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Introduction.

Throughout this paper $G$ always denotes a finite group, and a G-manifold
means a smooth manifold with smooth G-action. Two n-dimensional closed G-
manifolds $M$ and $N$ are G-cobordant, if there exists an $(n+1)$-dimensional
compact G-manifold $L$ with $\partial L=M+N$, where $+denotes$ the disjoint union.
Such a manifold $L$ is called a G-cobordism between $M$ and $N$. If $L$ admits a
nonzero G-vector field which is inward normal on $M$ and outward normal on
$N$, then, following Reinhart [7], $M$ and $N$ are called Reinhart G-cobordant, and
$L$ a Reinhart G-cobordism between $M$ and $N$. The aim of this paper is to
obtain a necessary and sufficient condition for the existence of a Reinhart G-
cobordism between two given G-cobordant closed G-manifolds.

Given a G-manifold $M$ and a subgroup $H$ of $G,$ $M^{H}$ denotes the H-fixed
point set of $M$ and $M^{=H}$ denotes the union of those components of $M^{H}$ on
which $H$ is the minimal isotropy subgroup. If $V$ is a representation of $H$

containing no direct summand of trivial representation, $M^{(H.V)}$ denotes the union
of those components of $M^{=H}$ for which the normal representation is isomorphic
to $V$ . Then we will obtain

THEOREM 0.1. Let $M$ and $N$ be two G-cobordant closed G-manifolds of
dimenston $n$ . SuppOse that $n$ is even and $G$ is of odd order, or that $G$ is of order
2. Then there exists a Reinhart G-cobordism between them if and only if
$\chi(M^{(H.V)})=x(N^{(H.V)})$ for any pair $(H, V)$ of a subgroup $H$ of $G$ and a represen-
tation $V$ of $H$, where $\chi($ $)$ denotes the Euler characteristic.

In case $H$ is normal in $G$ , and $V$ is invariant under conjugation, a G-vector
bundle $Earrow X$ over a G-manifold $X$ is of type $(H, V)$ if for any $x\in X$, the
isotropy subgroup $G_{x}$ at $x$ is $H$, and the fibre $E_{x}$ over $x$ is isomorphic to $V$

as representations of $H$. Let $E_{1}arrow X_{1}$ and $E_{2}arrow X_{2}$ be G-vector bundles of type
$(H, V)$ over k-dimensional closed G-manifolds $X_{1}$ and $X_{2}$ . They are called
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Reinhart G-cobordant, if there exists a G-vector bundle $Farrow Y$ of type $(H, V)$

over a $(k+1)$-dimensional compact G-manifold $Y$ such that (i) $Y$ is a Reinhart
G-cobordism between $X_{1}$ and $X_{2}$ , and (ii) $F|X_{1}$ and $F|X_{z}$ are isomorphic as G-
vector bundles to $E_{1}$ and $E_{2}$ , respectively.

Given a G-manifold $M$ with $M^{(H.V)}$ nonempty, let $K$ be the subgroup of $G$

whose action keeps $M^{(H,V)}$ invariant. We see that $H\subset K\subset N(H)$ , the normalizer
of $H$ in $G$ , and that $K$ is determined only by $(H, V)$ and independent of $M$.
So we denote $K$ by $G_{(H,V)}$ . We note that if a (real) representation of an odd
order group contains no direct summand of trivial representation, then it has a
complex structure, and hence it is even dimensional. If $G$ is of odd order and
dim $M^{(H,V)}=1$ , then $H$ is the only isotropy subgroup on $M^{(H.V)}$ , and the normal
bundle $\nu(M^{(H,V)})arrow M^{(H.V)}$ is a $G_{(H.V)}$ -vector bundle of type $(H, V)$ .

THEOREM 0.2. Let $M$ and $N$ be two G-cobordant closed G-manifolds of odd
dimenston. Suppose that $G$ is of odd order. Then there exists a Reinhart G-cobor-
dism between them if and only if for any Pair $(H, V)$ for which $\dim(M+N)^{(H.V)}$

$=1$ , the normal bundles $\nu(M^{(H.V)})arrow M^{(H.V)}$ and $\nu(N^{(H.V)})arrow N^{(H,V)}$ are Rernhart
$G_{(H.V)}$ -cobordant as $G_{(H.V)}$ -vector bundles of type $(H, V)$ .

If $G$ is abelian and of odd order, we will show that the above condition for
the normal bundles always follows. Thus we will obtain

COROLLARY 0.3. Let $M$ and $N$ be two G-cobordant closed G-manifolds of odd
dimension. If $G$ is abelian and of odd order, then there exists a Reinhart G-
cobordism between them.

