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Introduction.

The purpose of this paper is to study the meromorphic mappings $f$ : $Xarrow V$

of a finite analytic (ramified) covering space $X$ over the m-dimensional complex
vector space $C^{m}$ with projection $\pi$ : $Xarrow C^{m}$ into a compIex projective manifold
$V$ of dimension $n$ from the view point of the Nevanlinna theory; especially, we
are interested in inequalities of the second main theorem type. In the case
where $m=1$ and $V$ is the l-dimensional complex projective space $P^{1}(C)$ , Selberg
[17] proved the first and the second main theorems for $f:Xarrow P^{1}(C)$ . In the
case where $\dim X\geqq\dim V=rankf(=\sup\{\dim X-\dim_{x}f^{-1}(f(x));x\in X\})\geqq 1$ , we
proved the second main theorem and defect relations for $f$ and divisors on $V$ ,
generalizing the above results of Selberg and the Carlson-Griffiths-King theory
[2] and [5] (see [10], [11] and [19]).

Here we deal with the case where rank $f$ does not necessarily equal $\dim V$ .
Stoll [20] obtained the Ahlfors-Weyl theory for linearly non-degenerate mero-
morphic mappings from a parabolic manifold into $P^{n}(C)$ which applies to the
case of $f$ : $Xarrow P^{n}(C)$ (see [20, Theorem 11.8]). When $X$ is an affine algebraic
curve (or the domain of $f$ may be the punctured disc $\Delta^{*}$ in $C$ ), we proved an
inequality of the second main theorem type for $f$ : $Xarrow V$ in terms of logarithmic
l-forms along the given divisors on $V$ (see [12], [13] and [14]), and applied it
to obtain a generalization of big Picard’s theorem (see [14]). In the present
paper we extend this inequality to the case where $X$ is a finite analytic cover-
ing space over $C^{m}$ , and give an application.

Let $D$ be an effective reduced divisor on $V$ such that the closed image of
the quasi-Albanese mapping $\alpha:V-Darrow A_{V-D}$ is of dimension $n$ and of general
type (cf. [6] and [7]). Here we identify $D$ with its support. Let $f:Xarrow V$ be
a meromorphic mapping. We say that $f$ is degenerate with respect to the com-
plete linear system $|L|$ of a holomorphic line bundle $L$ over $V$ if $f(X)\subset SuppE$

for some $E\in|L|$ , where SuppE denotes the support of the divisor $E$ ; otherwise,
$f$ is said to be non-degenerate with respect to $|L|$ . Assume that $f(X)\not\subset D$ and
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$f$ is non-degenerate with respect to $|K_{V}\otimes[D]|$ , where $K_{V}$ denotes the canonical
line bundle over $V$ and $[D]$ the line bundle determined by $D$ . Then we prove
the following inequality of the second main theorem type in section 3 (see sec-
tion 1 for notation):

MAIN THEOREM (3.2). Let the notation be as above. Then there is a positive
constant $K$ independent of $f$ such that

$KT_{f}(r)\leqq N$( $r$ , Supp $f^{*}D$ ) $+N$( $r$, Supp $R$ )

$+0$ ( $\delta$ log $r$) $+O(\log^{+}T_{f}(r))$ $\Vert_{E(\delta)}$

for arbitrary $\delta\in(0,1)$ , where $R$ denotes the ramification divisor of $\pi$ : $Xarrow C^{m}$ .
For the proof of the Main Theorem (3.2) we show a lemma on logarithmic

derivatives for $f$ : $Xarrow V$ and logarithmic l-forms on $V$ in section 1 (Lemma (1.6)).

By making use of this lemma and the higher jet bundles over $V$ investigated in
section 2, we prove the Main Theorem (3.2).

At the end of section 3, applying the arguments used there, we remark an
explicit second main theorem and defect relations for linearly non-degenerate
$f$ : $Xarrow P^{n}(C)$ and hyperplanes of $P^{n}(C)$ in general position (see (3.16), (3.17) and
[20, Theorem 11.8]). Let $X$ be the domain of existence of $f$ : $Xarrow V$ (see section
1) and $D$ as in the Main Theorem (3.2). We see by the Main Theorem (3.2)

that if $N(r, Suppf^{*}D)=o(T_{f}(r))$ and $N$( $r$ , Supp $R$ ) $=o(T_{f}(r))$ or $O(\log r)$ , then $f$ is
degenerate with respect to $|K_{V}\otimes[D]|$ , or $\pi$ : $Xarrow C^{m}$ is an algebraic covering space
and $f$ is rational (Theorem (3.12)).

In section 4 we apply the Main Theorem (3.2) to obtain the following multiplicity
inequalities. Let $Larrow V$ be a holomorphic line bundle over $V$ and $|L|$ the com-
plete linear system. Put $|L|’=$ { $D\in|L|$ ; $D$ is reduced and irreducible}. Let
$\{D_{i}\}_{i=1}^{q}$ be a finite family of $|L|’$ satisfying some conditions (cf. section 4). Let

$f$ : $Xarrow V$ be a meromorphic mapping which is non-degenerate with respect to
$|L|’$ and $|L^{\lambda}\otimes K_{V}|$ with certain positive integer $\lambda$ (cf. section 4), such that
$N$( $r$ , Supp $R$ ) $=o(T_{f}(r))$ . Let $\nu_{i},$ $1\leqq i\leqq q$ , be positive integers such that

$f^{*}D_{i}\geqq\nu_{i}$ Supp $f^{*}D_{i}$ for all $i$ .
Then there is a positive constant $K’$ independent of $f$ and $\{D_{i}\}_{t=1}^{q}$ such that

$\sum_{i=1}^{q}\frac{1}{\nu_{i}}\geqq\frac{K’}{\lambda}q$ (Theorem (4.4)).

Here we set $\nu_{i}=+\infty$ if $f(D)\cap D_{i}=\emptyset$ .
For meromorphic functions on $C$ , R. Nevanlinna proved that $\sum_{i=1}^{q}1/\nu_{i}\geqq q-2$

(cf. [9]), and for linearly non-degenerate holomorphic curves from $C$ into the
n-dimensional complex projective space $P^{n}(C)$ and for hyperplanes in general
position, H. Cartan [3] proved that $\Sigma_{i=1}^{q}1/\nu_{i}\geqq(q-n-1)/n$ . The above inequality
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extends these inequalities to the case of meromorphic mappings from the finite
analytic covering space $X$ into the general $V$ , while the constant $K’$ is not effec-
tively computed. For linearly [non-degenerate meromorphic mappings $f$ : $Xarrow$

$P^{n}(C)$ and hyperplanes of $P^{n}(C)$ in general position, one gets the following in-
equality :

$\sum_{i=1}^{q}\frac{1}{\nu_{i}}\geqq\frac{q-2kn+n-1}{n}$ (see (4.6)).

See [16] and [10] for the equidimensional case.

ACKNOWLEDGEMENT. During the preparation of this paper the author partly
stayed at Research Institute for Mathematical Sciences at Kyoto University with
Professor W. Stoll, with whom he had valuable and stimulating discussions.
He wishes to express his sincere gratitude to Professor W. Stoll and Research
Institute for Mathematical Sciences at Kyoto University.

1. Lemma on logarithmic derivatives.

Let $\pi:Xarrow C^{m}$ be a finite analytic covering space; that is, $X$ is a normal
complex space with finite proper surjective holomorphic mapping $\pi$ . We denote
by $k$ its sheet number and by $R$ the ramification divisor of $\pi:Xarrow C^{m}$ . For
$z=(z^{1}, \cdots , z^{m})\in C^{m}$ we set

$\Vert z\Vert=(\sum_{i=1}^{m}|z^{i}|^{2})^{1/2}$

$B(r)=\{z\in C^{m} ; \Vert z\Vert<r\}$ $(r>0)$ ,

$X(r)=\pi^{-1}(B(r))$ ,

$\varphi=\pi^{*}dd^{c}\Vert z\Vert^{2}=\frac{i}{2\pi}\pi^{*}\partial\partial\Vert z\Vert^{2}$ ,

where $d=\partial+\partial$ and $d^{c}=(i/4\pi)(\partial-\partial)$ . Let $Z$ be a Weil divisor on $X$ and define
the counting function of $Z$ by

$N(r, Z)= \frac{1}{k}\int_{1}^{r}\frac{dt}{t}\int_{X(t)\cap Z}\varphi^{m-1}$ .

