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\S 0. Introduction.

Let $X$ be a connected locally finite CW complex with non-degenerate base
point and let $G(X)$ and $G_{0}(X)$ be the spaces of self homotopy equivalences of
$X$ and self homotopy equivalences of $X$ preserving the base point respectively.

It seems that little is known about the homotopy type of $G(X)$ except in the
following two cases. When $X$ is an Eilenberg-MacLane complex $K(\pi, n)$ , the
weak homotopy type of $G(X)$ is determined completely. That is, Thom noted
that if $\pi$ is an abelian group $G(K(\pi, n))$ has the same weak homotopy type as
$Aut(\pi)\cross K(\pi, n)$ , where $Aut(\pi)$ denotes the group of automorphisms of $\pi[7]$ .
Gottlieb proved that $G(K(\pi, 1))$ has the same weak homotopy type as Out $(\pi)\cross$

$K(Z(\pi), 1)$ , where Out $(\pi)$ denotes the group of automorphisms of $\pi$ modulo the
inner automorphisms and $Z(\pi)$ denotes the center of $\pi$ [1]. When $X$ is the
n-sphere $S^{n}(n\geqq 1)$ , it is known that $\pi_{i}(G_{0}(S^{n}))\cong\pi_{n+i}(S^{n})(i\geqq 1)$ .

In this paper, we shall show the following two theorems and their applica-
tions.

THEOREM A. Let $X$ and $Y$ be connected locally finite $CW$ complexes with
base points. For a given $n>0$ , assume that $\pi_{i}(X)=0$ for every $i>n$ and $\pi_{i}(Y)$

$=0$ for every $i\leqq n$ . Then we have

$G(X\cross Y)=G(X)^{Y}\cross G(Y)^{X}$ ,

$G_{0}(X\cross Y)=(G(X), G_{0}(X))^{(Y,y_{0})}\cross(G(Y), G_{0}(Y))^{(X}x_{0})$

where $(Z, Z’)^{(K,L)}$ denotes the space of maps of $(K, L)$ into $(Z, Z’)$ .

THEOREM B. Let $X$ be a connected locally finite $CW$ complex with base point
whose dimension is not greater than $n$ and let $Y$ be an n-connected locally finite
$CW$ complex with base pojnt. Then the same formulas as in Theorem $A$ hold for
$G(X\cross Y)$ and $G_{0}(X\cross Y)$ .
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\S 1. $G(X)$ and $G_{0}(X)$ .

Let $X$ and $Y$ be Hausdorff spaces with non-degenerate base points. Then
$Y^{X}$ and $Y_{0}^{X}$ will denote the space of maps of $X$ to $Y$ with the compact open
topology and the space of maps of $X$ to $Y$ preserving the base points respec-
tively. Also $(Y, Y’)^{(X,A)}$ will denote the space of maps of (X, $A$ ) to $(Y, Y’)$ .
This work concerns the space of self homotopy equivalences of connected locally
finite CW complex $X$. In what follows, by a CW complex with base point we
mean a connected locally finite CW complex with a chosen vertex.

Let $X$ be a CW complex. Then every arcwise connected component of
$G(X)$ has the same homotopy type. The same thing holds for $G_{0}(X)$ . More
generally, we have the following

PROPOSITION 1. Let $X$ be a homotopy associative H-space with unit $e$ . Supp0se

for each element $x$ of $X$ there exists an element $x’$ of $X$ such that $x\cdot x^{f}$ and $x’\cdot x$

are both contained in the arcwise connected comp0nent of $e$ . Then, every arcwise
connected comp0nent of $X$ has the same homotopy fype.

The proof is easy, so it is omitted.
It should be noted that the hypotheses of this proposition are satisfied in the

following three cases:
(1) $X=the$ space $Z^{Y}$ of maps of a locally compact Hausdorff space $Y$ to a con-

nected H-group $Z$ ,
(2) $X=the$ space $Z_{0}^{Y}$ of maps of a CW complex $Y$ with base point to a con-

nected homotopy associative H-space $Z[2]$ ,
(3) $X=the$ space $Z_{0}^{SY}$ of maps $(SY, *)arrow(Z, z_{0})$ , where $SY$ is the suspension of

a CW complex $Y$ with base point.
We now consider the relation between $G(X)$ and $G_{0}(X)$ of a CW complex

$X$ with base point. There is the following well-known fibration

$\omega$

$G_{0}(X)arrow G(X)arrow X$ ,

where $\omega$ is the evaluation map on the base point of $X$. This fibration is not
always weakly splittable, that is, $G(X)$ not always has the same weak homotopy
type as $X\cross G_{0}(X)$ . However the following holds.

PROPOSITION 2. Let $X$ be a $CW$ complex with an H-structure. Then $G(X)$

and $X\cross G_{0}(X)$ have the same weak homotopy type.
PROOF. Let $f$ be the map of $X$ to $X^{X}$ defined as follows:

$f(x)(x’)=\mu(x, x’)=x\cdot x’$ ,

where $\mu$ denotes the multiplication in $X$ with unit $e$ . Then $f(e)$ is contained
in the arcwise connected component of $id_{X}$ in $G(X)$ . Note that, since $X$ is
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connected, for each $x$ of $Xf(x)$ can be joined by an arc to $id_{X}$ in $G(X)$ . Thus
$f$ can be regarded as a map of $X$ to $G(X)$ . Furthermore, we can see easily
that $\omega\circ f$ is homotopic to $id_{X}$ relative to $e$ . By using the composition in $G(X)$ ,
dePne a map $\varphi$ : $X\cross G_{0}(X)arrow G(X)$ by

$\varphi(x, g)=f(x)\cdot g$ .

Then, it can be proved easily that $\varphi$ induces isomorphisms of the homotopy
groups of the arcwise connected components of $X\cross G_{0}(X)$ . In other words,
$G(X)$ has the same weak homotopy type as $X\cross G_{0}(X)$ .

By Proposition 2, we see that $G(K(\pi, n))$ has the same weak homotopy type
as $K(\pi, n)\cross G_{0}(K(\pi, n))$ if $\pi$ is abelian. Furthermore, we can observe that
$G_{0}(K(\pi, n))$ is weakly homotopy equivalent to $Aut(\pi)$ if $\pi$ is abelian.

\S 2. $G(X\cross Y)$ and $G_{0}(X\cross Y)$ .

