (p “b:* D & b.<*b5").

PROOF. Let 0 and 7 be ordinals such that d<r<k,. Set 7=(0, ---, 0, ri—l,
0, Tty O)EI. Deﬁne gD: S‘.Tq.l"')Pl(i) by m

@)=, -, 0,s,0,-+,0) for any se€S...
Then, ¢ is an order isomorphism from S.,, to P,(7) and ¢(a;)=b; for any £<r.
So, by [Lemma 1, we have that
= “b:r* @D & b.<*bs". O

We claim that |-p “X is @ ¥n-limit”, where X is the P-name {(0, bs)">® ;
0<kn}X{1}. In order to show this claim, let x be any P-name such that

“xCw & x*@”.

We need to show that there is d <k, such that |- “x\b;#@”. Using
if necessary, take :=(&,, -, &,, A)&I such that x is a P(:)-name. Set 0=§,+1.
We shall show that |- “x\b;»@”. To see this, let p be any element in P and
k be any element in w. Take j=(%,, -, 7., B)EI[ such that
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i) & 0<npm & pEPy).

By there is g€ P(j)NE; such that ¢<p. Take k;<w such that 2=k,
& 3,10 |- “dom(s%,(d))Ck,”. Applying to g, take p,=P(7) satisfying
(R),. Since p,=P(i), x is a P({)-name and |- “x~»@”, there exist p’<P(7) and
k’<w such that
<k & p'Ep & P “Rex.
Since p’<p, and p’€P(;), by virtue of the fact that p, satisfies (R), there is
q:< P such that
(]1§P' & g1=q & S%H[fm, /fm):Sgnr[Em, Em).

Especially, s%(0)=s%(0). So, take s&S, such that s<s% and s[d |- “s(0)(k)y=0".
Take g,=P such that ¢,<¢, and s%=s. Since s |- “2’¢a;”, it holds that

qs - “E’%ba”.
By this and by the fact that ¢,<p’, we have that

g - “Bex\b” & ¢.=p.
The proof of our claim completes. OO

PROOF OF THEOREM 1 (iv). Suppose that

(1) @ is a regular cardinal and Vm=<n (0 #£n),

(2) p=Pand Y is a P-name,

(3) I “Y:6—Pw)” and p | “Y is a §-limit”.
We shall derive a contradiction. Take 7] such that p=P(;). By
for each 0< 8, take y,; and 7; such that

el & i<i; & y;is a Pli;)-name & |- “Y(8)=y;".
Let 7;=(&3, -, &%, A% for each 6<4.

LEMMA 12. There are DCO, (&, -+, ) E kX -+ Xk, and a<FE such that
(1) |D|=#,

(i) VoeD (8<& & - & &5=&, & ys is a Pulis)-name).

ProOOF. This lemma follows easily from (1). O

Take DC@, (&, -+, £,)Ek,X -+ Xk, and a<i which satisfy (i)
and (ii). Extending i; (0= D), we may assume that

i5=(&, -+, &, A%)  for each deD.

Case 1. 0<k. Set A=\Usep A’ and i=(&,, -+, &, A). Since |A| <8 -r=x,
it holds that i=J and i<i. Define the P,(i)-name X by

dom(X)={y;s; 0D},



Limits on P(w)/finite 93

X(y5)=1 for any deD.
Since p |- “XelL(1)” in P,3i), there exists a P,.:(i)-name b such that
P “bCw & b*»D & VxeX (b<*x)".
Since D is cofinal in #, we have that
P I “Y8<O (b=*Y(9))".

This is a contradiction.
Case 2. k<@. Since VoD (| A% <k<8), by the A-system lemma, there

exist DcD and ACA such that
|D|=80 and Vo, reD (0+7= APNAT=A).
Thinning out D, we may assume that
V3, zeD (| ANA|=|ANA)).

Set j=(&, -+, &n, A) and o=min(D). Then, p is in P(}).

In order to define the P(i,)-name x; (3D), let § be any element in D.
Take a bijection g; from A\A to A°\A, and set h;=g;U(d|4). Define the
order isomorphism ¢; from P,(i;) to Py(i,) by

Oo(p)0)=(s8, -+, sk, fPoh5")  for any pEP(i;).

¢; can be extended canonically to the order isomorphism from P(7;) to P(i,). We
denote this isomorphism by ¢s Set x;=¢(ys).

Since YoeD (- “x;Cw”) and |P(i,)|<k<8, there are 6 and = in D such
that d<z and |~ “x;=x.". Set j==(&, -+, &, A®UJA"). Define the permutation
H on AUA® by H=((g.)'egs)\U((gs) 'og-)U(idl A). Define the automorphism
¥ : P(j)—Pi(j) by

T(p)(0)=(s3, -+, sB, fP-H")  for any pePy(j).

Let @ : P(j)—P(j) be the canonical extension of ¥. Since HIA=id!4, it holds
that @[P(j)=idP(j). So, especially, @(p)=p. Moreover, since @[P(.)=
(¢s)~*o ., it holds that

B(y.)=(Fs) Lo @o(y)=(&s) " (x2).

Since | “x.=x;’, we have that

= “(go) (x)=1y5".
Hence,

- “5(3}1'):}’5”-

Similarly, - “@(y;)=y.”. Since p |- “y.<*y,”, it holds that @(p) I~ “D(y.)
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<*§(y5)”- SO:
) [ “y5<*yr”-

This is a desired contradiction. Ooa
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