REMARK. When $G$ is of order 2, Stong [8] already showed Theorem 0.1
in case either $n$ is even, or $n=1$ , or $M$ and $N$ have no isolated fixed point.
When $G$ is an abelian group of odd order, there is a study of Heithecker [2]

on oriented Reinhart G-cobordism. There is also a notion of controllable cutting
and pasting (SKK-equivalence) of G-manifolds. This notion is closely related to
Reinhart G-cobordism. See Heithecker [1] and Prevot [4, 5, 6] for this notion
and related results.

This paper will proceed as follows. In \S 1 we will give a characterization
of Reinhart G-cobordism in terms of the Euler characteristic. In \S 2 we will
introduce G-surgery and G-connected sum as technical preliminaries. In \S 3 and
\S 4 we will show that a G-cobordism satisfying certain conditions may be
altered to a Reinhart G-cobordism by G-surgery and G-connected sum. In \S 5
we will prove the results mentioned above.
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\S 1. Vector fields.

PROPOSITION 1.1. Let $L$ be a compact connected manifold with boundary
$\partial L=M+N$, the disjoint union of closed manifolds $M$ and N. Then $L$ admits a
nonzero vector field which is inward normal on $M$ and outward normal on $N$ if
and $mly$ if $\chi(L)=x(M)=x(N)$ .

For the proof see “Proof of Theorem (1) in Reinhart [7]. By the similar
way to Komiya [3] we may generalize this proposition to an equivariant version:

PROPOSITION 1.2. Let $L$ be a compact G-manifold with $\partial L=M+N$, the
&sj\alpha nt union of closed G-manifolds $M$ and $N$, and $G$ be a finite group. Then
$L$ admits a nonzero G-vector field which is inward noryn $al$ on $M$ and outward
normal on $N$ if and only if for any pair $(H, V)$ of a subgroup $H$ of $G$ and a
$repr_{\tau}esentatimV$ of $H$, every componentA of $L^{(H,V)}$ satisfies $\chi(A)=x(A\cap M)$

$=x(A\cap N)$ . (Here we make the convention $\chi(\emptyset)=0.$ )

This proposition characterizes a Reinhart G-cobordism in terms of the Euler
characteristic.

\S 2. G-surgery and G-connected sum.

Let $H$ be a subgroup of $G$ , and $V$ a representation of $H$ containing no direct
summand of trivial representation. Let $L$ be a G-manifold with dim $L^{(H,V)}>0$ ,

and dim $L^{(H.V)}+1=k_{1}+k_{2}$ , where $k_{1}$ and $k_{2}$ are positive integers. Consider the
G-manifold $G\cross_{H}D(V\oplus R^{k_{1}})\cross S(R^{k_{2}})$ where $R^{k}$ is the k-dimensional trivial rep-
resentation, and $D($ $)$ and $S($ $)$ denote the closed unit disc and the unit
sphere, respectively. If there is a smooth G-embedding

$\varphi:G\cross_{H}D(V\oplus R^{k_{1}})\cross S(R^{k_{2}})arrow L$ ,

then we obtain a G-manifold $L_{1}$ from the disjoint union of $L-\varphi(GX_{H}D^{o}(V\oplus R^{k_{1}})$

$\cross S(R^{k_{2}}))$ and $Gx_{H}S(V\oplus R^{k_{1}})\chi D(R^{k_{2}})$ by gluing the corresponding boundaries
by $\varphi$ , where $D^{o}($ $)$ denotes the open unit disc. $L_{1}$ is called a G-manifold
obtained from $L$ by G-surgery of type $(H, V, k_{1}, k_{2})$ . We see the following:

(1) Let $K$ be a subgroup of $G$ , and $U$ a representation of $K$. If $K$ is not
conjugate to a subgroup of $H$, or if $K=H$ and $GL^{(K.U)}\cap GL^{(H.V)}=\emptyset$ , then the
above G-surgery does not affect $L^{(K.U)},$ $i.e.,$ $L^{(K.U)}=L_{1}^{(K.U)}$ .

