The fixed point subvarieties of unipotent transformations on the flag varieties

By Naohisa SHIMOMURA

(Received June 22, 1984)

Introduction.

Let V be an n-dimensional vector space over a field K. Let μ be an ordered partition of n, i.e., an ordered sequence (μ_1, \cdots, μ_s) of positive integers such that $\mu_1 + \cdots + \mu_s = n$. For μ , let F_μ be the partial flag variety of type μ . Let u be a unipotent transformation of V. In [12], we proved that the fixed point subvariety $F_\mu^u = \{(W_i) \in F_\mu \ ; \ uW_i = W_i \ (1 \le i \le s - 1)\}$ has a partition into a finite number of locally closed affine spaces and this partition is determined by the Young diagram associated with u. In this paper, we study further the variety F_μ^u . Let $\mathcal A$ be the set of all minimal semistandard μ -tableaus of type λ (defined precisely in 4.1), where λ is the Jordan type of u. For $\alpha \in \mathcal A$, let λ_α^i $(1 \le i \le s - 1)$ be the Young diagram with $\mu_1 + \cdots + \mu_i$ squares (defined precisely in 4.9). For $\alpha \in \mathcal A$, put $Y_\alpha = \{(W_i) \in F_\mu^u \ ;$ the Jordan type of the restriction of u to W_i is λ_α^i $(1 \le i \le s - 1)\}$. Then we have $F_\mu^u = \coprod_{\alpha \in \mathcal A} Y_\alpha$ (disjoint union). The main results of the paper are:

- (1) For $\alpha \in \mathcal{A}$, the variety Y_{α} is an irreducible locally closed subvariety of F_{μ}^{u} .
- (2) For $\alpha \in \mathcal{A}$, the variety Y_{α} has a partition $Y_{\alpha} = \coprod_{\beta \in X_{\alpha}} S_{\beta}^{u}$, where X_{α} is the set of semistandard μ -tableaus determined by α (defined precisely in 4.9) and the varieties S_{β}^{u} are the fixed point subvarieties of the Schubert (Bruhat) cells S_{β} . The variety S_{β}^{u} is isomorphic to an affine space.
 - (3) For β , γ in X_{α} , we have

$$\beta \leq \gamma \iff \operatorname{cl} S^u_\beta \supseteq \operatorname{cl} S^u_\gamma$$
,

where " \leq " is a partial order (Bruhat order) defined in 1.1, 4.10 and $\operatorname{cl}S^u_{\beta}$ (resp. $\operatorname{cl}S^u_{\gamma}$) is the Zariski closure of S^u_{β} (resp. S^u_{γ}) in F_{μ} . In particular, S^u_{α} is an open dense subvariety of Y_{α} .

N. Spaltenstein proved these results in the case of the full flag variety, i.e., μ =(1, 1, ..., 1) ([13], Chapitre II, 5; [8], p. 92, Example). The above (1), (2) and (3) are stated and proved in § 4. The crucial points of the proofs are the proofs in the case of Grassmann variety and are given in § 1, § 2. The contents of § 3 are supplements to § 2.

In the appendix, we study the homogeneous coordinate ring of the fixed point subvariety Ω^u of the Schubert variety Ω in the Grassmann variety $G_a(V)$ $(=F_{(d,n-d)})$. If $\dim \Omega^u = \dim \Omega - 1$, we determine the defining ideal of Ω^u and we prove that the homogeneous coordinate ring of Ω^u is normal and Cohen-Macaulay. In the proof of these, we use some results on the homogeneous coordinate ring of Ω ([1], [2], [6], [10] and [11]). Our results give an alternating proof to the fact that the minimal unipotent variety over a field K is normal and Cohen-Macaulay ([4], [5] and [14]).

The author expresses his hearty thanks to H. Doi and K. Matsui for a number of interesting discussions and for valuable suggestions.

NOTATIONS. For a transformation u of a set X, X^u denotes the set of all u-fixed elements of X. Let V be an n-dimensional vector space over a field K. If u is a linear transformation of V, for a u-stable subspace W of V, $u|_W$ is the restriction of u to W. For an integer d such that $1 \le d < n$, $\bigwedge^d V$ denotes the d-th alternating product of V. Let $\mathbf{P} = \mathbf{P}(\bigwedge^d V)$ be the projective space associated with $\bigwedge^d V$. For a subvariety X of \mathbf{P} , clX denotes the Zariski closure of X in \mathbf{P} . Let μ be an ordered partition of n, i.e., an ordered sequence of positive integers (μ_1, \dots, μ_s) such that $\mu_1 + \dots + \mu_s = n$. If F_μ is a Grassmann variety, i.e., $\mu = (\mu_1, \mu_2)$, we write $G_{\mu_1}(V)$ instead of F_μ . The Young diagrams in the paper are as in [8].

§ 1. The fixed point subvarieties of the Schubert cells.

1.1. Let K be a fixed algebraically closed field. Let V be a vector space over K of dimension n ($n \ge 2$). Fix an integer d such that $1 \le d < n$. Let V^d be the vector space $V \oplus \cdots \oplus V$ (d copies). Let $\bigwedge^d V$ be the d-th alternating product of V. Let

$$\pi: V^d \longrightarrow \bigwedge^d V$$

be the morphism defined by $(v_1, \dots, v_d) \mapsto v_1 \wedge \dots \wedge v_d$. Fix a basis $\{e_1, \dots, e_n\}$ of V. Then we can identify V^d with the set of all $d \times n$ -matrices over K by

$$(v_1, \dots, v_d) \longmapsto (x_i(j))_{1 \le i \le d, 1 \le i \le n}$$

where $v_i = \sum_{1 \le j \le n} x_i(j) e_j$, $x_i(j) \in K$. Let $\mathbf{P}(\bigwedge^d V)$ be the projective space associated with $\bigwedge^d V$. Let

$$p: \bigwedge^d V - \{0\} \longrightarrow \mathbf{P}(\bigwedge^d V)$$

be the natural projection. We denote by $G_d(V)$ the Grassmann variety of all d-dimensional linear subspaces in V. Then $G_d(V) = p(\pi V^d - \{0\})$. Put

$$I = \{ \alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{Z}^d ; 1 \leq \alpha_1 < \dots < \alpha_d \leq n \}.$$

For $\alpha = (\alpha_1, \dots, \alpha_d)$ in I, put

$$D_{\alpha} = \{(x_i(j)) \in V^d ; x_i(j) = 0 \text{ for } j < \alpha_i \ (1 \leq i \leq d)\},$$

$$C_{\alpha} = \{(x_i(j)) \in D_{\alpha} ; x_i(\alpha_j) = \delta_{ij} (1 \leq i, j \leq d)\},$$

where $\delta_{ij}=1$ (if i=j) and $\delta_{ij}=0$ (if $i\neq j$). Then $S_{\alpha}=p\pi C_{\alpha}$ (resp. $\Omega_{\alpha}=p(\pi D_{\alpha}-\{0\})$) is the Schubert cell (resp. Schubert variety) corresponding to α . The Zariski closure of S_{α} in $G_{\alpha}(V)$ is Ω_{α} . We define a partial order " \leq " on I by

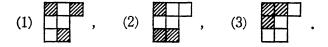
$$\alpha \leq \beta$$
 if $\alpha_i \leq \beta_i$ for all $i=1, \dots, d$.

Then $(1, 2, \dots, d)$ (resp. $(n-d+1, n-d+2, \dots, n)$) is the minimum (resp. maximum) element of I with respect to this ordering.

- 1.2. LEMMA. For α and β in I, the following three conditions are equivalent:
- (1) $\alpha \leq \beta$.
- (2) $\Omega_{\alpha} \cap S_{\beta}$ is not empty.
- (3) $\Omega_{\alpha} \supseteq \Omega_{\beta}$.

For the proof, see [10].

