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Introduction.

Let H(M) be the space of all C* Riemannian metrics on a compact n-
dimensional manifold M, and v: H(M)—R be a functional of % defined by

v(g)=(2/ n)SM]WI"’Zdv, where W is the Weyl conformal curvature tensor. Our

main subject in this paper is to determine inf{v(g); g= M}, which will be
denoted by v(M). A little consideration shows that v(M)>0 if some Pontrjagin
number of M is not zero. Thus, in general, v(M) is a nontrivial invariant of a
manifold. '

In §2, we shall show two general properties of v(M). One is that v(M)=0
for the total space M of a principal circle bundle (Theorem 2.1). This provides
examples of M for which »(M)==0 but which has no conformally flat metric.
The other is an inequality for connected sum ; v(M,#M:)<v(M,)+v(M,) (Theorem
2.2). This is useful for computing v(M) for certain M.

However, to determine v(M) for general M seems to be not so easy. Even for
S2x S?%, v(S%x S?) is not known (to the author). We want to show that the stan-
dard Einstein metric g, of S*xS? is a candidate at which v takes a minimum,
if v:M(S*XS?—R has a minimum. In fact, g, is a minimum point of v restricted
to Kahler metrics (Proposition 1.4). Moreover, we shall prove that g, is a
strictly stable critical point of the functional v (cf. Definition 4.1l and [T'heorem4 .2).

In the course of proof of stability of g, M(S*xS?), we establish the first
and the second variational formulas of v: H(M)—R for 4 dimensional M (Prop-
ositions 3.1 and 3.7; The first variational formula has already appeared in [2]).
From these formulas, we can also see that other than conformally flat metrics,
Einstein metrics are critical points of the functional v, and Ricci flat metrics

are stable critical points of v.

§1. Preliminary definitions and remarks.

Throughout this paper, M denotes a compact C* manifold of dimension n,
and M(M) denotes the space of C* Riemannian metrics on M. For ge M(M),
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the curvature tensor R‘;;;, the Ricci tensor R;;=R*;,; and the scalar curvature
R=g"R;; are defined. Our concern in this paper is the Weyl tensor defined by

) ) 1 ) A ) )
(1-1) lekl:lekz—7_*_’“2’(le§;‘1+§sz#'“Lzzgjk—glzij) ’

where L,;=R;;—(R/2(n—1))g;; (we put W=0if n=<2). From the second Bianchi
identity, we have R;;.;=R;;,»— R;:; and hence,
n—3

(1.2) W= ——a
n

__2 Cjkl’

where Cjkz:sz;k—ij;l-

DEFINITION 1.1. We define a functional v : SH(M)—R by ”(g):%SM [W|*"%dv,,
where |W|"2=<W, W)"i=(g,;,g7g* g"Wt;, W?,;)*'*. For a subset U of M and
geEMM), we write v(g; U):%SU |Wir'2dv,.

LEMMA 1.2. (i) v(e®* g)=u(g) for any f€C>(M) and g MM). (ii) v(p*g)
=v(g) for any diffeomorphism ¢ of M. (iii) v=0 if dim M=3.

PrROOF. Let W and W’ be the Weyl tensors of the metrics g and g'=e*/g,
respectively. Since the Weyl tensor is invariant under a conformal change of
metric, we have <W’, W'D, =W, W), =e */<W, W»,. Hence, from dv'=e™/dv
for the volume elements, we get |W’|"%dv'=|W|™*dv, which proves (i). (ii)
is trivial, and (iii) is well-known. O

For the dimensions higher than three, we first remark the following :

PROPOSITION 1.3. If dim M=4, then sup{v(g); g M(M)} =co.

PrOOF. Let T*=R"/Z" be the n-dimensional torus. If n=4, there exists
a metric ge M(T™) with ¢ :=v(g)>0. Then, g= M(R") denoting the lift of g
to the universal covering, we have »(g; [0, /]")=("c for [&N. Now, let (U, ¢)
be a chart of M such that ¢(U)=R". Then, for each /€N, we can take a
metric g, on M which coincides with g in [0, /[J*CR"=U, i.e., (¢xg,)|[0, {]*=
g0, /J*. We thus have v(g:))=v(g:; U)=vldsg:; [0, [J*)=I["c and hence,
lim; .. v(g;)=00. [

On the other hand, there are non-trivial topological lower bounds for v:
Any Pontrjagin class is represented by a differential form composed of only the
Weyl tensor ([1]). Namely, the m-th Pontrjagin class p,cH*™(M) (cf. [5]) is
given inductively by Il ,=—(p Ml 1+ -+ +pm-Il)—2mp,,, where I, H™(M)
is represented by the following differential form ;

@r) Qi A Qi A e AQHm,

where .(}ij:(l/Z)Winek/\el. So we can see that any Pontrjagin number of a 4k-
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dimensional M is dominated by v(g) multiplied by some universal constant. For
example, the following is well-known.