(2) Restricting the G-surgery to the H-fixed point set, we see that $L_{1}^{(H,V)}$

is obtained from $L^{(H.V)}$ by deleting $\chi(G_{(H.V)}/H)$ copies of $D^{o}(R^{k_{1}})\cross S(R^{k_{2}})$ and
attaching as many copies of $S(R^{k_{1}})\cross D(R^{k_{2}})$ . Thus, if dim $L^{(H.V)}$ is even,

$\chi(L_{1}^{(H.V)})=x(L^{(H.V)})+(-1)^{k_{1}+1}2\chi(G_{(H,V)}/H)$ .
(3) If $L^{(K.U)}$ is connected and dim $V^{K}+k_{1}\geqq 2$ , then $L_{1}^{(K.U)}$ is also connected.
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Next let us introduce the G-connected sum. Let $L$ and $M$ be G-manifolds
of dimension $n$ , and $H$ an isotropy subgroup occurring on both $L$ and $M$. Let
$V$ be a representation of $H$ containing no direct summand of trivial represen-
tation such that both $L^{(H.V)}$ and $M^{(H.V)}$ are not empty. Then there are smooth
G-embeddings $\varphi:G\cross_{H}D(V\oplus R^{k})arrow L$ and $\psi:GX_{H}D(V\oplus R^{k})arrow M$, where $k=$

dim $L^{(H,V)}=\dim M^{(H.V)}$ . We obtain a G-manifold from the disjoint union of
$L-\varphi(GX_{H}D^{o}(V\oplus R^{k}))$ and $M-\psi(G\cross_{H}D^{o}(V\oplus R^{k}))$ by identifying $\varphi([g, x])$ with
$\psi([g, x])$ for $g\in G$ and $x\in S(V\oplus R^{k})$ . The G-manifold is called a G-connected
sum of $L$ and $M$ of type $(H, V)$ .

Let $RP(V\oplus R^{k+1})$ be the quotient space of $S(V\oplus R^{k+1})$ by the antipodal
involution. $RP(V\oplus R^{k+1})$ inherits a structure of an n-dimensional H-manifold,
and we see that $RP(V\oplus R^{k+1})^{H}=RP(R^{k+1})$ if $H$ is of odd order, and that
$RP(V\oplus R^{k+1})^{H}=RP(V)+RP(R^{k+1})$ if $H$ is of order 2. Let $L_{2}$ be a G-connected
sum of $L$ and $G\cross_{H}RP(V\oplus R^{k+1})$ of type $(H, V)$ . We then see the following:

(4) If $G$ is of odd order and a pair $(K, U)$ is as in (1), then the above G-
connected sum does not affect $L^{(K.U)},$ $i.e.,$ $L^{(K.U)}=L_{2}^{(K.U)}$ .

(5) Restricting the G-connected sum to the H-fixed point set, we see that
if $G$ is of odd order then $L_{2}^{(H.V)}$ is a (nonequivariant) connected sum of $L^{(H.V)}$

and each of $\chi(G_{(H,V)}/H)$ copies of $RP(R^{k+1})$ . Thus, further if $k=\dim L^{(H.V)}$

is even,
$\chi(L_{2}^{(H,V)})=x(L^{(H.V)})-\chi(G_{(H.V)}/H)$ .

In case $G$ is of order 2 we may also see the corresponding assertion.

\S 3. Construction of Reinhart G-cobordisms (1).

In this section $G$ is always of odd order. Given a compact G-manifold $L$ ,
denote by $I(L)$ a complete set of representatives of conjugacy classes of isotropy
subgroups on $L$ . For any $H\in I(L)$ , denote by $R_{H}(L)$ the set of representations
of $H$ such that

(i) $L^{(H.V)}$ is not empty for any $V\in R_{H}(L)$ ,
(ii) if $A$ is a component of $L^{=H}$ , then $A$ is contained in $GL^{(H.V)}$ for some

$V\in R_{H}(L)$ ,
(iii) $GL^{(H.V}$‘ for all $V\in R_{H}(L)$ are disjoint from each other.

Let $R(L)=\{(H, V)|H\in I(L), V\in R_{H}(L)\}$ .
THEOREM 3.1. SuPpose that $G$ is of odd order. Let $M$ and $N$ be two G-

cobordant closed G-manifolds of dimension $n$ . Then there exists a Reinhart G-
cobordism between them if and only if

(i) $\chi(M^{(H.V)})=x(N^{(H.V)})$ for any $(H, V)\in R(M+N)$ , and
(ii) when dim $V=n-1,$ $\nu(M^{(H.V)})$ and $\nu(N^{(H.V)})$ are Reinhart $G_{(H.V)}$ -cobordant

as $G_{(H.V)}$ -vector bundles of tyPe $(H, V)$ .
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For a proof of the theorem we need two lemmas.

LBMMA 3.2. Supp0se that $G$ is of odd order. Let $M$ and $N$ be two G-
cobordant closed G-manifolds of dimension $n$ , and $L$ a G-cobordism between them.
For some $(H, V)\in R(L)$ with dim $V\neq n+1,$ $n,$ $n-1$ , supp0se that

(i) $\chi(M^{(H.V)})=x(N^{(H,V)})$ , and
(ii) $\chi(L^{(H.V)})$ is a multiple of $\chi(G_{(H,V)}/H)$ .

