On cyclotomic units connected with *p*-adic characters

By Tsuyoshi UEHARA

(Received Aug. 23, 1983) (Revised Dec. 8, 1983)

§1. Introduction.

Let p be an odd prime and let K be an abelian number field of degree prime to p which contains a primitive p-th root of unity. We denote by η_{ϕ} a ϕ -relative cyclotomic unit in the sense of Gras [2], where ϕ is a non-trivial even p-adic character of the Galois group of K over the rationals. Gras has given some congruences concerning η_{ϕ} and Bernoulli numbers associated with the reflection $\bar{\phi}$ of ϕ . Let $A(\phi)$, $A(\bar{\phi})$ be p-subgroups of the ideal class group of K corresponding to ϕ , $\bar{\phi}$ respectively. A close relation between $A(\phi)$ and $A(\bar{\phi})$ was stated by Leopoldt [5]. Recently Wiles [8] proved that if K is the p-th cyclotomic field and η_{ϕ} is a p-th power in K then $A(\phi)$ is non-trivial.

In this paper we shall give a relation between η_{ϕ} and $A(\bar{\phi})$. Namely we state a necessary and sufficient condition for η_{ϕ} to be a *p*-th power in K in terms of the ideals representing classes in $A(\bar{\phi})$. In the case that K is the *p*-th cyclotomic field, Iwasawa has shown the above result applying a theorem of Artin-Hasse concerning power residue symbols (cf. [3], Lemma 3). On the other hand our proof is essentially based on the prime factorization of certain Jacobi sums.

§2. Notation and results.

Throughout this paper we denote by p an odd prime and by Z, Z_p , Q, and Q_p the ring of rational integers, the ring of p-adic integers, the field of rational numbers, and the field of p-adic numbers respectively. Further it is assumed that all integers and all algebraic number fields are contained in an algebraic closure \overline{Q}_p of Q_p . For a rational integer m > 0 let ζ_m be a primitive m-th root of unity.

Let K be an abelian number field and let χ be a character of the Galois group Gal(K/Q). By $g(\chi)$ we always mean the order of χ . Let K_{χ} be the fixed field of the kernel of χ . Then K_{χ} is a cyclic extension of Q of degree $g(\chi)$.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 58540115), Ministry of Education.

T. UEHARA

For any abelian number field M containing K_{χ} we regard χ as a character of $\operatorname{Gal}(M/Q)$ by putting $\chi(\sigma) = \chi(\sigma_K)$ for each σ in $\operatorname{Gal}(M/Q)$, where σ_K is an automorphism of K whose restriction to K_{χ} coincides with that of σ . If K_{χ} is contained in $Q(\zeta_f)$ for some f > 0, then we identify χ and the corresponding Dirichlet character modulo f so that $\chi(a) = \chi(\sigma_a)$ for every a in Z, prime to f, where σ_a is the automorphism of $Q(\zeta_f)$ determined by $\zeta_f^{\sigma_a} = \zeta_f^a$. Let $f(\chi)$ be the least rational integer f > 0 such that $K_{\chi} \subset Q(\zeta_f)$. Then χ is a primitive Dirichlet character modulo $f(\chi)$.

Let $Q_p(\chi)$ be the field generated by the values of χ over Q_p . We introduce a *p*-adic character ϕ such that

$$\phi = \sum_{\tau \in H} \chi^{\tau}$$

with $H=\operatorname{Gal}(\boldsymbol{Q}_p(\boldsymbol{\chi})/\boldsymbol{Q}_p)$, where $\boldsymbol{\chi}^r$ is a character defined by $\boldsymbol{\chi}^r(\sigma)=\boldsymbol{\chi}(\sigma)^r$ for any σ in $\operatorname{Gal}(K/\boldsymbol{Q})$. We call ϕ the *p*-adic character over $\boldsymbol{\chi}$. We put

$$e(\phi) = g(\chi)^{-1} \sum_{\sigma \in G_{\chi}} \phi(\sigma) \sigma^{-1}$$
 with $G_{\chi} = \operatorname{Gal}(K_{\chi}/Q)$.

When $g(\chi)$ is prime to p, $e(\phi)$ is an idempotent in the group ring $\mathbb{Z}_p[G_{\chi}]$.

From now on we suppose that K contains ζ_p and that $[K:\mathbf{Q}]$ is prime to p. Then $g(\chi)$ is also prime to p and $f(\chi)$ is not divisible by p^2 . Further let χ be non-trivial and even. There exists an element $e'(\phi) = \sum_{\sigma \in G_{\chi}} n_{\sigma} \sigma^{-1}$ of $\mathbf{Z}[G_{\chi}]$ such that

$$e'(\phi) \equiv e(\phi) \pmod{p \mathbf{Z}_p[G_{\chi}]}, \quad \sum_{\sigma \in G_{\chi}} n_{\sigma} = 0.$$

We consider a ϕ -relative cyclotomic unit η_{ϕ} in the sense of Gras [2] defined by

(1)
$$\eta_{\phi} = (N_{\chi}(1 - \zeta_{f(\chi)}))^{e'(\phi)}$$

with N_{χ} being the norm from $Q(\zeta_{f(\chi)})$ to K_{χ} . In the case that $K=Q(\zeta_p)$, it is shown [3] that η_{ϕ} is a *p*-th power in K if and only if $(E/E_0E^p)^{e(\phi)} \neq 1$, where E denotes the unit group of K and E_0 the subgroup of E generated by cyclotomic units.

