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Introduction.

Let V be an n-dimensional vector space over a field K. Let g be an ordered
partition of n, i.e., an ordered sequence (y,, ---, g¢;) of positive integers such
that g+ -+« +p,=n. For pu, let F, be the partial flag variety of type g#. Let
u be a unipotent transformation of V. In [12], we proved that the fixed point
subvariety Fi={(W,)eF, ; uW;=W; (1=/<s—1)} has a partition into a finite
number of locally closed affine spaces and this partition is determined by the
Young diagram associated with . In this paper, we study further the variety
F% Let A be the set of all minimal semistandard p-tableaus of type 4 (defined
precisely in 4.1), where A is the Jordan type of u. For a4, let A% (1=i<s—1)
be the Young diagram with g+ --- +p; squares (defined precisely in 4.9). For
acd, put Y,={(W;)eF%; the Jordan type of the restriction of u to W, is
A} (1=i=<s—1)}. Then we have Fi=]lse Y (disjoint union). The main results
of the paper are:

(1) For a=d4, the variety Y, is an irreducible locally closed subvariety
of Fj.

(2) For a=d, the variety Y, has a partition Y,=IIgcx,S¥ where X, is
the set of semistandard p-tableaus determined by a (defined precisely in 4.9) and
the varieties S% are the fixed point subvarieties of the Schubert (Bruhat) cells
Ss. The variety S% is isomorphic to an affine space.

(3) For B,y in X,, we have

B<7 == clS%2clSY,

where “<” is a partial order (Bruhat order) defined in 1.1, 4.10 and clS} (resp.
clS¥) is the Zariski closure of S% (resp. S}) in F,. In particular, S% is an open
dense subvariety of Y,.

N. Spaltenstein proved these results in the case of the full flag variety, i.e.,
p=1,1, -, 1) ([13], Chapitre II, 5; [8], p. 92, Example). The above (1), (2)
and (3) are stated and proved in §4. The crucial points of the proofs are the
proofs in the case of Grassmann variety and are given in §1, §2. The contents
of §3 are supplements to § 2.
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In the appendix, we study the homogeneous coordinate ring of the fixed
point subvariety £2* of the Schubert variety £ in the Grassmann variety G.(V)
(=F@, n-a). If dimQ2*=dim£2—1, we determine the defining ideal of £* and
we prove that the homogeneous coordinate ring of 2% is normal and Cohen-
Macaulay. In the proof of these, we use some results on the homogeneous
coordinate ring of 2 ([1], [2], [6], and [11]). Our results give an alternat-
ing proof to the fact that the minimal unipotent variety over a field K is normal
and Cohen-Macaulay ([4], and [14]).

The author expresses his hearty thanks to H. Doi and K. Matsui for a
number of interesting discussions and for valuable suggestions.

NoTATIONS. For a transformation u# of a set X, X% denotes the set of all
u-fixed elements of X. Let VV be an n-dimensional vector space over a field K.
If u is a linear transformation of V, for a u-stable subspace W of V, u|w is the
restriction of u to W. For an integer d such that 1<d<n, A%V denotes the
d-th alternating product of V. Let P=P(A%V) be the projective space associated
with A?V. For asubvariety X of P, clX denotes the Zariski closure of X in P.
Let p be an ordered partition of n, i.e., an ordered sequence of positive integers.
(g1, ---, ¢ts) such that g+ - +p,=n. If F, is a Grassmann variety, i.e., p=
(g1, ps), we write G,,(V) instead of F,. The Young diagrams in the paper are

as in [8].

§1. The fixed point subvarieties of the Schubert cells.

1.1. Let K be a fixed algebraically closed field. Let V be a vector space
over K of dimension n (n=2). Fix an integer d such that 1<d<n. Let V¢ be

the vector space V@ --- GV (d copies). Let A%V be the d-th alternating product
of V. Let

r:Vi— AV
be the morphism defined by (vy, -+, va)— v, A - Avg. Fix a basis {e;, -, e}

of V. Then we can identify V¢ with the set of all dxn-matrices over K by

(W1, =+, Vg) —> (xi(].))misd 1sjsn )

where v;=21.;<.x:(J)e;, x:(J) K. Let P(A%V) be the projective space associated
with A2V. Let

p: NV—={0} —P(A\*V)

be the natural projection. We denote by G4(V) the Grassmann variety of all d-
dimensional linear subspaces in V. Then G4(V)=pVe—{0}). Put

I: {a:<a1y R ad)ezd ; 1§(11< ot <ad§n}'
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For a=(ay, ---, ay) in I, put
Do={(x:(7) €V ; x())=0 for j<a; 1=i<d)},
Co={(x:(NEDs ; x:(ay)=0;; 1=Z4, j=d)},

where 0;;=1 (if i=j) and 0,;=0 (if i#7). Then S,=pnC, (resp. 2,=p(xD,—{0}))
is the Schubert cell (resp. Schubert variety) corresponding to a. The Zariski
closure of S, in G4(V) is £,. We define a partial order “<” on I by

a<f if ;=B; for all =1, -, d.

Then (1, 2, --+, d) (resp. (n—d+1, n—d—+2, ---, n)) is the minimum (resp. max-
imum) element of I with respect to this ordering.