Let $S(X)$ denote the set of singular points of $X$ and $F$ be a multiplicative
meromorphic function on $X-S(X);i.e.,$ $F$ is a multivalued meromorphic func-
tion on $X-S(X)$ such that the absolute value $|F|$ is one-valued. Then we have
the zero divisor $(F)_{0}$ and the polar divisor $(F)_{\infty}$ on $X-S(X)$ determined by $F$.
Since $co\dim S(X)\geqq 2$ , the divisors $(F)_{0}$ and $(F)_{\infty}$ uniquely extend to divisors on
$X$, which are respectively denoted by the same $(F)_{0}$ and $(F)_{\infty}$ . Take a holo-
morphic function $\zeta_{1}$ on $X$ such that $(\zeta_{1})\geqq(F)_{\infty}$ , where $(\zeta_{1})$ denotes the divisor.
on $X$ determined by $\zeta_{1}$ . Put
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$\xi_{2}=\log|F\zeta_{1}|$ on $X-S(X)$ .

Then $\xi_{2}$ is plurisubharmonic on $X-S(X)$ . By [4] $\xi_{2}$ uniquely extends to a
plurisubharmonic function on $X$. Hence we have

(1.1) logl $F|=\xi_{2}-\xi_{1}$ on $X-S(X)$ ,

where $\xi_{1}=\log|\zeta_{1}|$ and $\xi_{2}$ are plurisubharmonic functions on $X$. It follows that
logl $F|$ is locally integrable on $X$. Then we have the following Poincar\’e-Lelong
current equation for $F$ :

(1.2) $dd^{c}[\log|F|^{2}]=(F)_{0}-(F)_{\infty}$ on $X$ ,

where $dd^{c}[\log|F|]$ stands for that it is taken in the sense of current. To see
(1.2), we first note that (1.2) holds on $X-S(X)$ by the ordinary Poincar\’e-Lelong
equation. In the same way as in [5, section 1 $(a)$ ], we see that

(1.3)$\{\begin{array}{l}if \xi is a plurisubharmonic function on X, then analytic subsets of codimension \geqq 2 of X are sets ofmeasure zero for the positive current dd^{c}[\xi] on X.\end{array}$

It is obvious that analytic subsets of codimension $\geqq 2$ of $X$ are sets of measure
zero for the positive currents $(F)_{0}$ and $(F)_{\infty}$ . By (1.1), (1.3) and the fact that
$co\dim S(X)\geqq 2,$ $(1.2)$ holds on $X$. We have by (1.1), (1.2) and [10, Lemma 3.1]

(cf. also [18])

(1.4) $\frac{1}{k}\int_{\partial X(r)}$ logl $F| \eta-\frac{1}{k}\int_{\partial X(1)}$ logl $F|\eta=N(r. (F)_{0})-N(r, (F)_{\infty})$ .
where $\eta=\pi^{*}$ ( $d^{c}$ log $\Vert z\Vert^{2}\wedge(dd^{C}$ log $||z\Vert^{2}$) ). We set

$m(r, F)= \frac{1}{k}\int_{\partial X(r)}\log^{+}|F|\eta$ ,

where $\log^{+}|F|=\max\{\log|F|, 0\}$ , and

$T(r, F)=m(r, F)+N(r, (F)_{\infty})$ .

By (1.4) we have the Prst main theorem for $F$ :

(1.5) $T(r, F)=T(r,$ $\frac{1}{F})+\frac{1}{k}\int_{\partial X(1)}$ logl $F|\eta$ .

The function $T(r, F)$ is called the Nevanlinna characteristic function of $F$. Here
one notes that

$\frac{1}{k}\int_{\partial X(r)}\eta=1$ .

Let $V$ be a complex projective manifold and $f$ : $Xarrow V$ be a meromorphic
mapping. We say that $X$ is the domain of existence of $f$ if $f$ separates the
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fibers of $\pi;Xarrow C^{m}$ in the sense of [10]; that is, there is a point $z\in C^{m}$ such
that $\pi$ is unramified at all points of $\pi^{-1}(z),$ $f$ is holomorphic at all points of
$\pi^{-1}(z)$ and $f(x)\neq f(y)$ for all distinct points $x$ and $y$ of $\pi^{-1}(z)$ .

Let $\Omega$ be a differential form of type $(1, 1)$ on $V$ and dePne the characteristic
.: function of $f$ with respect to $\Omega$ by

$T_{f}(r; \Omega)=\frac{1}{k}\int_{1}^{r}\frac{di}{t}\int_{X(t)}f^{*}\Omega\wedge\varphi^{m-1}$ .

In the rest of this section, we assume that $\Omega$ is the positive form associated
with a hermitian metric $h$ on $X$, and denote $T_{f}(r;\Omega)$ by $T_{f}(r)$ .

Let $D$ be an effective reduced divisor on $V$ and $\Omega_{V}^{1}(\log D)$ the sheaf of
germs of logarithmic l-forms along $D$ (cf., $e.g.,$ $[6]$ ). Assume that $f(X)\not\subset D$ .
For a global logarithmic l-form $\omega\in H^{0}(M, \Omega_{V}^{1}(\log D))$ we put

$f^{*} \omega=\sum_{j=1}^{m}\xi_{j}\pi^{*}dz^{j}$

on $X$, where $\xi_{j}$ are meromorphic functions on $X$.
LEMMA (1.6). Let $\xi_{j}$ be as above. Then we have

$m(r, \xi_{j})=O$ ( $\delta$ log $r$) $+O(\log^{+}T_{f}(r))$ $\Vert_{E(\delta)}^{1)}$

for arbitrary $\delta\in(0,1)$ .
PROOF. By [6] (cf. also [12]), there is a basis $\{\omega^{i}\}_{i=1}^{p}$ of $H^{0}(V, \Omega_{V}^{1}(\log D))$

such that $\omega^{i},$ $1\leqq i\leqq q(q\leqq P)$ , are holomorphic l-forms and

$\omega^{i}=d$ log $\theta^{i}$ , $q+1\leqq i\leqq p$ ,

where $\theta^{l}$ are multiplicative meromorphic functions on $V$ such that the supports
Supp $(\theta^{i})$ of the divisors $(\theta^{i})$ are contained in $D$ . Put

$f^{*} \omega^{i}=\sum_{j=1}^{m}\xi_{j}^{i}\pi^{*}dz^{j}$ and $\omega=\sum_{i=1}^{p}c_{i}\omega^{i}$

where $c_{i}\in C$ . We have

$m(r, \xi_{j})\leqq a_{=1}^{p}m(r, \xi_{j}^{i})+\sum_{i=1}^{p}\log^{+}|c_{i}|+\log p$ .

Hence we may assume that $\omega$ is one of $\{\omega^{i}\}?=1$ .
Let $\omega$ be holomorphic. Then there is a constant $C_{1}>0$ such that

$|\omega(v)|^{2}\leqq C_{1}h(v,\overline{v})$

for all holomorphic tangent vector $v\in T(V)$ on $V$ . Put $S=\pi(SuppR)$ . Then the

1) The symbol ” I $E(\delta)$ stands for that the stated (in)equality holds as $r$ tends to infinity
outside an exceptional subset $E(\delta)$ of $(0, \infty)$ which is a union of intervals with finite
total measure and depends on $\delta$ in this case.
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restriction $\pi|(X-\pi^{-1}(S)):X-\pi^{-1}(S)arrow C^{m}-S$ is locally biholomorphic. We regard
the vector fields $\partial/\partial z^{i}$ as meromorphic vector fields on $X$ which is holomorphic
on $X-\pi^{-1}(S)$ . Then $\xi_{j}=\omega(f_{*}(\partial/\partial z^{j}))$ on $X-\pi^{-1}(S)$ . Put

$f^{*}h= \sum_{j,l}\frac{i}{\pi}H_{j\overline{l}}\pi^{*}(dz^{j}\cdot d\overline{z}^{l})$ ,

$f^{*} \Omega=\sum_{j.l}\frac{i}{2\pi}H_{j\overline{l}}\pi^{*}(dz^{j}\wedge d\overline{z}^{l})$ .