Let $\boldsymbol{\omega}$ be a character of $\operatorname{Gal}(K/\mathbf{Q})$ of order p-1 such that $\boldsymbol{\omega}(\sigma) \equiv a \pmod{p\mathbf{Z}_p}$ for each σ in $\operatorname{Gal}(K/\mathbf{Q})$, where a is a rational integer satisfying $\zeta_p^{\sigma} = \zeta_p^{a}$. We put

$$\bar{\chi} = \chi^{-1} \omega$$

and denote by $\bar{\phi}$ the *p*-adic character over $\bar{\chi}$. We call $\bar{\phi}$ the reflection of ϕ . Using the first Bernoulli number $B_1(\bar{\chi}^{-1})$ associated with $\bar{\chi}^{-1}$ we introduce a rational integer $m(\bar{\phi})$ such that

$$B_1(\bar{\lambda}^{-1}) = p^{m(\bar{\phi})} \mu$$

where μ is a unit of $\mathbb{Z}_p[\zeta_{g(\bar{\chi})}]$. One has $m(\bar{\phi}) \ge 0$ because $(g(\bar{\chi}), p) = 1$ and $\bar{\chi} \neq \omega$. Moreover we define

$$e_{K}(\vec{\phi}) = \frac{1}{[K:Q]} \sum_{\sigma \in \operatorname{Gal}(K/Q)} \vec{\phi}(\sigma) \sigma^{-1}.$$

Let A_K be the *p*-Sylow subgroup of the ideal class group of K. It is known (cf. [2], Theorem I.2) that

$$p^{m(\bar{\phi})}e_K(\bar{\phi})A_K=0$$
.

Let \mathfrak{p} be a prime ideal of K lying above p and denote by $N\mathfrak{p}$ its norm. It is clear that $\alpha^{N\mathfrak{p}-1}\equiv 1 \pmod{1-\zeta_p}$ for any integer α in K prime to $1-\zeta_p$. An integer α in K is said to be p-primary if

$$\alpha^{N\mathfrak{p}-1}\equiv 1 \pmod{(1-\zeta_p)^p}.$$

THEOREM 1. Let K be an abelian number field containing ζ_p of degree prime to p. Denote by ϕ a non-trivial even p-adic character of the Galois group Gal(K/Q). Then a ϕ -relative cyclotomic unit η_{ϕ} is a p-th power in K if and only if $m(\bar{\phi}) > 0$ and for any ideal \mathfrak{a} , prime to p, representing a class in $e_{\kappa}(\bar{\phi})A_{\kappa}$ there is a p-primary integer α in K such that

$$a^{p^{m}(\phi)} = (\alpha)$$
.

This result will be proved in Section 5. If a principal ideal \mathfrak{b} of K is not generated by any *p*-primary integer, then \mathfrak{b} is not a *p*-th power of a principal ideal of K. Hence we obtain

COROLLARY. Let the notation and assumptions be as in Theorem 1. When $m(\bar{\phi}) > 0$, it holds that $\eta_{\phi} \neq \varepsilon^{p}$ for any unit ε of K if and only if $e_{K}(\bar{\phi})A_{K}$ has a cyclic subgroup of order $p^{m(\bar{\phi})}$ generated by an element of A_{K} containing an ideal, prime to p, whose $p^{m(\bar{\phi})}$ -th power is not generated by any p-primary integer.

§3. Cyclotomic units and Jacobi sums.

It is our aim in this section to give a relation between cyclotomic units and certain Jacobi sums. Let χ be an even primitive Dirichlet character modulo $f(\chi) > 1$, of order prime to p. We can write either $\chi = \psi$ or $\chi = \psi \omega^k$ with k, $1 \le k \le p-2$, where ψ is a primitive Dirichlet character modulo f, (f, p)=1, and ω denotes the Teichmüller character with respect to p, i.e. $\omega(a) \equiv a \pmod{pZ_p}$ for any a in Z. For convenience we put $\psi \omega^0 = \psi$.

Let \mathfrak{Q} be a prime ideal of $L = Q(\zeta_{fp})$ relatively prime to fp. The residue class ring

$$F_{\mathfrak{Q}} = \mathbf{Z}[\zeta_{fp}]/\mathfrak{Q}$$

is a finite field with $N\Omega$ elements, where $N\Omega$ means the norm of Ω . Note that $N\Omega-1$ is divisible by fp. Let $\theta = \theta_{\Omega}$ be a character of the multiplicative cyclic group F_{Ω}^* of order fp. Put $\theta(0)=0$. We treat the Jacobi sums $J(\theta^a, \theta^b)$

defined by

$$J(\theta^{a}, \theta^{b}) = -\sum_{x \in F_{\mathfrak{Q}}} \theta^{a}(x) \theta^{b}(1-x)$$

with a, b in Z. Let $r=r_{\mathfrak{Q}}$ be a fixed generator of $F_{\mathfrak{Q}}^*$. For each x in $F_{\mathfrak{Q}}^*$ we define a rational integer ind $x=\operatorname{ind}_{\mathfrak{Q}} x$ by

$$x = r^{\text{ind}x}$$
 and $0 \leq \text{ind} x \leq N \mathfrak{Q} - 2$.

Then one has

(2)
$$J(\theta^{a}, \theta^{b}) = -\sum_{v=1}^{s} \theta(r)^{av} \theta(r)^{b \operatorname{ind}(1-r^{v})}$$

with $s=N\Omega-2$. For a primitive Dirichlet character λ modulo m>0 we consider the Gauss sum

$$S(\lambda, \zeta_m) = \sum_{u=0}^{m-1} \lambda(u) \zeta_m^u$$

It is known that

(3)
$$S(\lambda, \zeta_m)S(\lambda^{-1}, \zeta_m) = \lambda(-1)m,$$

(4)
$$S(\boldsymbol{\omega}^{-a}, \zeta_p) \equiv (1-\zeta_p)^a/a! \pmod{p \mathbf{Z}_p[\zeta_p]}$$

for a, $1 \le a \le p-2$. To describe our results we also need a polynomial Log(X) in $\mathbb{Z}_p[X]$ defined by

$$\log(1+X) = \sum_{n=1}^{p-1} (-1)^{n+1} X^n / n .$$

Let d be the least common multiple of fp, p-1 and $g(\chi)$. All integers in the following are contained in $\mathbb{Z}_p[\zeta_d]$.