Then we may alter $L$ to obtain a G-cobordism $\tilde{L}$ between $M$ and $N$ such that
(a) $R(\tilde{L})=R(L)$ ,
(b) $\tilde{L}^{(H.V)}$ is connected, and $\chi(\tilde{L}^{(H,V)})=x(M^{(H.V)})=x(N^{(H.V)})$ , and
(c) given $(K, U)\in R(L)$ , if $K$ is not conjugate to a subgroup of $H$, or if

$H=K$ and $GL^{(K,U)}\cap GL^{(H,V)}=\emptyset$ , then $\tilde{L}^{(K,U)}=L^{(K.U)}$ .
PROOF. Let $k=\dim L^{(H,V)}$ . Then $k\geqq 3$ by the assumption. Doing G-

surgery on $L$ of type $(H, V, k, 1)$ , we obtain a G-cobordism $L_{1}$ such that
(i) $R(L_{1})=R(L)$ ,
(ii) $L_{1}^{(H.V)}$ is connected, and
(iii) $L_{1}^{(K.U)}=L^{(K,U)}$ for such $(K, U)\in R(L)$ as in (c).

If $k$ is odd, then $2\chi(L_{1}^{(H,V)})=x(\partial L_{1}^{(H.V)})$ . Since $\partial L_{1}^{(H,V)}=M^{(H,V)}+N^{(H,V)}$ ,

we see $\chi(L_{1}^{(H.V)})=x(M^{(H,V)})=x(N^{(H,V)})$ . Thus $L_{1}$ is a desired G-cobordism.
If kiseven, then $\chi(M^{(H,V)})=x(N^{(H,V)})=0$ , and hence we must make $\chi(L_{1}^{(H,V)})$

zero. From the assumption of the lemma and (2) in \S 2, $\chi(L_{1}^{(H,V)})$ is also a
multiple of $\chi(G_{(H,V)}/H)$ , say $\chi(L_{1}^{(H.V)})=p\chi(G_{(H.V)}/H)$ . If $p=0,$ $L_{1}$ is a desired
G-cobordism. Let $k+1=k_{1}+k_{2}$ , where $k_{1}\geqq 2$ and $k_{2}\geqq 1$ are integers such that
$k_{1}$ is even if $p>0$ , or $k_{1}$ is odd if $p<0$ . If $|p|$ is even, then the argument in
\S 2 ensures that we obtain a desired G-cobordism by doing $|p|/2$ times G-
sugeries on $L_{1}$ of type $(H, V, k_{1}, k_{2})$ . If $|p|$ is odd, let $L_{2}$ be a G-connected
sum of $L_{1}$ and $GX_{H}RP(V\oplus R^{k+1})$ . Then $\chi(L_{2}^{(H,V)})$ is an even multiple of
$\chi(G_{(H,V)}/H)$ , and we obtain a desired G-cobordism by doing G-surgeries on $L_{2}$

as above. Q. E. D.

LEMMA 3.3. SuppOse that $G$ is of odd order. Let $M$ and $N$ be two G-
cobordant closed G-manifolds, and $L$ a G-cobordism between them. For some
$(H, V)\in R(L)$ , supp0se that

(i) $H$ is the only isotropy subgroup on $L^{(H,V)}$ , and
(ii) $\nu(M^{(H.V)})$ and $\nu(N^{(H,V)})$ are Reinhart $G_{(H.V)}$ -cobordant as $G_{(H,V)}$ -vector

bundles of type $(H, V)$ .
Then we may alter $L$ to obtain a G-cobordism $\tilde{L}$ between $M$ and $N$ such that

(a) $R(\tilde{L})=R(L)$ ,

(b) $\chi(A)=x(A\cap M)=x(A\cap N)$ for any component $A$ of $\tilde{L}^{(H,V)}$ , and
(c) as (c) in Lemma 3.2.
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PROOF. Let $Earrow X$ be a $G_{(H.V)}$ -vector bundle of type $(H, V)$ which is a
Reinhart $G_{(H.V)}$ -cobordism between $\nu(M^{(H.V)})$ and $\nu(N^{(H.V)})$ . Here we may
assume that $X$ has no component without boundary. Since $X$ admits a nonzero
vector field which is inward normal on $M$ and outward normal on $N$, then by
Proposition 1.1 or Proposition 1.2 we see that $\chi(A)=x(A\cap M)=x(A\cap N)$ for any
component $A$ of $X$. Let $D\nu(M^{(H,V)}),$ $D\nu(N^{(H.V)})$ and $DE$ denote the associated
disc bundles. There are smooth G-embeddings

