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\S 1. Introduction.

Let $P$ be an odd prime and let $K$ be an abelian number field of degree prime
to $P$ which contains a primitive $P$ -th root of unity. We denote by $\eta_{\phi}$ a $\phi$-relative
cyclotomic unit in the sense of Gras [2], where $\phi$ is a non-trivial even p-adic
character of the Galois group of $K$ over the rationals. Gras has given some
congruences concerning $\eta_{\phi}$ and Bernoulli numbers associated with the reflection
$\overline{\phi}$ of $\phi$ . Let $A(\phi),$ $A(\overline{\phi})$ be $P$ -subgroups of the ideal class group of $K$ corre-
sponding to $\phi,\overline{\phi}$ respectively. A close relation between $A(\phi)$ and $A(\overline{\phi})$ was
stated by Leopoldt [5]. Recently Wiles [8] proved that if $K$ is the $P$ -th cyclo-
tomic field and $\eta_{\phi}$ is a $P$-th power in $K$ then $A(\phi)$ is non-trivial.

In this paper we shall give a relation between $\eta_{\phi}$ and $A(\overline{\phi})$ . Namely we
state a necessary and sufficient condition for $\eta_{\phi}$ to be a $P$ -th power in $K$ in
terms of the ideals representing classes in $A(\overline{\phi})$ . In the case that $K$ is the p-th
cyclotomic field, Iwasawa has shown the above result applying a theorem of
Artin-Hasse concerning power residue symbols (cf. [3], Lemma 3). On the other
hand our proof is essentially based on the prime factorization of certain Jacob $i$

sums.

\S 2. Notation and results.

Throughout this paper we denote by $P$ an odd prime and by $Z,$ $Z_{p},$ $Q$ , and
$Q_{p}$ the ring of rational integers, the ring of $p$ -adic integers, the field of rational
numbers, and the field of $p$ -adic numbers respectively. Further it is assumed
that all integers and all algebraic number fields are contained in an algebraic
closure $\overline{Q}_{p}$ of $Q_{p}$ . For a rational integer $m>0$ let $\zeta_{m}$ be a primitive m-th root
of unity.

Let $K$ be an abelian number field and let $\chi$ be a character of the Galois
group Gal $(K/Q)$ . By $g(\chi)$ we always mean the order of $\chi$ . Let $K_{\chi}$ be the fixed
field of the kernel of $\chi$ . Then $K_{\chi}$ is a cyclic extension of $Q$ of degree $g(\chi)$ .
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For any abelian number field $M$ containing $K_{\chi}$ we regard $\chi$ as a character of
Gal $(M/Q)$ by putting $\chi(\sigma)=x(\sigma_{K})$ for each $\sigma$ in Gal $(M/Q)$ , where $\sigma_{K}$ is an auto-
morphism of $K$ whose restriction to $K_{\chi}$ coincides with that of $\sigma$ . If $K_{\chi}$ is
contained in $Q(\zeta_{f})$ for some $f>0$, then we identify $\chi$ and the corresponding
Dirichlet character modulo $f$ so that $\chi(a)=x(\sigma_{a})$ for every $a$ in $Z$, prime to $f$ ,

where $\sigma_{a}$ is the automorphism of $Q(\zeta_{f})$ determined by $\zeta_{f^{a}}^{\sigma}=\zeta_{f}^{a}$ . Let $f(\chi)$ be the
least rational integer $f>0$ such that $K_{\chi}\subset Q(\zeta_{f})$ . Then $\chi$ is a primitive Dirichlet
character modulo $f(\chi)$ .

Let $Q_{p}(\chi)$ be the field generated by the values of $\chi$ over $Q_{p}$ . We introduce
a $P$-adic character $\phi$ such that

$\phi=\sum_{\tau\in H}\chi^{\tau}$

with $H=Ga1(Q_{p}(\chi)/Q_{p})$ , where $x^{\tau}$ is a character defined by $x^{\tau}(\sigma)=x(\sigma)^{r}$ for any
$\sigma$ in Gal $(K/Q)$ . We call $\phi$ the $P$ -adic character over $\chi$ . We put

$e( \phi)=g(\chi)^{-1}\sum_{\sigma\in G\chi}\phi(\sigma)\sigma^{-1}$ with $G_{\chi}=Ga1(K_{\chi}/Q)$ .

When $g(\chi)$ is prime to $p,$ $e(\phi)$ is an idempotent in the group ring $Z_{p}[G_{\chi}]$ .
From now on we suppose that $K$ contains $\zeta_{p}$ and that $[K:Q]$ is prime to $p$ .

Then $g(\chi)$ is also prime to $P$ and $f(\chi)$ is not divisible by $p^{2}$ . Further let $\chi$ be
non-trivial and even. There exists an element $e’( \phi)=\sum_{\sigma\in G\chi}n_{\sigma}\sigma^{-1}$ of $Z[G_{\chi}]$

such that
$e’(\phi)\equiv e(\phi)$ $(mod pZ_{p}[G_{\chi}])$ , $\sum_{\sigma\in G\chi}n_{\sigma}=0$ .

We consider a $\phi$-relative cyclotomic unit $\eta_{\phi}$ in the sense of Gras [2] defined by

(1) $\eta_{\phi}=(N_{\chi}(1-\zeta_{f(\chi)}))^{e’(\phi)}$

with $N_{\chi}$ being the norm from $Q(\zeta_{f(\chi)})$ to $K_{\chi}$ . In the case that $K=Q(\zeta_{p})$ , it is
shown [3] that $\eta_{\phi}$ is a $p$ -th power in $K$ if and only if $(E/E_{0}E^{p})^{e(\phi)}\neq 1$ , where
$E$ denotes the unit group of $K$ and $E_{0}$ the subgroup of $E$ generated by cyclotomic
units.