We now state the following basic lemma.

LEMMA 1. With the notation as above it holds that

$$\sum_{c=1}^{p-1} \boldsymbol{\omega}^{-1}(c) \sum_{\sigma \in G_L} \boldsymbol{\chi} \boldsymbol{\omega}^{-1}(\sigma) \operatorname{Log}(J(\theta, \ \theta^{cf})^{\sigma}) \equiv 0 \qquad (\operatorname{mod} \ \mathfrak{P}^p)$$

with $G_L = \text{Gal}(L/Q)$ and $\mathfrak{P} = (1-\zeta_p) \mathbf{Z}_p[\zeta_d]$ if and only if

$$\sum_{v=1}^{s} \chi^{-1}(v) \operatorname{ind} (1-r^{v}) \equiv 0 \quad (\operatorname{mod} \mathfrak{P}).$$

PROOF. Put $\zeta = \theta(r)$. Then ζ^p (resp. ζ^f) is a primitive *f*-th (resp. *p*-th) root of unity. We use the Gauss sums $S(\phi) = S(\phi, \zeta^p)$, $S(\omega^a) = S(\omega^a, \zeta^f)$ with a, $1 \le a \le p-2$. For convenience we set $S(\omega^0) = -1$. We now consider a polynomial h(X) defined by

$$h(X) = -\sum_{v=1}^{s} \zeta^{v} X^{\operatorname{ind}(1-r^{v})}.$$

Since h(1)=1 one has

$$\operatorname{Log}(h(1-X)) = \sum_{n=1}^{(p-1)s} \gamma_n X^n$$

68

with γ_n in $Z_p[\zeta]$. From (2) we obtain

$$\sum_{c=1}^{p-1} \boldsymbol{\omega}^{-1}(c) \sum_{\sigma \in \mathcal{G}_L} \boldsymbol{\chi} \boldsymbol{\omega}^{-1}(\sigma) \operatorname{Log}\left(J(\boldsymbol{\theta}, \ \boldsymbol{\theta}^{cf})^{\sigma}\right)$$
$$\equiv \sum_{c=1}^{p-1} \boldsymbol{\omega}^{-1}(c) \sum_{\sigma \in \mathcal{G}_L} \boldsymbol{\chi} \boldsymbol{\omega}^{-1}(\sigma) \sum_{n=1}^{p-1} \boldsymbol{\gamma}_n^{\sigma} (1-(\boldsymbol{\zeta}^{\sigma})^{cf})^n \qquad (\operatorname{mod} \mathfrak{P}^p)$$

$$\equiv S(\boldsymbol{\omega}^{-1}) \sum_{\boldsymbol{\sigma} \in \mathcal{G}_{L}} \boldsymbol{\chi} \boldsymbol{\omega}^{-1}(\boldsymbol{\sigma}) \sum_{n=1}^{p-1} \boldsymbol{\gamma}_{n}^{\boldsymbol{\sigma}} \sum_{i=1}^{n} \binom{n}{i} (-1)^{i} \boldsymbol{\omega}(i) \boldsymbol{\omega}(\boldsymbol{\sigma}) \qquad (\text{mod } \mathfrak{P}^{p})$$
$$\equiv -S(\boldsymbol{\omega}^{-1}) \sum_{\boldsymbol{\sigma} \in \mathcal{G}_{L}} \boldsymbol{\chi}(\boldsymbol{\sigma}) \boldsymbol{\gamma}_{1}^{\boldsymbol{\sigma}} \qquad (\text{mod } \mathfrak{P}^{p})$$

because $\binom{n}{i}\omega(i) \equiv n\binom{n-1}{i-1} \pmod{\mathfrak{P}^{p-1}}$ holds if $1 \leq i \leq n \leq p-1$. It is easy to see

$$\gamma_1 = \sum_{v=1}^s \zeta^v \operatorname{ind} (1 - r^v) \,.$$

Hence we compute

$$\sum_{\sigma \in \mathcal{G}_{L}} \chi(\sigma) \gamma_{1}^{\sigma} = \sum_{i=1}^{p-1} \sum_{\substack{(j,f)=1\\(j,f)=1}}^{f-1} \chi(if+jp) \sum_{v=1}^{s} \zeta^{(if+jp)v} \operatorname{ind}(1-r^{v})$$
$$\equiv \psi(p) \omega^{k}(f) S(\psi) S(\omega^{k}) \sum_{v=1}^{s} \chi^{-1}(v) \operatorname{ind}(1-r^{v}) \qquad (\text{mod } \mathfrak{P}^{p-1})$$

It follows from (3) and (4) that $S(\phi)S(\omega^k)$ is not divisible by \mathfrak{P}^{p-1} . Since $g(\chi)$ is prime to p, we have

$$\mathfrak{P} \cap \mathbb{Z}_p[\zeta_{g(\chi)}] = p \mathbb{Z}_p[\zeta_{g(\chi)}].$$

Thus any integer α in $Q_p(\chi)$ satisfying $\alpha \equiv 0 \pmod{\mathfrak{P}}$ is divisible by \mathfrak{P}^{p-1} . This proves the lemma.