PROPOSITION 1.4. If dim M=4, then |p,[M]|=v(g)/8=* for all g= M(M).
Hence, if furthermore M 1is oriented, |t|=v(g)/24n* for all g= M(M), where T
is the signature of M. Equality holds if and only if g is a half conformally
flat metric.

Thus, unlike supy, infv reflects certain global properties of a manifold.

DEFINITION 1.5. v(M):=inf{v(g); g MM)}.

Here are some examples:

1. v»(g)=0 if g is conformally flat. Hence, if M carries a conformally flat
metric, then v(M)=0. However, v(M)=0 does not imply in general that M
admits a conformally flat metric (see §2).

2. The Fubini Study metric g, of CP?* is half conformally flat. Hence, by
[Proposition 1.4] v(CP?)=y(g,)=24r* For the connected sum kCP* of k copies
of CP? [Proposition 1.4 gives only v(ACP?)=247?|r(kCP?)|=24k=%. We shall
show in § 2 that vw(kCP®) < ky(CP?) =24kr* Hence, we have v(RCP?)=24kn>

3. Although the author does not know the value v»(S*XS?) at present, there
are partial results which suggest that v(S®x S?% may be positive. Let 5, g be
two Riemannian metrics on S® with the Gauss curvatures K, K, respectively.
Consider the product metric g=g+F on S*XS%. Then, v(g)=(128/3)x*+
(Z/B)Sszxsz(K—K)zdv.

PrROOF. The Weyl tensor is computed as Woije=1/6)(K+EK)2Gm;Z:r—
28:;8km—8miBirt 818 em+28m;Bin—28:;8km—Ems&irTZ1;8rm). Hence, we have
|W|2/2=2K+K)?/3=8KK/3+2(K—K)?/3. Then, from the Gauss Bonnet for-
mula, u(g):(8/3)Sﬁl?dv+(2/3)S(K—I?)2dv:1287r2/3+(2/3)g(l?—[?)2dv. 0

So, among the product metrics of S*x S? the standard Einstein metric attains
the smallest value 128z%/3. This is generalized as follows :

PROPOSITION 1.6. Suppose that dim M=4 and g= M(M) is a Kdhler metric
for some complex structure of M. Then,

v(g)=24r® |7 —{—l—;ﬂ?min {2%—67, 2X+ 37},

where v and X are the signature and the Euler number of M respectively. The
equality holds if and only if g is an FEinstein Kdhler metric.
ProOOF. By the four dimensional Gauss Bonnet theorem,

¥ 1
I p— 2 2 . 2
(1.3) v(g)=16x X—{—S |E | db———lzgR dv,



376 0. KoBAavasHI

where E is the traceless part of the Ricci tensor; E;;=R;;—(R/4)g:;
Let p be the Ricci form of the Kihler metric g ([5]). Then, it is easily
seen that

(L5 ’
(1.4) onp=(5R*=2|E|*)dv.
Since the first Chern class is represented by p/4x. we have
SpAp=16x2c§:16n2<2x+3c>.

This, together with and yields

32

v(g)=—8r’r+ —§ﬂ2X+%S | E[*dv

U o] 4 o6+ 2| Edy, i 7205

ro fool o

247:2[‘5[+%3n2(2x+37)+§glEi2dv, if ¢<0.
Now, we get the desired inequality. O
Applying this proposition to S*xS?% we have v(g)=128z%/3 for any Kdhler
metric g of S*XxS? because 7(S*xS*)=0 and A(S*xS?=4. Thus, the standard
Einstein metric g, of S*XxS? attains the smallest value of vy also in the class of
Kihler metrics. Moreover, we shall show in § 4 that the functional v : H(S?x S?)
—R has in fact a local minimum at g,.

§2. Two general formulas for v (M).

THEOREM 2.1. If S' acts freely and differentiably on M, then v(M)=0.