Let $\omega$ be a character of Gal $(K/Q)$ of order $p-1$ such that $\omega(\sigma)\equiv a(mod pZ_{p})$

for each $\sigma$ in Gal $(K/Q)$ , where $a$ is a rational integer satisfying $\zeta_{p}^{\sigma}=\zeta_{p}^{a}$ . We put

$\overline{x}=\chi-1\omega$

and denote by $\overline{\phi}$ the $P$ -adic character over $\overline{\chi}$ . We call $\overline{\phi}$ the reflection of $\phi$ .
Using the first Bernoulli number $B_{1}(\overline{x}^{-1})$ associated with $\overline{x}^{-1}$ we introduce a
rational integer $m(\overline{\phi})$ such that

$B_{1}(\overline{\chi}^{-1})=p^{m(\overline{\phi})}\mu$

where $\mu$ is a unit of $Z_{p}[\zeta_{g(\overline{\chi})}]$ . One has $m(\overline{\phi})\geqq 0$ because $(g(\overline{\chi}), p)=1$ and $\overline{\chi}\neq\omega$ .
Moreover we define
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$e_{K}( \varphi’-)=\frac{1}{[K:Q]}\sum_{\sigma\in Ga1(KfQ)}\overline{\phi}(\sigma)\sigma^{-1}$ .

Let $A_{K}$ be the $p$ -Sylow subgroup of the ideal class group of K. lt is known
\langle cf. [2], Theorem I. 2) that

$p^{m(\overline{\phi})}e_{K}(\overline{\phi})A_{K}=0$ .

Let $\mathfrak{p}$ be a prime ideal of $K$ lying above $p$ and denote by $N\mathfrak{p}$ its norm. It
is clear that $\alpha^{N\mathfrak{p}-1}\equiv 1(mod 1-\zeta_{p})$ for any integer $\alpha$ in $K$ prime to $1-\zeta_{p}$ . An
integer $\alpha$ in $K$ is said to be $p$ -primary if

$\alpha^{N\mathfrak{p}- 1}\equiv 1$ $(mod (1-\zeta_{p})^{p})$ .

THEOREM 1. Let $K$ be an abelian number field containing $\zeta_{p}$ of degree prime
to $p$ . Denote by $\phi$ a non-trivial even p-adic character of the $Gal\alpha s$ group
Gal $(K/Q)$ . Then a $\phi$-relative cyclotomic unit $\eta_{\phi}$ is a p-th p0wer in $K$ if and only

if $m(\overline{\phi})>0$ and for any ideal $\mathfrak{a}$ , prjme to $p$ , representjng a class in $e_{K}(\overline{\phi})A_{K}$ there
is a p-primary integer $a$ in $K$ such that

$\mathfrak{a}^{p^{m(\overline{\phi})}}=(\alpha)$ .
This result will be proved in Section 5. If a principal ideal $\mathfrak{b}$ of $K$ is not

generated by any $p$-primary integer, then {) is not a p-th power of a principal
ideal of $K$. Hence we obtain

COROLLARY. Let the notation and assumptions be as in Theorem 1. When
77 $l(\overline{\phi})>0$ , it holds that $\eta_{\phi}\neq\epsilon^{p}$ for any unit $\epsilon$ of $K$ if and only if $e_{K}(\overline{\phi})A_{K}$ has a
cyclic subgroup of order $p^{m(\overline{\emptyset})}$ generated by an element of $A_{K}$ containing an ideal,

prjme to $p$ , whose $p^{m(\overline{\phi})}$ -th p0wer is not generated by any p-prjmary integer.

\S 3. Cyclotomic units and Jacobi sums.

It is our aim in this section to give a relation between cyclotomic units and
certain Jacobi sums. Let $\chi$ be an even Primitive Dirichlet character modulo
$f(\chi)>1$ , of order prime to $p$ . We can write either $x=\psi$ or $x=\psi\omega^{k}$ with $k$ ,
$1\leqq k\leqq p-2$ , where $\psi$ is a primitive Dirichlet character modulo $f,$ $(f, p)=1$ , and

$\omega$ denotes the Teichm\"uller character with respect to $p,$ $i.e$ . $\omega(a)\equiv a(mod pZ_{p})$

for any $a$ in $Z$ . For convenience we put $\psi\omega^{0}=\psi$ .
Let $\mathfrak{Q}$ be a prime ideal of $L=Q(\zeta_{fp})$ relatively prime to $fp$ . The residue

class ring
$F_{\mathfrak{Q}}=Z[\zeta_{fp}]/\mathfrak{Q}$

is a finite field with $N\mathfrak{Q}$ elements, where $N\mathfrak{Q}$ means the norm of $\mathfrak{Q}$ . Note
that $N\mathfrak{Q}-1$ is divisible by $fp$ . Let $\theta=\theta_{\mathfrak{Q}}$ be a character of the multiplicative
cyclic group $F_{\mathfrak{Q}}^{*}$ of order $fp$ . Put $\theta(0)=0$ . We treat the Jacobi sums $J(\theta^{a}, \theta^{b})$
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defined by

$J( \theta^{a}, \theta^{b})=-\sum_{x\in F_{\mathfrak{Q}}}\theta^{a}(x)\theta^{b}(1-x)$

with $a,$
$b$ in $Z$ . Let $r=r_{\mathfrak{Q}}$ be a fixed generator of $F_{\mathfrak{Q}}^{*}$ . $For_{-}^{-}$ each $x$ in $F_{\mathfrak{Q}}^{*}$ we

define a rational integer indx $=ind_{\mathfrak{Q}}x$ by

$x=r^{indx}$ and $0\leqq indx\leqq N\mathfrak{Q}-2$ .
Then one has

(2) $J( \theta^{a}, \theta^{b})=-\sum_{v=1}^{s}\theta(r)^{av}\theta(r)^{bind(1- r^{v})}$

with $s=N\mathfrak{Q}-2$ . For a primitive Dirichlet character $\lambda$ modulo $m>0$ we consider
the Gauss sum

$S( \lambda, \zeta_{m})=\sum_{u=0}^{m- 1}\lambda(u)\zeta_{m}^{u}$ .
It is known that

(3) $S(\lambda, \zeta_{m})S(\lambda^{-1}, \zeta_{m})=\lambda(-1)m$ ,

(4) $S(\omega^{-a}, \zeta_{p})\equiv(1-\zeta_{p})^{a}/a$ ! $(mod pZ_{p}[\zeta_{p}])$

for $a,$ $1\leqq a\leqq p-2$ . To describe our results we also need a polynomial Log(X)

in $Z_{p}[X]$ defined by

Log $(1+X)= \sum_{n=1}^{p-1}(-1)^{n+1}X^{n}/n$ .