Then we have

$f^{*}h( \frac{\partial}{\partial_{Z^{j}}},$ $\frac{\partial}{\partial\overline{z}^{l}})=\div H_{j\overline{l}}$ ,

so that

$| \xi_{j}|^{2}\varphi^{m}\leqq C_{1}\frac{1}{\pi}H_{j\overline{j}}\varphi^{m}\leqq\frac{C_{1}}{\pi}\sum_{l=1}^{m}H_{l\overline{l}}\varphi^{m}$

$= \frac{mC_{1}}{\pi}f^{*}\Omega\wedge\varphi^{m-1}$ on $X-\pi^{-1}(S1$ .

Hence, as in [14, section 2], we have

$m(r, \xi_{j})=\frac{1}{k}\int_{\partial X(r)}\log^{+}|\xi_{j}|\eta$

$= \frac{1}{2k}\int_{\partial X(r)}\log^{+}|\xi_{j}|^{2}\eta\leqq\frac{1}{2k}\int_{\partial X(r)}$ log $(1+|\xi_{j}|^{2})\eta$

$\leqq\frac{1}{2}$ log $(1+ \frac{1}{k}\int_{\partial X(r)}|\xi_{j}|^{2}\eta)$

$= \frac{1}{2}$ log $(1+ \frac{1}{k}$ . $\frac{1}{r^{2m-1}}\frac{d}{dr}\int_{X(r)}|\xi_{j}|^{2}\varphi^{m})$

$\leqq\frac{1}{2}$ log ( $1+ \frac{1}{k}$ . $\frac{1}{r^{2m- 1}}(\int_{X(r)}|\xi_{j}|^{2}\varphi^{m})^{1+\delta}$) $\Vert_{E_{1}(\delta)}$

$= \frac{1}{2}$ log ( $1+ \frac{1}{k}$ . $\frac{1}{r^{2m-1}}(r^{2m- 1}\frac{d}{dr}\int_{1}^{r}\frac{dt}{t^{2m- 1}}\int_{X(t)}|\xi_{j}|^{2}\varphi^{m})^{1+\delta}$) $\Vert_{E_{1}(\delta)}$

$\leqq\frac{1}{2}$ log $(1+ \frac{1}{k}r^{(2m-1)\delta}(\int_{1}^{r}\frac{dt}{t^{2m- 1}}\int_{X(t)}|\xi_{j}|^{2}\varphi^{m})^{(1+\delta)^{2}})$
$\Vert_{E_{2}(\delta)}$

$\leqq\frac{1}{2}$ log $(1+ \frac{1}{k}r^{(2m-1)\delta}(\frac{mC_{1}}{\pi}\int_{1}^{r}\frac{dt}{t^{2m- 1}}\int_{X(t)}f^{*}\Omega\Lambda\varphi^{m})^{(1+\delta)^{2}})$
$\Vert_{E_{2}(\delta)}$

$\leqq\frac{(1+\delta)^{2}}{2}\log^{+}T_{f}(r)+\frac{2m-1}{2}\delta$ log $r+O(1)$ $\Vert_{E_{2}(\delta)}$ .

Let $\omega$ be of the type $d$ log $\theta$ , where $\theta$ is a multiplicative meromorphic func-
tion on $V$ . Let $I(f)$ be the indeterminacy locus of $f$ and put $G=\theta\circ f$ on $X-I(f)$ .



Value distribution of meromorphic mappings 301

Since $co\dim I(f)\geqq 2$ , $G$ extends to a multiplicative meromorphic function on
$X-(I(f)\cap S(X))$ which is denoted by the same $G$ . Put

$dG= \sum_{j=1}^{m}G_{j}\pi^{*}dz^{j}$ .

Then we have that $\xi_{j}=G_{j}/G$ . To prove our lemma, we use the curvature
method due to [5] in the same way as in [22] (cf. [14]). For constants $\epsilon>0$ ,
$a_{0}>0$ and $b_{0}>1$ we put

$\Psi=\frac{a_{0}(|w|+|w|^{-1})^{2+2\epsilon}}{(\log b_{0}(1+|w|^{2}))^{2}(\log b_{0}(1+|w|^{-2}))^{2}}\psi_{0}$ ,

where $\psi_{0}=(1+|w|^{2})^{-2}(i/2\pi)dw\wedge d\overline{w}$ on $P^{1}(C)$ with inhomogeneous coordinate $w$

is the standard Fubini-Study-K\"ahler form. By [5, Proposition (6.9)] there are
constants $a_{0}>0,$ $b_{0}>1$ and $\epsilon>0$ such that

(1.7) $Ric\Psi\geqq(|w|+|w|^{-1})^{-2\epsilon}\Psi$ .
Since $|G|$ is one-valued, we have

$G^{*} \Psi=\frac{a_{0}(|G|+|G|^{-1})^{2+2\epsilon}}{(\log b_{0}(1+|G|^{2}))^{2}(\log b_{0}(1+|G|^{-2}))^{2}}G^{*}\psi_{0}$

$= \frac{a_{0}(|G|+|G|^{-1})^{2\epsilon}}{(\log b_{0}(1+|G|^{2}))^{2}(\log b_{0}(1+|G|^{-2}))^{2}}$

$\cross\frac{1}{|G|^{2}}\sum_{j.l}G_{j}\overline{G}_{l}\pi^{*}(\frac{i}{2\pi}dz^{j}\Lambda d_{\overline{Z}^{l}})$ .

Therefore we have

$G^{*}\Psi$ A $\varphi^{m- 1}=\sum_{j=1}^{m}A_{j}\frac{1}{m}\varphi^{m}$ ,

where

$A_{j}= \frac{a_{0}(|G|+|G|^{-1})^{2\epsilon}}{(\log b_{0}(1+|G|^{2}))^{2}(\log b_{0}(1+|G|^{-2}))^{2}}|\xi_{j}|^{2}$ .

Putting $\Phi_{j}=\bigwedge_{l\neq j}(i/2\pi)dz^{l}\wedge d\overline{z}^{l}$ , we have by (1.7)

( $G^{*}$ Ric $\Psi$ ) $\Lambda\Phi_{j}\geqq(|G|+|G|^{-1})^{2e}G^{*}\Psi\wedge\Phi_{j}$

$=(|G|+|G|^{-1})^{-2\epsilon}A_{j} \frac{1}{m!}\varphi^{m}$

$= \frac{a_{0}}{(\log b_{0}(1+|G|^{2}))^{2}(\log b_{0}(1+|G|^{-2}))^{2}}|\xi_{j}|^{2}\frac{1}{m!}\varphi^{m}$

Taking $dd^{c}$ as currents, we have

$dd^{c}[ \log\frac{a_{0}(|G|+|G|^{-1})^{2\epsilon}}{(\log b_{0}(1+|G|^{2}))^{2}(\log b_{0}(1+|G|^{-2}))^{2}}|\xi_{j}|^{2}]$



302 J. NOGUCHI

$=G^{*}$ Ric $\Psi+(\xi_{j})_{0}-(\xi_{j})_{\infty}-\epsilon((G)_{0}+(G)_{\infty})$

$\geqq G^{*}$ Ric $\Psi-(1+\epsilon)((G)_{0}+(G)_{\infty})-R$

on $X-S(X)$ . Using the same method to show (1.2) by (1.1) and (1.3), one sees
that the above current equation holds on $X$. Then the similar computation to
[22, section 4] and [14, section 2] yields

(1.8) $m(r, \xi_{j})\leqq 8\log^{+}(T(r, G)+N(r, R))+12\log^{+}T(r, G)$

$+(2m-1)\delta$ log $r+O(1)$ $\Vert_{E(\delta)}$ .