1.2. LEMMA. For a and Bin I, the following three conditions are equivalent :
1) a<p.

(2) R.NSg is not empty. o

() 2.28;. —

For the proof, see [10].

1.3. We fix a positive integer n and a partition 4 of n. We write A=
Ay, =+, &) if 44+ - +A4=n (4=Z4,= - Z4.>0) and represent 2 by a Young
diagram with rows consisting of 4,, 4, ---, 4, squares respectively.

1.4. DEFINITION. Fix a Young diagram 4 with n squares. Let d be an
integer such that 1=d<n.

(1) A d-tableau is a Young diagram of type A whose d squares are distin-
guished by A.

(2) A d-tableau is said to be semistandard if every square on the left posi-
tion to on the same row is 7.

(3) A semistandard d-tableau is said to be minimal if every square on the
upper side to on the same column is 4.

1.5. ExAMPLES. For A=(3, 2, 2) and d=3, put

P o 5P o B

All are 3-tableaus, (1) is not semistandard, (2) is semistandard but not minimal
and (3) is minimal.

1.6. We fill in all the squares of 4 with the numbers 1, 2, ---, n in the fol-
lowing way: For a start, we put the integers into the squares from the top
square of the A,-th column to the bottom square of this column, next, from the
top square of the (4,—1)-th column to the bottom square of this column, and so
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1]

wito

7
on. For example, if 1=, 3, 2), we have [g
9

These numbers indicate

=) 2] Gl

the places of all squares of A.

Let I be the set defined in 1.1. Fix a Young diagram 4 with n squares.
We identify a=(a,, -, ay) in I with the d-tableau of type A whose ay, -, az-th
squares are 7. Therefore the set [ is identified with the set of all d-tableaus
of type 4. For example, in 1.5, the 3-tableaus of (1), (2) and (3) are identified
with the elements (1, 4, 5), 4, 5,7) and (2,5, 6) in I={(ay, a,, a;)=Z? ; 1=Za,<
a,<a; =7} respectively.

1.7. Let V be an n-dimensional vector space over a field K with basis
{ey, -+, es}. For a Young diagram A with all squares numbered as in 1.6, we
define a unipotent transformation u of V of Jordan type 2 by

ue;=e;+e; if A contains is17/,
ue;=e; if 7| lies on the first column of A.

Put N=u—1, a nilpotent transformation of V of Jordan type A.

1.8. LEMMA. In the above notations, for a d-tableau a in I of type 2, put
St={pw A - ANvg)ES, ; ubl/\ s AUVG=ULN oe )\vd}
={WeS, ; uW=Ww},
where S, is the Schubert cell corresponding to a. Then SY% is nonempty if and
only if a is semistandard.
PROOF. If a is semistandard, we have ples, A -+ Aeq,)ES% Hence Si+@.
On the other hand, take p(v; A -+ Avg) in S4By uv, A - Auvg=uv,A - Avg,

ulvy, -, vay=Xvy, **+, Vqy, Where (v, -+, v4) is the K-vector space generated
by {vy, -+, v4} ; hence we can write

va: Edaivi, aiEK.

1sis

If the square ax does not lie on the first column of A, take a number %’ (a, <k’
=n) such that the square %2~ lies next to the left of the square x. By the
definition of S, ~

V= anxi(j)ej’
where x;(j)eK and x;(a;)=0;; 1=7, j=<d). By

> xk<J')N(ej)=1§lZ§daia anxi(j)ej,

apsjsn isjs
we have
ek,+ cee = 2 aieai_l’_ eee
1£4isd
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By this formula, we see that a;=0 for all 7 such that a;<k’ and there is a
number m such that k’=a,, and a,=1. This means that the square % is 7.
Thus a is semistandard and the proof of the lemma is completed.

1.9. For a semistandard d-tableau a=(a,, ‘-, a;, -+, ay) of type A, we say
! (1=i{=d) is an initial number of a if the square on the right side of [« (if any)
is not ZJ. For example, in 1.5 (3), 1 and 3 are the initial numbers of a.

1.10. LEMMA. For a semistandard d-tableau «, let C, be the subvariety of
Ve defined in 1.1. Put

Ct=A(vy, -+, va)ECs ; Nv;=v; if a contains ajai (1=i<j<d)}.
Then the isomorphism pr: Co5S, tnduces an isomorphism
Cy ~, St.
PROOF. The injectivity of this morphism is clear. Take an element
PN - Nwg)e S, where (wy, -+, wg)€Cs. Let (vq, --+, vg) be an element in

C* such that {v,, -, v} ={N"w;; ¢’s are the initial numbers of @ and h=0} —
{0}. Then v, A --- Avg=w; A - Awg. Hence the lemma.

1.11. PROPOSITION. For a semistandard d-tableau a=(a,, ---, ag), put a’=
{1, -+, n}—A{ay, -, ag}. For ica’, let ali] be the cardinality of the set {a;;
J runs through all initial numbers of a such that a;<i}. Put d(a)=2coalt].
Then we have:

(1) The subvariety S% of S, is isomorphic to the d(a)-dimensional affine space
A gper K.

(2) If a is a minimal semistandard d-tableau, «[i] is the number of all
squares on the upper side to the square [i| on the same column.

PrRooF. (1) The variety C* in 1.10 is isomorphic to A¢“®, Thus the
assertion follows from 1.10.