Let $X$ and $Y$ be CW complexes with base points. Then there exist the
following homeomorphisms [6]

$(X\cross Y)^{X\cross Y}\cong X^{XxY}\cross Y^{X\cross Y}\cong(X^{X})^{Y}\cross(Y^{Y})^{X}$ ,

$(X\cross Y)_{0}^{X\cross Y}\cong X_{0}^{X\cross Y}\cross Y_{0}^{X\cross Y}\cong(X^{X}, X_{0}^{X})^{(Y,y_{0})}\cross(Y^{Y}, Y_{0}^{Y})^{(X.x_{0})}$ .

Using these correspondences we have

THEOREM A. Let $X$ and $Y$ be $CW$ complexes with base $p\alpha nts$ . For a given
$n>0$ , assume that $\pi_{i}(X)=0$ for every $i>n$ and $\pi_{i}(Y)=0$ for every $i\leqq n$ . Then
we have

$G(X\cross Y)=G(X)^{Y}\cross G(Y)^{X}$ ,

$G_{0}(X\cross Y)=(G(X), G_{0}(X))^{(Y,y_{0})}\cross(G(Y), G_{0}(Y))^{(X.x_{0})}$ .

PROOF. First we shall show the second equality. Let $f$ be a self homotopy

equivalence of $X\cross Y$ preserving the base point $(x_{0}, y_{0})$ . Then, using the second
correspondence above, $f$ determines an element $(f_{1}, f_{2})$ of $(X^{X}, X_{0}^{X})^{(Y.y_{0})}\cross$

$(Y^{Y}, Y_{0}^{Y})^{(X,x_{0})}$ . Since $f$ induces automorphisms of the homotopy groups of $X\cross Y$,
by using the hypotheses on $X$ and $Yf_{1}(y_{0})$ and $f_{2}(x_{0})$ induce automorphisms of
the homotopy groups of $X$ and $Y$ respectively. Thus $f_{1}(y_{0})$ is a self homotopy
equivalence of the based complex $X$. Because $Y$ is connected, this implies that
$f_{1}$ is a map of $(Y, y_{0})$ to $(G(X), G_{0}(X))$ . Similarly we see that $f_{2}$ is a map of
(X, $x_{0}$) to $(G(Y), G_{0}(Y))$ . Therefore we have

$G_{0}(X\cross Y)\subset(G(X), G_{0}(X))^{(Y.y_{0})}\cross(G(Y), G_{0}(Y))^{(X.x_{0})}$ .
Conversely, it is easily verified that each element $(f_{1}, f_{2})$ of $(G(X), G_{0}(X))^{(Y.y_{0})}$

$\cross(G(Y), G_{0}(Y))^{(X.x_{0})}$ is contained in $G_{0}(X\cross Y)$ by considering its induced homo-
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morphisms of the homotopy groups of $X\cross Y$. This proves the second equality.
For a proof of the first equality, let $f$ be an element of $G(X\cross Y)$ which

corresponds to an element $(f_{1}, f_{2})$ of $(X^{X})^{Y}\cross(Y^{Y})^{X}$ . Then there exists a self
homotopy equivalence $f’$ of $X\cross Y$ with $f’(x_{0}, y_{0})=(x_{0}, y_{0})$ and homotopic to $f$.
Let $(f_{1}’, f_{2}’)$ be the corresponding element of $(X^{X})^{Y}\cross(Y^{Y})^{X}$ to $f’$ then $f_{1}’$ and $f_{2}’$

are homotopic to $f_{1}$ and $f_{2}$ , respectively. By the second equality we have

$(f_{1}’, f_{2}’)\in G(X)^{Y}\cross G(Y)^{X}$ .

Consequently $(f_{1}, f_{2})$ is an element of $G(X)^{Y}\cross G(Y)^{X}$ , that is, $G(X\cross Y)\subset G(X)^{Y}$

$\cross G(Y)^{X}$ .
Conversely it can be proved easily that each element of $G(X)^{Y}\cross G(Y)^{X}$ can

be joined by an arc with an element of

$(G(X), G_{0}(X))^{(Y.y_{0})}\cross(G(Y), G_{0}(Y))^{(X,x_{0})}=G_{0}(X\cross Y)$ .

This implies that $G(X)^{Y}\cross G(Y)^{X}\subset G(X\cross Y)$ . Our proof is completed.
Let us introduce a proposition which will be used later on the weak homotopy

type of space of maps. We write $X=Yw$ if $X$ and $Y$ have the same weak
homotopy type.

PROPOSITION 3. Suppose $X=Yw$ then for every $CW$ complex $Z$, we have
$X^{Z}=Y^{Z}w$

PROOF. We may assume without loss of generality that $X$ and $Y$ are arcwise
connected and there is a map $f$ of $X$ to $Y$ which induces an isomorphism of
$\pi_{n}(X, x_{0})$ onto $\pi_{n}(Y, y_{0})$ for each $n$ . Let $\tilde{f}$ be the map of $X^{Z}$ to $Y^{Z}$ induced
by the map $f$. Then we shall show that the homomorphisms $\tilde{f}_{*}$ from $\pi_{n}(X^{Z},$ $\alpha\rangle$

to $\pi_{n}(Y^{Z}, f(\alpha))$ induced by $\tilde{f}$ is an isomorphism for each $n$ and for every $\alpha\in X^{Z}$ .
To see this, let $h$ be a map of $(S^{n}, *)$ to $(Y^{Z},\tilde{f}(\alpha))$ which represents an

element $[h]$ of $\pi_{n}(Y^{Z},\tilde{f}(\alpha))$ and let $\overline{h}$ be the map of $S^{n}\cross Z$ to $Y$ associated
with $h$ . Define a map $\overline{g}’$ of $*\cross Z$ to $X$ by $\overline{g}’(*, z)=\alpha(z)$ . Then we have $f\circ\overline{g}’$

$=\overline{h}|*\cross Z$ . Since $f$ is a weak homotopy equivalence, there exists a map $\overline{g}$ of
$S^{n}\cross Z$ to $X$ such that $f\circ\overline{g}$ is homotopic to $\overline{h}$ relative to $*\cross Z$ and $\overline{g}$ is an ex-
tention of $\overline{g}’$ . Let $g$ be a map of $(S^{n}, *)$ to $(X^{Z}, \alpha)$ defined by $\overline{g}$ . Immediately
we see $f_{*}([g])=[h]$ . This Proves that $\tilde{f}_{*}$ is epimorphic.