$\varphi:G\cross_{G_{(HV)}}.D\nu(M^{(H.V)})arrow M\subset L$ , and

$\psi:G\cross G_{(H\cdot V)}D\nu(N^{(H,V)})arrow N\subset L$

onto G-invariant tubular neighborhoods of $GM^{(H.V)}$ and $GN^{(H.V)}$ in $M$ and $N$,
respectively. Let $L_{1}$ be a G-manifold obtained from the disjoint union of $L$ and
$GX_{G_{(HV)}}.$ DE by identifying ${\rm Im}\varphi$ with $G\cross_{G_{(H\cdot V)}}(DE|M^{(H.V)})$ and ${\rm Im}\psi$ with
$G\cross_{G_{(H\cdot V)}}(DE|N^{(H.V)})$ . Let $L_{2}$ be a G-manifold obtained from the disjoint
union of $M\cross[0,1],$ $N\cross[0,1]$ and $G\cross_{G_{(HV)}}.$ DE by identifying ${\rm Im}\varphi\cross\{1\}$ with
$GX_{G_{(HV)}}$. $(DE|M^{(H.V}‘)$ and ${\rm Im}\psi\cross\{1\}$ with $G\cross_{G_{(H.V)}}(DE|N^{(H.V}‘)$ . We then see
that $\partial L_{2}=M+N+Y$ and $Y\approx\partial L_{1}$ . So let $L_{3}$ be a G-manifold obtained from the
disjoint union of $L_{1}$ and $L_{2}$ by identifying $\partial L_{1}$ with $Y$ . For $L_{3}$ we see that

(i) $R(L_{3})=R(L)$ ,
(ii) $\partial L_{3}=M+N$,
(iii) $L_{3}^{(H.V)}=X+Z$ , where $Z$ is a closed manifold, and
(iv) $L_{3}^{(K.U)}\approx L^{(K.U)}$ for such $(K, U)\in R(L)$ as in (c).

Indeed $Z$ is diffeomorphic to a manifold obtained from the disjoint union of
$L^{(H.V)}$ and $X$ by identifying $\partial L^{(H.V)}$ with $\partial X$. From the assumption of the
lemma $H$ is the only isotropy subgroup on $Z$ . Thus $GZ$ is a G-invariant
submanifold of $L_{3}$ . Let $T$ be a G-invariant open tubular neighborhood of $GZ$

in $L_{3}$ , and let $L_{4}=L_{3}-T$ . Then $\partial L_{4}=M+N+S$, where $S$ is a sphere bundle
over $GZ$ . Let $L_{5}$ be a G-manifold obtained by sewing $L_{4}$ along $S$ by antipodal
involution on every Pbre. This sewing yields no new fixed point since $G$ is of
odd order, and we see $L_{\frac{(}{O}}^{H.V)}=X$. $L_{5}$ is a desired G-cobordism. Q. E. D.

We are now in a position to prove Theorem 3.1.

PROOF OF THEOREM 3.1. Let $L$ be a G-cobordism between closed G-mani-
folds $M$ and $N$ of dimension $n$ . First suppose that $L$ is Reinhart. Then (i)

holds from Proposition 1.2. When dim $V=n-1$ , $i.e.$ , dim $L^{(H.V)}=2$, all the
isotropy subgroups on $L^{(H.V)}$ are $H$, since $G$ is of odd order and $L$ has no
isolated fixed point. Thus $\nu(L^{(H.V)})$ gives a Reinhart $G_{(H.V)}$ -cobordism between
$\nu(M^{(H.V)})$ and $\nu(N^{(H.V)})$ . Hence (ii) holds.

Conversely, suppose that (i) and (ii) hold. We alter $L$ to a Reinhart G-
cobordism. This is done separately in the cases in which $n$ is even or odd.
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[I] The case when $n$ is even. Since $G$ is of odd order, $\dim L^{(H.V)}$ is odd
for any $(H, V)\in R(L)$ . For $(H, V)$ with $\dim L^{(H.V)}=1$ we do G-surgery on $L$

of type $(H, V, 1,1)$ to obtain a G-cobordism $L_{1}$ such that any component $A$ of
$L_{1}^{(H.V)}$ is either a circle or a curve joining points of $M$ and $N$, and hence
$\chi(A)=x(A\cap M)=x(A\cap N)$ . For $(H, V)$ with $k=\dim L_{1}^{(H.V)}\geqq 3$ we do G-surgery
on $L_{1}$ of type $(H, V, k, 1)$ to obtain a G-cobordism $L_{2}$ such that $L_{2}^{(H.V)}$ is
connected and that if $\dim L_{2}^{(K.U)}=1$ then $L_{2}^{(K.U)}=L_{1}^{(K.U)}$ . Since $2\chi(L_{2}^{(H.V)})$

$=x(\partial L_{2}^{(H.V)})$ and $\partial L_{2}^{(H.V)}=M^{(H.V)}+N^{(H,V)},$ $\chi(L_{2}^{(H.V)})=x(M^{(H.V)})=x(N^{(H.V)})$ . Thus
Proposition 1.2 implies that $L_{2}$ is Reinhart.