- 1.3. We fix a positive integer n and a partition λ of n. We write $\lambda = (\lambda_1, \dots, \lambda_r)$ if $\lambda_1 + \dots + \lambda_r = n$ $(\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r > 0)$ and represent λ by a *Young diagram* with rows consisting of $\lambda_1, \lambda_2, \dots, \lambda_r$ squares respectively.
- 1.4. DEFINITION. Fix a Young diagram λ with n squares. Let d be an integer such that $1 \le d < n$.
- (1) A *d-tableau* is a Young diagram of type λ whose *d* squares are distinguished by \mathbb{Z} .
- (2) A d-tableau is said to be *semistandard* if every square on the left position to \square on the same row is \square .
- (3) A semistandard d-tableau is said to be *minimal* if every square on the upper side to \square on the same column is \square .
 - 1.5. Examples. For $\lambda = (3, 2, 2)$ and d=3, put



All are 3-tableaus, (1) is not semistandard, (2) is semistandard but not minimal and (3) is minimal.

1.6. We fill in all the squares of λ with the numbers 1, 2, ..., n in the following way: For a start, we put the integers into the squares from the top square of the λ_1 -th column to the bottom square of this column, next, from the top square of the (λ_1-1) -th column to the bottom square of this column, and so

on. For example, if $\lambda=(4, 3, 2)$, we have $\begin{bmatrix} 7|4|2|1\\8|5|3 \end{bmatrix}$. These numbers indicate the places of all squares of λ .

Let I be the set defined in 1.1. Fix a Young diagram λ with n squares. We identify $\alpha = (\alpha_1, \dots, \alpha_d)$ in I with the d-tableau of type λ whose $\alpha_1, \dots, \alpha_d$ -th squares are \square . Therefore the set I is identified with the set of all d-tableaus of type λ . For example, in 1.5, the 3-tableaus of (1), (2) and (3) are identified with the elements (1, 4, 5), (4, 5, 7) and (2, 5, 6) in $I = \{(\alpha_1, \alpha_2, \alpha_3) \in \mathbb{Z}^3 : 1 \leq \alpha_1 < \alpha_2 < \alpha_3 \leq 7\}$ respectively.

1.7. Let V be an n-dimensional vector space over a field K with basis $\{e_1, \dots, e_n\}$. For a Young diagram λ with all squares numbered as in 1.6, we define a unipotent transformation u of V of Jordan type λ by

$$ue_i=e_i+e_j$$
 if λ contains $\overline{j+i}$, $ue_i=e_i$ if \overline{i} lies on the first column of λ .

Put N=u-1, a nilpotent transformation of V of Jordan type λ .

1.8. Lemma. In the above notations, for a d-tableau α in I of type λ , put

$$S_{\alpha}^{u} = \{ p(v_{1} \wedge \cdots \wedge v_{d}) \in S_{\alpha} ; uv_{1} \wedge \cdots \wedge uv_{d} = v_{1} \wedge \cdots \wedge v_{d} \}$$
$$= \{ W \in S_{\alpha} ; uW = W \},$$

where S_{α} is the Schubert cell corresponding to α . Then S_{α}^{u} is nonempty if and only if α is semistandard.

PROOF. If α is semistandard, we have $p(e_{\alpha_1} \wedge \cdots \wedge e_{\alpha_d}) \in S^u_{\alpha}$. Hence $S^u_{\alpha} \neq \emptyset$. On the other hand, take $p(v_1 \wedge \cdots \wedge v_d)$ in S^u_{α} . By $uv_1 \wedge \cdots \wedge uv_d = v_1 \wedge \cdots \wedge v_d$, $u \langle v_1, \cdots, v_d \rangle = \langle v_1, \cdots, v_d \rangle$, where $\langle v_1, \cdots, v_d \rangle$ is the K-vector space generated by $\{v_1, \cdots, v_d\}$; hence we can write

$$Nv_k = \sum_{1 \leq i \leq d} a_i v_i, \quad a_i \in K.$$

If the square $\overline{\alpha_k}$ does not lie on the first column of λ , take a number k' ($\alpha_k < k' \le n$) such that the square $\overline{k'}$ lies next to the left of the square $\overline{\alpha_k}$. By the definition of S_{α_k} ,

$$v_i = \sum_{\alpha_i \leq j \leq n} x_i(j) e_j,$$

where $x_i(j) \in K$ and $x_i(\alpha_j) = \delta_{ij}$ $(1 \le i, j \le d)$. By

$$\sum_{\substack{\alpha_k \leq j \leq n}} x_k(j) N(e_j) = \sum_{1 \leq i \leq d} a_i \sum_{\substack{\alpha_i \leq j \leq n}} x_i(j) e_j,$$

we have

$$e_{k'} + \cdots = \sum_{1 \leq i \leq d} a_i e_{\alpha_i} + \cdots$$

By this formula, we see that $a_i=0$ for all i such that $\alpha_i < k'$ and there is a number m such that $k'=\alpha_m$ and $a_m=1$. This means that the square \mathbb{E} is \mathbb{Z} . Thus α is semistandard and the proof of the lemma is completed.

- 1.9. For a semistandard d-tableau $\alpha = (\alpha_1, \dots, \alpha_i, \dots, \alpha_d)$ of type λ , we say $i \ (1 \le i \le d)$ is an *initial number* of α if the square on the right side of α_i (if any) is not \square . For example, in 1.5 (3), 1 and 3 are the initial numbers of α .
- 1.10. Lemma. For a semistandard d-tableau α , let C_{α} be the subvariety of V^d defined in 1.1. Put

$$C^u_\alpha = \{(v_1, \cdots, v_d) \in C_\alpha : Nv_i = v_j \text{ if } \alpha \text{ contains } \underline{\alpha_j \alpha_i} \ (1 \leq i < j \leq d)\}.$$

Then the isomorphism $p\pi: C_{\alpha} \cong S_{\alpha}$ induces an isomorphism

$$C_a^u \xrightarrow{\sim} S_a^u$$
.

PROOF. The injectivity of this morphism is clear. Take an element $p(w_1 \wedge \cdots \wedge w_d) \in S^u_\alpha$, where $(w_1, \cdots, w_d) \in C_\alpha$. Let (v_1, \cdots, v_d) be an element in C^u_α such that $\{v_1, \cdots, v_d\} = \{N^h w_i; i\text{'s are the initial numbers of }\alpha \text{ and }h \geq 0\} - \{0\}$. Then $v_1 \wedge \cdots \wedge v_d = w_1 \wedge \cdots \wedge w_d$. Hence the lemma.

- 1.11. PROPOSITION. For a semistandard d-tableau $\alpha = (\alpha_1, \dots, \alpha_d)$, put $\alpha' = \{1, \dots, n\} \{\alpha_1, \dots, \alpha_d\}$. For $i \in \alpha'$, let $\alpha[i]$ be the cardinality of the set $\{\alpha_j; j \text{ runs through all initial numbers of } \alpha \text{ such that } \alpha_j < i\}$. Put $d(\alpha) = \sum_{i \in \alpha'} \alpha[i]$. Then we have:
- (1) The subvariety S^u_{α} of S_{α} is isomorphic to the $d(\alpha)$ -dimensional affine space $\mathbf{A}^{d(\alpha)}$ over K.
- (2) If α is a minimal semistandard d-tableau, $\alpha[i]$ is the number of all squares \square on the upper side to the square \overline{i} on the same column.

PROOF. (1) The variety C^u_{α} in 1.10 is isomorphic to $\mathbf{A}^{d(\alpha)}$. Thus the assertion follows from 1.10.

(2) If α is minimal, there is no square α_j (i.e., ∞) on the lower side to the square β_i on any column. Hence the proposition.

For example, in 1.5 (2) and (3), we have d((4, 5, 7))=2 and d((2, 5, 6))=4 respectively.

1.12. REMARK. 1.11 is an essential part of the proof of the theorem in [12] (see 4.7 and 4.8). The proof in this paper is simpler than that of [12].

§ 2. Inclusion relations.

We use the notations in § 1.