(2) If a is minimal, there is no square ; (i.e., Z) on the lower side to
the square [¢] on any column. Hence the proposition.

For example, in 1.5 (2) and (3), we have d({4, 5, 7))=2 and d((2, 5, 6))=4
respectively.

1.12. REMARK. 1.11 is an essential part of the proof of the theorem in
(see 4.7 and 4.8). The proof in this paper is simpler than that of [12].

§2. Inclusion relations.
We use the notations in § 1.

2.1. LEMMA. For a semistandard d-tableau a, let D, be the subvariety of V¢
defined in 1.1. Put



542 N. SHIMOMURA

Di={(vy, -+, va)€Dq ; Nv;=v; if @ contains ajai (1=i<j=d)}.
Let c1S% be the Zariski closure of S% in P(/N\*V). Then
S¢S p(rDy— {0})SclSy,

where p and © are morphisms defined in 1.1.
Proor. Let C’, be the dense subvariety of D% consisting of all (v, -+, va)
in D% v;= 3 x)e;, which satisfy the condition x;(a;)#0 (1=/=d). By L.10,

ajsSjEn

we have
prCa=Si.
Hence
St p(wDs—{0}).
By the continuity of p and =, we have
clSt=clp(zC,)
- 2p((the closure of zC; in A*V)—{0})

2prDE—{0}). .

Thus the lemma.

2.2. LEMMA. For a semistandard d-tableau a of type A=(A, -+, 4;,), let
Aila) G=1,2, -, ) be the number of all Yh-squares on the i-th row of a. For
integers hy, and h, (1=h,<h,<r), we assume that

lhzglnl(a) >2h2(a) .

Let B be the semistandard d-tableau of type A obtained by exchanging the number
of P-squares on the hy-th row of a for the number of YA-squares on the h,-th row
of a. Then we have

clS D clS},ﬁ .

PROOF. Let az be the square on the h;-th row of a such that the square on
the right side to ‘ad (if any) is not /4. Let (5] be the square which lies on the
hs-th row and on the same column as that of |adl.

First, we assume that 4,,(a)#0. Let lad be the square on the h.-th row of
4 such that the square on the right side to lad (if any) is not 74. Let |« be the
square which lies on the h;-th row and on the same column as that of ja.. Thus
we get the picture of a as below:
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247 - Qg

h, V2780072
h. 7722 \

(24 ]'0

Let E, be the subvariety of V¢ consisting of all (vy, -+, vs) in V¢ v;=
DhcisnXxi(D)e; 1=1=d), which satisfy the following conditions: ,

(1) If 7 is an initial number (see 1.9) of a and i+#c¢, x;(j)=0 for j<a;.

(2) Nv;=v; if a contains jajail.

(3) We can write vo=4kx-+y (k€K) and v,=N"x+z (n=2,(a)—2z,(a)),
where x, y and z are defined by

x=X2x()e; (A.=j=J.),

y=2y(1)e; (Jo=7=n)
and
z=3z(jle; (a.=j=n).
Then we have
kv, =N™p,+(kz—N™y).

Hence, for (v, --+, vq)€E,, we have
UIA =+ NRUA = ANvg=vi A = A(Rz—N™y) N\ -+ Avg.

Therefore, for the dense subvariety E/ of E, defined by x;(a;)+#0 (1=<:/=<d) and
kz(a.)# y(i,), we have

prE,SGa(V)*NS,=S%.
Hence
p(rE,— {0})SclSE.

Let EJ be the closed subvariety of E, defined by £#=0. Then zE}=nDj}, where
Dy is the variety defined in 2.1. Therefore we have clIS}=2clS§ by 2.1.

Next, we assume that 2,,(a)=0. Let D, be the subvariety of D} defined by
xa(/)=0 for j<j,. Then we have wD,==D}. Therefore we have clS52clS}
by 2.1. Thus the proof of the lemma is completed.

2.3. Let a and 3 be d-tableaus like the ones in 2.2. Then we say that
these a and B (a<pB) are in the elementary relation, or shortly, that a<pB is
elementary. If a sequence of d-tableaus a'<a®< --- <a? satisfies the condition
that a<a®*' is elementary for all 7=1, ---, p—1, then we say that the sequence
al<at< - <aP is an elementary sequence from a'to a®?. The following lemma
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and its proof were communicated by H. Doi.

2.4. LEMMA. For a minimal semistandard d-tableau «, let X, be the set of
all semistandard d-tableaus B such that A;(a)=2;(B) for i=1, 2, ---, where Ai(a)
(resp. 2:(B)) is the number of all P-squares on the i-th column of a (resp. P).
For B and v in X., assume that B<y. Then there is an elementary sequence
al<a?< - <a? such that a*€X, (=1, ---, p), f=a' and y=a’.

ProoF. It suffices to show that there is a d-tableau 8’ in X, such that
B<pB’ is elementary and B’<y. We prove this by induction on d. If d=1, it
is trivial. So we assume that d>1. Suppose that the square [y lies on the p-th
row of 4. Since <y, there is a number k (1=k) such that 8,<7,<Bi+1.. We
assume that the square g4 lies on the h-th row of 2. Then h=p. If h=p, we
see that

B—(h-th row)<y—(h-th row).