Let $d$ be the least common multiple of $fp,$ $p-1$ and $g(\chi)$ . All integers in the
following are contained in $Z_{p}[\zeta_{d}]$ .

We now state the following basic lemma.

LEMMA 1. With the notation as above it holds that

$p- 1 \sum\omega^{-1}(c)\sum_{\sigma\in G_{L}}x\omega^{-1}(\sigma){\rm Log}(J(\theta, \theta^{cf})^{\sigma})\equiv 0$ $(mod \mathfrak{P}^{p})$

$C=1$

with $G_{L}=Ga1(L/Q)$ and $\mathfrak{P}=(1-\zeta_{p})Z_{p}[\zeta_{d}]$ if and only if
$\sum_{v=1}^{\chi- 1}^{\epsilon}(v)$ ind $(1-r^{v})\equiv 0$ $(mod \mathfrak{P})$ .

PROOF. ’Put $\zeta=\theta(r)$ . Then $\zeta^{p}$ (resp. $\zeta^{f}$ ) is a primitive $f$-th (resp. p-th)
root of unity. We use the Gauss sums $S(\psi)=S(\psi, \zeta^{p}),$ $S(\omega^{a})=S(\omega^{a}, \zeta^{f})$ with $a$ ,
$1\leqq a\leqq p-2$ . For convenience we set $S(\omega^{0})=-1$ . We now consider a poly-
nomial $h(X)$ defined by

$/ \iota(X)=-\sum_{v=1}^{s}\zeta^{v}X^{ind(1-r^{v})}$ .
Since $h(1)=1$ one has

Log $(h(1-X))= \sum_{n=1}^{(p- 1)S}\gamma_{n}X^{n}$
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with $\gamma_{n}$ in $Z_{p}[\zeta]$ . From (2) we obtain

$p-1 \Sigma\omega^{-1}(c)\sum x\omega^{-1}(\sigma){\rm Log}(J(\theta, \theta^{cf})^{\sigma})$

$c=1$ $\sigma\in G_{L}$

$\equiv\sum_{C=1}^{p-1}\omega^{-1}(c)\sum_{\sigma\in G_{L}}\chi_{\omega^{-1}(\sigma)\sum\gamma_{n}^{\sigma}(1-(\zeta^{\sigma})^{cf})^{n}}p-1$ $(mod \mathfrak{P}^{p})$

$n=1$

$\equiv S(\omega^{-1})\sum_{\sigma\in G_{L}}x\omega^{-1}(\sigma)\sum_{n=1}^{p-1}\gamma_{n}^{\sigma}\sum_{i=1}^{n}(\begin{array}{l}ni\end{array})(-1)^{i}\omega(i)\omega(\sigma)$ $(mod \mathfrak{P}^{p})$

$\equiv-S(\omega^{-1})\sum_{\sigma\in G_{L}}\chi(\sigma)\gamma_{1}^{\sigma}$
$(mod \mathfrak{P}^{p})$

because $(\begin{array}{l}ni\end{array})\omega(i)\equiv n(\begin{array}{l}n-1i-1\end{array})(mod \mathfrak{P}^{p-1})$ holds if $1\leqq i\leqq n\leqq p-1$ . It is easy to see

$\gamma_{1}=\sum_{v=1}^{s}\zeta^{v}$ ind $(1-r^{v})$ .

Hence we compute

$\sum_{\sigma\in G_{L}}\chi(\sigma)\gamma_{1}^{\sigma}=\sum_{i=1}^{p-1}\sum_{j=1}^{f-1}\chi(if+jp)\sum_{v\Leftarrow 1}^{s}\zeta^{(if+jp)v}ind(1-r^{v})(j.f)=1$

$\equiv\psi(p)\omega^{k}(f)S(\psi)S(\omega^{k})\sum_{v=1}^{S}\chi-1(v)ind(1-r^{v})$ $(mod \mathfrak{P}^{p-1})$ .

It follows from (3) and (4) that $S(\psi)S(\omega^{k})$ is not divisible by $\mathfrak{P}^{p-1}$ . Since $g(\chi)$ is
prime to $p$ , we have

$\mathfrak{P}\cap Z_{p}[\zeta_{g(\chi)}]=pZ_{p}[\zeta_{g(\chi)}]$ .
Thus any integer $\alpha$ in $Q_{p}(\chi)$ satisfying $\alpha\equiv 0(mod \mathfrak{P})$ is divisible by $\mathfrak{P}^{p-1}$ This
proves the lemma.

In the rest of this section we shall show the following

THEOREM 2. Let $\chi$ be an even primitive Dirichlet character modulo $f(\chi)>1$ ,

of order pnme to $p$, and let $\phi$ be the p-adic character over $\chi$ . Denote by $fp$ the
least common multiple of $p$ and $f(\chi)$ with $f$ prime to $p$ . Then a $\phi$-relative
cyclotomzc unit $\eta_{\phi}$ is a p-th p0wer in $L=Q(\zeta_{fp})$ if and only if

(5) $p-1 \sum\omega^{-1}(c)\sum\phi\omega^{-1}(\sigma)L_{\Theta}g(J(\theta_{\mathfrak{Q}}, \theta^{c}g)^{\sigma})\equiv 0$
$(mod \mathfrak{P}^{p})$