In the same way as in [14, (2.10)], it follows that

(1.9) $T(r, G)\leqq C_{2}T_{f}(r)+O(1)$ ,

where $C_{2}$ is a positive constant independent of $f$ . Moreover, by [10, Proposi-
tion 1] there are a finite analytic covering space $\pi’$ : $X’arrow C^{m}$ , a finite holomorphic
mapping $\lambda:Xarrow X’$ and a meromorphic mapping $f’$ : $X’arrow V$ such that $\pi=\pi^{\prime_{Q}}\lambda$ ,
$f=f’\circ\lambda$ and $X’$ is the domain of existence of $f’$ . Put $f^{\prime*}d \log\theta=\sum\xi_{j}’\pi^{\prime*}dz^{j}$ .
Then we have

(1.10) $m(r, \xi_{j})=m(r, \xi_{j}’)$ , $T_{f}(r;\Omega)=T_{f’}(r;\Omega)$ .
Let $R’$ be the ramification divisor of $\pi’$ : $X’arrow C^{m}$ . Then we see by $(1.8)\sim(1.10)$

that
$m(r, \xi_{j})=m(r, \xi_{j}’)$

$\leqq 8\log^{+}(T_{f’}(r)+N(r, R’))$

+12 $\log^{+}T_{f’}(r)+(2m-1)\delta$ log $r+O(1)$ $\Vert_{E(\delta)}$ .

By [10, Lemma 4.1] there is a positive constant $C_{3}$ independent of $f’$ such that

(1.11) $N(r, R’)\leqq C_{3}T_{f’}(r)+O(1)$ .
Therefore we obtain

$m(r, \xi_{j})\leqq 20\log^{+}T_{f’}(r)+(2m-1)\delta$ log $r+O(1)$ $\Vert_{E(\delta)}$

$=20\log^{+}T_{f}(r)+(2m-1)\delta$ log $r+O(1)$ $\Vert_{E(\delta)}$ . Q. E. D.

The polar divisors of $\xi_{j}$ are at most Supp $(f^{*}D+R)$ . Therefore we have by
Lemma (1.6)

$T(r, \xi_{j})\leqq N$( $r$ , Supp $f^{*}D$ ) $+N$( $r$ , Supp $R$ )

$+0$ ( $\delta$ log $r$) $+O(\log^{+}T_{f}(r))$ $\Vert_{E(\delta)}$ .
Let $\nu=(\nu_{1}, \cdots , \nu_{m}),$ $\nu_{j}\in Z,$ $\nu_{j}\geqq 0$, be a multi-index and put $D_{\nu}=\partial^{|\nu|}/(\partial z^{1})^{\nu_{1}}\cdots(\partial z^{m})^{\nu_{m}}$

with $| \nu|=\sum\nu_{j}$ . Let $D_{\nu}\xi_{j}$ be the partial derivative of $\xi_{j}$ with respect to D..
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Then the polar divisors of $D_{\nu}\xi_{j}$ are at most $|\nu$ lSupp $(f^{*}D+R)$ . Using Lemma
(1.6) successively, we have the following.

LEMMA (1.12). Let the notation be as above. Then we have

$m(r, D_{\nu}\xi_{j})=O$ ( $\delta$ log $r$) $+O(\log^{+}T_{f}(r))$ $\Vert_{E(\partial)}$ ,

$T(r, D_{\nu}\xi_{j})\leqq|\nu|$ ($N$( $r$ , Supp $f^{*}D)+N(r$, Supp $R)$ )

$+0$ ( $\delta$ log $r$) $+O(\log^{+}T_{f}(r))$ $\Vert_{E(\delta)}$

for arbitrary $\delta\in(0,1)$ .

2. Quasi-Albanese mapping and subvarieties of quasi-Abelian varieties.

Let $V$ be a complex projective manifold and $D$ an effective reduced divisor
on $V$ . Let $\Omega_{V}^{1}(\log D)$ be the sheaf of germs of logarithmic l-forms along $D$ (cf.,

$e.g.,$ $[6]$ and [7]). Let $\{\omega^{1}, \cdots , \omega^{q}, \omega^{q+1}, \cdots , \omega^{p}\}$ be a basis of $H^{0}(V, \Omega_{V}^{1}(\log D))$

such that $\omega^{1},$ $\cdots$ , $\omega^{q}$ are holomorphic l-forms on $V$ and

$\omega^{i}=d$ log $\theta^{i}$ , $q+1\leqq i\leqq p$ ,

where $\theta^{i}$ are multiplicative meromorphic functions over $V$ such that Supp $(\theta^{i})\subset D$ .
Taking a fixed point $O\in X$, we consider the p-ple multivalued holomorphic function

$( \int_{0}^{x}\omega^{1},$

$\cdots,$
$\int_{0}^{x}\omega^{p})\in C^{p}$ $(x\in V-D)$ .

Then the subgroup $\Gamma=\{$( $\int_{\gamma}\omega^{1},$ $\cdots$ , $\int_{\gamma}\omega^{p}$) $;\gamma\in H_{1}(V-D, Z)\}$ of $C^{p}$ is discrete and

we have a holomorphic mapping

$\alpha$ : $x \in V-Darrow(\int_{0}^{x}\omega^{1},$ $\cdots$ $\int_{0}^{x}\omega^{p})\in C^{p}/\Gamma=A_{V- D}$ ,

which is called the quasi-Albanese mapping (cf. [6]). The group $A_{V- D}$ is an
algebraic group such that the Sequence

$0arrow(C^{*})^{p-q}arrow A_{V- D}arrow A_{V}arrow 0$

is exact, where $C^{*}$ denotes the multiplicative group of non-zero complex numbers
and $A_{V}$ the Albanese variety of $V$ ([6]). We call $A_{V- D}$ the quasi-Albanese
variety of $V-D$ , which has the similar universal property to the Albanese variety
([6]). In general, a complex algebraic group $A$ is called a quasi-Abelian variety
if $A$ carries an exact sequence

$0arrow(C^{*})^{t}arrow Aarrow A_{0}arrow 0$ ,

where $A_{0}$ is an Abelian variety ([6]).
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Let $W\subset A$ be a subvariety of dimension $n$ of a quasi-Abelian variety $A$ of
dimension $N$. Then by [6] and [7] we have

(2.1) $\{_{subgroup\{a\in A;W+a=W\}}Wisofgenera1typeifandonlyiftisfinite$.he
Let $W_{reg}$ denote the set of regular points of $W$ and $i_{W_{reg}}$ : $W_{reg}arrow A$ the natural
inclusion mapping. Let $J_{k}(W_{reg})$ (resp. $J_{k}(A)$ ) be the k-th jet bundle over $W_{reg}$

(resp. $A$) of holomorphic mappings from neighborhoods of the origin of $C$ into
$W_{reg}$ (resp. $A$) (cf., $e.g.,$ $[15$ , section 2]). Then $j_{W_{reg}}$ naturally induces the in-
jective bundle morphism

$(i_{W_{reg}})_{*}$ : $J_{k}(W_{reg})arrow J_{k}(A)$ .