Then the assertion follows from the induction hypothesis. From now on, we
assume that hA#+p.

Case 1. We assume that, for any square f: on the h-th row, the square 7:
lies on the p-th row or a lower row than the p-th row. Let B’ be the d-tableau
of type 2 obtained by exchanging the number of FZ-squares on the h-th row of
B for the number of Z-squares on the (hA-+1)-th row of 8. Then B<p’ is ele-
mentary and B8'<y.

Case 2. We assume that, for some square |g: on the h-th row, the square
74 lies on the strictly upper row than the p-th row. We take the g which lies
on the extreme right of these. Assume that this i8: lies on the s-th column from
the left. Put m=2,(B) (see 2.2). Then m=2 and s<m by the choice of h.
Take a number A’ which is either the number A+1, if 4,4,(8)=s, or a number
which satisfies 2;(8)<s (h+1=7<h’) and 2,-(8)=s. Then h’<p. Let B’ be the
d-tableau of type A obtained by exchanging the number of Z-squares on the h-th
lies on a strictly right part from the s-th column and between the h-th and p-th
rows, the [y; lies on the p-th row or a lower row than the p-th row. Therefore
B<B’ is elementary and B’<y. Thus the proof of the lemma is completed.

2.5. PROPOSITION. For a minimal semistandard d-tableau a, let X, be the
set defined in 2.4. Then, for B and 7y in X,., the following two conditions are
equivalent :

n B<r,

(2) ciSE=2clSy..

In particular for any B in X., we have c1S}=clSE.

Proor. The implication (1)=(2) follows from 2.2 and 2.4. On the other

hand, (2) implies 2;282,. Therefore, the implication (2)=(1) follows from 1.2.
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Thus the proposition.

2.6. PROPOSITION. For a minimal semistandard d-tableau a of type A, let
A, be the Young diagram consisting of the squares of a. For the a, put

Y.={WeGsV)* ; the Jordan type of ulw is A.}.

Then, we have
Y= \U S§.

BEX o
And the variety Y, is an irreducible locally closed subvariety of Ga(V)™

Proor. The first assertion follows from the definition of Sj. Then, we
have i .
Y =02¢t— U £3%.

;minimzl,
p>a

Hence Y, is a locally closed subvariety of G4(V)* For any B8 in X,, we have
B=a. Then the proposition follows from 2.5.

§ 3. Inclusion relations in some particular cases.

We use the notations in the preceding sections.

3.1. LEMMA. Let A=(4y, -, 4;) be a Young diagram with n squares. For
a semistandard d-tableau a, let 2;(a) be the number of all A-squares on the i-th
row of a. Fix two numbers h, and h, such that hy#h, and 1=hy, h,=r. Assume

that there is an integer p such that A, (@)Z p=An,(a). Let B be a semistandard
d-tableau such that

Ai(a) if i#Fhy, hy,
A(B)=1 p if 1=h,

@)+ a)—p  if i=hs.
Then:
(1) The intersection of c1S% and S} is not empty.
2) If A-=2(a) for any i (1=i=r), clS% contains S§.
ProOF. For /=1, 2, put r;=4,,(a). First, we assume that »,>0. Take the
numbers a,, a;, a, and j, as in the following figure:
[#1

p
AN 4 AL

7e rl_p Qp Qg

.
7000700000070/ 1)

Nee N\

[\

h

-

h

»




546 N. SHIMOMURA

Put m=r,—p and construct the varieties £, and EJ as in the proof of 2.2.
Then the intersection zE3N\xCj is not empty, where Cg is the dense subvariety
of D} defined in the proof of 2.1. This implies (1). If 4,=4;(a) for any
i (1£i<r), we have nE}==nD}%. Hence we get (2). If »,=0, the proof is similar
to the above case. Thus the lemma.

3.2. REMARK. In 3.1 (1), we can not expect an inclusion like clS%2S%.
For example, put

%%
a= and B = .

et

L]

Then a and B satisfy the conditions of 3.1. We see that clS%%S}%, since dimS¥%
=dimS§=5.

3.3. PROPOSITION. For a partition A=(4y, -, 4,) of n, let R be the set of
all d-tableaus a of type A such that A,=A;(a) for i=1, ---, v. Then we have:

(1) For a, B in R, we assume that & and B are minimal, then c1S%2clSY if
and only if a<p.

(2) For a minimal d-tableau a in R, the fixed point subvariety %=
{Lefl, ; uL=L} equals c1S%, and Q% is irreducible.

ProOOF. (1) If cISE=2clSE, we see that a<f by 1.2. Let (4(a), 4x(a), )
and (4,(B), 2:(B), ---) be partitions of d corresponding to A, and 4z as in 2.6
respectively. Assume that a<f. Then, for /=1, 2, ---, we have

Ala)+ - + (@)= A(B)+ - +4:(B).

By a property of an ordering of the partitions of d ([8], 1.2) and 3.1 (2), we have
clS%2clSE.
(2) We have, by the results of §2,

Qe=clSt,

where the union is taken over all minimal semistandard d-tableaus y such that
y=>a. Then we have

Qu=c]S%,
by (1). Since S is isomorphic to an affine space, by 1.11, Q% is irreducible.
Thus the proposition.