2.1. LEMMA. For a semistandard d-tableau α , let D_{α} be the subvariety of V^{d} defined in 1.1. Put

$$D^u_{\alpha} = \{(v_1, \dots, v_d) \in D_{\alpha} ; Nv_i = v_j \text{ if } \alpha \text{ contains } \overline{\alpha_j \alpha_i} (1 \leq i \leq j \leq d)\}.$$

Let $\operatorname{cl} S^u_{\alpha}$ be the Zariski closure of S^u_{α} in $\mathbf{P}(\wedge^d V)$. Then

$$S_{\alpha}^{u} \subseteq p(\pi D_{\alpha}^{u} - \{0\}) \subseteq \operatorname{cl} S_{\alpha}^{u}$$
,

where p and π are morphisms defined in 1.1.

PROOF. Let C'_{α} be the dense subvariety of D^u_{α} consisting of all (v_1, \dots, v_d) in D^u_{α} , $v_i = \sum_{\alpha_i \leq j \leq n} x_i(j)e_j$, which satisfy the condition $x_i(\alpha_i) \neq 0$ $(1 \leq i \leq d)$. By 1.10, we have

$$p\pi C'_{\alpha}=S^u_{\alpha}$$
.

Hence

$$S^u_\alpha \subseteq p(\pi D^u_\alpha - \{0\}).$$

By the continuity of p and π , we have

$$\operatorname{cl}S_{\alpha}^{u} = \operatorname{cl}p(\pi C_{\alpha}')$$

$$\supseteq p((\text{the closure of }\pi C_{\alpha}' \text{ in } \wedge^{d}V) - \{0\})$$

$$\supseteq p(\pi D_{\alpha}^{u} - \{0\}).$$

Thus the lemma.

2.2. LEMMA. For a semistandard d-tableau α of type $\lambda = (\lambda_1, \dots, \lambda_r)$, let $\lambda_i(\alpha)$ ($i=1, 2, \dots, r$) be the number of all \square -squares on the i-th row of α . For integers h_1 and h_2 ($1 \le h_1 < h_2 \le r$), we assume that

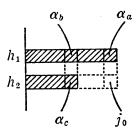
$$\lambda_{h_2} \geq \lambda_{h_1}(\alpha) > \lambda_{h_2}(\alpha)$$
.

Let β be the semistandard d-tableau of type λ obtained by exchanging the number of \square -squares on the h_1 -th row of α for the number of \square -squares on the h_2 -th row of α . Then we have

$$clS^u_{\alpha} \supset clS^u_{\beta}$$
.

PROOF. Let $\alpha_{\underline{\alpha}}$ be the square on the h_1 -th row of α such that the square on the right side to $\alpha_{\underline{\alpha}}$ (if any) is not α . Let $\alpha_{\underline{\beta}}$ be the square which lies on the $\alpha_{\underline{\beta}}$ -th row and on the same column as that of $\alpha_{\underline{\alpha}}$.

First, we assume that $\lambda_{h_2}(\alpha) \neq 0$. Let α_c be the square on the h_2 -th row of λ such that the square on the right side to α_c (if any) is not α_c . Let α_b be the square which lies on the h_1 -th row and on the same column as that of α_c . Thus we get the picture of α as below:



Let E_{α} be the subvariety of V^d consisting of all (v_1, \dots, v_d) in V^d , $v_i = \sum_{1 \le j \le n} x_i(j) e_j$ $(1 \le i \le d)$, which satisfy the following conditions:

- (1) If i is an initial number (see 1.9) of α and $i \neq c$, $x_i(j) = 0$ for $j < \alpha_i$.
- (2) $Nv_i = v_j$ if α contains $\alpha_j \alpha_i$.
- (3) We can write $v_a = kx + y$ $(k \in K)$ and $v_c = N^m x + z$ $(m = \lambda_{h_1}(\alpha) \lambda_{h_2}(\alpha))$, where x, y and z are defined by

$$x = \sum x(j)e_j$$
 $(\alpha_a \leq j \leq j_0),$

$$y = \sum y(j)e_j$$
 $(j_0 \le j \le n)$

and

$$z = \sum z(j)e_j$$
 $(\alpha_c \leq j \leq n)$.

Then we have

$$kv_c = N^m v_a + (kz - N^m y)$$
.

Hence, for $(v_1, \dots, v_d) \in E_\alpha$, we have

$$v_1 \wedge \cdots \wedge k v_c \wedge \cdots \wedge v_d = v_1 \wedge \cdots \wedge (kz - N^m y) \wedge \cdots \wedge v_d$$
.

Therefore, for the dense subvariety E'_{α} of E_{α} defined by $x_i(\alpha_i) \neq 0$ $(1 \leq i \leq d)$ and $kz(\alpha_c) \neq y(i_0)$, we have

$$p\pi E_{\alpha}' \subseteq G_{\alpha}(V)^{u} \cap S_{\alpha} = S_{\alpha}^{u}$$
.

Hence

$$p(\pi E_{\alpha} - \{0\}) \subseteq \operatorname{cl} S_{\alpha}^{u}$$
.

Let E^0_{α} be the closed subvariety of E_{α} defined by k=0. Then $\pi E^0_{\alpha} = \pi D^u_{\beta}$, where D^u_{β} is the variety defined in 2.1. Therefore we have $\operatorname{cl} S^u_{\alpha} \supseteq \operatorname{cl} S^u_{\beta}$ by 2.1.

Next, we assume that $\lambda_{h_2}(\alpha)=0$. Let D_a be the subvariety of D_α^u defined by $x_a(j)=0$ for $j< j_0$. Then we have $\pi D_a=\pi D_\beta^u$. Therefore we have $\mathrm{cl} S_\alpha^u\supseteq \mathrm{cl} S_\beta^u$ by 2.1. Thus the proof of the lemma is completed.

2.3. Let α and β be d-tableaus like the ones in 2.2. Then we say that these α and β ($\alpha < \beta$) are in the elementary relation, or shortly, that $\alpha < \beta$ is elementary. If a sequence of d-tableaus $\alpha^1 < \alpha^2 < \cdots < \alpha^p$ satisfies the condition that $\alpha^i < \alpha^{i+1}$ is elementary for all $i=1, \cdots, p-1$, then we say that the sequence $\alpha^1 < \alpha^2 < \cdots < \alpha^p$ is an elementary sequence from α^1 to α^p . The following lemma

and its proof were communicated by H. Doi.

2.4. Lemma. For a minimal semistandard d-tableau α , let X_{α} be the set of all semistandard d-tableaus β such that $\lambda'_i(\alpha) = \lambda'_i(\beta)$ for $i = 1, 2, \dots$, where $\lambda'_i(\alpha)$ (resp. $\lambda'_i(\beta)$) is the number of all \square -squares on the i-th column of α (resp. β). For β and γ in X_{α} , assume that $\beta < \gamma$. Then there is an elementary sequence $\alpha^1 < \alpha^2 < \dots < \alpha^p$ such that $\alpha^i \in X_{\alpha}$ ($i = 1, \dots, p$), $\beta = \alpha^1$ and $\gamma = \alpha^p$.

PROOF. It suffices to show that there is a d-tableau β' in X_{α} such that $\beta < \beta'$ is elementary and $\beta' \leq \gamma$. We prove this by induction on d. If d=1, it is trivial. So we assume that d>1. Suppose that the square $\lceil \gamma \rceil$ lies on the p-th row of λ . Since $\beta < \gamma$, there is a number k $(1 \leq k)$ such that $\beta_k \leq \gamma_1 < \beta_{k+1}$. We assume that the square $\lceil \beta_k \rceil$ lies on the k-th row of k. Then $k \leq p$. If k = p, we see that

$$\beta$$
-(h-th row)< γ -(h-th row).

Then the assertion follows from the induction hypothesis. From now on, we assume that $h \neq p$.