Let $\omega^{1},$ $\cdots$ , $\omega^{N}$ be the basis of invariant l-forms on $A$ (logarithmic l-forms on
$A)$ . Then $\omega^{1}\wedge\cdots$ A $\omega^{N}$ does not vanish anywhere on $A$ . By making use of
$\{\omega^{1}, \cdots , \omega^{N}\},$ $J_{k}(A)$ has the triviality, $J_{k}(A)\cong A\cross(C^{N})^{k}$ . Let $\mu:J_{k}(A)arrow(C^{N})^{k}$ be
the projection and set

$I_{W_{reg}k}=\mu\circ(i_{W_{reg}})_{*}$ : $J_{k}(W_{reg})arrow(C^{N})^{k}$

Assume that $W$ is of general type. Let $\Delta=\{z\in C;|z|<1\}$ be the unit disc,
$g:\Deltaarrow W_{reg}$ a holomorphic mapping and $J_{k}(g):\Deltaarrow J_{k}(W_{reg})$ its k-th prolongation.

As a corollary of [14, Lemma (4.4)] we have the following:

LEMMA (2.2). Let $g:\Deltaarrow W_{reg}$ be algebraically non-degenerate $(i.e., g(\Delta)$ is
Zariski dense in $W_{reg}$). Then the differential of $I_{Wreg^{k}}$

$dI_{W_{r}eg^{k}}$ : $T(J_{k}(W_{reg}))arrow T((C^{N})^{k})$

is injective at $J_{k}(g)(0)$ for all large $k$ , where $T(\cdot)$ denotes the holomorphic tangent
bundle.

REMARK (2.3). There always exists an algebraically non-degenerate holo-
morphic mapping from $\Delta$ into any algebraic variety.

For the above Remark (2.3), it is sufficient to see that there is an analytically
non-degenerate holomorphic mapping $g:\Deltaarrow\Delta^{n}$ ; that is, $g(\Delta)$ is not contained in
any proper analytic subset of $\Delta^{n}$ . For instance, let $a_{1},$

$\cdots$ , $a_{n}$ be real positive
numbers linearly independent over the rational number field $Q$ and $\varphi:\Deltaarrow H$ a
biholomorphic mapping from $\Delta$ into the upper half plane $H$ of $C$ . Put

$G$ : $z\in Harrow(e^{ia_{1}z}, \cdots e^{ia_{n}z})\in\Delta^{n}$ .
Then it is easy to see that $g\circ\varphi:\Deltaarrow\Delta^{n}$ is analytically non-degenerate.

In the following we improve Lemma (2.2) and show that we can generically
take $k=n$ . Let $\{\Phi_{1}, \cdots , \Phi_{s}\}$ be the maximal linearly independent system of
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$\{(i_{W_{reg}})^{*}(\omega^{j_{1}}\Lambda\ldots\Lambda\omega^{j_{n}}) ; 1\leqq]_{1}<\ldots<j_{n}\leqq N\}$ .

We say that $g:\Deltaarrow W_{reg}$ is non-degenerate with respect to $\{\Phi_{j}\}_{j=1}^{s}$ if $g(\Delta)\not\subset$

$\{\sum c_{j}\Phi_{j}=0\}$ for any $(c_{1}, \cdots , c_{s})\in C^{s}-\{0\}$ .

LEMMA (2.4). Let $g:\Deltaarrow W_{reg}$ be non-degenerate with respect to $\{\Phi_{j}\}_{j\approx 1}^{s}$ .
Then the differential

$dI_{Wreg^{n}}$ : $T(J_{n}(W_{reg}))arrow T((C^{N})^{n})$

is injective at some pojnt $J_{n}(g)(z)$ with $z\in\Delta$ .
PROOF. We put $\omega^{j\prime}=(i_{W_{reg}})^{*}\omega^{j}$ for $1\leqq j\leqq N$. We may assume that

$\omega^{1\prime}\Lambda\ldots\Lambda\omega^{n\prime}\not\equiv 0$ . Put

$\omega^{j\prime}=\sum_{i=1}^{n}Q_{i}^{j}\omega^{i\prime}$ $n+1\leqq J\leqq N$ ,

where $Q_{i}^{j}$ are rational functions on $W_{reg}$ and written as

$Q_{i}^{j}= \pm\frac{\omega^{1\prime}\wedge\cdots\wedge^{\wedge}\omega^{i\prime}\Lambda.\cdots\wedge\omega^{n\prime}\Lambda\omega^{J’}}{\omega^{1\prime}\wedge\cdot\cdot\Lambda\omega^{n\prime}}2)$

Put $W_{reg}’=\{\omega^{1\prime}\wedge\cdots\Lambda\omega^{n\prime}\neq 0\}$ . Take $z\in\Delta$ so that $g(z)\in W_{reg}’$ . Let $(x^{1}, \cdots , x^{n})$

be a holomorphic local coordinate system in a neighborhood $U$ of $g(z)$ such that
$dx^{j}=\omega^{j\prime}$ . Let $T(J_{k}(W_{reg}’))|U\cong U\cross(C^{n})^{k}$ be the local trivialization with respect
to $(x^{1}, \cdots , x^{n})$ . Let $(Z_{l}^{i})_{1\leqq l\leq k}^{1\leqq i\leq n}$ be the standard coordinate system of $(C^{n})^{k}$ , where
1 correspond to the orders of jets. Then $I_{W_{reg}k}$ is written as

$I_{W_{reg}k}(x, (Z_{l}^{i}))=((Z_{l}^{l})_{1\leqq l\leqq k}^{1\leqq i\leqq n}, (Y_{l}^{i})_{1\xi l\leqq k}^{n+1\leqq i\leqq N})\in(C^{N})^{k}$

where $Y_{l}^{i}$ are polynomials in $Z_{l’}^{i},$ $1\leqq l’\leqq l,$ $1\leqq i\leqq n$ and the partial derivatives of
$Qi$ of order $<l$ . Therefore we infer from Lemmas (2.2) and (2.4) that there are
$n$ rational functions $Q_{1},$ $\cdots$ , $Q_{n}$ among $\{Q_{i}^{j}\}$ which form a transcendental basis
of the rational function field of $W_{reg}$ over $C$ . Put $k=n$ . By the detailed ex-
pression of $Y_{l}^{i}$ in the proof of Lemma 2.3 of [15, p. 8] we see that some $n+n^{2}$

$(=\dim J_{n}(W_{reg}))$ minor of $dI_{W_{reg^{n}}}$ at $J_{n}(g)(z)$ is

$d(z)=|\begin{array}{lll}\frac{d}{dz}Q_{1}(g(z)) \cdots \frac{d}{dz}Q_{n}(g(z))\cdots \cdots \cdots\frac{d^{n}}{dz^{n}}Q_{1}(g(z)) \cdots \frac{d^{n}}{dz^{n}}Q_{n}(g(z))\end{array}|$ .

Since the functions 1, $Q_{1}(g(z)),$ $\cdots$ , $Q_{n}(g(z))$ are linearly independent over $C$ ,
$d(z)\not\equiv O$ on $\Delta$ . Hence $dI_{W_{reg}n}$ is injective at $J_{n}(g)(z)$ with $d(z)\neq 0$ . Q. E. D.

2) The symbol $\omega^{i\prime}\wedge$ stands for that it is deleted.
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3. An inequality of the second main theorem type.

Let $V$ be a complex projective manifold of dimension $n$ and $D$ an effective
reduced divisor on $V$ . Let $\alpha:V-Darrow A_{V- D}$ be the quasi-Albanese mapping and
$W$ the closed image of $\alpha$ . Let $\mu:J_{n}(A_{V-D})\cong A_{V-D}\cross(C^{N})^{n}arrow(C^{N})^{n}(N=\dim A_{V-D})$

be the projection and $I_{W_{reg}n}$ : $J_{n}(W_{reg})arrow(C^{N})^{n}$ the rational mapping dePned in
section 2. We set

$\Psi_{n}(V-D)=\mu\circ\alpha_{*}$ : $J_{n}(V-D)arrow(C^{N})^{n}$ .
Let $\alpha’$ be the mapping $\alpha$ regarded as a mapping into $W$ . Then we have

(3.1) $\Psi_{n}(V-D)=I_{W_{reg}n}\circ\alpha_{*}’$ on $J_{n}((V-D)\cap\alpha^{\prime-1}(W_{reg}))$ .
Let $\pi:Xarrow C^{m}$ be a finite analytic covering space with ramification divisor

$R$ and $f:Xarrow V$ a meromorphic mapping such that $f(X)\not\subset D$ . We fix a hermitian
metric form $\Omega$ on $V$ and set $T_{f}(r)=T_{f}(r;\Omega)$ .