3.4. REMARKS. Let R be as in 3.3.

1) If 2z=(4,, ---, 4,) is a rectangular Young diagram, i.e., 4,= - =1,, we
see that any semistandard d-tableau of type 4 is in R.

(2) For @, B in R, we conjecture that the following two conditions are
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equivalent :

(@) clSE=2clSE,

b a<p.

As a corollary of 3.3, we consider a compactification of a unipotent con-
jugacy class of a general linear group GL.(K), defined in [7].

3.5. COROLLARY. Let 2=(d, -+, d) be a partition of n=d*®. For a partition
u of d, let C, be the unipotent conjugacy classin GL4(K) of Jordan type p. Let
u be a unipotent transformation of V of Jordan type A. Then 2%=clS% is a
projective closure of C,, where a is a minimal semistandard d-tableaw such that
pi=2A{a) for i=1, 2, ---. _

PrROOF. Let Y, be the subvariety of G4 (V)* defined in 2.6. Then the
compactification of C, defined in is the Zariski closure of Y, in P(A%V).
Thus the corollary follows from 2.6, 3.3 and 3.4 (1).

3.6. REMARK. Let C « be the Zariski closure of a unipotent conjugacy class
C, in GL4«(K). For a partition g (resp. v) of d, let a (resp. §) be a minimal
semistandard d-tableau such that u;=A;(a) (resp. v;=2;(B8)). By 3.5, we have
C,2C, oIS 2clSt @ a<f & pit -+ +p=v+ - +u; for i=1, 2, .

§4. The fixed point subvarieties of the flag varieties.

We use the notations in the preceding sections. An ordered partition p of
n is an ordered sequence of positive integers (g;, ---, ¢s) such that g+ --- 4y,
=n, where the g; are not necessarily in decreasing order.

4.1. DEFINITION. Let 4 be a partition of n. Let p=(y,, -+, gs) be an
ordered partition of n.

(1) A p-tableau of type A is a Young diagram of type A whose squares are
numbered with the figures from 1 to s such that the cardinality of the squares
with figure 7 is y;.

(2) A p-tableau is said to be semistandard if, on each row, the sequence of
the figures in the squares increases (may be stationary).

(3) A semistandard p-tableau is said to be minimal if, on each column, the
sequence of the figures in the squares increases (may be stationary).

(4) A minimal semistandard g-tableau is said to be standard if, on each
column, the sequence of the figures in the squares strictly increases. [If p=
(1, ---, 1), a minimal semistandard tableau is a standard tableau.]

4.2. REMARK. By [8], 5.14, the number of all standard g-tableaus of type
A is given by the Kostka coefficient K% where f# is the unique partition of n
determined by p.
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4.3. ExampLES. (1) For 24=(3, 3, 1) and p=(2, 3, 2), put

2|1
2[2] , (D)

1
2

(%] [I%

[SV} (o]

(a) 2], (© , @)

lr—-‘oow

| S

[eoeo]—

Jeo]e]—
X

All are p-tableaus of type 4. (a) is not semistandard, (b) is semistandard but
not minimal, (¢) is minimal but not standard and (d) is standard.

(2) If d is an integer such that 1=<d<n, we can consider the d-tableaus
defined in 1.4 as the (d, n—d)-tableaus by changing the squares into [1] and

the squares [ ] into [Z].

4.4. For an ordered partition g=(y,, ---, ps) of n, put dy=p+ - +p; G=
1,2 -, s—1). For a p-tableau a of type 4, let a* (=1, 2, ---, s—1) be a d;-
tableau of type A obtained by changing the squares [ (k=<:7) into and the
squares [j] (j=7+1) into [[]. Then the following two conditions are equivalent:

(1) e« is a semistandard (resp. minimal semistandard) p-tableau of type A.

(2) For each 7 1=</<s—1), a®is a semistandard (resp. minimal semistandard)
d.-tableau (1.4) of type A.

Let F,=F,(V) be the partial flag variety of type p defined by

{Wy, -, Ws—1>€1 11 1Gdi(V) ; WiCWi (1Si=s—2)}.

Siss-—

For a p-tableau «, put
Se={W)eF, ; W,eS,i(1=i=s—1)}
<resp' ‘Qa:{(Wt>EFp ’ ergal(l—gzgs_l)});

where S,: (resp. £2,:) is a Schubert cell (resp. variety) corresponding to a d;-
tableau a* of type . Then 2, is the Zariski closure of S, in F, and F,=I1.Sa,
where the (disjoint) union is taken over the p-tableaus a of type 4.

4.5. PROPOSITION. Let u be a unipotent transformation of V of Jordan type
A defined in 1.7. For a p-tableau a of type 2, put

St={W)ESa ; uW,=W;(1<i<s—1)}.

Then SY is nonempty if and only if a is semistandard.

Proor. If S+ @, we have S%+ @ (1=<i<s—1). Then a® is semistandard
by 1.8. Hence « is semistandard by 4.4. On the other hand, assume that a
is semistandard. Let {e;; 1=<i/=<n} be the basis of V' defined as in 1.7. For
1 (1=5i<s—1), let W, be the d;-dimensional subspace of V spanned by the
vectors e, which correspond to the squares [jl of « such that j<: (see 1.6).
Then (W,)eS, and uW,;=W,. Hence S*= @ and the proof of the proposition
is completed.
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4.6. DEFINITION. For a semistandard p-tableau a of type 2, let d(a) be a
non-negative integer defined by the following recurrence rule:

(1) If p=(n), put d(a)=0.