- Case 1. We assume that, for any square β_i on the h-th row, the square γ_i lies on the p-th row or a lower row than the p-th row. Let β' be the d-tableau of type λ obtained by exchanging the number of \square -squares on the h-th row of β for the number of \square -squares on the (h+1)-th row of β . Then $\beta < \beta'$ is elementary and $\beta' \le \gamma$.
- Case 2. We assume that, for some square β_i on the h-th row, the square γ_i lies on the strictly upper row than the p-th row. We take the β_i which lies on the extreme right of these. Assume that this β_i lies on the s-th column from the left. Put $m=\lambda_1(\beta)$ (see 2.2). Then $m\geq 2$ and s< m by the choice of h. Take a number h' which is either the number h+1, if $\lambda_{h+1}(\beta)\geq s$, or a number which satisfies $\lambda_j(\beta)< s$ ($h+1\leq j< h'$) and $\lambda_{h'}(\beta)\geq s$. Then $h'\leq p$. Let β' be the d-tableau of type λ obtained by exchanging the number of β -squares on the β -th row of β . For a β_j , which lies on a strictly right part from the β -th column and between the β -th and β -th rows, the γ_j lies on the β -th row or a lower row than the β -th row. Therefore $\beta<\beta'$ is elementary and $\beta'\leq\gamma$. Thus the proof of the lemma is completed.
- 2.5. Proposition. For a minimal semistandard d-tableau α , let X_{α} be the set defined in 2.4. Then, for β and γ in X_{α} , the following two conditions are equivalent:
 - (1) $\beta \leq \gamma$,
 - (2) $\operatorname{cl} S^u_{\beta} \supseteq \operatorname{cl} S^u_{\gamma}$.

In particular for any β in X_{α} , we have $\operatorname{cl} S_{\alpha}^{u} \supseteq \operatorname{cl} S_{\beta}^{u}$.

PROOF. The implication $(1) \Rightarrow (2)$ follows from 2.2 and 2.4. On the other hand, (2) implies $\Omega_{\beta} \supseteq \Omega_{\gamma}$. Therefore, the implication $(2) \Rightarrow (1)$ follows from 1.2.

Thus the proposition.

2.6. PROPOSITION. For a minimal semistandard d-tableau α of type λ , let λ_{α} be the Young diagram consisting of the squares \square of α . For the α , put

$$Y_{\alpha} = \{W \in G_d(V)^u \text{ ; the Jordan type of } u \mid_W \text{ is } \lambda_{\alpha}\}.$$

Then, we have

$$Y_{\alpha} = \bigcup_{\beta \in X_{\alpha}} S_{\beta}^{u}$$
.

And the variety Y_{α} is an irreducible locally closed subvariety of $G_{\alpha}(V)^{u}$.

PROOF. The first assertion follows from the definition of S^u_{β} . Then, we have

$$Y_{\alpha} = \Omega^{u}_{\alpha} - \bigcup_{\substack{\beta \text{: minimal,} \\ \beta > \alpha}} \Omega^{u}_{\beta}$$
.

Hence Y_{α} is a locally closed subvariety of $G_a(V)^u$. For any β in X_{α} , we have $\beta \ge \alpha$. Then the proposition follows from 2.5.

§ 3. Inclusion relations in some particular cases.

We use the notations in the preceding sections.

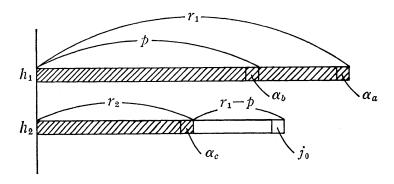
3.1. Lemma. Let $\lambda = (\lambda_1, \dots, \lambda_r)$ be a Young diagram with n squares. For a semistandard d-tableau α , let $\lambda_i(\alpha)$ be the number of all \mathbb{Z} -squares on the i-th row of α . Fix two numbers h_1 and h_2 such that $h_1 \neq h_2$ and $1 \leq h_1$, $h_2 \leq r$. Assume that there is an integer p such that $\lambda_{h_1}(\alpha) \geq p \geq \lambda_{h_2}(\alpha)$. Let β be a semistandard d-tableau such that

$$egin{aligned} \pmb{\lambda}_i(eta) = \left\{ egin{array}{lll} \pmb{\lambda}_i(oldsymbol{lpha}) & & if & i
eq h_1, \ h_2, \ & & if & i
eq h_1, \ egin{array}{lll} \pmb{\lambda}_{h_2}(oldsymbol{lpha}) + oldsymbol{\lambda}_{h_1}(oldsymbol{lpha}) - p & & if & i
eq h_2. \end{array}
ight. \end{aligned}$$

Then:

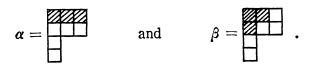
- (1) The intersection of $\operatorname{cl} S^u_{\alpha}$ and S^u_{β} is not empty.
- (2) If $\lambda_r \ge \lambda_i(\alpha)$ for any i $(1 \le i \le r)$, clS^u_α contains S^u_β .

PROOF. For i=1, 2, put $r_i=\lambda_{h_i}(\alpha)$. First, we assume that $r_2>0$. Take the numbers α_a , α_b , α_c and j_0 as in the following figure:



Put $m=r_1-p$ and construct the varieties E_{α} and E_{α}^{0} as in the proof of 2.2. Then the intersection $\pi E_{\alpha}^{0} \cap \pi C_{\beta}'$ is not empty, where C_{β}' is the dense subvariety of D_{β}^{u} defined in the proof of 2.1. This implies (1). If $\lambda_{r} \geq \lambda_{i}(\alpha)$ for any i $(1 \leq i \leq r)$, we have $\pi E_{\alpha}^{0} = \pi D_{\beta}^{u}$. Hence we get (2). If $r_{2}=0$, the proof is similar to the above case. Thus the lemma.

3.2. Remark. In 3.1 (1), we can not expect an inclusion like $\operatorname{cl} S^u_{\alpha} \supseteq S^u_{\beta}$. For example, put



Then α and β satisfy the conditions of 3.1. We see that $\operatorname{cl} S^u_{\alpha} \not\supset S^u_{\beta}$, since $\dim S^u_{\alpha} = \dim S^u_{\beta} = 5$.

- 3.3. PROPOSITION. For a partition $\lambda = (\lambda_1, \dots, \lambda_r)$ of n, let R be the set of all d-tableaus α of type λ such that $\lambda_r \ge \lambda_i(\alpha)$ for $i=1, \dots, r$. Then we have:
- (1) For α , β in R, we assume that α and β are minimal, then $\operatorname{cl} S^u_{\alpha} \supseteq \operatorname{cl} S^u_{\beta}$ if and only if $\alpha \leq \beta$.
- (2) For a minimal d-tableau α in R, the fixed point subvariety $\Omega^u_{\alpha} = \{L \in \Omega_{\alpha} ; uL = L\}$ equals $\operatorname{clS}^u_{\alpha}$, and Ω^u_{α} is irreducible.

PROOF. (1) If $clS^u_{\alpha} \supseteq clS^u_{\beta}$, we see that $\alpha \leq \beta$ by 1.2. Let $(\lambda_1(\alpha), \lambda_2(\alpha), \cdots)$ and $(\lambda_1(\beta), \lambda_2(\beta), \cdots)$ be partitions of d corresponding to λ_{α} and λ_{β} as in 2.6 respectively. Assume that $\alpha \leq \beta$. Then, for $i=1, 2, \cdots$, we have

$$\lambda_1(\alpha) + \cdots + \lambda_i(\alpha) \geq \lambda_1(\beta) + \cdots + \lambda_i(\beta)$$
.

By a property of an ordering of the partitions of d ([8], 1.2) and 3.1 (2), we have $\operatorname{cl} S^u_\alpha \supseteq \operatorname{cl} S^u_\beta$.

(2) We have, by the results of § 2,

$$\Omega_a^u = \bigcup clS_r^u$$
,

where the union is taken over all minimal semistandard d-tableaus γ such that $\gamma \ge \alpha$. Then we have

$$\Omega_{\alpha}^{u}=\operatorname{cl}S_{\alpha}^{u}$$
,

- by (1). Since S^u_{α} is isomorphic to an affine space, by 1.11, Ω^u_{α} is irreducible. Thus the proposition.
 - 3.4. Remarks. Let R be as in 3.3.
- (1) If $\lambda = (\lambda_1, \dots, \lambda_r)$ is a rectangular Young diagram, i.e., $\lambda_1 = \dots = \lambda_r$, we see that any semistandard d-tableau of type λ is in R.
 - (2) For α , β in R, we conjecture that the following two conditions are

equivalent:

- (a) $\operatorname{cl} S_{\alpha}^{u} \supseteq \operatorname{cl} S_{\beta}^{u}$,
- (b) $\alpha \leq \beta$.