In the rest of this section we shall show the following

THEOREM 2. Let \mathcal{X} be an even primitive Dirichlet character modulo $f(\mathcal{X}) > 1$, of order prime to p, and let ϕ be the p-adic character over \mathcal{X} . Denote by fp the least common multiple of p and $f(\mathcal{X})$ with f prime to p. Then a ϕ -relative cyclotomic unit η_{ϕ} is a p-th power in $L = Q(\zeta_{fp})$ if and only if

(5)
$$\sum_{c=1}^{p-1} \omega^{-1}(c) \sum_{\sigma \in \mathcal{G}_L} \phi \omega^{-1}(\sigma) \operatorname{Log}(J(\theta_{\mathfrak{L}}, \theta_{\mathfrak{L}}^{cf})^{\sigma}) \equiv 0 \pmod{\mathfrak{P}^p}$$

holds for any prime ideal \mathfrak{Q} of L prime to fp, and for any character $\theta_{\mathfrak{Q}}$ of $F_{\mathfrak{Q}}^*$ of order fp, where $G_L = \operatorname{Gal}(L/Q)$ and $\mathfrak{P} = (1 - \zeta_p) \mathbb{Z}_p[\zeta_d]$.

LEMMA 2. Let the notation and assumptions be as in Theorem 2. Then η_{ϕ} is a p-th power in L if and only if for any prime ideal \mathfrak{Q} of L not dividing fp, and for any τ in $H=\operatorname{Gal}(\boldsymbol{Q}_p(\boldsymbol{X})/\boldsymbol{Q}_p)$

(6)
$$\sum_{v=1}^{s} \chi^{-1}(v)^{\tau} \operatorname{ind}_{\mathfrak{Q}}(1-r^{v}) \equiv 0 \pmod{\mathfrak{P}}$$

is valid with s=NQ-2.

PROOF. Let \mathfrak{Q} be a prime ideal of L with $(\mathfrak{Q}, fp)=1$. First we note that the left hand side of (6) is equal to

$$\int_{v=1}^{f(\chi)-1} \chi^{-1}(v)^{\tau} \sum_{w=0}^{t-1} \operatorname{ind}_{\mathfrak{Q}}(1-r^{v+wf(\chi)})$$

with $t=(NQ-1)/f(\chi)$. Choose an integer β in L representing a generator r_Q of the cyclic group F_Q^* . One has

$$\prod_{w=0}^{t-1} (1-\beta^{v+wf(\chi)}) \equiv 1-\beta^{tv} \pmod{\mathbb{Q}}.$$

Remark that $\beta^t \equiv \xi \pmod{\mathfrak{Q}}$ for a certain primitive $f(\mathfrak{X})$ -th root ξ of unity. We may put $\zeta_{f(\mathfrak{X})} = \xi$ in the definition (1). Let y be the residue class in $F_{\mathfrak{Q}}$ represented by η_{ϕ} . For any σ in G_L we can see

(7)
$$\operatorname{ind}_{\mathfrak{Q}} y^{\sigma} \equiv g(\chi)^{-1} \sum_{\tau \in H} \chi(\sigma)^{\tau} \sum_{v=1}^{s} \chi^{-1}(v)^{\tau} \operatorname{ind}_{\mathfrak{Q}}(1-r_{\mathfrak{Q}}^{v}) \pmod{\mathfrak{P}}.$$

Take an automorphism ρ in G_L whose restriction to K_{χ} generates the cyclic group G_{χ} . Then

$$\sum_{l=0}^{g(\chi)-1}\chi^{-1}(\rho^l)^{\tau}\mathrm{ind}_{\mathfrak{Q}}(y^{\rho^l})$$

is congruent to the left hand side of (6) modulo \mathfrak{P} . Thus if η_{ϕ} is a *p*-th power in *L* then $\operatorname{ind}_{\mathfrak{Q}} y^{\sigma} \equiv 0 \pmod{p}$ for any \mathfrak{Q} and for any σ in G_L , and hence the congruence (6) is true for any \mathfrak{Q} and for any τ .

Conversely we assume that $\eta_{\phi} \neq \varepsilon^p$ for any unit ε of L. Since L contains ζ_p , the field $L(\eta_{\phi}^{1/p})$ is a normal extension of L of degree p. It is known that there are infinitely many prime ideals of L, relatively prime to fp, which remain prime in $L(\eta_{\phi}^{1/p})$. For such a prime ideal Ω it is shown that $\operatorname{ind}_{\Omega} y \not\equiv 0 \pmod{p}$. Indeed, if $\eta_{\phi} \equiv \alpha^p \pmod{Q}$ with some integer α in L, then $\eta_{\phi}^{1/p} \zeta_p^u \equiv \alpha \pmod{Q}$ for any u in Z. This gives a contradiction because $(\Omega, 1-\zeta_p)=1$. Hence from (7) we see that (6) does not hold for this prime ideal. Thus the proof is complete.

PROOF OF THEOREM 2. For any τ in H, χ^{τ} is also a character under ϕ . We set

$$C(\mathfrak{X}^{\mathsf{r}}, \theta_{\mathfrak{Q}}) = \sum_{c=1}^{p-1} \omega^{-1}(c) \sum_{\sigma \in G_L} \mathfrak{X}^{\mathsf{r}} \omega^{-1}(\sigma) \operatorname{Log} \left(J(\theta_{\mathfrak{Q}}, \theta_{\mathfrak{Q}}^{cf})^{\sigma} \right).$$

Then $\sum_{r \in H} C(X^r, \theta_{\mathfrak{Q}})$ is equal to the left hand side of (5). Further let ρ be as in the proof of Lemma 2. We have

$$J(\theta_{\mathfrak{Q}}, \theta_{\mathfrak{Q}}^{cf})^{\rho} = J(\theta_{\mathfrak{Q}}^{b}, \theta_{\mathfrak{Q}}^{bcf})$$

for some integer b in Z, prime to fp. Hence it follows that

$$\sum_{l=0}^{g(\chi)-1} \chi \omega^{-1}(b^l)^{\tau'} \sum_{\tau \in H} C(\chi^{\tau}, \ \theta_{\mathfrak{Q}}^{b^l})$$

$$= \sum_{l=0}^{g} \sum_{\ell=0}^{(\chi)-1} \chi \omega^{-1} (b^l)^{\tau'} \sum_{\tau \in H} \chi^{-1} \omega (b^l)^{\tau} C(\chi^{\tau}, \theta_{\mathfrak{Q}})$$
$$= g(\chi) C(\chi^{\tau'}, \theta_{\mathfrak{Q}})$$

for any τ' in *H*. Note that the order of θ_{Ω}^{bl} is also equal to *fp*. Applying Lemmas 1, 2 we obtain the assertion of Theorem 2.