To see that $\tilde{f}_{*}$ is monomorphic, let $g$ be a map of $(S^{n}, *)$ to $(X^{Z}, \alpha)$ such
that $\tilde{f}_{*}([g])=0$ , and let $\overline{g}$ be the map of $S^{n}\cross Z$ to $X$ associated with $g$ . Then
we have a homotopy $\overline{H}:S^{n}\cross Z\cross Iarrow Y$ of $f\circ\overline{g}$ to $f\circ\alpha$ satisfying $\overline{H}(*, z, t)=f\circ\alpha(z)$

for $z\in Z$ . Since $f$ is a weak homotopy equivalence, we can prove easily that
there exists a map $\overline{G}$ of $S^{n}\cross Z\cross I$ to $X$ satisfying
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$\overline{G}(\lambda, z, 0)=\overline{g}(\lambda, z)$ $(\lambda\in S^{n}, z\in Z, t\in I)$

$\overline{G}(\lambda, z, 1)=\alpha(z)$

$\overline{G}(*, z, t)=\alpha(z)$

and furthermore $f\circ\overline{G}$ is homotopic to $\overline{H}$ relative to $S^{n}\cross Z\cross 0\cup S^{n}\cross Z\cross 1\cup*\cross Z\cross I$ .
Let $G$ be a map of $(S^{n}, *)\cross I$ to $(X^{Z}, \alpha)$ defined by $\overline{G}$ . Then we see that $G$ is
a homotopy of $g$ to the constant map. This implies $[g]=0$ . Thus our proof
is completed.

REMARK. In Proposition 3, let $X$ and $Y$ be spaces with base points which
have the same weak homotopy type and let $Z$ be a CW complex with base
point. Then, in a manner similar to our proof of Proposition 3, we can show
$X_{0}^{Z}\simeq Y_{0}^{Z}w$

Putting $X=K(\pi, n)$ in Theorem $A$ , we can prove the following.

THEOREM 4. Let $X$ be $K(\pi, n)$ with a chosen base point and let $Y$ be an n-
connected $CW$ complex with base point. Then we have

$G_{0}(X\cross Y)\simeq Aut(\pi)w\cross G_{0}(Y)\cross G(Y)_{0}^{X}$ .

PROOF. Put $Z=(G(X), G_{0}(X))^{(Y.y_{0})}$ , then we obtain the following two
fibrations

$G(X)_{0}^{Y}arrow G(X)^{Y}arrow^{\omega}G(X)$

II $\cup$
$\omega$

$\cup$

$G(X)_{0}^{Y}arrow$ $Z$ $arrow G_{0}(X)$

where $\omega$ is the evaluation map on the base point $y_{0}$ of $Y$ . Here $G(X)^{Y}$ has the
same weak homotopy type as $G(X)\cross G(X)_{0}^{Y}$ because $G(X)$ is an H-space. This
splitting induces that

$Z=G_{0}(X)\cross G(X)_{0}^{Y}w$

$\simeq Aut(\pi)\cross G(X)_{0}^{Y}w$

For $n>1$ , by Remark of Proposition 3 we have

$G(X)_{0}^{Y}=(K(\pi wn)\cross Aut(\pi))_{0}^{Y}$

$=K(\pi wn)_{0}^{Y}$ .

Since $Y$ is n-connected, $K(\pi, n)_{0}^{Y}$ is weakly homotopy equivalent to one point.
Thus we obtain

$Z=Aut(\pi)w$

For $n=1$ , we have
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$G(X)_{0}^{Y}\simeq w(K(Z(\pi), 1)\cross Out(\pi))_{0}^{Y}$

$\simeq K(Z(\pi)w1)_{0}^{Y}$

$\simeq 0w$

In this case, we have also $Z\simeq Aut(\pi)w$

Similarly we see that

$(G(Y), G_{0}(Y))^{(X,x_{0})}\simeq G_{0}(Y)w\cross G(Y)_{0}^{X}$ .

Consequently, by Theorem A we have

$G_{0}(X\cross Y)\simeq Aut(\pi)w\cross G_{0}(Y)\cross G(Y)_{0}^{X}$ .
As a special case of this theorem, we have

COROLLARY. Let $X$ and $Y$ be $K(\pi, m)$ and $K(\pi’, n)(1\leqq m<n)$ respectjvely.
Then we have

$G_{0}(X\cross Y)\simeq Aut(\pi)w\cross Aut(\pi’)\cross Y_{0}^{X}$ .

Note that in the corollary, $Y_{0}^{X}$ has the same weak homotopy type as

$H^{n}(K(\pi, m),$ $\pi’$) $\cross$ { $certain$ product space of Eilenberg-Maclane complexes}

by the theorem of J. C. Moore [4].

As mentioned in the introduction, our second main result is as follows.

THEOREM B. Let $X$ be a $CW$ complex with base Point whose dimenston is
not greater than $n$ and let $Y$ be an n-connected $CW$ complex with base Point. Then
we have the same formulas as in Theorem $A$ for $G(X\cross Y)$ and $G_{0}(X\cross Y)$ .

PROOF. We shall show first that

$G_{0}(X\cross Y)=(G(X), G_{0}(X))^{(Y.y_{0})}\cross(G(Y), G_{0}(Y))^{(X.x_{0})}$

under the identiPcation

$(X\cross Y)_{0}^{X\cross Y}=X_{0}^{X\cross Y}\cross Y_{0}^{X\cross Y}=(X^{X}, X_{0}^{X})^{(Y.y_{0})}\cross(Y^{Y}, Y_{0}^{Y})^{(X,x_{0})}$ .

Let $f$ be an element of $G_{0}(X\cross Y)$ which corresponds to the element $(f_{1}, f_{2})$

of $(X^{X}, X_{0}^{X})^{(Y.y_{0})}\cross(Y^{Y}, Y_{0}^{Y})^{(X.x_{0})}$ . Since $f$ induces automorphisms of the homo-
topy groups of $X\cross Y$, by assumption on $X$ and $Y$ the automorphism $f_{*}:$ $\pi_{k}(X\cross Y)$

$arrow\pi_{k}(X\cross Y)$ may be regarded as the induced homomorphism $f_{1}(y_{0})_{*};$ $\pi_{k}(X)arrow\pi_{k}(X)$

for each $k\leqq n$ . This shows that $f_{1}(y_{0})_{*}:$ $\pi_{k}(X)arrow\pi_{k}(X)$ is an automorphism for
each $k\leqq n$ . By the theorem of J. H. C. Whitehead [8] $f_{1}(y_{0})$ is a self homotopy
equivalence of $X$, that is, $f_{1}(y_{0})$ is an element of $G_{0}(X)$ . Since $Y$ is connected,
$f_{1}(y)$ is an element of $G(X)$ for each element $y$ of $Y$. This implies $f_{1}\in(G(X)$ ,
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$G_{0}(X))^{(Y.y_{0})}$ .
Let $i_{1}$ and $i_{2}$ be the inclusion maps of $X$ and $Y$ into $X\cross Y$ respectively:

$i_{1}(x)=(x, y_{0})$ $(x\in X)$ ,

$i_{2}(y)=(x_{0}, y)$ $(y\in Y)$ .