PrROOF. Let K denote the vector field on M which generates the S* action.
Since S! is compact, there is an S! invariant Riemannian metric 2 on M, for
which K is a Killing vector field. Since the action is free, A(K, K) is nowhere
zero, hence, g=(h(K, K))"'h defines a Riemannian metric. Then we have

2.1) Lrg=0 and g(K, K)=1.
Now, consider a family of Riemannian metrics {g(t); 0<t=<1} defined by
(2.2) gi=gu—1—1Ma;a;,

where a is the 1-form associated with K with respect to g=g(1), i.e., a;=g;;K’.
The inverse matrix g*(t) is easily seen to be g’—(1—t"*)K*K’. Then, using
2.1), we get the relation between the Christoffel symbols of g(¢) and g:

(2.3) I'0O—T=—1—) K+ K ja),
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where the covariant derivation in the right hand side is taken as one with
respect to g. From this and we have

(2.4) Rijp()—RYp=—1—){(K% 00— (K a).+ K™ Ry nia;
+K ' —Kiag 1=K paa, K™ —a K™,).

Then, again using [2.1), we have
(2.5) gMO(R () — R )= —(1—1) {(K ¥ ), — (K ¥ a),

FKG K KK (1=t )KPK™ R g
On the other hand, g*()R%;,,=R'*,;, —(1—t"»)K'K"R%;;,. Hence, we get
(2.6) gMOR ()= R"™y — (1= (K a)); . — (K5 ),

+K4yK™, —KLK™ ).

Note that does not contain terms of ¢** and that both sides of are
tensors of type (2, 2). So, there is a constant ¢ such that |R"...(#)|%,<c for all
te(0, 1]. In particular, |[W(t)|%,<c. On the other hand, the volume form duv(¢)
relative to the metric g(¢) is easily computed as dv(t)=tdv. Thus, we get
lim,.ov(g®)=0. Hence, v(M)=0. O

REMARK. There is no conformally flat metric on S?xTY, p, ¢=2, i.e., v(g)
>0 for any g M(S? XTI, p, g=2, because, by a theorem of Kuiper [6; Theo-
rem III], the universal covering space of a compact conformally flat space with
an infinite Abelian fundamental group must be R™ or RXS" . However, the
above theorem asserts that y(S?xXT?%=0. So, in general, vy(M)=0 does not imply
the existence of a conformally flat metric of M.

THEOREM 2.2. For any compact manifolds M, and M, of the same dimension,
V(M EM,) =v(M)+v(M,).
For the proof, we prepare the following lemma.

LEMMA 2.3. Let geM(M) be given. Then, for each €>0, there is a g<
M(M) such that |v(g)—v(8)|<e and g is flat in an open subset of M.

Proor. Let (U, ¢) be a chart of M such that ¢(U)D{xeR"; |x|<1} and
in the coordinate expression of the metric g|U=g;;(x)dx*d x’,

2.7) g:15(0)=0.;

holds. Take a nonnegative smooth function ¢ : R*—R such that ¢(x)=1 if | x|
<1/2, and ¢(x)=0if |x|=1. We set ¢,(x)=¢(x/t). The support of ¢, is con-
tained in B,={x=R™; |x|<t}. For 0<t<1, we define a metric = M(M) by
gl M\U)=g|(M~U) and
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(2.8) &i;=(1—¢:)g:j+¢:0:;

in U. We shall show that g has the desired properties for a sufficiently small £.
It follows from and the definition of ¢, that

(2.9 logi—0:i) | <cit, 0] <cit™, 0% <cit™2,

for some constant ¢; where 0 is the Euclidean gradient. Hence, |83;;]| <c, and
1828:;] <co(t~1+1) for some ¢, Then, putting f,=g(W, W)»/4(det(&,;)"'?, wecan
easily see that

(2.10) Fe< et 1y,
Thus, we get
@2.11) SBt Fudx< c3(t‘1+1)”’253tdx

=c, DM =c (O™,
On the other hand,

M) —(B)|=Ixg; $7BY)—4(F; $(BY)
=u(g; 9B +2], fudr.