$c=1$ $\sigma\in G_{L}$

holds for any prjme ideal $\mathfrak{Q}$ of $L$ prjme to $fp$ , and for any character $\theta_{\mathfrak{Q}}$ of $F_{\mathfrak{Q}}^{*}$

of order $fp$ , where $G_{L}=Ga1(L/Q)$ and $\mathfrak{P}=(1-\zeta_{p})Z_{p}[\zeta_{d}]$ .
LEMMA 2. Let the notation and assumptjons be as in Theorem 2. Then $\eta_{\phi}$

is a p-th p0wer in $L$ if and only if for any prjme ideal $\mathfrak{Q}$ of $L$ not dividing $fp$ ,

and for any $\tau$ in $H=Ga1(Q_{p}(\chi)/Q_{p})$

(6) $\sum_{v=1}^{\chi-1}^{s}(v)^{\tau}ind_{\mathfrak{Q}}(1-r^{v})\equiv 0$ $(mod \mathfrak{P})$

is valid with $s=N\mathfrak{Q}-2$ .
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PROOF. Let $\mathfrak{Q}$ be a prime ideal of $L$ with $(\mathfrak{Q}, fp)=1$ . First we note that
the left hand side of (6) is equal to

$f( \chi)-1\sum\chi-1(v)^{\tau}\sum_{w=0}^{t- 1}ind_{\mathfrak{Q}}(1-r^{v+wf(\chi)})$

$v=1$

with $t=(N\mathfrak{Q}-1)/f(\chi)$ . Choose an integer $\beta$ in $L$ representing a generator $r_{\mathfrak{Q}}$

of the cyclic group $F_{\mathfrak{Q}}^{*}$ . One has

$t-1\Pi(1-\beta^{v+wf(\chi)})\equiv 1-\beta^{tv}$
$(mod \mathfrak{Q})$ .

$w=0$

Remark that $\beta^{t}\equiv\xi(mod \mathfrak{Q})$ for a certain primitive $f(\chi)$-th root $\xi$ of unity. We
may put $\zeta_{f(\chi)}=\xi$ in the definition (1). Let $y$ be the residue class in $F_{\mathfrak{Q}}$ repre-
sented by $\eta_{\phi}$ . For any $\sigma$ in $G_{L}$ we can see

(7) $ind_{\mathfrak{Q}}y^{\sigma}\equiv g(\chi)^{-1}\sum_{\tau\in H}\chi(\sigma)^{\tau}\sum_{v=1}^{s}x^{-1}(v)^{\tau}ind_{\mathfrak{Q}}(1-r_{\mathfrak{Q}}^{v})$ $(mod \mathfrak{P})$ .

Take an automorphism $\rho$ in $G_{L}$ whose restriction to $K_{\chi}$ generates the cyclic
group $G_{\chi}$ . Then

$g( \chi)-1\sum^{\chi- 1}(\rho^{l})^{\tau}ind_{\mathfrak{Q}}(y^{\rho^{l}})$

$l=0$

is congruent to the left hand side of (6) modulo $\mathfrak{P}$ Thus if $\eta_{\phi}$ is a $P$-th power
in $L$ then $ind_{\mathfrak{Q}}y^{\sigma}\equiv 0(mod p)$ for any $\mathfrak{Q}$ and for any $\sigma$ in $G_{L}$ , and hence the
congruence (6) is true for any $\mathfrak{Q}$ and for any $\tau$ .

Conversely we assume that $\eta_{\phi}\neq\epsilon^{p}$ for any unit $\epsilon$ of $L$ . Since $L$ contains
$\zeta_{p}$ , the Peld $L(\eta_{\phi}^{1/p})$ is a normal extension of $L$ of degree $p$ . It is known that
there are infinitely many prime ideals of $L$ , relatively prime to $fp$ , which remain
prime in $L(\eta_{\phi}^{1/p})$ . For such a prime ideal $\mathfrak{Q}$ it is shown that $ind_{\mathfrak{Q}}y\not\equiv O(mod p)$ .
Indeed, if $\eta_{\phi}\equiv\alpha^{p}(mod \mathfrak{Q})$ with some integer $\alpha$ in $L$ , then $\eta_{\phi}^{1/p}\zeta_{p}^{u}\equiv a(mod \mathfrak{Q})$

for any $u$ in $Z$ . This gives a contradiction because $(\mathfrak{Q}, 1-\zeta_{p})=1$ . Hence from
(7) we see that (6) does not hold for this prime ideal. Thus the proof is complete.

PROOF OF THEOREM 2. For any $\tau$ in $H,$ $x^{\tau}$ is also a character under $\phi$ . We
set

$c(x^{\tau}, \theta_{\mathfrak{Q}})=\sum_{c=1}^{p- 1}\omega^{-1}(c)\sum_{\sigma\in G_{L}}x^{\tau}\omega^{-1}(\sigma)$ Log $(J(\theta_{\mathfrak{Q}}, \theta^{c}d)^{\sigma})$ .

Then $\sum_{\tau\in H}C(\chi^{\tau}\theta_{\mathfrak{Q}})$ is equal to the left hand side of (5). Further let $\rho$ be as
in the proof of Lemma 2. We have

$J(\theta_{\mathfrak{Q}}, \theta_{\mathfrak{Q}}^{cf})^{\rho}=J(\theta_{\mathfrak{Q}}^{b}, \theta_{\mathfrak{Q}}^{bcf})$

for some integer $b$ in $Z$ , prime to $fp$ . Hence it follows that

$g(\chi)-1\Sigma\chi_{\omega^{-1}(b^{l})^{\tau’}}\Sigma C(x^{\tau}, \theta_{\mathfrak{Q}}^{b^{l}})$

$l=0$ $\tau\in H$
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$= \sum_{l\Rightarrow 0}^{g(\chi)-1}x\omega^{-1}(b^{\iota})^{\tau^{r}}\sum_{\tau\in H}\chi-1\omega(b^{\iota})^{\tau}C(x^{\tau}\theta_{\mathfrak{Q}})$

$=g(\chi)C(x^{\tau’}, \theta_{\mathfrak{Q}})$

for any $\tau’$ in $H$. Note that the order of $\theta_{\mathfrak{Q}}^{b^{l}}$ is also equal to $fp$ . Applying
Lemmas 1, 2 we obtain the assertion of Theorem 2.