Let $p_{1}$ and $p_{2}$ be the projections of $x\cross Y$ onto $X$ and $Y$ respectively. Define
an isomorphism $\lambda:\pi_{k}(X)\oplus\pi_{k}(Y)arrow\pi_{k}(X\cross Y)$ by $\lambda(\alpha, \beta)=i_{1*}(\alpha)+i_{2*}(\beta)$ . Then we
have the following sequence of isomorphisms for each $k$

$\pi_{k}(X)\oplus\pi_{k}(Y)arrow^{\lambda}\pi_{k}(X\cross Y)arrow^{f_{t}}\pi_{k}(X\cross Y)$

$arrow^{(p1_{*}..p2_{*})}\pi_{k}(X)\oplus\pi_{k}(Y)$ .
Here we have

$p_{1*}\circ f_{*}\circ\lambda(\alpha, \beta)=p_{1*}\circ f_{*}\circ i_{1*}(\alpha)+p_{1*}\circ f_{*}oi_{2*}(\beta)$

$=f_{1}(y_{0})_{*}(\alpha)+h_{1*}(\beta)$ ,

$p_{2*}\circ f_{*}\circ\lambda(\alpha, \beta)=p_{2*}\circ f_{*}\circ i_{1*}(\alpha)+p_{2*}\circ f_{*}\circ i_{2*}(\beta)$

$=h_{2*}(\alpha)+f_{2}(x_{0})_{*}(\beta)$ ,

where $h_{1}$ : $(Y, y_{0})arrow(X, x_{0})$ is the map defined by $h_{1}(y)=f_{1}(x_{0}, y)$ and $h_{2}$ : $(X, x_{0})$

$arrow(Y, y_{0})$ is the map defined by $h_{2}(x)=f_{2}(x, y_{0})$ . Since $Y$ is n-connected and
$\dim X\leqq n,$ $h_{2}$ is homotopic to the constant map. Thus we obtain an automorphism
of $\pi_{k}(X)\oplus\pi_{k}(Y)$ :

(1) $(p_{1*}, p_{2*})\circ f_{*}\circ\lambda(\alpha, \beta)=(f_{1}(y_{0})_{*}(\alpha)+h_{1*}(\beta), f_{2}(x_{0})_{*}(\beta))$ .
Therefore $f_{2}(x_{0})_{*}$ is an automorphism of $\pi_{k}(Y)$ for each $k$ . Hence $f_{2}(x_{0}):(Y, y_{0})$

$arrow(Y, y_{0})$ is a homotopy equivalence. Because $X$ is arcwise connected, this im-
plies that $f_{2}(x)$ is a self homotopy equivalence of $Y$ for each $x$ . That is, $f_{2}\in$

$(G(Y), G_{0}(Y))^{(X,x_{0})}$ . Finally, we have

$G_{0}(X\cross Y)\subset(G(X), G_{0}(X))^{(Y.y_{0})}\cross(G(Y), G_{0}(Y))^{(X,x_{0})}$ .
Conversely, let $f$ be an element of $(X\cross Y)^{X\cross Y}$ which corresponds to an

element $(f_{1}, f_{2})$ of $(G(X), G_{0}(X))^{(Y.y_{0})}\cross(G(Y), G_{0}(Y))^{(X.x_{0})}$ . Then we see that
$f_{1}(y_{0})_{*}$ and $f_{2}(x_{0})_{*}$ are automorphisms of $\pi_{k}(X)$ and $\pi_{k}(Y)$ for each $k$ respectively.
Note that the formula (1) holds in this situation. Thus $f_{*}$ is an automorphism
of $\pi_{k}(X\cross Y)$ for each $k$ . Consequently $f$ is a self homotopy equivalence of
$X\cross Y$ preserving the base point $(x_{0}, y_{0})$ , that is, $f\in G_{0}(X\cross Y)$ . Hence our proof
of the assertion on $G_{0}(X\cross Y)$ is completed.

The assertion about $G(X\cross Y)$ can be proved in a similar way to our proof
of Theorem A.
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\S 3. Applications.

Note that the following theorem can be deduced from Theorem A and
Theorem B.

THEOREM C. For a given $n>0$ , let $X$ be a $CW$ complex with base point and
let $Y$ be an n-connected $CW$ complex with base point. Assume that dim $X\leqq n$ or
$\pi_{i}(X)=0$ for every $i>n$ . Then the following hold:

$G(X\cross Y)\simeq G(X)w\chi G(Y)\cross G(X)_{0}^{Y}\cross G(Y)_{0}^{X}$ ,

$G_{0}(X\cross Y)\simeq G_{0}(X)w\cross G_{0}(Y)\cross G(X)_{0}^{Y}\cross G(Y)_{0}^{X}$ .

PROOF. With the help of Theorems A and $B$ , we can give a proof in a
similar manner to the proof of Theorem 4 by using the fact that $G(X)$ and
$G(Y)$ are H-spaces. We omit the details.

If $X$ is a finite CW complex with base point, by the theorem of J. Milnor
[3] $G(X)$ and $G_{0}(X)$ have the same homotopy types as CW complexes. Thus,
as a special case of Theorem $C$ , we have the following

COROLLARY. Let $X$ be a xmPly connected finite $CW$ complex with base point.
Then it holds that

$G(S^{1}\cross X)\simeq O(2)\cross G(X)\cross\Omega G(X)$ ,

$G_{0}(S^{1}\cross X)\simeq Z_{2}\cross G_{0}(X)\cross\Omega G(X)$ ,

where $O(2)$ is the orthogonal group of degree 2 and $\Omega G(X)$ is the space of loops
on $G(X)$ based at $id_{X}$ .

Now, let $\epsilon(X)$ be the group of based homotopy classes of self homotopy
equivalences of CW complex $X$ with base point, and let $Y$ be a CW complex
with base point. Then we shall define an action of the direct product group
$\epsilon(X)\cross\epsilon(Y)$ on the group $[X, G(Y)]_{0}$ whose multiplication is induced by the H-
structure in $G(Y)[2]$ .