MAIN THEOREM (3.2). Assume that $f$ : $Xarrow V$ is non-degenerate with respect
to $|K_{V}\otimes[D]|$ , dim $W=n$ , and $W$ is of general type. Then there is a $po\alpha tive$ con-
stant $K$ independent of $f$ such that

$KT_{f}(r)\leqq N$( $r$ , Supp $f^{*}D$ ) $+N(r, SuppR)$

$+O(\delta\log r)+O(\log^{+}T_{f}(r))$ $\Vert_{E(\delta)}$

for arbitrary $\delta\in(0,1)$ .
PROOF. Take a point $z_{0}\in X-SuppR$ so that $f$ is holomorphic at $z_{0}$ and

$f(z_{0})\not\in D$ . Then there is a neighborhood of $z_{0}$ which is biholomorphic to the
polydisc $\Delta^{n}(\rho;\pi(z_{0}))\subset C^{m}$ of radius $\rho>0$ with center $\pi(z_{0})$ . We identify the
neighborhood with $\Delta^{n}(\rho j\pi(z_{0}))$ and write $z_{0}=\pi(z_{0})$ . Let $(z^{1}, \cdots , z^{m})$ be the
standard coordinate system of $C^{m}$ . For the sake of simplicity, we assume that
$z_{0}=O$ , and put $\Delta^{n}(\rho;z_{0})=\Delta^{n}(\rho)$ . Let $\gamma:\Deltaarrow\Delta^{n}(\rho)$ be an analytically non-degenerate
holomorphic mapping such that $\gamma(0)=O$ (see Remark (2.3)). Then the holomorphic
mapping $f\circ\gamma:\Deltaarrow V$ is non-degenerate with respect to $|K_{V}\otimes[D]|$ . Take small
$\sigma>0$ so that $f\circ\gamma(\Delta(\sigma))\subset V-D$ , where $\Delta(\sigma)=\{t\in C:|t|<\sigma\}$ . Let $\{\omega^{1}, \cdots , \omega^{N}\}$

be a basis of $H^{0}(V, \Omega_{V}^{1}(\log D))$ . We may assume that $\omega^{1}\Lambda\ldots\wedge\omega^{n}\neq 0$ at $f(z_{0})$ .
Take a local coordinate neighborhood $U(x^{1}, \cdots , x^{n})$ of $f(z_{0})$ in $V-D$ such that
$f(z_{0})=(0, \cdots , 0)$ and $\omega^{i}=dx^{i},$ $1\leqq i\leqq n$ . Then the Jacobian matrix of the quasi-
Albanese mapping $\alpha$ : $V-Darrow A_{V-D}$ is everywhere of maximal rank on $U$, so
that $\alpha(f(z_{0}))\in W_{reg}$ and

(3.3) $\alpha_{*}$ : $J_{n}(U)arrow J_{n}(W_{reg})$

is a bundle into-isomorphism. Let $\sigma$ be smaller if necessary, so that the com-
posed mapping $a\circ f\circ\gamma:\Delta(\sigma)arrow W_{reg}$ is non-degenerate in the sense of Lemm (2.4).
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Then $dI_{W_{reg}n}$ : $T(J_{n}(W_{reg}))arrow T((C^{N})^{n})$ is injective at $J_{n}(a\circ f\circ\gamma)(t_{0})$ for some $t_{0}\in$

$\Delta(\sigma)$ . By making use of holomorphic automorphisms of $\Delta(\sigma)$ , we may assume
that $t_{0}=0$ . Letting $\sigma$ and $\rho$ be smaller if necessary, we have a holomorphic
mapping

$f(z;t)=f(z+\gamma(t))$ : $\Delta^{n}(\rho)\cross\Delta(\sigma)arrow U\subset V-D$ .
Taking the n-th jet of $f(z;t)$ in the valuable $t$ at $t=0$ for each $z\in\Delta^{n}(\rho)$ , we
obtain a holomorphic mapping

$f$ : $\Delta^{n}(\rho)arrow J_{n}(U)\subset J_{n}(V-D)$

such that $p\circ\tilde{f}(z)=f(z)$ and $\tilde{f}(0)=J_{n}(a\circ f\circ\gamma)(0)$ , where $p:J_{n}(V-D)arrow V-D$ is the
projection. By (3.1), $d\Psi_{n}(V-D):T(J_{n}(V-D))arrow T((C^{N})^{n})$ is injective at $\tilde{f}(0)$ . Let
$(Z_{l}^{i})_{1\xi l\leq n}^{1\leqq i\leq N}$ be the coordinate system in $(C^{N})^{n}$ as in the proof of Lemma (2.4).

We fix an embedding $V\subset P^{k_{0}}(C)$ and let $\varphi_{1},$
$\cdots$ , $\varphi_{k_{0}}$ be the generators of the

rational function field of $P^{k_{0}}$ restricted over $V$ . We may assume that $f(X)$ is
not contained in any polar locus of $\varphi_{k}(1\leqq k\leqq k_{0})$ . We regard the rational func-
tions $\varphi_{k}$ as rational functions on $J_{n}(V-D)$ through the projection $p$ . Then $\varphi_{k}$

are algebraic over the rational function field generated by $(\Psi_{n}(V-D))^{*}Z_{l}^{i},$ $1\leqq l\leqq n$ ,
$1\leqq i\leqq N$. Moreover, applying the same proof as in [13, Lemma (3)] to $f:\Delta^{n}(\rho)$

$arrow J_{n}(V-D)$ , we have only finitely many polynomials in $T_{k}$ , $1\leqq k\leqq k_{0}$ , and $Z_{l}^{i}$ ,
$1\leqq l\leqq n,$ $1\leqq i\leqq N$

$P_{ks}(T_{k}, Z_{l}^{i})=P_{ks0}(Z_{l}^{i})(T_{k})^{d_{kS}}+\cdots+P_{ksd_{ks}}(Z_{l}^{i})$ ,

$1\leqq s\leqq s_{k}$ , which are independent of $f$ , such that

(3.4) $\{\begin{array}{ll}P_{ks}(\varphi_{k}(f(z)), (\Psi_{n}(V-D))^{*}Z_{l}^{i}(\tilde{f}(z)))\equiv 0 , 1\leqq s\leqq s_{k} ,P_{kso}((\Psi_{n}(V-D))^{*}Z_{l}^{i}(f(z))\not\equiv 0 with some s\end{array}$

for all $k$ and $z\in\Delta^{n}(\rho)$ . We Put

$f^{*} \omega^{i}=\sum_{j=1}^{m}\xi_{j}^{i}dz^{j}$ ,

$z^{j_{\circ}}\gamma(t)=c_{1}^{j}t+\cdots+c_{n}^{j}t^{n}+higher$ term.