(2) If p=(yi, p2), by 4.3(2), let d(a) be the number defined in 1.11.

@) If p=(yi, -, ps-1, ps) and s>2, put p'=(p, --+, ps-1). Let a’ be the
p/-tableau obtained by extracting the squares with figure s from a and by rear-
ranging the rows in the appropriate order. Thus a’ is a semistandard p’-tableau
of type A/, where 1’ is a Young diagram with n—p; squares. Then one defines

dla)=d(a")+d(a’™"),
where a’"! is the semistandard (n—p,, ps)-tableau of type A defined in 4.4.

4.7. 'THEOREM ([12]). Let u be a unipotent transformation of V of Jordan type
A. Let a be a semistandard p-tableau of type A. Then the variety S§ is isomor-
phic to the d(a)-dimensional affine space A*®,

The proof follows from 1.11 and is given in [12], p. 64.

4.8. COROLLARY ([3], [12]). Put
Fi={Wy)eF, ; uW=W; 1=i<s—1)}.

Then the variety F has a partition into locally closed affine spaces A*‘® as a runs
through the semistandard p-tableaus of type A.
The proof follows from 4.4, 4.5 and 4.7.

4.9. For a minimal semistandard pg-tableau a of type 4, let X, be the set
of all semistandard p-tableaus § of type 4 such that the tableaus 8 are obtained
by rearranging, on each column, the figures in the squares of a. For / (1=:=
s—1), let A% be the Young diagram consisting of the squares [j] of a such that
7<i. For the a, put

YVo={W,)eF% ; the Jordan type of ul|y, is 4% (1=i<s—1)}.
Then, by the definition of S}, we have

Y= \J S%.

BEX 4

4.10. DEFINITION. Let “<” be a partial order on the set of all p-tableaus
of type A defined by

a<f & a'<p for all i (1=i<s—1),

where a'(resp. B%) is a d;-tableau of type A determined by a (resp. ) asin 4.4
and the order “a’*< (%’ is the partial order defined in 1.1.

4.11. LEMMA. For two p-tableaus a and B, the following three conditions
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are equivalent:
1) a<p.
2) R.NS; is not empty.
(3) R,29;.
The proof follows from 1.2.

4.12. THEOREM. Let a be a minimal semistandard p-tableau of type A.
Then Y. is an irreducible locally closed subvariety of F} and S} is an open sub-
variety of Y.

PrROOF. By 4.4, 4.9 and 4.11, we have

Y.=Qu— U Q5.
,@,m'éxgglal.
Hence Y, is a locally closed subvariety of Fj. Let
D1 Y—>Y 51

be the projection defined by p(W)=W,.,. By 2.7, p7*(S%-1) is an open dense
subvariety of Y,. Let V’ be the n—p, dimensional subspace of V spanned by
the vectors e, which correspond to the squares [i| of a such that 1=<:/<s (see
1.6). Let f : V-V’ be the projection defined by
0 if e,&V/,
fle)= .
@ if eiEV/.
By (W)— (Ws_y, (f(W))i<i<s-2), We have two isomorphisms
DpHS%s-1) 2, S¥s XY 4,
S _~, Sts-1xS%,
where 2’=4%" (4.9), a’ is a minimal semistandard p’-tableau of type 1’ (4.6 (3))
and u’ is the restriction of u to V’. By the induction argument, we see that
S% is open dense in p~1(S%-1). Hence S* is open dense in Y, and Y, is irredu-
cible by 4.7. Thus the proof of the theorem is completed.

4.13. COROLLARY. For B, 7 in X., we have
B<r &= cISzclSy.

PrOOF. If cIS}=2clSy, we have B<y by 4.11. Assume that 8<y. Similarly
to the proof of the theorem, we see that the variety S} is open dense in
Usex,.62555. Hence cISE=2clSy and the proof of the corollary is completed.

4.14. Let a be a minimal semistandard p-tableau of type 4. For a square
7] of a, let a(z) be the number of all squares [j| of «, on the upper side and on
the same column to the square [7], such that j<7. Then, by 1.11(2), we have
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da)=2a(),
where the summation is taken over the squares of @. Then we have

d@)S 5 (G=D+R—2)+ -~ +2+1),
where (43, -+, 2p) is the dual partition of 2 and the equality holds if and only if
« is standard. By this formula, we have a proof of the following theorem due
to Steinberg.

4.15. THEOREM ([3], [13]). Put n;=21::5pAi(Ai—1)/2. Let S be the set of
all standard p-tableaus of type A. Then we have:
(1) dimFji=n,.
(2) The irreducible components of dimension n; of F} are the closures clS%
of St (a€l).
ProOOF. By 4.12, we have
Fi= J clS%.

a;minimatl

Hence (1) and (2) follow from 4.14.

Appendix: Homogeneous coordinate rings.

We use the notations in §1, §2 and §3. The purpose of this appendix is
to study the homogeneous coordinate ring of 2% when « is a minimal semi-
standard p-tableau of type A such that dim 2¢=dim2,—1. First, we recall some
basic facts on the homogeneous coordinate rings of the Schubert varieties.