Let $k$ be an element of $G_{0}(Y)$ and let $G_{i}(Y)$ is the arcwise connected com-
ponent of $G(Y)$ containing the identity map $id_{Y}$ . We define a self map $\tilde{k}$ of
$G_{i}(Y)$ by using the multiplication in $G(Y)$ as follows:

$\tilde{k}(\alpha)=k^{-1}\cdot\alpha\cdot k$ $(\alpha\in G_{i}(Y))$

where $k^{-1}$ is a Pxed element representing $[k]^{-1}$ . Obviously the homotopy class
$[\tilde{k}]$ is independent of the choice of $k^{-1}$ and it depends only on $[k]$ .

Let $[\overline{f}]$ be an element of $[X, G(Y)]_{0}=[X, G_{i}(Y)]_{0}$ , then we define a multi-
plication of $\epsilon(X)\cross\epsilon(Y)$ on $[X, G_{i}(Y)]_{0}$ as follows:

$([h], [k])^{*}[\overline{f}]=[\tilde{k}\circ f\circ h]$ .



Spaces of self homotopy equivalences 463

With this multiplication we have

LEMMA 5. The direct product group $\epsilon(X)\cross\epsilon(Y)$ acts on the grouP
$[X, G_{i}(Y)]_{0}$ .

PROOF. We have

$([h], [k])^{*}([\overline{f}]\cdot[\overline{g}])=([h], [k])^{*}[\overline{f}\cdot\overline{g}]$

$=[\tilde{k}\circ(\overline{f}\cdot\overline{g})\circ h]$

$=[\tilde{k}\circ((\overline{f}\circ h)\cdot(\overline{g}\circ h))]$ ,

because

$(\overline{f}\cdot\overline{g})\circ h(x)=f(h(x))\cdot\overline{g}(h(x))=(\overline{f}\circ h)\cdot(\overline{g}\circ h)(x)$ $(x\in X)$ .

Furthermore, since $\tilde{k}$ is an H-map, we have

$[\tilde{k}\circ((\overline{f}\circ h)\cdot(\overline{g}\circ h))]=[(\tilde{k}\circ\overline{f}\circ h)\cdot(\tilde{k}\circ\overline{g}\circ h)]$

$=(([h], [k])^{*}[\overline{f}])\cdot(([h], [k])^{*}[\overline{g}])$ .
Next,

$(([h], [k])([h^{f}], [k’]))^{*}[\overline{f}]=([hh’], [kk’])^{*}[\overline{f}]$

$=[kk’\circ\overline{f}\circ(hh’)]\sim$

$=([h’], [k’])^{*}[\tilde{k}\circ\overline{f}\circ h]$

$=([h’], [k’])^{*}(([h], [k])^{*}[\overline{f}])$ .
Obviously we have

$([id_{X}], [id_{Y}])^{*}[\overline{f}]=[\overline{f}]$ .

Thus our proof is completed.
Suppose $\pi_{j}(X)=0$ for every $j>n$ and $Y$ is n-connected. Let us define the

correspondence $\lambda$ from $\epsilon(X\cross Y)$ to the semi-direct product group $(\epsilon(X)\cross\epsilon(Y))\otimes$

$[X, G_{i}(Y)]_{0}$ by using the action introduced above. Let $[f]$ be an element of
$\epsilon(X\cross Y)$ . Note that, as we already observed in the proof of Theorem $A,$ $p_{1}\circ f\circ i_{1}$

$=f_{1}\circ i_{1}$ and $p_{2}\circ f\circ i_{2}=f_{2}\circ i_{2}$ are self homotopy equivalences of (X, $x_{0}$) and $(Y, y_{0})$

respectively, where $i_{1}$ : $Xarrow X\cross Y,$ $j_{2}$ ; $Yarrow X\cross Y$ are the inclusion maps and
$p_{1}$ : $X\cross Yarrow X,$ $p_{2}$ : $X\cross Yarrow Y$ are the projection maps. Putting $h=f_{1}\circ i_{1},$ $k=f_{2}\circ i_{2}$ ,
$\overline{f}_{2}(x)(y)=f_{2}(x, y)((x, y)\in X\cross Y)$ and

$(k^{-1}\cdot\overline{f}_{2})(x)=k^{-1}\cdot\overline{f}_{2}(x)$ $(x\in X)$ ,
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then $k^{-1}\cdot\overline{f}_{2}(x_{0})$ and $id_{Y}$ are joined by an arc in $G_{0}(Y)$ . Thus by the homotopy
extension theorem there exists a map $\overline{f}_{2}’$ of (X, $x_{0}$) to $(G(Y), id_{Y})$ such that $\overline{f}_{2}’$

is homotopic to $k^{-1}\cdot\overline{f}_{2}$ under a homotopy keeping $x_{0}$ in $G_{0}(Y)$ . Since $(G(Y), G_{0}(Y))$

is an H-space pair, the homotopy class $[\overline{f}_{2}’]$ in $[X, G_{i}(Y)]_{0}$ is independent of the
choice of $f_{2},$ $k^{-1}$ and $\overline{f}_{2}’$ . Define a correspondence $\lambda$ of $\epsilon(X\cross Y)$ to $(\epsilon(X)\cross\epsilon(Y))$

$\otimes[X, G_{i}(Y)]_{0}$ as follows:

$\lambda([f])=([f_{1}\circ i_{1}], [f_{2}\circ i_{2}], [\overline{f}_{2}’])$ .

Then we have the following result.

THEOREM 6. For a given $n>0$ , let $X$ be a $CW$ complex with base point such
that $\pi_{i}(X)=0$ for every $i>n$ and let $Y$ be an n-connected $CW$ complex with base
point. Then we have an isomorphism $\lambda$ :

$\epsilon(X\cross Y)arrow(\epsilon(X)\cross\epsilon(Y))\otimes[X, G(Y)]_{0}$ ,

where $\otimes denotes$ a semi-direct prOduct defined by the above action.
PROOF. We shall show that $\lambda$ is a homomorphism. Let $fand_{\iota’}g$ be self

homotopy equivalences of $(X\cross Y, (x_{0}, y_{0}))$ . First we see that

$f_{1}\circ g\circ i_{1}\simeq(f_{1}\circ i_{1})\circ(g_{1}\circ i_{1})$ $re1x_{0}$ .

To see this, let $f_{0}$ be a map of $X\cross Y$ to $X$ defined by $f_{0}(x, y)=f_{1}(x, y_{0})$

$((x, y)\in X\cross Y)$ . Then, by obstruction theory under our assumptions $\pi_{k}(X)=0$ for
every $k>n$ and $\pi_{k}(Y)=0$ for every $k\leqq n$ we can see that $f_{0}$ is homotopic to $f_{1}$

relative to $X\cross y_{0}$ . Thus we have $f_{1}\circ g\circ i_{1}\simeq f_{0}\circ g\circ i_{1}$ rel $x_{0}$ . On the other hand,

$f_{0^{O}}g\circ i_{1}(x)=f_{0}(g_{1}(x, y_{0}),$ $g_{2}(x, y_{0}))$

$=f_{1}(g_{1}(x, y_{0}),$ $y_{0}$)

$=(f_{1}\circ i_{1})\circ(g_{1}\circ i_{1})(x)$ .
Combining these two, we have $[f_{1^{\circ}}g\circ i_{1}]=[f_{1}\circ i_{1}]\cdot[g_{1}\circ i_{1}]$ .