Then the meromorphic functions $(\Psi_{n}(V-D))^{*}Z_{l}^{i}(f(z))$ are polynomials in $\xi_{j}^{i}$ ,
partial derivatives $D_{\nu}\xi_{j}^{i}$ of $\xi_{j}^{i}$ of order $|\nu|\leqq l-1$ and $c_{h}^{j},$ $1\leqq h\leqq l,$ $1\leqq j\leqq m$ , where
$\nu=(\nu_{1}, \cdots , \nu_{m})$ are multi-indices and $D_{\nu}=\partial^{I}$ “ $|/(\partial z^{1})^{\nu_{1}}\cdots(\partial z^{m})^{v_{m}}$ . Substituting these
polynomials in (3.4), we have only finitely many polynomials

$\tilde{P}_{ks}(T_{k}, -i-i\nu J +\tilde{P}_{ksa_{ks}}(-\nu!)$

in $T_{k}$ and $--l\nu j(|\nu|\leqq n-1)$ such that
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(3.5)$\{\begin{array}{ll}\tilde{P}_{ks}(\varphi_{k}(f(z)), D_{\nu}\xi_{j}^{i}(z))\equiv 0, 1\leqq s\leqq s_{k}, \tilde{P}_{ks0}(D_{v}\xi_{j}^{i}(z))\not\equiv 0 with somes\end{array}$

for $z\in\Delta^{n}(\rho)$ and $k=1,2,$ $\cdots$ , $k_{0}$ . Since $\Delta^{n}(\rho)$ is an open subset of $X$, the asser-
tion (3.5) holds for all $z\in X$. Applying the proof of Valiron’s theorem [21, sec-
tion 1], we have

(3.6) $K_{1}T(r, f^{*} \varphi_{k})\leqq\sum_{\nu.i,j}T(r, D_{\nu}\xi_{j}^{i})+O(1)$ , $1\leqq k\leqq k_{0}$ ,

where $K_{1}$ is a positive constant independent of $f$ . Here one remarks that

(3.7) $K_{1}$ depends only on the degrees of the polynomials $P_{ks}$ .
We infer from (3.6) and Lemma (1.12) that

(3.8) $K_{2}T(r, f^{*}\varphi_{k})\leqq N$( $r$ , Supp $f^{*}D$ ) $+N$( $r$ , Supp $R$ )

$+0$ ( $\delta$ log $r$) $+O(\log^{+}T_{f}(r))$ $\Vert_{E(\delta)}$ , $1\leqq k\leqq k_{0}$ .
On the other hand, there is a positive constant $K_{a}$ independent of $f$ such that

(3.9) $K_{3}T_{f}(r) \leqq\max_{1\leqq k\leqq k_{0}}T(r, f^{*}\varphi_{k})+O(1)$ .

We have by (3.8) and (3.9)

$KT_{f}(r)\leqq N$( $r$ , Supp $f^{*}D$ ) $+N$( $r$ , Supp $R$ ) $+O$ ( $\delta$ log $r$ ) $+O(\log^{+}T_{f}(r))$ $\Vert_{E(\delta)}$ ,

where $K$ is a positive constant independent of $f$ . Q. E. D.
We say that the finite analytic covering space $\pi$ : $Xarrow C^{m}$ is algebraic if $X$

is an algebraic variety and $\pi$ is rational: In this case, $X$ is necessarily affine
algebraic.

COROLLARY (3.10). Let $D$ and $f$ : $Xarrow V$ be as in the Main Theorem (3.2).

Assume that $\pi$ : $Xarrow C^{m}$ is algebraic. Then there is a $po\alpha tive$ constant $K$ in-
dependent of $f$ such that

$KT_{f}(r)\leqq N$( $r$ , Supp $f^{*}D$ ) $+O(\log^{+}(rT_{f}(r)))$ $\Vert_{E}$ .
The proof is clear by the Main Theorem (3.2) and the following lemma:

LEMMA (3.11) ([10, p. 274]). The finite analytic covering space $\pi$ : $Xarrow C^{m}$ is
algebraic if and only if $N(r, R)=O(\log r)$ . Moreover, in the case where $\pi$ : $Xarrow C^{m}$

is algebraic, $f$ is rational if and only if $T_{f}(r)=O(\log r)$ .
THEOREM (3.12). Let $D$ be a pkvisor on $V$ as in the Main Theorem (3.2) and

$f$ : $Xarrow V$ a meromwPfuc maPping such that $f(X)\not\subset D$ . Assume that $X$ is the
domain of exestence of $f$ , and that

$N$( $r$ , Supp $R$ ) $=o(T_{f}(r))$ or $O(\log r)$ , $N$( $r$ , Supp $f^{*}D$ ) $=o(T_{f}(r))$ .
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Then we have that
i) $f$ is degenerate with respect to $|K_{V}\otimes[D]|$ ,

$or$

ii) $\pi$ : $Xarrow C^{m}$ is algebraic and $f$ is rational.
PROOF. Suppose that $f$ is non-degenerate with respect to $|K_{V}\otimes[D]|$ . Then

by the Main Theorem (3.2) and tbe assumptions we see that

(3.13) $T_{f}(r)=O(\log r)$ $\Vert_{E}$ .

Since $T_{f}(r)$ is a convex increasing function in log $r$ , the estimate (3.13) implies
that

$T_{f}(r)=O(\log r)$ .
Hence by Lemma (3.11) we see that $\pi$ : $Xarrow C^{m}$ is algebraic and $f$ is rational.

Q. E. D.
REMARKS TO THE CASE OF $V=P^{n}(C)$ .
Let $\pi:Xarrow C^{m}$ and $R$ be as above. Let $V=P^{n}(C)$ and $f$ : $Xarrow P^{n}(C)$ be a

linearly non-degenerate meromorphic mapping. Stoll [20, Theorem 11.8] proved
the second main theorem for $f$ and hyperplanes of $P^{n}(C)$ in general position.
Here, applying the arguments of the present section, we give a little more ex-
plicit inequality.

As seen in (1.10), we may assume without loss of generality that $X$ is the
domain of existence of $f$ . Let $k$ be the sbeet number of $\pi$ : $Xarrow C^{m}$ and $T_{f}(r)$

the characteristic function of $f$ with respect to the standard Fubini-Study-K\"ahler

form on $P^{n}(C)$ . Then by [10, Lemma 4.1], the estimate (1.11) takes the form of

(3.14) $N(r, R)\leqq(2k-2)T_{f}(r)+O(1)$ .

Let $\{D_{i}\}3=1$ be a finite family of hyperplanes of $P^{n}(C)$ in general position. By
making use of “Lemma on logarithmic derivatives” due to Vitter [22] (cf. also
[1]) and Cartan’s method [3] combined with the arguments of the present sec-
tion and the computation of the ramification divisor $R$ (cf. [17] and [16, Prop-
osition 3]), we have

(3.15) $(q-n-1)T_{f}(r) \leqq\sum_{i=1}^{q}N_{n}(r, f^{*}D_{i})+nN$( $r$ , Supp $R$ )

$+0$ ( $\delta$ log $r$ ) $+O(\log^{+}T_{f}(r))$ $\Vert_{E(\delta)}$ ,

where $N_{n}(r, f^{*}D_{i})$ are counting functions dePned as follows: If SuppZ $= \bigcup_{j=1}^{\infty}Z_{j}$

is the irreducible decomposition of the support of a divisor $Z$ on $X$ and $Z=$

$\sum_{j=1}^{\infty}\nu_{j}Z_{j}$, then we set

$N_{n}(r, Z)= \sum_{j=1}^{\infty}$ min $\{\nu_{j}, n\}N(r, Z_{j})$ .

It follows from (3.14) and (3.15) that
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(3.16) $(q-(2kn-n+1))T_{f}(r) \leqq\sum_{i=1}^{q}N_{n}(rf^{*}D_{i})+O$ ( $\delta$ log r)

$+O(\log^{+}T_{f}(r))$ $\Vert_{E(\delta)}$ .
Setting $\delta_{n}(D_{i})=1-\varlimsup_{rarrow\infty}N_{n}(r, f^{*}D_{i})/T_{f}(r)$ , we have a defect relation:

(3.17) $\sum_{i=1}^{q}\delta_{n}(D_{i})\leqq 2kn-n+1$ .