Therefore, from (2.11), we conclude that |v(g)—v(g)| <e for a sufficiently small
t. It is obvious from that g is flat in ¢~*(B,). O

PROOF OF THEOREM 2.2. Let ¢ be an arbitrary positive number. Take g;
e M(M;) so that v(g;)=<v(M;)-+e, i=1, 2. By the above lemma, we can choose
g.€ MM;) such that v(Z,)=v(M;)+2¢ and g, is flat in some neighbourhood of
M;. Suppose that for some >0 and p;eM;, &; is flat in U;(p;; [0, 27)) :=
{(xeM;; di(x, p)<[0, 2r)}, where d; is the distance function of the metric &,
=1, 2. :

We define a diffeomorphism ¢: Ui(p,; (r/2, 2r))—=Ux(p.; (r/2, 2r)) by
p(expp, X) =exp,,(— %/ Z«(X, X))p,X), where ¢,: T M,—T,,M, is a linear iso-
metry and exp,, denotes the exponential map at p;&M; with respect to g;.
Then we can regard M#M, as {M\Ui(p:; [0, »/2])} U, {MNUs(ps; [0, #/2])}.

Let f; be a positive smooth function on M; such that f,(x)=(di(p;, x))2% if
r/2<d(ps, x)<2r. Then, f,g; is a Riemannian metric on M; and is conformally
flat in Uy(ps; [0, 27)). Moreover, ¢: (Ui(py; (#/2, 2r), f18)—Ux(ps; (v/2, 2r)),
f28.) becomes an isometry. Hence, we can define a Riemannian metric g on
MM, by g|(M\Ui(ps; [0, »/21) :=f:8: (M \Ui(p:; [0, v/2])), i=1, 2. Then,
we have

v(g)=v(f181; MUi(py; [0, v/21)+v(f282; M Us(p:; [0, 2¢]))
:V(f1§1)+y(f28~r2>
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=v(Z)+v(g.)
Su(My)+u(My)+4e.

Therefore, v(M #M,)<v(M,)+v(M,)+4e for arbitrary &>0. That is, v(M,2M,)
<v(M)+v(M,). O

§3. Variational formulas in dimension four.

In this section, we use the following abbreviation for shortness’ sake;
1. Omitting the summation sign, €.g., Cijr:n+ LneW™ e stands for Xz, 185 Cijui+
i m8 Ly W™ 2. Identification through the duality defined by metric, e.g.,
St=(1/2)(hja;sFhrs;;—hize) stands for St=1/2)g* (hji,i+hui;—hig).

PROPOSITION 3.1 ([2]). Suppose that M is a compact manifold of dimension
4, Then for a smooth curve g=g(t) in M(M), we have

d d
Ev(g)—SM<X, gt—g>dv,
where X is a symmetric 2-tensor defined by Xi;;=Cijpp+LmiW™j, (see §1 for

C, L and W)
PrOOF. We set h;;=(d/dt)g;; and S%;=(d/dt)['k. Then,

1
3.1) Sfj:_2'(hjk;i+hki;j—hij:k)'
Hence,
d m m m
(3.2) E?R ik =STki— STk

Then, from and elementary algebraic properties of curvature tensor, we

have
d
Wmt‘ﬁ(ﬁwmuk) =W™;12hjem+ Lmrhij).

Therefore, using (d/dt)g?=—h" and (d/dt)dv=(1/2)h;;dv, we get

d 1
’B'{V(g>:g{wmijk(2hij;km+Lmkhij>_Wmijkaijlhkl+ 1 W] Zhii} dv

1
:S{Xijhij—(WmijkI’Vmijl_Z ‘W|2gkz)hkt} dv,

where we use Stokes’ formula and [L.2) Thus, we have only to prove
WmijkaijL:(l/‘l)llegkz—

It is known that a symmetric linear transformation on the space of 2-forms
A% commutes with the Hodge star *: A%°— A% (since the argument is local, we
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need not assume M is orientable) if and only if its Ricci contraction is propor-
tional to g (cf. [7; Theorem 1.3]). Viewed as a symmetric transformation on
A2, the Weyl tensor commutes with the Hodge star, because the Ricci contrac-
tion of W is zero. Hence, so does W-W, and the Ricci contraction of W-W is
proportional to g. That is, W*,W®,, =2g%; for some scalar 4, which implies
Wmijkaijl:(1/4)]Wl2gkl-

That X is symmetric is not difficult to see. [

COROLLARY 3.2. If dim M=4, the tensor X has the following properties;

(i) Xy;=0; (i) Xi;,;=0; (iii) XQg is conformally invariant.
Proor. Easy consequence of 0

COROLLARY 3.3. If dimM=4 and g M(M) is conformal to an Einstein
metric, then g is a critical point of v: MM)—R.
Proof. Obviously, X=0 if g is an Einstein metric. Thus, the assertion

follows from |[Corollary 3.2 (iii). O
Next, we shall compute the second variational formula. To do this, we

review the Lichnerowicz Laplacian and decomposition of the space of symmetric
2-tensor fields (cf. [3]).