Next we shall show that $f_{2}\circ g\circ i_{2}\simeq(f_{2}\circ i_{2})\circ(g_{2}\circ i_{2})$ rel $y_{0}$ . Let $h$ be a map of
$Y$ to $X$ dePned by $h(y)=g_{1}(x_{0}, y)$ . Then, since $Y$ is n-connected and $\pi_{k}(X)=0$

for every $k>n,$ $h$ is homotopic to the constant map relative to $y_{0}$ . By:the
homotopy extension theorem there exists a map $g_{0}$ of $X\cross Y$ to $X$ which is
homotopic to $g_{1}$ relative to $(x_{0}, y_{0})$ and satisfies $g_{0}(x_{0}\cross Y)=x_{0}$ . Let us define a
self map $g’$ of $X\cross Y$ by $g’(x, y)=(g_{0}(x, y),$ $g_{2}(x, y))$ . Obviously, we have $g\simeq g’$

rel $(x_{0}, y_{0})$ . This implies $f_{2}\circ g\circ i_{2}\simeq f_{2}\circ g’\circ i_{2}$ rel $y_{0}$ . Furthermore we have

$f_{2^{O}}g’\circ i_{2}(y)=f_{2}(g_{0}(x_{0}, y),$ $g_{2}(x_{0}, y))$

$=f_{2}(x_{0}, g_{2}(x_{0}, y))$ $(y\in Y)$ .
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That is, $f_{2^{\circ}}g’\circ i_{2}=(f_{2}\circ i_{2})\circ(g_{2}\circ i_{2})$ . These imply

$[f_{2}\circ g\circ i_{2}]=[f_{2}\circ i_{2}]\cdot[g_{2}\circ i_{2}]$ .
Putting $h’=g_{1}\circ i_{1}$ and $k’=g_{2}\circ i_{2}$, we will compute $(kk’)^{-1}\cdot\overline{f_{2}\circ g}$. Since we

have $f_{2^{\circ}}g\simeq f_{2^{\circ}}(g_{0}, g_{2})$ rel $(x_{0}, y_{0})$ as the argument above, we see
$\overline{f_{2}\circ g}\simeq\overline{f_{2^{\circ}}(g_{0},g_{2}})$ .

Furthermore, it holds that

$\overline{f_{2^{\circ}}(g_{0},g_{2}})(x)(y)=f_{2}(g_{1}(x, y_{0}),$ $g_{2}(x, y))$

$=\overline{f}_{2}(g_{1}(x, y_{0}))(g_{2}(x, y))$

$=\overline{f}_{2}(h’(x))(g_{2}(x, y))$

$=(\overline{f}_{2}(h’(x))\cdot\overline{g}_{2}(x))(y)$ .
Hence we have

$(kk’)^{-1}\cdot f_{2}(h’(x))\cdot\overline{g}_{2}(x)$

$=k^{\prime-1}\cdot k^{-1}\cdot\overline{f}_{2}(h’(x))\cdot\overline{g}_{2}(x)$ .
Let $\overline{g}_{2}’$ be a map of (X, $x_{0}$) to $(G(Y), id_{Y})$ which is homotopic to $k^{\prime-1}\cdot\overline{g}_{2}$ . Since
$k^{-1}\cdot\overline{f}_{2}$ is homotopic to $\overline{f}_{2}’$ , we have

$k^{\prime-1}\cdot k^{-1}\cdot(\overline{f}_{2}\circ h’)\cdot\overline{g}_{2}\simeq k^{\prime- 1}\cdot(\overline{f}_{2}’\circ h’)\cdot\overline{g}_{2}$

$\simeq k^{\prime-1}\cdot(\overline{f}_{2}’\circ h’)\cdot k’\cdot k^{\prime-1}\cdot\overline{g}_{2}$

$\simeq k^{\prime-1}\cdot(\overline{f}_{2}’\circ h’)\cdot k’\cdot\overline{g}_{2}’$

$=(\tilde{k}’\circ\overline{f}_{2}’\circ h’)\cdot\overline{g}_{2}’$ .

Hence we have
$[(\tilde{k}^{\prime_{o}}\overline{f}_{2}’\circ h’)\circ\overline{g}_{2}’]=(([h’], [k’])^{*}[f_{2}^{J}])\cdot[\overline{g}_{2}’]$ .

Finally it holds that

$\lambda([f][g])=\lambda([f\circ g])$

$=([h][h’], [k][k’], (([h’], [k’])^{*}[\overline{f}_{2}’])[\overline{g}_{2}’])$

$=([h], [k], [f_{2}’])([h’], [k’], [\overline{g}_{2}’])$

$=\lambda([f])\lambda([g])$ ,

that is, $\lambda$ is a homomorphism
We now show that $\lambda$ is epimorphic. Let $([h], [k], [\overline{l}])$ be an element of

$\backslash \epsilon(X)\cross\epsilon(Y))\otimes[X, G(Y)]_{0}$ . We define a self map $f$ of $(X\cross Y, (x_{0}, y_{0}))$ as follows:
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$f(x, y)=(h(x), (k\cdot i(x))(y))$

$=(h(x), k(l(x, y)))$ ,

where $l$ is the map of $(X\cross Y, (x_{0}, y_{0}))$ to $(Y, y_{0})$ associated with $\overline{l}$. Then we
see easily

$\lambda([f])=([h], [k], [\overline{l}])$ .
Furthermore we can see easily that $\lambda$ is monomorphic. Hence our proof is

completed.
As a special case of Theorem 6, we have a generalization of the theorem

of S. Sasao and Y. Ando [5] as follows.

COROLLARY. Let $X$ be an n-connected $CW$ complex with base point. Then
we have the following isomorphism $\lambda$ :

$\epsilon(K(\pi, n)\cross X)arrow(Aut(\pi)\cross\epsilon(X))\otimes[K(\pi, n), G(X)]_{0}$ ,

where the right group is the semi-direct product group defined by the action given
in Lemma 5.