[II] The case when $n$ is odd. In this case dim $L^{(H.V)}$ is even for any
$(H, V)\in R(L)$ . If dim $L^{(H.V)}=0$ , we cut off from $L$ an open disc about each
point of $L^{(H.V)}$ , and sew $L$ by antipodal involution along each sphere resulting
as boundary. By this way we may remove all the isolated fixed points from $L$ ,
and obtain a G-cobordism $L_{0}$ such that dim $L_{0}^{(H.V)}\geqq 2$ for any $(H, V)\in R(L_{0})$ .
For any component $A$ of $L_{0}^{(H,V)},$ $A\cap M$ and $A\cap N$ have Euler characteristic
zero since they are odd dimensional and closed. Thus we must make the Euler
characteristic of $A$ zero. Let

$R(L_{0})=\{(H_{1}, V_{1}), (H_{2}, V_{2}), *(H_{a}, V_{a})\}$

be ordered in such a way that if $H_{i}$ is conjugate to a subgroup of $H_{j}$ then
$j\leqq i$ . In virtue of Lemma 3.2 and Lemma 3.3 we may inductively alter $L_{0}$ to
obtain G-cobordisms $L_{i}(1\leqq i\leqq a)$ such that

(i) $R(L_{i})=R(L_{0})$ ,
(ii) $\chi(A)=0$ for any component $A$ of $L_{i}^{(H_{j},V_{j})},$ $1\leqq j\leqq i$ , and
(iii) $L_{i}^{(H_{j}.V_{j})}=L_{i-1}^{(H_{j}.V_{j})}$ for any $j$ with $1\leqq j<i$ .

Then $L_{a}$ is a desired Reinhart G-cobordism.
The induction step proceeds as follows. Suppose that we have obtained

$L_{i-1}$ . Consider $L_{i-1}^{(H}t^{V}i$
) as a $G_{(H_{i},V_{i})}$ -manifold. Then $H_{l}$ is a principal iso-

tropy subgroup on it. For any subgroup $K$ with $H_{i}<K\leq G_{(H_{i}.V_{i})}$ we see
$\chi((L_{i-1}^{(HV)}i\cdot i)^{K})=0$ . This implies that $\chi(L_{i-1}^{(HV)}i\cdot i)$ is a multiple of $\chi(G_{(H_{i}.V_{t})}/H_{i})$ .
Thus, if dim $L_{i-1}^{tHV}i,i$

)
$\geqq 4,$ $i.e.$ , dim $V_{i}\neq n+1,$ $n,$ $n-1$ , then $L_{i}$ is obtained by

Lemma 3.2, and if dim $L_{i-1}^{(HV)}i\cdot i=2,$ $i.e.$ , dim $V_{i}=n-1$ , then $L_{i}$ is obtained by
Lemma 3.3. Q. E. D.

\S 4. Construction of Reinhart G-cobordisms (2).

In this section we consider the case when $G$ is of order 2. In this case a
representation $V$ of $G$ containing no direct summand of trivial representation
is determined by its dimension. So, for a G-manifold $M$ we denote $M^{(G.V)}$ by
$M^{(G.k)}$ where $k=\dim V$ .
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PROPOSITION 4.1. Let $M$ and $N$ be two G-cobordant closed G-manifolds of
dimension $n$ . SuPpose that $G$ is of order 2 and that $n$ is odd and greater than 1.
Then there exists a Reinhart G-cobordism between $M$ and $N$, if and only if
$\chi(M^{(G.k)})=x(N^{(G.k)})$ for any $k(0\leqq k\leqq n)$ .

This proposition will be proved by a similar way to the proof of Theorem
3.1. The following two lemmas are needed.

LEMMA 4.2. Let $M$ and $N$ be two G-cobordant closed G-manifolds of dimen-
szon $n$ , and $L$ a G-cobordism between them. SuppOse that $G$ is of order 2 and

$ThenLisalteredtoaGxobordism\tilde{L}suchthatthatnisodd.Forsomeintegerk(0\leqq k\leqq n-2)$
suPpose that $\chi(M^{(G,k)})=x(N^{G.k)})$ .