§4. Prime factorization of Jacobi sums.

In this section let χ be an odd primitive Dirichlet character modulo $f(\chi)$ such that $(g(\chi), p)=1$ and $\chi \neq \omega$. We denote by ϕ the *p*-adic character over χ . We recall the first Bernoulli number $B_1(\chi^{-1})$ associated with χ^{-1} defined as follows:

$$B_1(\chi^{-1}) = f(\chi)^{-1} \sum_{u=0}^{f(\chi)-1} \chi^{-1}(u)u .$$

As in Section 2 we consider an invariant $m(\phi)$ such that $B_1(\chi^{-1}) = p^{m(\phi)}\mu$ with a unit μ in $\mathbb{Z}_p[\zeta_{g(\chi)}]$. It is clear that $m(\phi)$ is determined independently of the choice of a character χ under ϕ .

Let fp be the least common multiple of p and $f(\chi)$ with f prime to p. Take a prime ideal \mathbb{O} of $L=Q(\zeta_{fp})$ not dividing fp. Moreover let θ be a character of $F_{\mathfrak{O}}^*$ of order fp such that if a residue class $x \neq 0$ in $F_{\mathfrak{O}}$ contains an integer α satisfying $\alpha^{(N\mathfrak{Q}-1)/fp} \equiv \zeta_{fp} \pmod{\mathfrak{Q}}$, then $\theta(x) = \zeta_{fp}$. It is known (for instance, cf. [4]) that for rational integers a, b with $a+b \not\equiv 0 \pmod{fp}$,

(8)
$$\mathbb{Q}^{d(a,b)} = (J(\theta^a, \theta^b))$$

where

$$d(a, b) = \sum_{\substack{0 < u < f p \\ (u, f p) = 1}} \left(\left\langle \frac{au}{fp} \right\rangle + \left\langle \frac{bu}{fp} \right\rangle - \left\langle \frac{(a+b)u}{fp} \right\rangle \right) \sigma_u^{-1}.$$

Here for a real number s we mean by $\langle s \rangle$ its fractional part; namely $0 \leq \langle s \rangle < 1$ and $s - \langle s \rangle$ is in \mathbb{Z} . Further σ_u denotes the automorphism of L such that $\zeta_{fp}^{\sigma_u} = \zeta_{fp}^{u}$. If $a \equiv 0 \pmod{fp}$ then $J(\theta^a, \theta^{-a}) = 1$. So we may put d(a, -a) = 0 in this case.

For each automorphism σ of L let σ' be its restriction to K_{χ} . By simple calculation we can see that

(9)
$$\sum_{u} \left\langle \frac{cu}{fp} \right\rangle (\sigma'_{u})^{-1} e(\phi) = g(\chi)^{-1} \sum_{\tau \in H} \sum_{u} \chi^{-1}(u)^{\tau} \left\langle \frac{cu}{fp} \right\rangle_{\sigma \in G_{\chi}} \chi(\sigma)^{\tau} \sigma^{-1}$$

for any c in Z, where u runs over the integers such that 0 < u < fp, (u, fp)=1, and $H=\text{Gal}(Q_p(\chi)/Q_p)$. Also we compute

$$\sum_{u} \chi^{-1}(u) \left\langle \frac{cu}{fp} \right\rangle = t_{\chi}(c) B_{1}(\chi^{-1})$$

where

T. UEHARA

(10)
$$t_{\chi}(c) = \begin{cases} (p-1)\chi(c/p) & \text{if } f(\chi) = f \text{ and } p \mid c, \\ (1-\chi^{-1}(p))\chi(c) & \text{otherwise.} \end{cases}$$

For a, b in Z let d'(a, b) be the element of $Z[G_{\chi}]$ induced from d(a, b) by restriction. A theorem of Leopoldt [6] shows that d'(a, b) annihilates the ideal class group of K_{χ} . From (9) we get

(11)
$$d'(a, b)e(\phi) = p^{m(\phi)}g(\chi)^{-1}\sum_{\tau \in H}\mu(a, b)^{\tau}\sum_{\sigma \in G_{\chi}}\chi(\sigma)^{\tau}\sigma^{-1}$$
with $\mu(a, b) = (t_{\chi}(a) + t_{\chi}(b) - t_{\chi}(a+b))B_{1}(\chi^{-1})/p^{m(\phi)}$.

Note that $\mu(a, b)$ is contained in $\mathbb{Z}_p[\zeta_{g(\chi)}]$. By (10) we have

$$\sum_{c=1}^{p-1} \boldsymbol{\omega}^{-1}(c) \boldsymbol{\mu}(1, cf) \equiv \sum_{c=1}^{p-1} \boldsymbol{\omega}^{-1}(c) t_{\boldsymbol{\chi}}(1+cf) \equiv 0 \pmod{p \boldsymbol{Z}_p[\boldsymbol{\zeta}_{\boldsymbol{g}(\boldsymbol{\chi})}]}$$

because $\chi(1+cf) = \omega^l(1+cf) \equiv (1+cf)^l \pmod{pZ_p}$ for some l in Z. We now put

$$\delta = \sum_{c=1}^{p-1} \omega^{-1}(c) d'(1, cf)$$

It follows from (11) that

$$\delta e(\phi) = p^{m(\phi)} g(\chi)^{-1} \sum_{\tau \in H} \mu^{\tau} \sum_{\sigma \in G_{\chi}} \chi(\sigma)^{\tau} \sigma^{-1}$$

with a unit μ in $\mathbb{Z}_p[\zeta_{\mathcal{S}(\chi)}]$. Let $\Phi(X)$ be a polynomial in $\mathbb{Z}_p[X]$ such that $\Phi(\chi(\rho)) = \mu^{-1}$, where ρ is a generator of the cyclic group G_{χ} . Putting $\gamma = \Phi(\rho)$ we obtain

(12)
$$\gamma \delta e(\phi) = p^{m(\phi)} e(\phi) \,.$$

The above argument implies that

$$p^{m(\phi)}e(\phi)A_{K\chi}=0$$

§5. Proof of Theorem 1.