DeFINITION 3.4. The tangent space T, M(M) of M(M) at g is naturally
identified with the space of C* symmetric 2-tensor fields on M. The Lichnero-
wicz Laplacian Ay : T ; M—T ;M is defined by

(ALh)ij:= (Ah)ij+hiwes—hiejet+Rjnei—hjrin,

where A: T, U—T ;M is the rough Laplacian; (Ah);;=h;;.,, (our sign convention
of Laplacians is opposite to that used in [3]).

LEMMA 3.5 (l) (ALl’l)ij:(Ah)ij—hikRkj—‘Rikhkj"‘thkRmijk. Hence, Zf
dim M =4, then

(Aph)iy=(Bh)i—2hesEys+Eszhi)+<E, hogs;
H(tr Y E s+ (R/6)ge)— @R /3 hey—2hma W,
where Ey;=Ri,—(R/) g,
N e I O SE TS YD CYA VARRS T TANY
for ', k" €T 1.
i) [ v, Auhmsav={ thigathfict hiy—hty) —2hi il dv, for W, b”

eT M.
PrOOF. Easy and omitted. O
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LEMMA 3.6. If M is a compact manifold, T  M(M) has the following decom-
position; T g M=S8,g)PSi(g), where So(g)={heTsM; tr h=0, divh=0} and
Sig)y={heT ; M; h=L,g-+fg for some ucs¥(M) and feC*(M)}. This decom-
position is orthogonal with respect to the L, inner product defined by g.

ProoF. Put P(u)=r,g—1/n)tr L,g)g for a vector fleld u. Then, it is
easy to check that the principal symbol of the linear differential operator P: ¥
—T M is injective. Hence, T, H=Ker P*PIm P (cf. [3]), where P* is the ad-
joint operator of P. P* is computed as P*(h)=—2(h;;—(1/n)(tr h)gs;),;. From
this, we have Ker P*=S,PC>(M)-g. Then, putting S;=C>=(M)-gPBImP, we
get the desired decomposition. [

REMARKS. 1. Let G be the semi direct product of the diffeomorphism
group D(M) and C>(M) with multiplication; (¢, f1):(0s, f2)=(@1°@s, f1°@2+ f2)
for ¢, 0,€9(M) and f;, f,€C>(M). Then, G acts on H(M) on the right as
follows; (g, (¢, /)—e* p*g, ge MM), pc D(M) and f=C>(M). [Lemma 1.2
says that v is constant on every G-orbit in HM(M). S,(g) in the above lemma
is regarded as the tangent space at g of the G-orbit of g.

2. Using the orthogonality between S, and S;, we have an isomorphism
So(g)=Se(e?’ g); h—e® ™ Sh., In particular, we see that S,(g)=3S,(e?/g) if dim M
=2, So(g)Rg=38,(e* g)Re* g if dim M=4, and so on.

PROPOSITION 3.7. Suppose that M is a compact manifold of dimension 4, and
gEMM) s a critical point of v: MM)—R. Let g, be a smooth variation of
g with ge=g. Then,

COEC

3 Lipeped . 2 :
+<E h, 280kt h E+Rh>+2|E||h|+2|E hP—5<E, b

e g s g)

1 1
+SE{@E nshis)s—ghiRon— (B h—ho E)nisyt 2hisCsn— his Cams}

—hijh kmcijk;m:]dv ’

where h is the S\(g) component of (dg/dt)|i—e<€T ¢ M (cf. Lemma 3.6), (E<h);;=
Eirhej and Sti=(1/2)(hjr;i+hrs;—haj;n).
ProoOF. From the first variational formula (Proposition 3.1)), (dv(g,)/dt)=

SM<XL, (dg:/dt)>.dv,. Since X,=S8,(g,) (Corollary 3.2), we have (dv(g,)/dt)=

SM<X1, heidv,, where h, is the Sy (g,) component of (dg,/dt). Thus, since X=

X,=0, we get
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(3.3) (4 ) uieo| _=( <X, ma,

where * means (d/dt)],—, i.e., X=(dX,/dt)]|,—. I we write X=(DX)(g), we
can see X=(DX)(h), because that X=0 is a conformally invariant property by
(iii). Hence, it suffices to prove the formula under the assumption
that g=heS8,(g). So, we assume in the following that h;;=g;; and h;=0,
hij,5=0.
From the definition of X,
(3.4) Xij:(gkmcijk;m)'+(gleszmijk)'
:(Cijk>;k_hkmcijk;m'“smcmjk_sl?}cimk
_!_Lmkaijk"}—LmkI’Vmijk'—hlemleijk-

From the definition of C,

(3.5) Cijk:(Lik);;‘—(jzij);k+S%Lm;““sﬁLmk-
From the definition of L and the Lichnerowicz Laplacian, and

, 1 R 1
(3.6) Lij=——5(Arh)ij——Fhi+—5<E, h>g;.