(a) $L^{(G,k)}\sim$ is connected, and $\chi(\tilde{L}^{(G,k)})=x(M^{(G,k)})=x(N^{(G,k)})$ , and
(b) for any $m\neq k,\tilde{L}^{(G,m)}=L^{(G,m)}+A$ , where $A$ is a closed manifold with

$\chi(A)=0$ , in fact, $A$ is the empty set or an odd dimenstonal real projective
space.

PROOF. Similar to the proof of Lemma 3.2 except the point that
$RP(V\oplus R^{n-k+2})^{G}=RP(V)+RP(R^{n-k+2})$ since $G$ is of order 2. If $\dim L^{(G.k)}$

$=n-k+1$ is even and $\chi(L^{(G,k)})$ is odd, one needs to do connected sum of $L$

and $RP(V\oplus R^{n-k+1})$ . This yields the new component $RP(V)$ of the fixed point
set. $RP(V)$ is odd dimensional, since $n$ is odd. Q. E. D.

LEMMA 4.3. Let $M$ and $N$ be two G-cobordant closed G-manifolds of dimen-
sion $n\geqq 3$ , and $G$ be of order 2. Any G-cobordism $L$ between $M$ and $N$ is altered
to a G-cobordism $\tilde{L}$ such that

(a) each component of $\sum$ ( $G,$ n-l) has Euler characteristic zero, and
(b) $Z^{(G.m)}\approx L^{(G.m)}$ except for $m=1,$ $n-1$ .

PROOF. By Stong [8; Theorem 3.1 and Corollary] we see that two normal
bundles $\nu(M^{(G.n-1)})$ and $\nu(N^{(G,n-1)})$ are Reinhart G-cobordant. Thus the proof
proceeds as the proof of Lemma 3.3 except that new fixed point set arises when
one sews $L_{4}$ along $S$ by antipodal involution. This new fixed point set is of
dimension $n$ , and does not affect $\tilde{L}^{(G.n-1)}$ since $n\geqq 3$ . Q. E. D.

PROOF OF PROPOSITION 4.1. The “only if” part is easy from Proposition 1.2.
To prove the “if” part, let $L$ be a G-cobordism between $M$ and $N$. As in
the proof of Theorem 3.1, we may remove the isolated fixed points from $L$ and
alter $L^{(G,n)}$ to a disjoint union of circles and curves joining points of $M$ and $N$.
Then we obtain a G-cobordism $L_{1}$ such that

$(*)$ $\chi(A)=x(A\cap M)=x(A\cap N)$

for any component $A$ of $L_{1}^{(G,k)}$ with $k=n+1,$ $n$ . Applying Lemma 4.3 to $L_{1}$ ,

we obtain $L_{2}$ such that the equation $(*)$ holds for any component $A$ of $L_{2}^{(G,k)}$
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with $k=n+1,$ $n,$ $n-1$ . APplying aiso Lemma 4.2 repeatedly to $L_{2}$ , we obtain
$L_{3}$ such that the equation $(*)$ holds for any component $A$ of $L_{3}^{G}$ . By G-surgery
of type $(\{1\}, \{0\}, n+1,1)$ we make $L_{4}=L_{s}^{(\{1\}.0)}$ connected, where {1} is the
identity subgroup of $G$ and $\{0\}$ is the O-dimensional representation. We want
to make the Euler characteristic of $L_{4}$ vanish, since $\chi(L_{4}\cap M)=x(L_{4}\cap N)=0$ .
Since $0=x(L_{4}\cap M)\equiv\chi(L_{4}^{G}\cap M)$ mod2, $\chi(L_{4}^{G})=x(L_{4}^{G}\cap M)$ is even. Also since
$\chi(L_{4})\equiv\chi(L_{4}^{O})$ mod2, $\chi(L_{4})$ is even. Thus, as in the proof of Lemma 3.2, we
may make the Euler characteristic of $L_{4}$ vanish, and the resulting manifold
is a Reinhart G-cobordism between $M$ and $N$. Q. E. D.

\S 5. Proofs of Theorem 0.1, Theorem 0.2, and Corollary 0.3.

Let $M$ and $N$ be two G-cobordant closed G-manifolds of dimension $n$ . If a
representation of an odd order group does not contain a direct summand of
trivial representation, it is even dimensional. Thus, if $n$ is even, (ii) of
Theorem 3.1 is vacuously valid. So, if $n$ is even and $G$ is of odd order,
Theorem 0.1 follows from Theorem 3.1. If $G$ is of order 2, Theorem 0.1 follows
from Proposition 4.1 and Stong [ $S$ ; Theorem 4.4].