In this section let the notation and assumptions be as in Theorem 1. Denote by χ a character of Gal(K/Q) under ϕ . We regard χ as a Dirichlet character and write $\chi = \phi \omega^k$ with k, $0 \le k \le p-2$, where ϕ is a primitive Dirichlet character modulo f, (f, p)=1, and ω denotes the Teichmüller character with respect to p. Then $\bar{\chi} = \phi^{-1} \omega^{1-k}$. We put $L = Q(\zeta_{fp})$.

We start with the following

LEMMA 3. Let K', M be number fields contained in L such that $K' \subset M$ and [M:K']=p. If the degree [K':Q] is not divisible by p, then there exists a prime ideal of K', relatively prime to p, which is ramified in M.

PROOF. Since M is an abelian extension of Q and g' = [K':Q] is prime to p, there exists an extension M' of Q of degree p such that M'K' = M. We can

72

find a prime q ramified in M'. Because (g', p)=1, any prime ideal of K' lying above q is ramified in M. On the other hand the ramification index of \mathfrak{p}_0 over p is p-1, where \mathfrak{p}_0 means a prime ideal of L lying above p. Thus $q \neq p$. This proves the lemma.

We recall some properties of the polynomial Log(X). Put $\pi = 1 - \zeta_p$. One knows (for instance, cf. [1]) that for any integers α , β in \overline{Q}_p satisfying $\alpha \equiv \beta \equiv 1 \pmod{\pi}$,

(14)
$$\operatorname{Log}(\alpha\beta) \equiv \operatorname{Log}(\alpha) + \operatorname{Log}(\beta) \pmod{\pi^p}.$$

Denote by $N\mathfrak{p}$ the norm of a prime ideal \mathfrak{p} of K lying above p. Since $(N\mathfrak{p}-1, p) = 1$, it is seen that an integer α in K is p-primary if and only if $Log(\alpha) \equiv 0 \pmod{\pi^p}$. In particular if $\alpha = \beta^p$ with β in K then α is p-primary. We define a polynomial Exp(X) in $\mathbb{Z}_p[X]$ by

$$\operatorname{Exp}(X) = \sum_{n=0}^{p-1} X^n / n!.$$

Then $\text{Log}(\text{Exp}(\alpha)) \equiv \alpha \pmod{\pi^p}$ for any integer α in \overline{Q}_p divisible by π .

Let $\varepsilon = \eta_{\phi}^{1/p}$ be a *p*-th root of η_{ϕ} . Assume that ε is not contained in $K' = K_{\chi}(\zeta_p)$. Then $K'(\varepsilon)$ is an extension of K' of degree *p*. Note that $K' \subset K \cap L$. Since [K:K'] is prime to *p*, *K* does not contain ε . If ε is in *L*, by Lemma 3 we can find a prime ideal q of K', prime to *p*, which is ramified in $K'(\varepsilon)$. On the other hand q does not divide the discriminant

$$\prod_{0\leq i, j\leq p-1} (\varepsilon \zeta_p^i - \varepsilon \zeta_p^j) = \pm \eta_{\phi}^{p-1} p^p.$$

Hence ε is not a unit of L. This implies that ε is contained in K if and only if it is in L.

Next we remark that $\sigma e_K(\bar{\phi}) = e_K(\bar{\phi})$ for any σ in $\operatorname{Gal}(K/K_{\bar{z}})$. Let \mathfrak{a}_0 be an ideal of K representing a class c in $e_K(\bar{\phi})A_K$. Then $\mathfrak{a}=N_{\bar{z}}\mathfrak{a}_0$ represents $\bar{g}c$, where $N_{\bar{z}}$ means the norm from K to $K_{\bar{z}}$ and $\bar{g}=[K:K_{\bar{z}}]$. Since $(\bar{g}, p)=1$, the class c is also represented by \mathfrak{a}^t for some t>0. Hence

$$\mathfrak{a}_0(\alpha_1) = \mathfrak{a}^t(\alpha_2)$$

with α_1 , α_2 being integers in K. If the p^l -th power of α is a principal ideal generated by a *p*-primary integer in $K_{\bar{\chi}}$ for l>0, then $\alpha_0^{pl} = (\alpha)$ holds with α *p*-primary. Conversely we take an ideal b of $K_{\bar{\chi}}$ contained in a class in $e(\bar{\phi})A_{K_{\bar{\chi}}}$. Let b_0 be the ideal of K induced from b. It is easy to see that b_0 represents a class in $e_K(\bar{\phi})A_K$. Suppose that $b_0^{pl} = (\beta)$ holds with β in K and l>0. We have $b^{\bar{g}pl} = (N_{\bar{\chi}}\beta)$. If β were *p*-primary, the p^l -th power of b would be originally generated by a *p*-primary integer in $K_{\bar{\chi}}$. Applying the above arguments we rewrite the assertion of Theorem 1 as follows: η_{ϕ} is a *p*-th power in L if and only if $m(\bar{\phi}) > 0$ and for any ideal \mathfrak{a} , prime to p, representing a class in $e(\bar{\phi})A_{K_{\bar{\chi}}}$, the $p^{m(\bar{\phi})}$ -th power of \mathfrak{a} is generated by a p-primary integer in $K_{\bar{\chi}}$.