2 6 6
From this and (iD),
. 1 ~

3.7) (Lij);k(hij;k“hik;j)iz!ALh (2+%<h, ALh>+“£]‘i‘<ALh, Ahy

R -
+ﬁ<h’ Ahy,
where the meaning of the notation = is as follows; for f; and f,eC>(M), we
write fi=fa if SM fldv:SM fodv.
Then, from [(3.5), [3.6), (3.7) and (1),

(3.8 (Cijk);khij+Lmkaijkhiji‘—Cijkhij;k'i"z:mkaijkhij
:((Lij);k+S?§Lmk><hu;k—hik;j)+Lmkaijk/1ij
IR Loan imiRon
=7 [ALh| +12<h, ALh>+Z‘<ALh, Ah>+ﬁ<h, Ah
+S?§'Lmk(hij;k'“hik;j)

1 R
“?(ALh)ijhkamijk—‘g il W ™50

1 R 1
:—2‘(ALMZ+T§</L ALh>+178‘R2l/l‘2
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R
-{—<E°h, ALh+—3—h>+S¥}Lmk(hij;k“‘hik;j)-
From and

(39) thmkW ik thLmk{R ijk— <Lmjhik+jlmjgik
"thszgik+gmjLik—Lmkhij‘jzmkgij‘l‘hmszkgij"gkaij)}
. 1 . . . . R .
:hiijkRmijk_?<lL°hI +2{Leh, LY—{Leh, heL>—|L|*|h]| —§<L, h>)

. 1 R
—_—h,-,»LmkRm”k—-%m, ALh>+<E h, zALh+2h E+%—h>

l 2 2_.l o 2_i o h)2
+2IE| [h] 2|E h| 6<E hye.
From [Lemma 3.5 (i),
3100  —huhaLaW =R ch, Aphs—Ech, Bhy+ LR A2
. ijitrlLeml 'ijk'—24 ’ L 24 ’ 36

, ;ALthh E+]§h>+|E h[2——<E he.

From [3.2), Bianchi’s identity L;;;=R.;/3 and using Lemma 3.5 (iii), we get
3.11) SELmaChiz—hin)+hiLnsR™y0
=STE(Lurhip);e—STLmrehij—ST{Lmrhir);j+STL e ihin
+hi;Lonr(ST;—STs)

1
”—'Sz](Lmkht]) BT SuhwR

1 -
— S <Eeh, Ah>+<E h

1 1
_-Z—'S;nj(Lmkhik+hmkLik);j_'é'S%(Lmkhik_hkaik);j
_I’S;nJ'Lmk;jhik_S?}eLmk;jhij“i‘S%(hiijk);k

1
_zszj(Lmkhw) kT mz J(Lmkhzk+hkazk) 37

1 1
'—S?}(ghin;m"i— “2‘(E°h—h o E)misi— hikcmjk)

1
=2ST(Emehig) e +— SJ(Rh”)k—}— (Leh, An)

1
—51";(3 huR m+ (E h—he E)mz i zkcmjk)
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. R 1 ~ R -
—ﬁ<h) ALh>+?<E°hy Ah>+2_4<h; Ah’>

1 1
+ST{2AE i) —ghisRim— 5 (Eoh—ho B}t husCrs).
3 2
Summing up [3.8), (3.9) and (3.10), then substituting (3.11), we obtain from
(3.4) the following :

Y ;l 2 E _1_ 2 2
Xijhij= 5 |ALh] +12R<h, ALh>+12R | Al

3 ) L omien e L 2 2 .
+<th, 2, h+he B+ Rh>+2|E| Bl | Eoh[*=2CE, b

1 1
4 ST {Z(Emkhij);k_ghin;m—_z"(E° h—heE)ns;;+2h::Crj—h kjckmi}

'_hijhkmcijk;m-
Thus, from [3.3)], we have the desired formula. 0O

COROLLARY 3.8. Under the same assumptions and notations asin Proposition
3.7, the second variational formula at an Einstein metric g (cf. Corollary 3.3) is
as follows:

(43 o B

§4. Stability of the standard Einstein metric of S?xS%

DEFINITION 4.1. Let g=M(M) be a critical point of the functional
v: HM)—R. Then g is said to be stable if

=0

t=0

@1 (2) a0

for all smooth variation g, with g,=g. Moreover, g is said to be strictly stable
if g is stable and if equality of (4.1) holds only when (dg./dt)|:-e=S,(g) (cf.
Lemma 3.6).