PROOF. $[X, G(K(\pi, n))]_{0}=[X, G_{i}(K(\pi, n))]_{0}$ is trivial, because $X$ is n-con-
nected and $G_{i}(K(\pi, n))$ has the same weak homotopy type as $K(\pi, n)$ or
$K(Z(\pi), 1)$ according to $n>1$ or $n=1$ . Furthermore we have $\epsilon(K(\pi, n))=Aut(\pi)$ .
Therefore by Theorem 6, we see that $\lambda$ is an isomorphism.

By Lemma 5, we have the action of the direct product $\epsilon(X)\cross\epsilon(Y)$ of the
groups $\epsilon(X)$ and $\epsilon(Y)$ on the group $[X, G(Y)]_{0}=[X, G_{i}(Y)]_{0}$ . In other words,
we can say that the direct product $\epsilon(X)\cross\epsilon(Y)$ of the groups $\epsilon(X)$ and $\epsilon(Y)$ acts
on the group $[Y, G(X)]_{0}=[Y, G_{i}(X)]_{0}$ . Consequently, we have the semi-direct
product group $(\epsilon(X)\cross\epsilon(Y))\otimes[Y, G(X)]_{0}$ dePned by this action.

If $X$ is a CW complex of dimension less than or equal to $n$ with base point
and $Y$ is an n-connected CW complex with base point, then we shall define a
correspondence $\lambda$ of $\epsilon(X\cross Y)$ to the semi-direct product $(\epsilon(X)\cross\epsilon(Y))\otimes[Y, G_{i}(X)]_{0}$

of the groups $\epsilon(X)\cross\epsilon(Y)$ and $[Y, G_{i}(X)]_{0}$ in the following way.
Let $[f]$ be an element of $\epsilon(X\cross Y)$ . As we already observed in the proof

of Theorem $B$ , $p_{1^{o}}f\circ i_{1}=f_{1^{\circ}}i_{1}$ and $p_{2}\circ f\circ i_{2}=f_{2}\circ i_{2}$ are self homotopy equivalences
of (X, $x_{0}$) and $(Y, y_{0})$ respectively. Putting $h=f_{1}\circ i_{1},$ $k=f_{2}\circ i_{2},\overline{f}_{1}(y)(x)=f_{1}(x, y)$

$((x, y)\in X\cross Y)$ and

$(h^{-1}\cdot\overline{f}_{1})(y)=h^{-1}\cdot\overline{f}_{1}(y)$ $(y\in Y)$ ,

then we see $h^{-1}\cdot\overline{f}_{1}(y)$ and $id_{X}$ can be joined by an arc in $G_{0}(X)$ . By the homo-
topy extension theorem there exists a map $f_{1}’$ of $(Y, y_{0})$ to ($G(X)$ , idx) such that
$\overline{f}_{1}’$ is homotopic to $h^{-1}\cdot\overline{f}_{1}$ under a homotopy keeping $y_{0}$ in $G_{0}(X)$ . Here we
should note that $[\overline{f}_{1}’]$ is uniquely determined as before. Define a correspondence
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$\lambda$ of $\epsilon(X\cross Y)$ to $(\epsilon(X)\cross\epsilon(Y))\otimes[Y, G_{i}(X)]_{0}$ as follows:

$\lambda([f])=([f_{1}\circ i_{1}], [f_{2}\circ i_{2}], [\overline{f}_{1}’])$ .
Then we have

THEOREM 7. For a given $n>0$, let $X$ be a $CW$ complex of dim $X\leqq n$ with
base Point and let $Y$ be an n-connected $CW$ complex with base point. Suppose that
$[X, G(Y)]_{0}$ is trivial, ihen $\lambda$ is an isomorphism of $\epsilon(X\cross Y)$ onto the semi-direct
Product group $(\epsilon(X)\cross\epsilon(Y))\otimes[Y, G(X)]_{0}$ defined by the action introduced prevzously.

PROOF. We shall show that $\lambda$ is a homomorphism. Let $f$ and $g$ be self
homotopy equivalences of $(X\cross Y, (x_{0}, y_{0}))$ . Then the map $g_{2}|X\cross y_{0}$ : $(X\cross y_{0}$ ,
$(x_{0}, y_{0}))arrow(Y, y_{0})$ is homotopic to the constant map relative to $(x_{0}, y_{0})$ because
dim $X\leqq n$ and $Y$ is n-connected. By the homotopy extension theorem, there
exists a map $g_{0}$ of $X\cross Y$ to $Y$ which is homotopic to $g_{2}$ relative to $(x_{0}, y_{0})$ and
satisfies $g_{0}(X\cross y_{0})=y_{0}$ . Put $g’(x, y)=(g_{1}(x, y),$ $g_{0}(x, y))((x, y)\in X\cross Y)$ , then $g’$

is homotopic to $g$ relative to $(x_{0}, y_{0})$ . Thus it holds that

$f_{1}\circ g\circ i_{1}\simeq f_{1}\circ g’\circ i_{1}=f_{1}\circ i_{1}\circ g_{1}\circ i_{1}$ .
Therefore, we have

$[f_{1}\circ g\circ i_{1}]=[f_{1}\circ i_{1^{\circ}}g_{\iota}\circ i_{1}]=[f_{1}\circ i_{1}][g_{1}\circ i_{1}]$ .
Next we shall show

$f_{2}\circ g\circ i_{2}\simeq(f_{2}\circ i_{2})\circ(g_{2}\circ i_{2})$ $re1y_{0}$ .

Let $\overline{f}_{2}$ be the map of (X, $x_{0}$) to $(Y^{Y}, Y_{0}^{Y})$ associated with the map $f_{2}$ of $(X\cross Y$,
$(x_{0}, y_{0}))$ to $(Y, y_{0})$ . Then, as we already observed in the proof of Theorem $B$,

$\overline{f}_{2}$ is the map of (X, $x_{0}$) to $(G(Y), G_{0}(Y))$ . Consequently, $k^{-1}\cdot\overline{f}_{2}$ is a map of
(X, $x_{0}$) to $(G(Y), G_{0}(Y))$ such that $k^{-1}\cdot\overline{f}_{2}(x_{0})$ and $id_{Y}$ can be joined by an arc
in $G_{0}(Y)$ . Thus, by the homotopy extension theorem there exists a map $\overline{f}_{2}’$ of
\langle X, $x_{0}$) to $(G(Y), id_{Y})$ which is homotopic to $k^{-1}\cdot\overline{f}_{2}$ . By our assumption
$[X, G(Y)]_{0}=1,\overline{f}_{2}’$ is homotopic to the constant map. These imply that $\overline{f}_{2}$ is
homotopic to the constant map $c_{k}$ which maps (X, $x_{0}$) to $(k, k)$ . That is, $f_{2}$ is
homotopic to $f_{2}\circ i_{2}\circ p_{2}$ relative to $(x_{0}, y_{0})$ . Therefore we have

$f_{2}\circ g\circ i_{2}\simeq f_{2}\circ i_{2}\circ p_{2}\circ g^{0}i_{2}=f_{2^{\circ}}i_{2}\circ g_{2^{\circ}}i_{2}$ .
Hence it holds that

$[f_{2^{\circ}}g^{Q}i_{2}]=[f_{2^{\circ}}i_{2^{\circ}}g_{2}\circ i_{2}]=[f_{2}\circ i_{2}][g_{2^{\circ}}i_{2}]$ .
Putting $h’=g_{1}\circ i_{1}$ and $k’=g_{2}\circ i_{2}$ , in the following we shall $show-$ that $(hh’)^{-1}$ .