If $n$ is odd, then for any $(H, V)\in R(M+N),$ $M^{(H,V)}$ and $N^{(H,V)}$ are odd
dimensional and closed. Thus the Euler characteristIcs of them are zero, and
hence (i) of Theorem 3.1 holds. So Theorem 0.2 also follows from Theorem 3.1.

Corollary 0.3 follows from Theorem 0.2 and the following lemma:

LEMMA 5.1. Let $G$ be an abelian group of odd order, and $Earrow X$ a G-vector
bundle of type $(H, V)$ over a closed G-manifold $X$ of dimension 1. Then $Earrow X$

is Reinhart G-cobordant to zero as a G-vector bundle of type $(H, V)$ .

For a proof of the lemma we first give some remarks. Let $G$ be an
abelian group of odd order, $V$ a representation of a subgroup $H$ of $G$ containing
no direct summand of trivial representation. Since $H$ is of odd order, $V$ has a
structure of a complex representation. Since $G$ is abelian, the H-action on $V$

extends to a G-action on $V$ . So we may consider $V$ as a complex representation
of $G$ . Let $Earrow X$ be a G-vector bundle of type $(H, V)$ . From the above remark
we may consider $Earrow X$ as a complex G-vector bundle. From now on we fix
complex structures of $V$ and $Earrow X$. Let $\{V_{j}|j\in J(H)\}$ be a complete set of
nontrivial, nonisomorphic complex irreducible representations of $H$, and let
$V=\oplus_{J\in J(H)}V_{J^{j}}^{n}$ . The H-equivariant complex linear homomorphisms from $V_{j}$ to
every fibre of $E$ form a complex $n_{j}$-dimensional G-vector bundle Hom $H(V_{j}, E)$

over $X$. Let $X\cross V_{j}$ be a complex G-vector bundle (with diagonal G-action)

over $X$. We obtain a canonical homomorphism

$\psi_{j}$ : $(X\cross V_{j})8_{C}Hom^{H}(V_{j}, E)arrow E$
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such that
$\oplus_{J\in J(H)}\psi_{j}$ : $\oplus_{J\in J(H)}((X\cross V_{j})\otimes {}_{C}Hom^{H}(V_{j}, E))arrow E$

is an isomorphism of complex G-vector bundles. Since $H$ acts trivially on
$Hom^{H}(V_{j}, E)$ , we obtain a complex vector bundle $Hom^{H}(V_{j}, E)/G$ over $X/G$ .
If $X$ is l-dimensional and closed, then so is $X/G$ , and $Hom^{H}(V_{j}, E)/G$ is iso-
morphic to a product bundle $X/G\cross C^{n_{j}}$ since $BU(n_{j})$ is l-connected. Thus
$Hom^{H}(V_{j}, E)$ is isomorphic to $X\cross C^{n_{j}}$ , and we see that $E$ is isomorphic to a
product bundle $X\cross V$ .

PROOF OF LEMMA 5.1. $X$ admits a free $G/H$-action. Let $f$ : $X/Garrow B(G/H)$

be a classifying map for its $G/H$-action. $X/G$ is a disjoint union of circles:
$X/G=C_{1}+C_{2}+\cdots+C_{k}$ . Denote by $f_{i}$ the restriction of $f$ to each $C_{i}$ . Since
the fundamental group $\pi_{1}(B(G/H))\cong G/H$ is of odd order, then there is $[g_{i}]$

$\in\pi_{1}(B(G/H))$ such that $2[g_{i}]=[f_{i}]$ in $\pi_{1}(B(G/H))$ . Let $M_{i}$ be a Mobius band
with $\partial M_{i}=C_{i}$ and the axis $D_{i}\approx circle$ . Since $2[g_{i}]=[f_{i}]$ , there is a map
$F_{i}$ : $M_{i}arrow B(G/H)$ such that $F_{i}|C_{i}=f_{i}$ and $F_{i}|D_{i}=g_{i}$ . Pulling back a universal
$G/H$-space by the map $F_{1}+\cdots+F_{k}$ : $M_{1}+\cdots+M_{k}arrow B(G/H)$ , we obtain a 2-
dimensional compact G-manifold $Y$ such that (1) $\partial Y=X$, (2) $H$ is the only
isotropy subgroup on $Y,$ (3) $Y$ admits a nonzero G-vector field pointing inward
on $\partial Y=X$ (since $M_{i}$ admits a nonzero vector field pointing inward on $\partial M_{i}=C_{i}$ ).

Then $Y\cross V$ is a Reinhart G-cobordism between $E$ and zero, since $E$ is iso-
morphic to $X\cross V$ . Q. E. D.
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