REMARK. It follows from Lemma 1.2 that if g is a (strictly) stable critical
point of v, then so is any metric conformal to g.

ExaMPLES. 1. Any conformally flat metric is stable. Any half conformally
flat metric of a compact orientable 4-manifold is stable (cf. Proposition 1.4).

2. Setting the scalar curvature R=0 in Corollary 3.8, we see that any Ricci
flat metric of a compact 4-manifold is stable.

3. Let gesm(S*) be the standard metric of constant curvature 1. Then, g
is strictly stable.
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PROOF. Since g is an Einstein metric, we have only to prove that

ok s B

for all heS,(g) and that equality holds only when hA=0 (cf. Corollary 3.8).
We have R=12 and A h=Ah—8h for heS,(g) (cf. Lemma 3.5 (i)). Hence,

%S<ALh+§h’ ALh+§h>dv:%S<ﬁh—2h, Ah—4h>dv

:%S{lﬁh |2—6<h, An>+8|h|%} dv

:%ngh |2+6|Th|*+8| A | dv=0.

Obviously, equality implies that £=0. O
The purpose of this section is to prove the following :

THEOREM 4.2. Let g be the standard Einstein metric on S*XS% that is, g=
g+Z, where g and g are Riemannian metrics on S* with constant Gauss curvature
1. Then, g is a strictly stable critical point of the functional y: M(S*XS%)—R.

PROOF. First, we remark that g and g are parallel tensor fields, and the
curvature tensor is given as

4.2) Riuijt=@GmiBir—8:ii8rm)+ GmiGir—8ijBrm)-
For heS,(g), we define f&C>(S*xS? and &, h, heT M as follows :
’ 1 - 1 -
f=ghugi=—5hi,
4.3 Rij=8ishingmni—fGisr  hiy=8ishen8ni+[Eis,
hij=GixhenBnit+Ziihindn; -

Then, h=h+h+h+fg—fg and this decomposition is orthogonal. By (4.2), we
have

(4.4) hosRumise=hij+h—fGostfBis-

Then, a straightforward computation gives

| A R |2= | |2 | R |2 H4£7,
RijhmeRmize=|R\*+|R|*—4f2,

4.5) Ah)iihmeRmise=<h, ARY>+<h, ARYy—4fAS,
|Bh|2=|AR|2+ AR |2 +4A )+ AR |2,
|Vh|2=|VR|*+ |Vh|*+4|Tf 2+ VR 2.




386 0. KOBAYASHI

Then, using Lemma 3.9 (i), [(4.2) and [4.4), we get

4.6) %KALthZh, ALh+—§—h>a’v

2 -
S{zlhmkRmukl + hmkhuRmuk Z(Ah>ijhkamijk+ IAh| + ]Vh] }
=S{§—[ﬁ]2—2<ﬁ AR —IVh] + Lz
3 ’ 2
8 = S 1
+§lh12—2<h,A ~|’\7h12+—2—IA |®
1 1

52 K12 16 2 2 Afl|2
+ VA5 1BR 43 1 +8fAf+§lVf| +2|7 %} dv

= (S QR+ 1R+ (VR [+ [T+ 5 (BRI 3R]

1oy Lixr, 4 . 2
+3 VA5 BRI+ Af+2h) +3Af<Af+2f)}dv

0,

v

because the first eigenvalue of the Laplacian —A of (S?XS? g) is 2, and hence
gA FAf+2f)dv=0.

Next, we consider when the equality of (4.6) holds. Obviously, the equality
holds if and only if A=h=0, Yh=0 and Af+2f=0. Since divh=0 (see the
definition of So(g) in Cemma 3.6), the conditions A=h=0 and Vi=0 yield f=
constant. Then from Af+2f=0, we have f=0. That is, h=Hh and Vh=0.
In particular, A h=Ah=0. Then from Lemma 3.5 (i) and R;;=g;;, we get

(4.7) hijthmeRnije=0.