As a corollary of 3.3, we consider a compactification of a unipotent conjugacy class of a general linear group $GL_d(K)$, defined in [7].

3.5. COROLLARY. Let $\lambda = (d, \dots, d)$ be a partition of $n = d^2$. For a partition μ of d, let C_{μ} be the unipotent conjugacy class in $GL_d(K)$ of Jordan type μ . Let u be a unipotent transformation of V of Jordan type λ . Then $\Omega^u_{\alpha} = \operatorname{cl} S^u_{\alpha}$ is a projective closure of C_{μ} , where α is a minimal semistandard d-tableau such that $\mu_i = \lambda_i(\alpha)$ for $i = 1, 2, \cdots$.

PROOF. Let Y_{α} be the subvariety of $G_d(V)^u$ defined in 2.6. Then the compactification of C_{μ} defined in [7] is the Zariski closure of Y_{α} in $\mathbf{P}(\wedge^d V)$. Thus the corollary follows from 2.6, 3.3 and 3.4 (1).

3.6. REMARK. Let \overline{C}_{μ} be the Zariski closure of a unipotent conjugacy class C_{μ} in $GL_d(K)$. For a partition μ (resp. ν) of d, let α (resp. β) be a minimal semistandard d-tableau such that $\mu_i = \lambda_i(\alpha)$ (resp. $\nu_i = \lambda_i(\beta)$). By 3.5, we have $\overline{C}_{\mu} \supseteq \overline{C}_{\nu} \Leftrightarrow \operatorname{cl}S^u_{\alpha} \supseteq \operatorname{cl}S^u_{\beta} \Leftrightarrow \alpha \leq \beta \Leftrightarrow \mu_1 + \cdots + \mu_i \ge \nu_1 + \cdots + \nu_i$ for $i = 1, 2, \cdots$.

§ 4. The fixed point subvarieties of the flag varieties.

We use the notations in the preceding sections. An ordered partition μ of n is an ordered sequence of positive integers (μ_1, \dots, μ_s) such that $\mu_1 + \dots + \mu_s = n$, where the μ_i are not necessarily in decreasing order.

- 4.1. DEFINITION. Let λ be a partition of n. Let $\mu=(\mu_1, \dots, \mu_s)$ be an ordered partition of n.
- (1) A μ -tableau of type λ is a Young diagram of type λ whose squares are numbered with the figures from 1 to s such that the cardinality of the squares with figure i is μ_i .
- (2) A μ -tableau is said to be *semistandard* if, on each row, the sequence of the figures in the squares increases (may be stationary).
- (3) A semistandard μ -tableau is said to be *minimal* if, on each column, the sequence of the figures in the squares increases (may be stationary).
- (4) A minimal semistandard μ -tableau is said to be *standard* if, on each column, the sequence of the figures in the squares strictly increases. [If μ = $(1, \dots, 1)$, a minimal semistandard tableau is a standard tableau.]
- 4.2. REMARK. By [8], 5.14, the number of all standard μ -tableaus of type λ is given by the Kostka coefficient $K^{\overline{\mu}}$ where $\overline{\mu}$ is the unique partition of n determined by μ .

4.3. EXAMPLES. (1) For $\lambda = (3, 3, 1)$ and $\mu = (2, 3, 2)$, put

All are μ -tableaus of type λ . (a) is not semistandard, (b) is semistandard but not minimal, (c) is minimal but not standard and (d) is standard.

- (2) If d is an integer such that $1 \le d < n$, we can consider the d-tableaus defined in 1.4 as the (d, n-d)-tableaus by changing the squares \square into \square and the squares \square into \square .
- 4.4. For an ordered partition $\mu = (\mu_1, \dots, \mu_s)$ of n, put $d_i = \mu_1 + \dots + \mu_i$ $(i = 1, 2, \dots, s-1)$. For a μ -tableau α of type λ , let α^i $(i = 1, 2, \dots, s-1)$ be a d_i -tableau of type λ obtained by changing the squares |k| $(k \le i)$ into |k| and the squares |k| $(j \ge i+1)$ into |k|. Then the following two conditions are equivalent:
 - (1) α is a semistandard (resp. minimal semistandard) μ -tableau of type λ .
- (2) For each i ($1 \le i \le s-1$), α^i is a semistandard (resp. minimal semistandard) d_i -tableau (1.4) of type λ .

Let F_{μ} = $F_{\mu}(V)$ be the partial flag variety of type μ defined by

$$\{(W_1, \dots, W_{s-1}) \in \prod_{1 \le i \le s-1} G_{d_i}(V) ; W_i \subset W_{i+1} (1 \le i \le s-2) \}.$$

For a μ -tableau α , put

$$\begin{split} S_{\alpha} &= \{(W_i) \!\in\! F_{\mu} \text{ ; } W_i \!\in\! S_{\alpha i} (1 \!\leq\! i \!\leq\! s \!-\! 1)\} \\ &\text{(resp. } \varOmega_{\alpha} \!=\! \{(W_i) \!\in\! F_{\mu} \text{ ; } W_i \!\in\! \varOmega_{\alpha i} (1 \!\leq\! i \!\leq\! s \!-\! 1)\}), \end{split}$$

where $S_{\alpha i}$ (resp. $\Omega_{\alpha i}$) is a Schubert cell (resp. variety) corresponding to a d_i -tableau α^i of type λ . Then Ω_{α} is the Zariski closure of S_{α} in F_{μ} and $F_{\mu} = \coprod_{\alpha} S_{\alpha}$, where the (disjoint) union is taken over the μ -tableaus α of type λ .

4.5. PROPOSITION. Let u be a unipotent transformation of V of Jordan type λ defined in 1.7. For a μ -tableau α of type λ , put

$$S_{\alpha}^{u} = \{(W_{i}) \in S_{\alpha} ; uW_{i} = W_{i} (1 \leq i \leq s-1)\}.$$

Then S^u_{α} is nonempty if and only if α is semistandard.

PROOF. If $S^u_\alpha \neq \emptyset$, we have $S^u_{\alpha i} \neq \emptyset$ $(1 \leq i \leq s-1)$. Then α^i is semistandard by 1.8. Hence α is semistandard by 4.4. On the other hand, assume that α is semistandard. Let $\{e_i: 1 \leq i \leq n\}$ be the basis of V defined as in 1.7. For i $(1 \leq i \leq s-1)$, let W_i be the d_i -dimensional subspace of V spanned by the vectors e_k which correspond to the squares |j| of α such that $j \leq i$ (see 1.6). Then $(W_i) \in S_\alpha$ and $uW_i = W_i$. Hence $S^u_\alpha \neq \emptyset$ and the proof of the proposition is completed.

- 4.6. DEFINITION. For a semistandard μ -tableau α of type λ , let $d(\alpha)$ be a non-negative integer defined by the following recurrence rule:
 - (1) If $\mu = (n)$, put $d(\alpha) = 0$.
 - (2) If $\mu = (\mu_1, \mu_2)$, by 4.3 (2), let $d(\alpha)$ be the number defined in 1.11.
- (3) If $\mu=(\mu_1, \dots, \mu_{s-1}, \mu_s)$ and s>2, put $\mu'=(\mu_1, \dots, \mu_{s-1})$. Let α' be the μ' -tableau obtained by extracting the squares with figure s from α and by rearranging the rows in the appropriate order. Thus α' is a semistandard μ' -tableau of type λ' , where λ' is a Young diagram with $n-\mu_s$ squares. Then one defines

$$d(\alpha) = d(\alpha') + d(\alpha^{s-1}),$$

where α^{s-1} is the semistandard $(n-\mu_s, \mu_s)$ -tableau of type λ defined in 4.4.

4.7. Theorem ([12]). Let u be a unipotent transformation of V of Jordan type λ . Let α be a semistandard μ -tableau of type λ . Then the variety S^u_{α} is isomorphic to the $d(\alpha)$ -dimensional affine space $\mathbf{A}^{d(\alpha)}$.

The proof follows from 1.11 and is given in [12], p. 64.