\S 4. Prime factorization of Jacobi sums.

In this section let $\chi$ be an odd primitive Dirichlet character modulo $f(\chi)$ such
that $(g(\chi), p)=1$ and $x\neq\omega$ . We denote by $\phi$ the $p$-adic character over $\chi$ . We
recall the first Bernoulli number $B_{1}(\chi-1)$ associated with $\chi-1$ defined as follows:

$B_{1}(x^{-1})=f( \chi)^{-1}\sum_{u=0}^{J^{(\chi)-1}}\chi-1(u)u$ .

As in Section 2 we consider an invariant $m(\phi)$ such that $B_{1}(\chi^{-1})=p^{m(\phi)}\mu$ with a
unit $\mu$ in $Z_{p}[\zeta_{g(\chi)}]$ . It is clear that $m(\phi)$ is determined independently of the
choice of a character $\chi$ under $\phi$ .

Let $fp$ be the least common multiple of $P$ and $f(\chi)$ with $f$ prime to $p$ . Take
a prime ideal $\mathfrak{Q}$ of $L=Q(\zeta_{fp})$ not dividing $fp$ . Moreover let $\theta$ be a character of
$F_{\mathfrak{Q}}^{*}$ of order $fp$ such that if a residue class $x\neq 0$ in $F_{\mathfrak{Q}}$ contains an integer $\alpha$

satisfying $\alpha^{(N\mathfrak{Q}-1)/fp}\equiv\zeta_{fp}$ (mod Q), then $\theta(x)=\zeta_{fp}$ . It is known (for instance,
cf. [4]) that for rational integers $a,$ $b$ with $a+b\not\equiv O(mod fp)$ ,

(8) $\mathfrak{Q}^{d(a.b)}=(J(\theta^{a}, \theta^{b}))$

where
$d(a, b)= \sum_{0,(<u<;_{=1}p}(\langle\frac{au}{fp}\rangle+\langle\frac{bu}{fp}\rangle-\langle\frac{(a+b)u}{fp}\rangle)\sigma_{u}^{-1}$ .

Here for a real number $s$ we mean by $\langle s\rangle$ its fractional part; namely $0\leqq\langle s\rangle<1$

and $s-\langle s\rangle$ is in $Z$ . Further $\sigma_{u}$ denotes the automorphism of $L$ such that
$\zeta_{fp}^{\sigma_{u}}=\zeta_{fp}^{u}$ . If $a\not\equiv O(mod fp)$ then $J(\theta^{a}, \theta^{-a})=1$ . So we may put $d(a, -a)=0$ in
this case.

For each automorphism $\sigma$ of $L$ let $\sigma’$ be its restriction to $K_{\chi}$ . By simple
calculation we can see that

(9) $\sum_{u}\langle\frac{cu}{fp}\rangle(\sigma_{u}’)^{-1}e(\phi)=g(\chi)^{-1}\sum_{\tau\in H}\sum_{u}\chi-1(u)^{\tau}\langle\frac{cu}{fp}\rangle\sum_{\sigma\in G\chi}\chi(\sigma)^{\tau}\sigma^{-1}$

for any $c$ in $Z$ , where $u$ runs over the integers such that $0<u<fp,$ $(u, fp)=1$ ,
and $H=Ga1(Q_{p}(\chi)/Q_{p})$ . Also we compute

$\sum_{u}\chi- 1(u)\langle\frac{cu}{fp}\rangle=t_{\chi}(c)B_{1}(\chi- 1)$

where
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(10) $t_{\chi}(c)=\{\begin{array}{ll}(p-1)\chi(c/p) if f(\chi)=f and P|c,(1-\chi- 1(p))\chi(c) otherwise.\end{array}$

For $a,$ $b$ in $Z$ let $d’(a, b)$ be the element of $Z[G_{\chi}]$ induced from $d(a, b)$ by

restriction. A theorem of Leopoldt [6] shows that $d’(a, b)$ annihilates the ideal
class group of $K_{\chi}$ . From (9) we get

(11) $d’(a, b)e( \phi)=P^{m(\phi)}g(\chi)^{-1}\sum_{\tau\in H}\mu(a, b)^{\tau}\sum_{\sigma\in G\chi}\chi(\sigma)^{\tau}\sigma^{-1}$

with $\mu(a, b)=(t_{\chi}(a)+t_{\chi}(b)-t_{\chi}(a+b))B_{1}(\chi-1)/p^{m(\phi)}$ .
Note that $\mu(a, b)$ is contained in $Z_{p}[\zeta_{g(\chi)}]$ . By (10) we have

$p-1 \sum\omega^{-1}(c)\mu(1, cf)\equiv\sum^{p-1}\omega^{-1}(c)t_{\chi}(1+cf)\not\equiv 0$
$(mod pZ_{p}[\zeta_{g(\chi)}])$

$C=1$ $c=1$

because $\chi(1+cf)=\omega^{\iota}(1+cf)\equiv(1+cf)^{l}(mod pZ_{p})$ for some 1 in $Z$ . We now put

$\delta=\sum_{c=1}^{p-1}\omega^{-1}(c)d’(1, cf)$ .
It follows from (11) that

$\delta e(\phi)=p^{m(\phi)}g(\chi)^{-1}\sum_{\tau\in H}\mu^{\tau}\sum_{\sigma\in G\chi}\chi(\sigma)^{\tau}\sigma^{-1}$

with a unit $\mu$ in $Z_{p}[\zeta_{g(\chi)}]$ . Let $\Phi(X)$ be a polynomial in $Z_{p}[X]$ such that
$\Phi(\chi(\rho))=\mu^{-1}$, where $\rho$ is a generator of the cyclic group $G_{\chi}$ . Putting $\gamma=\Phi(\rho)$

we obtain

(12) $\gamma\delta e(\phi)=p^{m(\phi)}e(\phi)$ .
The above argument implies that

\langle 13) $p^{m(\phi)}e(\phi)A_{K\chi}=0$ .