On the other hand, from [£4), hmiRmi;»=0, since h=h. Hence, from [47),
we have h=0. Thus, the equality of (4.6) holds only when A=0.
Now the assertion follows from [Corollary 3.8 O

§5. Additional remarks.

LEMMA 5.1. Suppose that dim M=4 and g= M(M) is a metric with nonnega-
tive sectional curvature. Then the following pointwise inequality holds; 3|W |?<2R2.

PRrROOF. Let {ey, e, es, e;} be an orthonormal frame. Then, fi;=e;Ae,+
esNey, fa=eiNegte Ne, fo=esNeste,Nes, fi=e Nes—ezNey, fs=eNes—e Ne,
and fs=e,Ae,—e,Ae; form an orthonormal frame of 42 (in our convention, e; A
e;=(1/2)(e;QRe;—e;RQe;)). We regard the curvature tensor as a linear transforma-
tion of A2 Then, with respect to the frame {f,}, we have the following
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matrix representation of the curvature tensor ;

A B
(‘B C)’
where A and C are 33 symmetric matrices with trA=trC=R/2, and
E,,+E;, Epu—FE, E,+E;
B=(B.s)=| Eu+Ey Eut+Eys Es—E, |,
E,—FE;s Eu+E; En+Ey

where E;;=R;;—(R/4)g:;. It is known that A and C can be diagonalized for
some orthonormal frame {e;} ([7; Theorem 2.1]). So, we write

(R/6)+4 0 0 (R/6)+p: O 0
A= 0  (R/6+% 0 |, Cc=| 0  (R/®+m O
0 0 (R/6)+2, 0 0 (R/6)+p

Then, 21+22+23:ﬂ1+#2+ﬂ3:0 and
3 3
G.1) W= B+ 3.

A 2-form corresponding to a plane section is of the form >33_,§.f.+
>%-1mpfp+s With 2E2=393=1/2. Therefore, if the sectional curvature is non-
negative then,

R R
2 2 >
(52) ;60((6 +20>+ %}7];9(6 +ﬂl3) ZEBEaﬂﬂBaﬁ:O’
for all {&,} and {ng} with Z¢i=X93=1/2. From this, it is easily seen that

%+Za+ﬂﬁ£0 for all a, 8.

Hence,

=p) (5 thartps) = R3S+ 201,

Therefore, from [5.1), we have 2R*=Z3|W|%. O
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PROPOSITION 5.2. Let M be a compact 4-dimensional manifold.

(i) If M admits an Einstein metric, then v(M)<16z*X;

(ii) If M admits an Einstein metric with nonnegative sectional curvature,
then vy(M)<(64/5)n*X, where X is the Euler characteristic of M.

PROOF. (i) follows from the Gauss Bonnet formula [1.3).

(ii): If geM(M) is an Einstein metric with nonnegative sectionalfcurvature,

then from [1.3] and Lemma 5.1, we have

1 1
—1672— — \ R*dv <1672 — — 24y
v(g)=167X IZSR dv=167%*X 3 SIWI dv

=167%— %v(g).

Hence, v(M)=<y(g)<64x*X/5. O

COROLLARY 5.3. Let M be a compact oriented 4-dimensional manifold. If M
admits an Einstein metric with nonnegative sectional curvature, then |t|=8X/15,
and equality holds if and only if M has a flat metric.

PrOOF. Let geM(M) be the Einstein metric with nonnegative curvature.
Then by Propositions [.4 and 5.2, |7|=v(M)/24r*<v(g)/24r*<8X/15.

If the equality holds, then g is half conformally flat. So, we assume that
*Womijee' Ne*) =W nijne? Ae* (resp. *(W pijee’ A e*)=—W ,i0e? Ae*). From the
Weitzenbock formula, we have for any harmonic 2-form a,

R
Qyjpr= gaij+akmwkmij .

Hence, if furthermore *a=—a (resp. *a=-+a), then

R
(53) aij;kk:§a“.

Now, suppose that g is not flat, i.e., R>0. Then, from [5.3), a=0 for
any harmonic 2-form with *a=—a (resp. *a=a). Therefore, r=+2nd Betti
number of M. The l1st Betti number is zero since the Ricci curvature is positive.

So, |t|=X—2. It is easy to see that |¢|=X—2 with [z]|=8X/15 does not have
integral solutions. This is a contradiction. Hence, g is flat. O

REMARK. This proposition slightly improves Theorem 2 of [4], where 8/15
is replaced by (2/3)% (>8/15).
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