4.8. COROLLARY ([3], [12]). Put

$$F_{u}^{u} = \{(W_{i}) \in F_{u} ; uW_{i} = W_{i} (1 \le i \le s - 1)\}.$$

Then the variety F^u_μ has a partition into locally closed affine spaces $\mathbf{A}^{d(\alpha)}$ as α runs through the semistandard μ -tableaus of type λ .

The proof follows from 4.4, 4.5 and 4.7.

4.9. For a minimal semistandard μ -tableau α of type λ , let X_{α} be the set of all semistandard μ -tableaus β of type λ such that the tableaus β are obtained by rearranging, on each column, the figures in the squares of α . For i $(1 \le i \le s-1)$, let λ_{α}^{i} be the Young diagram consisting of the squares f of α such that f in For the α , put

$$Y_{\alpha} = \{(W_i) \in F_{\mu}^u \text{ ; the Jordan type of } u \mid_{W_i} \text{ is } \lambda_{\alpha}^i \ (1 \leq i \leq s-1)\}.$$

Then, by the definition of S^u_{β} , we have

$$Y_{\alpha} = \bigcup_{\beta \in X_{\alpha}} S_{\beta}^{u}$$
.

4.10. DEFINITION. Let " \leq " be a partial order on the set of all μ -tableaus of type λ defined by

$$\alpha \leq \beta \iff \alpha^i \leq \beta^i \text{ for all } i \ (1 \leq i \leq s-1),$$

where α^i (resp. β^i) is a d_i -tableau of type λ determined by α (resp. β) as in 4.4 and the order " $\alpha^i \leq \beta^i$ " is the partial order defined in 1.1.

4.11. Lemma. For two μ -tableaus α and β , the following three conditions

are equivalent:

- (1) $\alpha \leq \beta$.
- (2) $\Omega_{\alpha} \cap S_{\beta}$ is not empty.
- (3) $\Omega_{\alpha} \supseteq \Omega_{\beta}$.

The proof follows from 1.2.

4.12. THEOREM. Let α be a minimal semistandard μ -tableau of type λ . Then Y_{α} is an irreducible locally closed subvariety of F_{μ}^{u} and S_{α}^{u} is an open subvariety of Y_{α} .

PROOF. By 4.4, 4.9 and 4.11, we have

$$Y_{\alpha} = \Omega_{\alpha}^{u} - \bigcup_{\substack{\beta \text{; minimal,} \\ \beta > \alpha}} \Omega_{\beta}^{u}.$$

Hence Y_{α} is a locally closed subvariety of F_{μ}^{u} . Let

$$p: Y_{\alpha} \longrightarrow Y_{\alpha^{s-1}}$$

be the projection defined by $p((W_i)) = W_{s-1}$. By 2.7, $p^{-1}(S_{\alpha s-1}^u)$ is an open dense subvariety of Y_{α} . Let V' be the $n-\mu_s$ dimensional subspace of V spanned by the vectors e_k which correspond to the squares i of α such that $1 \le i \le s$ (see 1.6). Let $f: V \to V'$ be the projection defined by

$$f(e_i) = \begin{cases} 0 & \text{if } e_i \notin V', \\ e_i & \text{if } e_i \in V'. \end{cases}$$

By $(W_i) \mapsto (W_{s-1}, (f(W_i))_{1 \le i \le s-2})$, we have two isomorphisms

$$p^{-1}(S^{u}_{\alpha^{s-1}}) \xrightarrow{\sim} S^{u}_{\alpha^{s-1}} \times Y_{\alpha'},$$

$$S^{u}_{\alpha} \xrightarrow{\sim} S^{u}_{\alpha^{s-1}} \times S^{u'}_{\alpha'},$$

where $\lambda' = \lambda_{\alpha}^{s-1}$ (4.9), α' is a minimal semistandard μ' -tableau of type λ' (4.6 (3)) and u' is the restriction of u to V'. By the induction argument, we see that S_{α}^{u} is open dense in $p^{-1}(S_{\alpha s-1}^{u})$. Hence S_{α}^{u} is open dense in Y_{α} and Y_{α} is irreducible by 4.7. Thus the proof of the theorem is completed.

4.13. COROLLARY. For β , γ in X_{α} , we have

$$\beta \leq \gamma \iff \operatorname{cl}S^u_\beta \subseteq \operatorname{cl}S^u_\gamma$$
.

PROOF. If $clS^u_{\beta} \supseteq clS^u_{r}$, we have $\beta \leq \gamma$ by 4.11. Assume that $\beta \leq \gamma$. Similarly to the proof of the theorem, we see that the variety S^u_{β} is open dense in $\bigcup_{\delta \in X_a, \delta \geq \beta} S^u_{\delta}$. Hence $clS^u_{\beta} \supseteq clS^u_{r}$ and the proof of the corollary is completed.

4.14. Let α be a minimal semistandard μ -tableau of type λ . For a square i of α , let $\alpha(i)$ be the number of all squares j of α , on the upper side and on the same column to the square i, such that $j \leq i$. Then, by 1.11(2), we have

$$d(\alpha) = \sum \alpha(i)$$
,

where the summation is taken over the squares of α . Then we have

$$d(\alpha) \leq \sum_{1 \leq i \leq p} \{ (\lambda'_i - 1) + (\lambda'_i - 2) + \cdots + 2 + 1 \},$$

where $(\lambda'_1, \dots, \lambda'_p)$ is the dual partition of λ and the equality holds if and only if α is standard. By this formula, we have a proof of the following theorem due to Steinberg.

- 4.15. THEOREM ([3], [13]). Put $n_{\lambda} = \sum_{1 \le i \le p} \lambda'_i (\lambda'_i 1)/2$. Let S be the set of all standard μ -tableaus of type λ . Then we have:
 - (1) $\dim F_{\mu}^{u} \leq n_{\lambda}$.
- (2) The irreducible components of dimension n_{λ} of F_{μ}^{u} are the closures clS_{α}^{u} of S_{α}^{u} ($\alpha \in S$).

PROOF. By 4.12, we have

$$F^{u}_{\mu} = \bigcup_{\alpha: \text{minimal}} \text{cl} S^{u}_{\alpha}$$
.

Hence (1) and (2) follow from 4.14.

Appendix: Homogeneous coordinate rings.

We use the notations in § 1, § 2 and § 3. The purpose of this appendix is to study the homogeneous coordinate ring of Ω^u_{α} , when α is a minimal semi-standard μ -tableau of type λ such that dim Ω^u_{α} =dim Ω_{α} -1. First, we recall some basic facts on the homogeneous coordinate rings of the Schubert varieties.

Let V^d and $\bigwedge^d V$ be as in 1.1. Let $K[X_i(j)] = K[X_i(j)]$; $1 \le i \le d$, $1 \le j \le n$] be the coordinate ring of the affine space V^d . Using the basis $\{e_\alpha = e_{\alpha_1} \land \cdots \land e_{\alpha_d} ; \alpha \in I\}$ of $\bigwedge^d V$, let $K[X_\alpha ; \alpha \in I]$ be the coordinate ring of the affine space $\bigwedge^d V$, where I is the set defined in 1.1. The comorphism $\pi^* : K[X_\alpha ; \alpha \in I] \to K[X_i(j)]$ associated with a canonical morphism $\pi : V^d \to \bigwedge^d V$ is defined by $\pi^*(X_\alpha) = p_\alpha$, where $p_\alpha = \det(X_i(\alpha_j))_{1 \le i, j \le d}$. Then the homogeneous coordinate ring R of $G_a(V)$ is identified with the subalgebra $K[p_\alpha ; \alpha \in I]$ of $K[X_i(j)]$. For α in I, let I_α be the homogeneous ideal of $R = K[p_\beta ; \beta \in I]$ generated by the set $\{p_\beta ; \beta \in I, \beta \not \ge \alpha\}$. Then I_α is a prime ideal and R/I_α is isomorphic to the homogeneous coordinate ring R_α of a Schubert variety Q_α . Let $K[X_i(j)]_\alpha = K[X_i(j) ; X_i(j) = 0$ if $j < \alpha_i (1 \le i \le d)$] be the coordinate ring of the affine space D_α (see 1.1). Then we identify R_α with the subalgebra $K[p_\beta ; \beta \in I, \beta \ge \alpha]$ of $K[X_i(j)]_\alpha$, where $p_\beta = \det(X_i(\beta_j))_{1 \le i, j \le d}$.