4. Application to multiplicity inequalities.

Let $Larrow V$ be a holomorphic line bundle over an n-dimensional complex pro-
jective manifold $V$ . Let $|L|$ be the complete linear system of $L$ and $|L|’=$

{$D\in|L|$ ; $D$ is irreducible and reduced}. Then $|L|’$ is a Zariski open subset of
$|L|$ . Assume that there are 1 divisors $D_{1},$ $\cdots$ , $D_{\iota}\in|L|’$ such that $D= \sum_{i=1}^{l}D_{i}$

satisfies the conditions of the Main Theorem (3.2). For example, if $L$ is ample,
then there are such divisors in $|L^{j}|’$ for large $j$ . Let $\lambda$ be the smallest one
among such positive integers $l$ . Let $--$ be the set of $(D_{1}, \cdots , D_{\lambda})\in\Pi_{1}^{\lambda}|L|’$ such
that $D= \sum_{i=1}^{\lambda}D_{l}$ satisfies the conditions of the Main Theorem (3.2). Then $--$ is
a Zariski open subset of $\Pi_{1}^{\lambda}|L|$

’ and symmetric with respect to the permutations.
Let $\pi:Xarrow C^{m}$ be a finite analytic covering space and $R$ its ramification

divisor. Let $f$ : $Xarrow V$ be a meromorphic mapping which is non-degenerate with
respect to $|L|’$ and $|K_{V}\otimes L^{\lambda}|$ , and $T_{f}(r)$ the characteristic function of $f$ with
respect to a fixed hermitian metric form on $V$ . Let $(D_{1}, \cdots , D_{\lambda})\in\Xi$ and $\Psi_{n}(V-$

$\Sigma_{i=1}^{\lambda}D_{i})$ be the mapping defined by (3.1). Then the mapping

$(y, (D_{1}, \cdots , D_{\lambda}))\in J_{n}(V)\cross--arrow\Psi_{n}(V-\Sigma D_{i})(y)\in(C^{N})^{n}$

is a rational mapping which is regular on $\{(y, (D_{1}, \cdots , D_{\lambda}))\in J_{n}(V)\cross-;y\not\in\sum D_{i}\}$ .
By the construction of the polynomials $P_{ks}$ in (3.4) (see the proof of [13, Lemma
(3)]) and by (3.7), we see that there is a positive constant $K$ independent of $f$

such that

(4.1) $KT_{f}(r) \leqq\sum_{l=1}^{\lambda}N$( $r$ , Supp $f^{*}D_{i}$ ) $+N$( $r$, Supp $R$ )

$+O$ ( $\delta$ log $r$) $+O(\log^{+}T_{f}(r))$ $\Vert_{E(\delta)}$

for all $(D_{1}, \cdots , D_{\lambda})\in\Xi$ . Let $T_{f}(r;L)$ be the characteristic function of $f$ with
respect to the $(1, 1)$ form representing the first Chern class of $L$ . Then we have

(4.2) $\{\begin{array}{ll}N(r, f^{*}D)\leqq T_{f}(r;L)+O(1) for D\in|L| ,T_{f}(r;L)\leqq CT_{f}(r), \end{array}$

where $C$ is a positive constant independent of $f$ (cf. [2], [5], [10], [18] and
[19]).
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Let $\{D_{i}\}_{i=1}^{q}$ be an arbitrary finite family of divisors in $|L|’$ such that
$(D_{i_{1}}, \cdots , D_{i_{\lambda}})\in--$ for all $\lambda$ divisors $D_{t_{j}}$ of $\{D_{i}\}3=1$ . Let $\nu_{i}$ be positive integers
such that

$\nu_{i}$ Supp $f^{*}D_{i}\leqq f^{*}D_{l}$ , $1\leqq i\leqq q$ .

In case $f(X)\cap D_{i}=\emptyset$ , we set $\nu_{i}=+\infty$ . Then for all $\lambda$ divisors $D_{i_{1}},$ $\cdots$ , $D_{i_{\lambda}}$ of
$\{D_{i}\}_{i=1}^{q}$ , we have by (4.1) and (4.2)

$K \leqq\sum_{j=1}^{\lambda}\frac{N(r,Suppf^{*}D_{i_{j}})}{T_{f}(r)}+\frac{N(r,SuppR)}{T_{f}(r)}$

$+o( \frac{\delta\log r}{T_{f}(r)})+o(\frac{\log^{+}T_{f}(r)}{T_{f}(r)})$ $\Vert_{E(\delta)}$

$\leqq C\sum_{j=1}^{\lambda}\frac{N(r,f^{*}D_{i_{j}})}{T_{f}(r;L)}\cdot\frac{1}{\nu_{i_{j}}}+o(\frac{N(r,SuppR)}{T_{f}(r)})$

$+o( \frac{\delta\log r}{T_{f}(r)})+o(\frac{\log^{+}T_{f}(r)}{T_{f}(r)})$ $\Vert_{E(\delta)}$ .

Thus we have

$K \leqq C\sum_{j=1}^{\lambda}\frac{1}{\nu_{t_{j}}}+O(\delta)+o(\varlimsup_{rarrow\infty}\frac{N(r,SuppR)}{T_{f}(r)})$ ,

so that

(4.3) $K’ \leqq\sum_{j=1}^{\lambda}\frac{1}{\nu_{i_{j}}}+o(\varlimsup_{r\infty}\frac{N(r,SuppR)}{T_{f}(r)})$ ,

where $K’=K/C$. Now assume that $N$($r$ , Supp $R$ ) $=o(T_{f}(r))$ . Then it follows
from (4.3) that

$K’ \leqq\sum_{j=1}^{I}\frac{1}{\nu_{t_{j}}}$

for all $\lambda$ integers $\nu_{i_{1}},$
$\cdots$ , $\nu_{i_{\lambda}}$ . Hence we get

$\sum_{i=1}^{q}\frac{1}{\nu_{i}}\geqq\frac{K’}{\lambda}q$ .

Therefore we have proved the following theorem.

THEOREM (4.4). Let $f$ : $Xarrow V$ be a meromorphic maplnng which is non-
degenerate with respect to $|L|’$ and $|K\ovalbox{\tt\small REJECT} L^{\lambda}|,$ $\{D_{i}\}_{t=1}^{q}$ a finite family $of$ &visors
in $|L|’$ and $\nu_{i},$ $1\leqq i\leqq q,$ $po\alpha tive$ integers such that $\nu_{i}$ Supp $f^{*}D_{i}\leqq f^{*}D_{i}$ for all $i$ .
Assume the following conditions:

i) $N$( $r$ , Supp $R$) $=o(T_{f}(r))$ ,
ii) $(D_{i_{1}}, \cdots , D_{i_{\lambda}})\in\Xi$ for all $\lambda$ &visws $D_{i_{1}},$ $\cdots$ , $D_{l_{\lambda}}$ of $\{D_{i}\}_{i}^{q}=1$ .

Then there is a $po\alpha tive$ constant $K’$ independent of $f$ and $\{D_{i}\}3=1$ such that
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$\sum_{i=1}^{q}\frac{1}{\nu_{i}}\geqq\frac{K’}{\lambda}q$ .

EXAMPLE. Let $X=C^{m},$ $V=P^{n}(C)$ and $L$ be the hyperplane bundle over
$P^{n}(C)$ . Then we see that

$\lambda=n+2$ and $K=K’= \frac{1}{n}$ (cf. [12] and (3.15))

and that $K_{Pn(C)}\otimes L^{n+2}=L$ . Therefore $f$ : $C^{m}arrow P^{n}(C)$ is non-degenerate with
respect to $|L|’$ and $|K_{P^{n}(C)}\otimes L^{\lambda}|$ if and only if $f$ is linearly non-degenerate.
In this case, Theorem (4.4) implies

(4.5) $\sum_{i=1}^{q}\frac{1}{\nu_{i}}\geqq\frac{q}{(n+2)n}$

Let $\pi$ : $Xarrow C^{m}$ be a k-sheeted finite analytic covering space and $f$ : $Xarrow P^{n}(C)$

a linearly non-degenerate meromorphic mapping. Then the second main theorem
(3.16) implies

(4.6) $\sum_{i=1}^{q}\frac{1}{\nu_{i}}\geqq\frac{q-2kn+n-1}{n}$

Therefore, putting $k=1$ , we see that (4.5) is not sharp: The reason may lie in
the fact that the inequality of the second main theorem type proved in the Main
Theorem (3.2) is not good enough to derive defect relations.
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