\S 5. Proof of Theorem 1.

In this section let the notation and assumptions be as in Theorem 1. Denote
by $\chi$ a character of Gal $(K/Q)$ under $\phi$ . We regard $\chi$ as a Dirichlet character
and write $x=\psi\omega^{k}$ with $k,$ $0\leqq k\leqq p-2$ , where $\psi$ is a primitive Dirichlet character
modulo $f,$ $(f, p)=1$ , and $\omega$ denotes the Teichm\"uller character with respect to $p$ .
Then $\overline{x}=\psi^{-1}\omega^{1-k}$ . We put $L=Q(\zeta_{fp})$ .

We start with the following

LEMMA 3. Let $K’,$ $M$ be number fields contained in $L$ such that $K’\subset M$ and
$[M:K’]=p$ . If the degree $[K’ : Q]$ is not divisible by $p$ , then there exists a
prime ideal of $K’$ , relatively prjme to $p$ , which is ramified in $M$.

PROOF. Since $M$ is an abelian extension of $Q$ and $g’=[K’ : Q]$ is prime to
$p$ , there exists an extension $M’$ of $Q$ of degree $p$ such that $M’K’=M$. We can
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find a prime $q$ ramified in $M’$ . Because $(g’, p)=1$ , any prime ideal of $K’$ lying
above $q$ is ramified in $M$. On the other hand the ramiPcation index of Po over
$p$ is $p-1$ , where Po means a prime ideal of $L$ lving above $p$ . Thus $q\neq p$ . This
proves the lemma.

We recall some properties of the polynomial Log(X). Put $\pi=1-\zeta_{p}$ . One
knows (for instance, cf. [1]) that for any integers $\alpha,$ $\beta$ in $Q_{p}$ satisfying $\alpha\equiv\beta\equiv 1$

$(mod \pi)$ ,

(14) Log $(\alpha\beta)\equiv{\rm Log}(\alpha)+{\rm Log}(\beta)$ $(mod \pi^{p})$ .

Denote by $N\mathfrak{p}$ the norm of a prime ideal $\mathfrak{p}$ of $K$ lying above $p$ . Since $(N\mathfrak{p}-1, p)$

$=1$ , it is seen that an integer $\alpha$ in $K$ is p-primary if and only if Log $(\alpha)\equiv 0$

$(mod \pi^{p})$ . In particular if $\alpha=\beta^{p}$ with $\beta$ in $K$ then $\alpha$ is $p$-primary. We define a
polynomial Exp (X) in $Z_{p}[X]$ by

Exp $(X)= \sum_{n=0}^{p- 1}X^{n}/n$ !.

Then Log $(Exp(\alpha))\equiv\alpha(mod \pi^{p})$ for any integer $\alpha$ in $\overline{Q}_{p}$ divisible by $\pi$ .
Let $\epsilon=\eta_{\phi}^{1fp}$ be a $P$ -th root of $\eta_{\phi}$ . Assume that $\epsilon$ is not contained in $K’=$

$K_{\chi}(\zeta_{p})$ . Then $K’(\epsilon)$ is an extension of $K’$ of degree $p$ . Note that $K’\subset K\cap L$ .
Since $[K:K’]$ is prime to $p,$ $K$ does not contain $\epsilon$ . If $\epsilon$ is in $L$ , by Lemma 3
we can find a prime ideal $q$ of $K’$ , prime to $p$ , which is ramified in $K’(\epsilon)$ . On
the other hand $q$ does not divide the discriminant

$\prod_{0\leqq i,j\leqq p- 1}$
$(\epsilon\zeta_{p}^{i}-\epsilon\zeta_{p}^{j})=\pm\eta@^{-1}p^{p}$ .

Hence $\epsilon$ is not a unit of $L$ . This implies that $\epsilon$ is contained in $K$ if and only
if it is in $L$ .

Next we remark that $\sigma e_{K}(\overline{\phi})=e_{K}(\overline{\phi})$ for any $\sigma$ in Gal $(K/K_{\overline{\chi}})$ . Let $\mathfrak{a}_{0}$ be an
ideal of $K$ representing a class $c$ in $e_{K}(\overline{\phi})A_{K}$ . Then $\mathfrak{a}=N_{\overline{\chi}}\mathfrak{a}_{0}$ represents $\overline{g}c$ ,
where $N_{\overline{\chi}}$ means the norm from $K$ to $K_{\overline{\chi}}$ and $\overline{g}=[K:K_{\overline{\chi}}]$ . Since $(\overline{g}, p)=1$ , the
class $c$ is also represented by $\mathfrak{a}^{t}$ for some $t>0$ . Hence

$\mathfrak{a}_{0}(\alpha_{1})=\mathfrak{a}^{t}(\alpha_{2})$

with $\alpha_{1},$ $\alpha_{2}$ being integers in $K$. If the $p^{l}$ -th power of $\mathfrak{a}$ is a principal ideal
generated by a $p$ -primary integer in $K_{\overline{\chi}}$ for $l>0$, then $\mathfrak{a}_{0}^{p^{l}}=(\alpha)$ holds with $\alpha$