Let V¢ and A%V be as in 1.1. Let K[X;()]I=K[X:(J) ; 1=i<d, 1=7=n]
be the coordinate ring of the affine space V¢ Using the basis {ea=ea,A -+ A
eqy ; a€l} of NV, let K[ X, ; acI] be the coordinate ring of the affine space
A?V, where I is the set defined in 1.1. The comorphism =* : K[ X, ; acI]
— K[X;(5)] associated with a canonical morphism = : V¢—> A%V is defined by
n*(Xa)=pa« where p,=det(X;(a;))isi,jsa- Then the homogeneous coordinate
ring R of G4(V) is identified with the subalgebra K[p, ; a=I] of K[X;(5)].
For a in I, let I, be the homogeneous ideal of R=K[ps ; f<I] generated by
the set {ps ; fel, BZ£a}. Then I, is a prime ideal and R/I, is isomorphic to
the homogeneous coordinate ring R, of a Schubert variety 2,. Let K[X:(/)].
=K[X:(j) ; Xi()=0 if j<a;(1=Zi<d)] be the coordinate ring of the affine space
D, (see 1.1). Then we identify R, with the subalgebra K[p; ; B<l, f=a] of
K[X;(5)]a, where pg=det(X;(B))izs, jsa-

A.l. LEMMA. (1) For B in I such that B>a, let I,z be the homogeneous
tdeal of R,=K[p,; y=>a] generated by the set {p, ; y<I, r2B}. Then I,z is a
prime ideal of R, and R./I,g is isomorphic to the homogeneous coordinate ring
Rp of the Schubert variety .
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(2) (Pieri’s formula) Let (p,) be the ideal of R, generated by p.. Then
(Pa)sza,e,

where B’s are all the smallest elements of I such that a= .

For the proof, see [6], [10].

A.2. LEMMA. For an integer i satisfying 0=:<dim £2,, put

fi=2a;p, (@, K—{0}),

where the sum is taken over all v in I such that y>a and dimQ,=i. Then f,,
f1, =, fq (qg=dim Q,) is a regular sequence in the irrelevant maximal ideal (R.)+
generated by {pg ; B<I, B=al.

For the proof, see [1], Theorem 8.1 and [11], Theorem 4.1.

For a in I, let C, be the subvariety of V¢ consisting of all (v, -+, vg) in
Ve, vi=2x:i(f)e; 1=i=<d, 1=j=n), which satisfy the following conditions :

1) x;)=0 for j<a;.

2) xi(a))#0.

) xilay=0;; for 1=7, 7=d, @, 5)#(1, 1).
Then the coordinate ring of C; can be written as B,[1/t], where t is a variable
over K and B, is the K-algebra generated by {Y.(j) ; 1=i=d, 1=7=n} which
satisfy the following conditions :

1) Yi)=0 for j<a;.

29 Yiay=t.

(3 Yia;)=0d;; for 1=¢, j=d, (, /)#(1, 1) and the other Y,(j)’s are vari-

ables over K.

A.3. LEMMA. In the above notations, let ¢: R,—B.[1/t] be the homomor-
phism defined by ¢(pg) =det(Y «(B;)izs.jsa. Then, for all a belonging to I, the ¢
induces an isomorphism

@' ¢ Ru[1/p.]— Bu[1/t].

Proor. Let C, be the variety defined in 1.1. Since C;DC,, nC, is dense
in the cone over £,. Therefore the ¢ is injective. Since R, is an integral
domain, p, is not a zero-divisor. Hence ¢’ is injective. We get several images
of pg’s as follows:

p(pa)=t.
oD agmag)=EY 1))
for j such that a;<j=n and j#a,(25k=4d).
QD ay, o aimy by agsy o ag) = £V i(7)
for j such that a;<;=n 2=:/=d) and j+#a,(2Sk=d).
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Therefore ¢’ is surjective. Hence the lemma.
If @ is minimal and dim 2%=dim 2—1, @ has the picture below :

7.

m

NN

where d (resp. m) is the number of all squares on the first (resp. second) column
of 1and d=2. Hence, we may assume that 2=(&---_,/2, 1, ---, 1) and d+m=n.

Then the unipotent transformation u of V defined in 1.7 is given by
ue;=e;+teium for 1=:<m,
ue;=e; for m+1=j=n.

In the notations of 1.1, we can write a=(, m+1, ---, n—1). For 7/ (1=i=m)
and j (m+1<j<n), we denote by (i;;) the d-tableau G, m-+1, -, j, -, n),
where 7 means that the integer j has been removed from the sequence. We
have

Bl ; B=al={G;)) ; 1=i=m, m+1=j=n} Uiy},

where I is the set of all d-tableaus of type 2 and p=(m+1, ---, n). We have
dim Q2. ,=5—i, dim£2,=0.
Therefore we have
{8l ; B>a, dim 2s=m}
={f<l ; f=>a and B is not semistandard}
={@;m+1) ; 1=i=m}.
Let R, be the homogeneous coordinate ring of 2,. Put

fm: > ("‘Dip(f,;mﬂ') .