For simplicity of notation, from now on we put $K=K_{\bar{z}}$ and use g, G insteads of $g(\bar{z})$, $G_{\bar{z}}$ respectively.

Let E be the unit group of K. Since $\overline{\phi}$ is odd and is different from ω , one has

(15)
$$(E/E^p)^{e(\bar{\phi})} = 1.$$

By *n* we mean a sufficiently large natural number. For each *p*-adic integer α we define a positive rational integer $[\alpha]$ by the congruence

$$[\alpha] \equiv \alpha \pmod{p^n Z_p}.$$

Let $p^{n'}h$ be the class number of K where $n' \ge 0$ and (h, p) = 1. We put

$$e'(\bar{\phi}) = \sum_{\sigma \in G} [g^{-1}\bar{\phi}(\sigma)]\sigma^{-1}.$$

Then we derive from (13) that

(16)
$$a^{p^{m(\phi)}he'(\bar{\phi})}$$
 is principal

for any ideal a of K. Next for c, $1 \le c \le p-1$, we consider the element d'(1, cf) of Z[G] induced from d(1, cf), which is defined as in (8), by restriction. We set

$$\delta' = \sum_{c=1}^{p-1} c' d'(1, cf)$$

with $c' = [\omega^{-1}(c)]$. Applying (8) one sees that for any prime ideal \mathfrak{Q} of L relatively prime to fp,

(17)
$$(N_{L/K}\mathfrak{Q})^{\delta' e'(\bar{\phi})} = (\alpha(\theta_{\mathfrak{Q}}))$$
with $\alpha(\theta_{\mathfrak{Q}}) = \prod_{c=1}^{p-1} (N_{L/K} J(\theta_{\mathfrak{Q}}, \theta_{\mathfrak{Q}}^{cf}))^{c'e'(\bar{\phi})},$

where θ_{Ω} is a suitable character of F_{Ω}^* of order fp and $N_{L/K}$ denotes the norm from L to K.

We are now ready to prove the theorem. Let d be the least common multiple of fp, p-1 and g. As in Section 3 we put $\mathfrak{P}=(1-\zeta_p)\mathbb{Z}_p[\zeta_d]$. First we suppose that η_{ϕ} is a p-th power in L. It follows from (14) and Theorem 2 that

(18)
$$\log(\alpha(\theta_{\mathfrak{Q}})) \equiv g^{-1} \sum_{c=1}^{p-1} \omega^{-1}(c) \sum_{\sigma \in G_L} \overline{\phi}(\sigma^{-1}) \log(J(\theta_{\mathfrak{Q}}, \theta_{\mathfrak{Q}}^{cf})^{\sigma}) \pmod{\mathfrak{P}^p}$$
$$\equiv 0 \qquad (\text{mod } \mathfrak{P}^p)$$

for any prime ideal \mathfrak{Q} of L not dividing fp, where $G_L = \operatorname{Gal}(L/Q)$. So $\alpha(\theta_{\mathfrak{Q}})$ is

74

p-primary. By (12) we have

$$\gamma'\delta'e'(\bar{\phi}) \equiv p^{m(\bar{\phi})}e'(\bar{\phi}) \qquad (\text{mod } p^n Z[G])$$

for some element γ' of $\mathbb{Z}[G]$. Hence for any \mathbb{Q} we can find a *p*-primary integer α in K such that

(19)
$$(N_{L/K} \mathbb{Q})^{p^{m(\phi)} h e'(\bar{\phi})} = (\alpha) .$$

Although the claim that $m(\bar{\phi}) > 0$ can be derived from a congruence of Gras (cf. [2], [7]), we shall show it in another way. For this purpose we define an integer β' in L by

$$\beta' = \begin{cases} \sum_{\sigma \in G} \left[\bar{\phi}(\sigma^{-1}) \right] (\zeta_f \zeta_p)^{\bar{\sigma}} & \text{if } k \neq 1, \\ p \sum_{\sigma \in G} \left[\bar{\phi}(\sigma^{-1}) \right] \zeta_f^{\bar{\sigma}} & \text{if } k = 1, \end{cases}$$

where for each σ in G, $\bar{\sigma}$ means an automorphism in G_L whose restriction to K coincides with σ . It is clear that $\beta' \equiv 0 \pmod{\mathfrak{P}}$. Choose an integer β in L such that $\beta \equiv \operatorname{Exp}(\beta') \pmod{\mathfrak{P}}$ and (β) is prime to fp. Assume that $m(\bar{\phi})=0$. Because $e'(\bar{\phi})^2 \equiv e'(\bar{\phi}) \pmod{p^n \mathbb{Z}[G]}$, it is shown from (15) and (19) that

$$\operatorname{Log}((N_{L/K}(\beta))^{e'(\bar{\phi})}) \equiv 0 \pmod{\mathfrak{P}^p}.$$

On the other hand, we put

$$S'(\phi) = \sum_{u=0}^{p-1} \left[\sum_{\tau \in H} \phi(u)^{\tau} \right] \zeta_f^u, \qquad S'(\omega^{k-1}) = \sum_{v=0}^{p-1} \left[\omega^{k-1}(v) \right] \zeta_p^v$$

for $k \neq 1$, and $S'(\omega^0) = -p$, where $H = \text{Gal}(Q_p(\bar{\chi})/Q_p)$. It is easy to see that

$$\sum_{\rho \in G} [g^{-1}\bar{\phi}(\rho)] [\bar{\phi}(\sigma^{-1}\rho^{-1})] \equiv [\bar{\phi}(\sigma^{-1})] \equiv [\sum_{\tau \in H} \phi(\sigma)^{\tau}] [\omega^{k-1}(\sigma)] \pmod{p^n}$$

is valid for any σ in G. Hence we get

$$\begin{split} \operatorname{Log}((N_{L/K}(\beta))^{e'(\bar{\phi})}) &\equiv e'(\bar{\phi}) \sum_{\sigma \in \operatorname{Gal}(L/K)} (\beta')^{\sigma} \pmod{\mathfrak{P}^p} \\ &\equiv S'(\phi) S'(\boldsymbol{\omega}^{k-1}) \qquad (\operatorname{mod} \mathfrak{P}^p). \end{split}$$