$P$ -primary. Conversely we take an ideal $\mathfrak{b}$ of $K_{\overline{\chi}}$ contained in a class in $e(\overline{\phi})A_{K_{\overline{\chi}}}$ .
Let $\mathfrak{b}_{0}$ be the ideal of $K$ induced from $\mathfrak{b}$ . It is easy to see that $\mathfrak{b}_{0}$ represents a
class in $e_{K}(\overline{\phi})A_{K}$ . Suppose that $\mathfrak{b}_{0}^{p^{l}}=(\beta)$ holds with $\beta$ in $K$ and $l>0$ . We have
$\mathfrak{b}^{\overline{g}p^{l}}=(N_{\overline{\chi}}\beta)$ . If $\beta$ were p-primary, the $p^{l}$-th power of $\mathfrak{b}$ would be originally
generated by a $P$ -primary integer in $K_{\overline{\chi}}$ . Applying the above arguments we
rewrite the assertion of Theorem 1 as follows: $\eta_{\phi}$ is a $P$ -th power in $L$ if and
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only if $m(\overline{\phi})>0$ and for any ideal $\mathfrak{a}$ , prime to $p$ , representing a class in $e(\overline{\phi})A_{K_{\overline{\chi}^{r}}}$

the $p^{m(\overline{\phi})}$ -th power of $\mathfrak{a}$ is generated by a $p$ -primary integer in $K_{\overline{\chi}}$ .
For simplicity of notation, from now on we put $K=K_{\overline{\chi}}$ and use $g,$ $G$ instead

of $g(\overline{\chi}),$ $G_{\overline{\chi}}$ respectively.
Let $E$ be the unit group of $K$. Since $\overline{\phi}$ is odd and is different from $\omega$, one

has

(15) $(E/E^{p})^{e(\overline{\phi})}=1$ .

By $n$ we mean a sufficiently large natural number. For each $P$ -adic integer ct

we define a positive rational integer $[\alpha]$ by the congruence

$[a]\equiv a$ $(mod p^{n}Z_{p})$ .

Let $p^{n}$
‘

$h$ be the class number of $K$ where $n’\geqq 0$ and $(h, p)=1$ . We put

$e’( \overline{\phi})=\sum_{\sigma\in G}[g^{-1}\overline{\phi}(\sigma)]\sigma^{-1}$ .

Then we derive from (13) that

(16) $\mathfrak{a}^{p^{m(\overline{\phi})_{he’(\phi)}}}$ is principal

for any ideal $\mathfrak{a}$ of $K$. Next for $c,$ $1\leqq c\leqq P-1$ , we consider the element $d’(1, cf)$

of $Z[G]$ induced from $d(1, cf)$ , which is defined as in (8), by restriction. We
set

$\delta’=\sum_{c=1}^{p- 1}c’d’(1, cf)$

with $c’=[\omega^{-1}(c)]$ . Applying(8) one sees that for any prime ideal $\mathfrak{Q}$ of $L$ rela-
tively prime to $fp$ ,

(17) $(N_{L/K}\mathfrak{Q})^{\delta’e’(\overline{\phi})}=(\alpha(\theta_{\mathfrak{Q}}))$

with $\alpha(\theta_{\mathfrak{Q}})=\prod_{c=1}^{p-1}(N_{L/K}J(\theta_{\mathfrak{Q}}, \theta^{c}d))^{c}$
‘ $e$ ‘ $(\phi)$

where $\theta_{\mathfrak{Q}}$ is a suitable character of $F_{\mathfrak{Q}}^{*}$ of order $fp$ and $N_{L/K}$ denotes the norm
from $L$ to $K$.

We are now ready to prove the theorem. Let $d$ be the least common
multiple of $fp,$ $p-1$ and $g$ . As in Section 3 we put $\mathfrak{P}=(1-\zeta_{p})Z_{p}[\zeta_{d}]$ . First
we suppose that $\eta_{\phi}$ is a $P$-th power in $L$ . It follows from (14) and Theorem 2
that

(18) Log $( \alpha(\theta_{\mathfrak{Q}}))\equiv g^{-1}\sum_{c=1}^{p-1}\omega^{-1}(c)\sum_{\sigma\in G_{L}}\overline{\phi}(\sigma^{-1}){\rm Log}(J(\theta_{\mathfrak{Q}}, \theta^{c}d)^{\sigma})$ $(mod \mathfrak{P}^{p})$

$\equiv 0$ $(mod \mathfrak{P}^{p})$

for any prime ideal $\mathfrak{Q}$ of $L$ not dividing $fp$ , where $G_{L}=Ga1(L/Q)$ . So $\alpha(\theta_{\mathfrak{Q}})$ is
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p-primary. By (12) we have

$\gamma’\delta’e’(\overline{\phi})\equiv p^{m(\overline{\phi})}e’(\overline{\phi})$ $(mod p^{n}Z[G])$

for some element $\gamma’$ of $Z[G]$ . Hence for any $\mathfrak{Q}$ we can find a p-primary integer
$a$ in $K$ such that

(19) $(N_{L/K}\mathfrak{Q})^{p^{m(\overline{\phi})}he’(\emptyset)}=(a)$ .

Although the claim that $m(\overline{\phi})>0$ can be derived from a congruence of Gras
(cf. [2], [7]), we shall show it in another way. For this purpose we define an
integer $\beta’$ in $L$ by

$\beta^{f}=\{\begin{array}{ll}\sum[\overline{\phi}(\sigma^{-1})](\zeta_{f}\zeta_{p})^{\overline{\sigma}} if k\neq 1,\sigma\in G p\sum[\overline{\phi}(\sigma^{-1})]\zeta_{f}^{5} if k=1,\end{array}$

$\sigma\in G$

where for each $\sigma$ in $G,\overline{\sigma}$ means an automorphism in $G_{L}$ whose restriction to
$K$ coincides with $\sigma$ . It is clear that $\beta’\equiv 0(mod \mathfrak{P})$ . Choose an integer $\beta$ in $L$

such that $\beta\equiv Exp(\beta’)(mod \mathfrak{P}^{p})$ and $(\beta)$ is prime to $fp$ . Assume that $m(\overline{\phi})=0$ .
Because $e’(\overline{\phi})^{2}\equiv e’(\overline{\phi})(mod p^{n}Z[G])$ , it is shown from (15) and (19) that

Log $((N_{LfK}(\beta))^{e}‘ (\overline{\emptyset}))\equiv 0$ $(mod \mathfrak{P}^{p})$ .