$\overline{f_{1}\circ g}=h^{\prime-1}\cdot h^{-1}\cdot\overline{f_{1}\circ g}$ is homotopic to $h^{\prime-1}\cdot(f_{1}’\circ k’)\cdot h’\cdot\overline{g}_{1}’$ , where $g_{1}$ is a map of
$(Y, y_{0})$ to ($G(X)$ , idx) which is homotopic to $h^{\prime-1}\cdot\overline{g}_{1}$ . Since $[X, G(Y)]_{0}$ is trivial,
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$g_{2}$ is homotopic to $k’\circ p_{2}$ relative to $(x_{0}, y_{0})$ . Thus we bave

$\overline{f_{1}\circ g}=\overline{f_{1^{\circ}}(g_{1},g_{2}})\simeq\overline{f_{1^{\circ}}(g_{1},fe’\circ p_{2})}$.

Furthermore, if we put $k^{\prime*}\overline{f}_{1}=\overline{f}_{1}\circ k’$ it holds that

$(k^{\prime*}\overline{f}_{1}\cdot\overline{g}_{1})(y)(x)=\{k^{\prime*}\overline{f}_{1}(y)\cdot\overline{g}_{1}(y)\}(x)$

$=\overline{f}_{1}(k’(y))(\overline{g}_{1}(y)(x))$

$=f_{1}(g_{1}(x, y),$ $k’(y))$

$=f_{1}(g_{1}(x, y),$ $k’\circ p_{2}(x, y))$

$=f_{1^{\circ}}(g_{1}, k’\circ p_{2})(y)(x)$ .

Hence we have

$h^{\prime-1}\cdot h^{-1}\cdot k^{\prime*}\overline{f}_{1}\cdot\overline{g}_{1}=h^{\prime- 1}\cdot k^{\prime*}(h^{-1}\cdot\overline{f}_{1})\cdot\overline{g}_{1}$

$\simeq h^{\prime-1}\cdot(k^{\prime*}\overline{f}_{1}’)\cdot\overline{g}_{1}$

$\simeq h^{\prime-1}\cdot(k^{\prime*}\overline{f}_{1}’)\cdot h’\cdot h^{\prime- 1}\cdot\overline{g}_{1}$

$\simeq h^{\prime-1}\cdot(k^{\prime*}\overline{f}_{1}’)\cdot h’\cdot\overline{g}_{1}’$ ,

$[h^{\prime-1}\cdot(k^{\prime*}f_{1}’)\cdot h’\cdot\overline{g}_{1}’]=(([h’], [k’])^{*}[f_{1}’])\cdot[\overline{g}_{1}’]$ .

We now see $\lambda$ is a homomorphism,

$\lambda([f][g])=\lambda([f\circ g])$

$=([h][h’], [k][k’], (([h’], [k’])^{*}[\overline{f}_{1}’])[\overline{g}_{1}’])$

$=([h], [k], [\overline{f}_{1}’])([h’], [k’], [\overline{g}_{1}’])$

$=\lambda([f])\lambda([g])$

Next, we shall show that $\lambda$ is epimorphic. Let $([a], [b], [\overline{c}])$ be an element
of $(\epsilon(X)\cross\epsilon(Y))\otimes[Y, G(X)]_{0}$ where $a$ is a self homotopy equivalence of (X, $x_{0}$),
$b$ is a self homotopy equivalence of $(Y, y_{0})$ and $\overline{c}$ is a map of $(Y, y_{0})$ to $(G(X)$ ,
$id_{X})$ . Then we define a self map $f_{(a.b)}$ of $(X\cross Y, (x_{0}, y_{0}))$ by

$f_{(a,b\rangle}(x, y)=(a(x), b(y))$ $((x, y)\in X\cross Y)$ .

We easily see that

$\lambda([f_{(a.b)}])=([a], [b], 1)$ .

Also define a self map $f_{\overline{c}}$ of $(X\cross Y, (x_{0}, y_{0}))$ by
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$f_{e}(x, y)=(\overline{c}(y)(x), y)$ $((x, y)\in X\cross Y)$ .

We can easily see that
$\lambda([f_{\overline{c}}])=([id_{X}], [id_{Y}], [\overline{c}])$ .

Consequently we have

$\lambda([f_{(a,b)}\circ f_{\overline{c}}])=([a], [b], 1)([id_{X}], [id_{Y}], [\overline{c}])$

$=([a], [b], [\overline{c}])$ .
Furthermore we can see easily that $Ker\lambda$ is just $[id_{X\cross Y}]$ . Hence our proof

is completed.
As a special case of Theorem 7, we have

COROLLARY. For a given $n>0$ , let $X$ be a $CW$ complex of $\dim X\leqq n$ with
base point. Then we have the following isomorphism $\lambda$ :

$\epsilon(X\cross K(\pi, n+1))arrow(\epsilon(X)\cross Aut(\pi))\otimes[K(\pi, n+1), G(X)]_{0}$ .

PROOF. Since $G_{i}(K(\pi, n+1))$ is weakly homotopy equivalent to $K(\pi, n+1)$

and $\dim X\leqq n$ , we see that $[X, G_{i}(K(\pi, n+1))]_{0}$ is isomorphic to the group [X,
$K(\pi, n+1)]_{0}$ which is trivial. By Theorem 7, this corollary follows immediately.

REMARK. In this paper we studied $G(X)$ for a connected locally finite CW
Complex $X$. However one can use arguments similar to ours within the category
of compactly generated spaces and maps. Consequently our assumption of $X$

being a locally finite CW complex can be relaxed, namely Propositions 2, 3,
Theorems $C,$ $4,6$ and 7 hold for connected CW complexes instead of connected
locally Pnite CW complexes.
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