Since $S'(\omega^{k-1})$ is not divisible by \mathfrak{P}^p , we have

$$\sum_{\tau \in H} S(\phi^{\tau}, \zeta_f) \equiv S'(\phi) \equiv 0 \pmod{\mathfrak{P}}.$$

Changing ζ_f by any conjugate of ζ_f in the above argument, we can gain the same conclusion. Let b be a rational integer such that $\phi(b)$ is a primitive $g(\phi)$ -th root of unity. Then we see

$$S(\phi, \zeta_f) = g(\phi)^{-1} \sum_{i=1}^{g(\phi)} \phi(b^i) \sum_{\tau \in H} S(\phi^{\tau}, \zeta_f^{b^i}) \equiv 0 \pmod{\mathfrak{P}}.$$

This is contradictory to (3). Thus we have shown $m(\bar{\phi}) > 0$.

T. UEHARA

Let I be the group of fractional ideals of K and I_0 the subgroup of all principal ideals in I. Assume that there is a class in $e(\bar{\phi})A_K$ containing an ideal a prime to p such that

(20)
$$a^{p^{m(\phi)}} \neq (\alpha)$$

for any *p*-primary integer α in K. Let $H_1 = I^p I_0$. Remark that α is not contained in H_1 . By M_1 we denote the class field belonging to H_1 . Then M_1 is the maximal unramified elementary abelian *p*-extension of K. From Lemma 3 we have $M_1 \cap L = K$. Hence by class field theory one can find a prime ideal \mathfrak{q} of K, totally decomposed in L, such that $(\mathfrak{q}, fp)=1$ and $\alpha H_1 = \mathfrak{q} H_1$. Thus $\mathfrak{q}=N_{L/K}\mathfrak{Q}$ for some prime ideal \mathfrak{Q} of L not dividing fp, and

 $\mathfrak{ac}_1 = \mathfrak{qc}_2$

for some ideals c_1 , c_2 in H_1 . As a represents a class in $e(\bar{\phi})A_K$ and (h, p)=1, there exist integers β_1 , β_2 in K and t in Z such that

$$\mathfrak{a}(\beta_1) = \mathfrak{a}^{hte'(\vec{\phi})}(\beta_2).$$

We may assume that c_1 , c_2 , (β_1) and (β_2) are all prime to p. Observing $m(\bar{\phi}) > 0$, we obtain by (16) that the $p^{m(\bar{\phi})}he'(\bar{\phi})$ -th power of c_i is a p-th power of a principal ideal for i=1, 2. Hence it follows from (19) that $a^{p^{m(\bar{\phi})}}=(\alpha)$ with α p-primary. This is contrary to (20). Thus we have proved a half of the assertion.

Next we suppose that $\eta_{\phi} \neq \varepsilon^{p}$ for any unit ε of L and that $m(\bar{\phi}) > 0$. By means of Theorem 2 we can find a prime ideal Ω of L, prime to fp, for which (18) is not valid. If we put $\mathfrak{b}=(N_{L/K}\Omega)^{\delta' e'(\bar{\phi})/p^{\mathfrak{m}}(\bar{\phi})}$ then \mathfrak{b} represents a class in $e(\bar{\phi})A_{K}$ and

$$\mathfrak{b}^{p^{m(\varphi)}} = (\beta)$$
 with $\beta = \alpha(\theta_{\mathfrak{Q}}).$

Here β is not *p*-primary. Any integer α in *K* which generates the $p^{m(\bar{\phi})}$ -th power of \mathfrak{b} is written as $\alpha = \eta \beta$ with a unit η of *K*. Applying (15) and (17) we compute

$$e'(\bar{\phi}) \operatorname{Log}(\alpha) \equiv \operatorname{Log}(\eta^{e'(\phi)}) + \operatorname{Log}(\beta^{e'(\phi)}) \pmod{\mathfrak{P}^p}$$
$$\equiv \operatorname{Log}(\beta) \equiv 0 \qquad (\operatorname{mod} \mathfrak{P}^p).$$

This implies $\text{Log}(\alpha) \not\equiv 0 \pmod{\mathfrak{P}^p}$. Therefore the $p^{m(\bar{\phi})}$ -th power of \mathfrak{b} is not generated by any *p*-primary integer in *K*. This completes the proof.

References

[1] Z. I. Borevich and I. R. Shafarevich, Number theory, Academic Press, London and New York, 1966.

- [2] G. Gras, Classes d'idéaux des corps abeliens et nombres de Bernoulli généralisés, Ann. Inst. Fourier (Grenoble), 27 (1977), 1-66.
- [3] K. Iwasawa, A note on cyclotomic fields, Invent. Math., 36 (1976), 115-123.
- [4] S. Lang, Cyclotomic fields, Springer-Verlag, New York, 1978.
- [5] H. W. Leopoldt, Zur Struktur der l-Klassengruppe galoisscher Zahlkörper, J. Reine Angew. Math., 199 (1958), 165-174.
- [6] H. W. Leopoldt, Zur Arithmetik in abelschen Zahlkörpern, J. Reine Angew. Math., 209 (1962), 54-71.
- T. Uehara, On some congruences for generalized Bernoulli numbers, Rep. Fac. Sci. Engrg. Saga Univ. Math., 10 (1982), 1-8.
- [8] A. Wiles, Modular curves and the class group of $Q(\zeta_p)$, Invent. Math., 58 (1980), 1-35.

Tsuyoshi UEHARA

Department of Mathematics Faculty of Science and Engineering Saga University Saga 840 Japan