A.1. LEMMA. (1) For β in I such that $\beta \geq \alpha$, let $I_{\alpha\beta}$ be the homogeneous ideal of $R_{\alpha} = K[p_{\gamma}; \gamma \geq \alpha]$ generated by the set $\{p_{\gamma}; \gamma \in I, \gamma \not\geq \beta\}$. Then $I_{\alpha\beta}$ is a prime ideal of R_{α} and $R_{\alpha}/I_{\alpha\beta}$ is isomorphic to the homogeneous coordinate ring R_{β} of the Schubert variety Ω_{β} .

(2) (Pieri's formula) Let (p_{α}) be the ideal of R_{α} generated by p_{α} . Then

$$(p_{\alpha}) = \bigcap I_{\alpha\beta}$$
,

where β 's are all the smallest elements of I such that $\alpha \leq \beta$.

For the proof, see [6], [10].

A.2. LEMMA. For an integer i satisfying $0 \le i \le \dim \Omega_{\alpha}$, put

$$f_i = \sum a_r p_r \quad (a_r \in K - \{0\}),$$

where the sum is taken over all γ in I such that $\gamma \geq \alpha$ and $\dim \Omega_{\gamma} = i$. Then f_0 , f_1, \dots, f_q ($q = \dim \Omega_{\alpha}$) is a regular sequence in the irrelevant maximal ideal $(R_{\alpha})_+$ generated by $\{p_{\beta} : \beta \in I, \beta \geq \alpha\}$.

For the proof, see [1], Theorem 8.1 and [11], Theorem 4.1.

For α in I, let C'_{α} be the subvariety of V^d consisting of all (v_1, \dots, v_d) in V^d , $v_i = \sum x_i(j)e_j$ $(1 \le i \le d, 1 \le j \le n)$, which satisfy the following conditions:

- (1) $x_i(j) = 0$ for $j < \alpha_i$.
- (2) $x_1(\alpha_1) \neq 0$.
- (3) $x_i(\alpha_j) = \delta_{ij}$ for $1 \le i, j \le d, (i, j) \ne (1, 1)$.

Then the coordinate ring of C'_{α} can be written as $B_{\alpha}[1/t]$, where t is a variable over K and B_{α} is the K-algebra generated by $\{Y_i(j) : 1 \le i \le d, 1 \le j \le n\}$ which satisfy the following conditions:

- (1') $Y_i(j)=0$ for $j < \alpha_i$.
- (2') $Y_1(\alpha_1)=t$.
- (3') $Y_i(\alpha_j) = \delta_{ij}$ for $1 \le i$, $j \le d$, $(i, j) \ne (1, 1)$ and the other $Y_i(j)$'s are variables over K.
- A.3. LEMMA. In the above notations, let $\varphi: R_{\alpha} \to B_{\alpha}[1/t]$ be the homomorphism defined by $\varphi(p_{\beta}) = \det(Y_i(\beta_j))_{1 \leq i, j \leq d}$. Then, for all α belonging to I, the φ induces an isomorphism

$$\varphi': R_{\alpha}[1/p_{\alpha}] \xrightarrow{\sim} B_{\alpha}[1/t].$$

PROOF. Let C_{α} be the variety defined in 1.1. Since $C'_{\alpha} \supset C_{\alpha}$, $\pi C'_{\alpha}$ is dense in the cone over Ω_{α} . Therefore the φ is injective. Since R_{α} is an integral domain, p_{α} is not a zero-divisor. Hence φ' is injective. We get several images of p_{β} 's as follows:

$$\varphi(p_{\alpha})=t_{\bullet}$$

$$\varphi(p_{(j,\alpha_2,\cdots,\alpha_d)}) = \pm Y_1(j)$$

for i such that $\alpha_1 < i \le n$ and $i \ne \alpha_k (2 \le k \le d)$.

$$\varphi(p_{(\alpha_1,\cdots,\alpha_{i-1},j,\alpha_{i+1},\cdots,\alpha_d)}) = \pm tY_i(j)$$

for j such that $\alpha_i < j \le n$ $(2 \le i \le d)$ and $j \ne \alpha_k (2 \le k \le d)$.

Therefore φ' is surjective. Hence the lemma.

If α is minimal and dim Ω_{α}^{u} = dim Ω -1, α has the picture below:

where d (resp. m) is the number of all squares on the first (resp. second) column of λ and $d \ge 2$. Hence, we may assume that $\lambda = (2, \dots, 2, 1, \dots, 1)$ and d+m=n.

Then the unipotent transformation u of V defined in 1.7 is given by

$$ue_i = e_i + e_{i+m}$$
 for $1 \le i \le m$, $ue_j = e_j$ for $m+1 \le j \le n$.

In the notations of 1.1, we can write $\alpha = (1, m+1, \cdots, n-1)$. For $i \ (1 \le i \le m)$ and $j \ (m+1 \le j \le n)$, we denote by (i;j) the d-tableau $(i, m+1, \cdots, j, \cdots, n)$, where j means that the integer j has been removed from the sequence. We have

$$\{\beta \in I ; \beta \geq \alpha\} = \{(i; j) ; 1 \leq i \leq m, m+1 \leq j \leq n\} \cup \{\mu\},$$

where I is the set of all d-tableaus of type λ and $\mu=(m+1, \dots, n)$. We have

$$\dim \Omega_{(i;j)} = j - i, \quad \dim \Omega_{\mu} = 0.$$

Therefore we have

$$\{\beta \in I ; \beta \geq \alpha, \dim \Omega_{\beta} = m\}$$

= $\{\beta \in I ; \beta \geq \alpha \text{ and } \beta \text{ is not semistandard}\}$
= $\{(i; m+i) ; 1 \leq i \leq m\}.$

Let R_{α} be the homogeneous coordinate ring of Ω_{α} . Put

$$f_m = \sum_{1 \le i \le m} (-1)^i p_{(i;m+i)}$$
.

For
$$i=0, \dots, \check{m}, \dots, n-1 \ (n-1=\dim \Omega_{\alpha})$$
, put

$$f_i = \sum p_{\gamma}$$
,

where the sum is taken over all $\gamma \ge \alpha$ such that dim $\Omega_{\gamma} = i$.

A.4. Lemma. For an element x in R_{α} , let x' be the image of x under a natural homomorphism $R_{\alpha} \to R_{\alpha}/(f_m)$. Then $f'_0, \dots, f'_{m-1}, f'_{m+1}, \dots, f'_{n-1}$ is a regular sequence in the irrelevant maximal ideal $(R_{\alpha}/(f_m))_+$ and the ring $R_{\alpha}/(f_m)$ is Cohen-Macaulay. In particular, $p'_{\alpha}=f'_{n-1}$ is not a zero-divisor of $R_{\alpha}/(f_m)$.

This lemma follows from A.2, [6], Lemma 11 and [11], Lemma 4.2.

A.5. LEMMA. The homogeneous coordinate ring of Ω_{α}^{u} is isomorphic to $R_{\alpha}/\sqrt{(f_{m})}$.

PROOF. We have $ue_{\mu}=e_{\mu}$ and

$$\begin{aligned} ue_{(i;j)} &= ue_i \wedge u(e_{m+1} \wedge \cdots \wedge \check{e}_j \wedge \cdots \wedge e_n) \\ &= (e_i + e_{m+i}) \wedge e_{m+1} \wedge \cdots \wedge \check{e}_j \wedge \cdots \wedge e_n \\ &= \begin{cases} e_{(i;j)} & \text{if} \quad j \neq m+i, \\ e_{(i;j)} - (-1)^i e_\mu & \text{if} \quad j = m+i. \end{cases} \end{aligned}$$

For β in I, let X_{β} be a coordinate function of $\wedge^{d}V$ corresponding to the vector $e_{\beta} = e_{\beta_{1}} \wedge \cdots \wedge e_{\beta_{d}}$. Put

$$F_m = \sum_{1 \le i \le m} (-1)^i X_{(i;m+i)}$$
.