1sism
For =0, ---, m, ---, n—1 (n—1=dim 2,), put
fi=2pr,
where the sum is taken over all y>a such that dimQ,=i.
A.4. LEMMA. For an element x in R,, let x’ be the image of x under a
natural homomorphism Rn,— Ru/(fn). Then fo, -, fm-1, fmsr, =, fa-1 5 @

regular sequence in the irrelevant maximal ideal (Rao/(fn))+ and the ring Ro/(f )
is Cohen-Macaulay. In particular, ph=[rn_y is not a zero-divisor of Ra/(fn).
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This lemma follows from A.2, [6], Lemma 11 and [11], Lemma 4.2.

A.5. LEMMA. The homogencous coordinate ring of Q% is isomorphic to

Ro/N(fm)-

Proor. We have ue,=e, and
ue .y =ue; ANu(ems1/\ -+ NE;NA -+ Ney)
=(esFem+i) Nlme1/\ =+ NE;N =+ Ney,
s if j#m+,
ﬁ{ e p—(—1)e, if j=m+i.

For g in I, let X3 be a coordinate function of A®V corresponding to the vector
eg=eg N\ -» Neg,. Put
Fp= E ('_l)zx(i;m+i)-
1sism
Then, for x=>xzez in AV, we have
x—ux=( X (—D*%xgm+o)e,=Fn(x)e,.
1sism

Hence
Qu=2,N{xsP(AV) ; Fu(x)=0}.

By 3.1(1), 2% is irreducible. Thus the lemma.
A.6. LEMMA. Let py be the image of ps in the ring Ro/(fn). Then
(Ra/(fa)[1/pe] = K[ Xy, -+, Xn11[1/X,],

where K[ Xy, -+, Xu-1] s a polynomial ring in n—1 variables over a field K.
ProOOF. For a=(1;n), let the notations be as in A.3 and its proof: For
example

tYy2) - Y @) - Yim) 0 - - - - 0 Yi(n)
10 - .0Y,n
Y= 0
« 0 Ygoi(n)
1 Yaln)
and ¢ : R,—B,[1/t] is defined by ¢(ps)=det(Y;(8,)is:js¢- Then we see that
QD(P(i;mﬂ)):(*l)thz(n),
0D wm+0) =(=1D Y ()Y 141(n)
for 2<:/<m. Hence, for f=icisn(—1)*Pu:m+n, We have

W =(=DHY o)+ 3 ViOY ialm).
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Hence, by A.3, we have
(Rl (f )01/ 1= Ral1/ pe/ fuRalL/pa]
=BL1//(Vam+ 3 TV @Y n(m) Bl 1/1]

si=m {

=K[¢ Y,0@), Y;in) ; 2Zi=m, 1=57=d and j#2][1/t].
This ring is isomorphic to K[X,, .-, X,-,1[1/X,]. Thus the lemma.

A.7. THEOREM. The ideal (fn) is a prime ideal of R, and the homogeneous
coordinate ring of 2% is isomorphic to Ra/(fm).
PrRoor. By A.4, we have an injection

Ro/(fm) S (Ra/(fu))[1/ Pl

By A.6, (R./(fa)[1/p.] is an integral domain. Hence, (f,) is a prime ideal.
Then the second statement follows from A.5. Thus the proof of the theorem
is completed.

A.8. REMARKS. (1) Take 8 in I so that a<Bx(;m-+1) for some 7 (1<
i<m). Let f% be the image of [, under a homomorphism R,—R; (A.1(1)).
Then (f%) is a prime ideal of K3 and Rg/(f%) is isomorphic to the homogeneous
coordinate ring of Q4. The proof is similar to the case of the a.

(2) Take B in [ so that (;m+)=p<p for some 7 (1=:/=<m). Then we
have Q§=02.

A.9. PROPOSITION. The ring R./(fn) is normal.

PrOOF. First, assume that d>2and m=2. Put §=(2;n) and y=(1;n—1).
By A.1(1), we have Ra/(pa, Dy, fu)=Rg/(f%). Hence (pa, p;, fn) is a prime
ideal of R, by A.8 (1). Similarly, (pa, ps, fm) is a prime ideal of R,. Then
we have (pa, fm)=(ba Pp» [m)Dar b1» fm), by A.1. Hence

(pa)=(pa, PBIN (P P1),

where (p4, pp) and (pe, py) are prime ideals of Ro/(fn). By A.6, (Ro/(fu))[1/p4]
is a regular ring. Hence R,/(fn) satisfies the condition (R,) ([9], 17.1). There-
fore R./(fn) is normal by A.4. Next, assume that d>2 and m=1. By A.l,
(ph) is a prime ideal of R./(fn). Then R,/(fn)isa UFD by A.6 and [9], 19.B.
The remaining is the case d=m=2. Then we see that

Ro/(fm)=K[X,, X, X5, X /(X Xs—X3),
where X,’s are variables over K. This is a normal ring. Thus the proposition.

A.10. COROLLARY. Let the notations be as in 3.5. Let U be the Zarisk:
closure of the unipotent conjugacy class Ce,y,...1y in GLa(K). Then U is a normal
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and Cohen-Macaulay variety.

PrROOF. Let a be the standard (2, 1, ---, 1)-tableau of type (d, ---, d). Then

dim 2¢=dim 2,—1.

Thus the corollary follows from 3.5.
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