On the other hand, we put

$S’( \psi)=\sum_{u=0}^{p-1}[\sum_{\tau\in H}\psi(u)^{\tau}]\zeta_{f}^{u}$ $S’(\omega^{k-1})=\sum_{v<0}^{p-1}[\omega^{k-1}(v)]\zeta_{p}^{v}$

for $k\neq 1$ , and $S’(\omega^{0})=-p$ , where $H=Ga1(Q_{p}(\overline{\chi})/Q_{p})$ . It is easy to see that

$\sum_{\rho\in G}[g^{-1}\overline{\phi}(\rho)][\overline{\phi}(\sigma^{-1}\rho^{-1})]\equiv[\overline{\phi}(\sigma^{-1})]\equiv[\sum_{\tau\in H}\psi(\sigma)^{\tau}][\omega^{k-1}(\sigma)]$
$(mod p^{n})$

is valid for any $\sigma$ in $G$ . Hence we get

Log $((N_{LfK}(\beta))^{e’(\overline{\phi})})\equiv e’(\overline{\phi})$

$\sum_{\sigma\in Ga1(LfK)}$
$(\beta’)^{\sigma}$ $(mod \mathfrak{P}^{p})$

$\equiv S’(\psi)S’(\omega^{k-1})$ $(mod \mathfrak{P}^{p})$ .
/

Since $S’(\omega^{k-1})$ is not divisible by $\mathfrak{P}^{p}$ , we have

$\sum_{\tau\in H}S(\psi^{\tau}, \zeta_{f})\equiv S’(\psi)\equiv 0$
$(mod \mathfrak{P})$ .

Changing $\zeta_{f}$ by any conjugate of $\zeta_{f}$ in the above argument, we can gain the
same conclusion. Let $b$ be a rational integer such that $\psi(b)$ is a primitive $g(\psi)$-th
root of unity. Then we see

$S(\psi, \zeta_{f})=g(\psi)^{-1}\sum_{i=1}^{g(\psi)}\psi(b^{i})\sum_{\tau\in H}S(\psi^{\tau}\zeta_{f}^{b^{t}})\equiv 0$ $(mod \mathfrak{P})$ .

This is contradictory to (3). Thus we have shown $7n(\overline{\phi})>0$ .
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Let $I$ be the group of fractional ideals of $K$ and $I_{0}$ the subgroup of all
Principal ideals in $I$ . Assume that there is a class in $e(\overline{\phi})A_{K}$ containing an ideal
$a$ prime to $P$ such that

(20) $\mathfrak{a}^{p^{m(\overline{\phi})}}\neq(a)$

for any p-primary integer $\alpha$ in $K$. Let $H_{1}=I^{p}I_{0}$ . Remark that $\mathfrak{a}$ is not con-
tained in $H_{1}$ . By $M_{1}$ we denote the class Peld belonging to $H_{1}$ . Then $M_{1}$ is
the maximal unramiPed elementary abelian p-extension of $K$. From Lemma 3
we have $M_{1}\cap L=K$. Hence by class field theory one can find a prime ideal $q$

of $K$, totally decomposed in $L$ , such that $(q, fp)=1$ and $\mathfrak{a}H_{1}=qH_{1}$ . Thus
$q=N_{LfK}\mathfrak{Q}$ for some prime ideal $\mathfrak{Q}$ of $L$ not dividing $fp$ , and

$\mathfrak{a}c_{1}=q\mathfrak{c}_{2}$

for some ideals $\mathfrak{c}_{1}$ , C2 in $H_{1}$ . As $\mathfrak{a}$ represents a class in $e(\overline{\phi})A_{K}$ and $(h, p)=1$ ,

there exist integers $\beta_{1},$ $\beta_{2}$ in $K$ and $t$ in $Z$ such that

$\mathfrak{a}(\beta_{1})=\mathfrak{a}^{hte’(\overline{\phi})}(\beta_{2})$ .

We may assume that $\mathfrak{c}_{1},$ $\mathfrak{c}_{2},$ $(\beta_{1})$ and $(\beta_{2})$ are all prime to $p$ . Observing $m(\overline{\phi})>0$,

we obtain by (16) that the $p^{m(\overline{\phi})}he’(\overline{\phi})$-th power of $\mathfrak{c}_{i}$ is a p-th power of a prin-
cipal ideal for $i=1,2$ . Hence it follows from (19) that $\mathfrak{a}^{p^{m(\overline{\phi})}}=(a)$ with $a$

p-primary. This is contrary to (20). Thus we have proved a half of the
assertion.

Next we suppose that $\eta_{\phi}\neq\epsilon^{p}$ for any unit $\epsilon$ of $L$ and that $m(\overline{\phi})>0$ . By
means of Theorem 2 we can find a prime ideal $\mathfrak{Q}$ of $L$ , prime to $fp$ , for which
(18) is not valid. If we put $\mathfrak{b}=(N_{L/K}\mathfrak{Q})^{\delta’}$

” $(\overline{\phi})/p^{m(\overline{\emptyset})}$ then $\mathfrak{b}$ represents a class in
$e(\overline{\phi})A_{K}$ and

$\mathfrak{b}^{p^{m(\overline{\phi})}}=(\beta)$ with $\beta=a(\theta_{\mathfrak{Q}})$ .
Here $\beta$ is not $p$-primary. Any integer $\alpha$ in $K$ which generates the $p^{m(\emptyset)}$ -th
pOwer of $\mathfrak{b}$ is written as $\alpha=\eta\beta$ with a unit $\eta$ of $K$. Applying (15) and (17) we
compute

$e’(\overline{\phi}){\rm Log}(a)\equiv{\rm Log}(\eta^{e’(\overline{\phi})})+{\rm Log}(\beta^{e^{i}(\overline{\phi})})$ $(mod \mathfrak{P}^{p})$

$\equiv{\rm Log}(\beta)\not\equiv 0$ $(mod \mathfrak{P}^{p})$ .

This implies Log $(\alpha)\not\equiv 0(mod \mathfrak{P}^{p})$ . Therefore the $p^{m(\overline{\phi})}$ -th power of $\mathfrak{b}$ is not
generated by any p-primary integer in $K$. This completes the proof.
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