Then, for $x = \sum x_{\beta} e_{\beta}$ in $\wedge^{d}V$, we have

$$x - u x = (\sum_{1 \le i \le m} (-1)^i x_{(i;m+i)}) e_{\mu} = F_m(x) e_{\mu}.$$

Hence

$$\Omega_{\alpha}^{u} = \Omega_{\alpha} \cap \{x \in \mathbf{P}(\wedge^{d}V) ; F_{m}(x) = 0\}.$$

By 3.1(1), Ω_{α}^{u} is irreducible. Thus the lemma.

A.6. LEMMA. Let p'_{α} be the image of p_{α} in the ring $R_{\alpha}/(f_{m})$. Then

$$(R_{\alpha}/(f_m))\lceil 1/p_{\alpha}'\rceil \simeq K\lceil X_1, \cdots, X_{n-1}\rceil\lceil 1/X_1\rceil,$$

where $K[X_1, \dots, X_{n-1}]$ is a polynomial ring in n-1 variables over a field K.

PROOF. For $\alpha=(1;n)$, let the notations be as in A.3 and its proof: For example

and $\varphi: R_{\alpha} \to B_{\alpha}[1/t]$ is defined by $\varphi(p_{\beta}) = \det(Y_i(\beta_j))_{1 \le i, j \le d}$. Then we see that

$$\varphi(p_{(i;m+1)}) = (-1)^d t Y_2(n),$$

$$\varphi(p_{(i;m+i)}) = (-1)^{d-i+1} Y_{1}(i) Y_{i+1}(n)$$

for $2 \le i \le m$. Hence, for $f_m = \sum_{1 \le i \le m} (-1)^i p_{(i;m+i)}$, we have

$$\varphi(f_m) = (-1)^{d+1} (tY_2(n) + \sum_{2 \le i \le n} Y_1(i)Y_{i+1}(n))$$
.

Hence, by A.3, we have

$$\begin{split} (R_{\alpha}/(f_{m})) & [1/p_{\alpha}] \simeq R_{\alpha} [1/p_{\alpha}]/f_{m} R_{\alpha} [1/p_{\alpha}] \\ & \simeq B_{\alpha} [1/t] / \Big(Y_{2}(n) + \sum_{2 \leq i \leq m} \frac{1}{t} Y_{1}(i) Y_{i+1}(n) \Big) B_{\alpha} [1/t] \\ & \simeq K[t, Y_{1}(i), Y_{j}(n) ; 2 \leq i \leq m, 1 \leq j \leq d \text{ and } j \neq 2][1/t]. \end{split}$$

This ring is isomorphic to $K[X_1, \dots, X_{n-1}][1/X_1]$. Thus the lemma.

A.7. THEOREM. The ideal (f_m) is a prime ideal of R_α and the homogeneous coordinate ring of Ω^u_α is isomorphic to $R_\alpha/(f_m)$.

PROOF. By A.4, we have an injection

$$R_{\alpha}/(f_m) \subset (R_{\alpha}/(f_m))[1/p'_{\alpha}].$$

By A. 6, $(R_{\alpha}/(f_m))[1/p'_{\alpha}]$ is an integral domain. Hence, (f_m) is a prime ideal. Then the second statement follows from A. 5. Thus the proof of the theorem is completed.

- A.8. REMARKS. (1) Take β in I so that $\alpha \leq \beta \leq (i; m+i)$ for some i ($1 \leq i \leq m$). Let f_m^* be the image of f_m under a homomorphism $R_\alpha \to R_\beta$ (A.1(1)). Then (f_m^*) is a prime ideal of R_β and $R_\beta/(f_m^*)$ is isomorphic to the homogeneous coordinate ring of Ω_β^u . The proof is similar to the case of the α .
- (2) Take β in I so that $(i; m+i) \leq \beta \leq \mu$ for some i $(1 \leq i \leq m)$. Then we have $\Omega^u_{\beta} = \Omega_{\beta}$.
 - A.9. PROPOSITION. The ring $R_{\alpha}/(f_m)$ is normal.

PROOF. First, assume that d>2 and $m\ge 2$. Put $\beta=(2;n)$ and $\gamma=(1;n-1)$. By A.1(1), we have $R_\alpha/(p_\alpha,\,p_\gamma,\,f_m)\simeq R_\beta/(f_m^*)$. Hence $(p_\alpha,\,p_\gamma,\,f_m)$ is a prime ideal of R_α by A.8(1). Similarly, $(p_\alpha,\,p_\beta,\,f_m)$ is a prime ideal of R_α . Then we have $(p_\alpha,\,f_m)=(p_\alpha,\,p_\beta,\,f_m)\cap(p_\alpha,\,p_\gamma,\,f_m)$, by A.1. Hence

$$(p'_{\alpha})=(p'_{\alpha}, p'_{\beta})\cap(p'_{\alpha}, p'_{\gamma}),$$

where $(p'_{\alpha}, p'_{\beta})$ and (p'_{α}, p'_{1}) are prime ideals of $R_{\alpha}/(f_{m})$. By A. 6, $(R_{\alpha}/(f_{m}))[1/p'_{\alpha}]$ is a regular ring. Hence $R_{\alpha}/(f_{m})$ satisfies the condition (R_{1}) ([9], 17.1). Therefore $R_{\alpha}/(f_{m})$ is normal by A. 4. Next, assume that d>2 and m=1. By A. 1, (p'_{α}) is a prime ideal of $R_{\alpha}/(f_{m})$. Then $R_{\alpha}/(f_{m})$ is a UFD by A. 6 and [9], 19. B. The remaining is the case d=m=2. Then we see that

$$R_{\alpha}/(f_m) \simeq K[X_1, X_2, X_3, X_4]/(X_1X_3-X_2^2),$$

where X_i 's are variables over K. This is a normal ring. Thus the proposition.

A.10. COROLLARY. Let the notations be as in 3.5. Let U be the Zariski closure of the unipotent conjugacy class $C_{(2,1,\dots,1)}$ in $GL_a(K)$. Then U is a normal

and Cohen-Macaulay variety.

PROOF. Let α be the standard (2, 1, \cdots , 1)-tableau of type (d, \cdots , d). Then $\dim \Omega_{\alpha}^{u} = \dim \Omega_{\alpha} - 1.$

Thus the corollary follows from 3.5.

References

- [1] C. De Concini, D. Eisenbud and C. Procesi, Hodge algebras, Asterisque 91, Société Mathématique de France, 1982.
- [2] M. Hochster, Grassmannians and their Schubert subvarieties are arithmetically Cohen-Macaulay, J. Algebra, 25 (1973), 40-57.
- [3] R. Hotta and N. Shimomura, The fixed point subvarieties of unipotent transformations on generalized flag varieties and the Green functions, Math. Ann., 241 (1979), 193-208.
- [4] H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math., 53 (1979), 227-247.
- [5] H. Kraft and C. Procesi, Minimal singularities in GL_n , Invent. Math., 62 (1981), 503-515.
- [6] D. Laksov, The arithmetic Cohen-Macaulay character of Schubert schemes, Acta Math., 129 (1972), 1-9.
- [7] G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. Math., 42 (1981), 167-178.
- [8] I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979.
- [9] H. Matsumura, Commutative Algebra, Benjamin, New York, 1970.
- [10] C. Musili, Postulation formula for Schubert varieties, J. Indian Math. Soc., **36** (1972), 143-171.
- [11] C. Musili, Some properties of Schubert varieties, J. Indian Math. Soc., 38 (1974), 131-145.
- [12] N. Shimomura, A theorem on the fixed point set of a unipotent transformation on the flag manifold, J. Math. Soc. Japan, 32 (1980), 55-64.
- [13] N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Math., 946, Springer, 1982.
- [14] E. B. Vinberg and V. L. Popov, On a class of quasihomogeneous affine varieties, Math. USSR Izvestija, 6 (1972), 743-758.

Naohisa SHIMOMURA 407 Kotobuki-Biru 2-7-8 Hikarimachi Higashi-Ku, Hiroshima 730 Japan