On cyclotomic units connected with p-adic characters

By Tsuyoshi Uehara

(Received Aug. 23, 1983)
(Revised Dec. 8, 1983)

§ 1. Introduction.

Let p be an odd prime and let K be an abelian number field of degree prime to p which contains a primitive p-th root of unity. We denote by η_{ϕ} a ϕ-relative cyclotomic unit in the sense of Gras [2], where ϕ is a non-trivial even p-adic character of the Galois group of K over the rationals. Gras has given some congruences concerning η_{ϕ} and Bernoulli numbers associated with the reflection $\bar{\phi}$ of ϕ. Let $A(\phi), A(\bar{\phi})$ be p-subgroups of the ideal class group of K corresponding to $\phi, \bar{\phi}$ respectively. A close relation between $A(\phi)$ and $A(\bar{\phi})$ was stated by Leopoldt [5]. Recently Wiles [8] proved that if K is the p-th cyclotomic field and η_{ϕ} is a p-th power in K then $A(\phi)$ is non-trivial.

In this paper we shall give a relation between η_{ϕ} and $A(\bar{\phi})$. Namely we state a necessary and sufficient condition for η_{ϕ} to be a p-th power in K in terms of the ideals representing classes in $A(\bar{\phi})$. In the case that K is the p-th cyclotomic field, Iwasawa has shown the above result applying a theorem of Artin-Hasse concerning power residue symbols (cf. [3], Lemma 3). On the other hand our proof is essentially based on the prime factorization of certain Jacobi sums.

§ 2. Notation and results.

Throughout this paper we denote by p an odd prime and by $\boldsymbol{Z}, \boldsymbol{Z}_{p}, \boldsymbol{Q}$, and \boldsymbol{Q}_{p} the ring of rational integers, the ring of p-adic integers, the field of rational numbers, and the field of p-adic numbers respectively. Further it is assumed that all integers and all algebraic number fields are contained in an algebraic closure $\overline{\boldsymbol{Q}}_{p}$ of \boldsymbol{Q}_{p}. For a rational integer $m>0$ let ζ_{m} be a primitive m-th root of unity.

Let K be an abelian number field and let χ be a character of the Galois $\operatorname{group} \operatorname{Gal}(K / Q)$. By $g(\chi)$ we always mean the order of χ. Let K_{χ} be the fixed field of the kernel of χ. Then K_{χ} is a cyclic extension of \boldsymbol{Q} of degree $g(\chi)$.

[^0]For any abelian number field M containing K_{x} we regard χ as a character of $\operatorname{Gal}(M / \boldsymbol{Q})$ by putting $\chi(\sigma)=\chi\left(\sigma_{K}\right)$ for each σ in $\operatorname{Gal}(M / \boldsymbol{Q})$, where σ_{K} is an automorphism of K whose restriction to K_{χ} coincides with that of σ. If K_{χ} is contained in $\boldsymbol{Q}\left(\zeta_{f}\right)$ for some $f>0$, then we identify χ and the corresponding Dirichlet character modulo f so that $\chi(a)=\chi\left(\sigma_{a}\right)$ for every a in Z, prime to f, where σ_{a} is the automorphism of $\boldsymbol{Q}\left(\zeta_{f}\right)$ determined by $\zeta_{f}^{\sigma_{a}}=\zeta_{f}^{a}$. Let $f(\chi)$ be the least rational integer $f>0$ such that $K_{\chi} \subset \boldsymbol{Q}\left(\zeta_{f}\right)$. Then χ is a primitive Dirichlet character modulo $f(\chi)$.

Let $\boldsymbol{Q}_{p}(\chi)$ be the field generated by the values of χ over \boldsymbol{Q}_{p}. We introduce a p-adic character ϕ such that

$$
\phi=\sum_{\tau \in H} \chi^{\tau}
$$

with $H=\operatorname{Gal}\left(\boldsymbol{Q}_{p}(\chi) / \boldsymbol{Q}_{p}\right)$, where χ^{τ} is a character defined by $\chi^{\tau}(\sigma)=\chi(\sigma)^{\tau}$ for any σ in $\operatorname{Gal}(K / Q)$. We call ϕ the p-adic character over χ. We put

$$
e(\phi)=g(\chi)^{-1} \sum_{\sigma \in G_{\chi}} \phi(\sigma) \sigma^{-1} \quad \text { with } \quad G_{\chi}=\operatorname{Gal}\left(K_{\chi} / \boldsymbol{Q}\right)
$$

When $g(\chi)$ is prime to $p, e(\phi)$ is an idempotent in the group ring $Z_{p}\left[G_{\chi}\right]$.
From now on we suppose that K contains ζ_{p} and that $[K: Q]$ is prime to p. Then $g(\chi)$ is also prime to p and $f(\chi)$ is not divisible by p^{2}. Further let χ be non-trivial and even. There exists an element $e^{\prime}(\phi)=\Sigma_{\sigma \in G_{x}} n_{\sigma} \sigma^{-1}$ of $Z\left[G_{x}\right]$ such that

$$
e^{\prime}(\phi) \equiv e(\phi) \quad\left(\bmod p \boldsymbol{Z}_{p}\left[G_{\chi}\right]\right), \quad \sum_{\sigma \in G_{X}} n_{\sigma}=0 .
$$

We consider a ϕ-relative cyclotomic unit η_{ϕ} in the sense of Gras [2] defined by

$$
\begin{equation*}
\eta_{\phi}=\left(N_{\chi}\left(1-\zeta_{f(x)}\right)\right)^{e^{\prime}(\phi)} \tag{1}
\end{equation*}
$$

with N_{χ} being the norm from $\boldsymbol{Q}\left(\zeta_{f(x)}\right)$ to K_{χ}. In the case that $K=\boldsymbol{Q}\left(\zeta_{p}\right)$, it is shown [3] that η_{ϕ} is a p-th power in K if and only if $\left(E / E_{0} E^{p}\right)^{e(\phi)} \neq 1$, where E denotes the unit group of K and E_{0} the subgroup of E generated by cyclotomic units.

Let ω be a character of $\operatorname{Gal}(K / \boldsymbol{Q})$ of order $p-1$ such that $\omega(\sigma) \equiv a\left(\bmod p \boldsymbol{Z}_{p}\right)$ for each σ in $\operatorname{Gal}(K / \boldsymbol{Q})$, where a is a rational integer satisfying $\zeta_{p}^{\sigma}=\zeta_{p}^{a}$. We put

$$
\bar{\chi}=\chi^{-1} \omega
$$

and denote by $\bar{\phi}$ the p-adic character over $\bar{\chi}$. We call $\bar{\phi}$ the reflection of ϕ. Using the first Bernoulli number $B_{1}\left(\bar{\chi}^{-1}\right)$ associated with $\bar{\chi}^{-1}$ we introduce a rational integer $m(\bar{\phi})$ such that

$$
B_{1}\left(\bar{\chi}^{-1}\right)=p^{m(\bar{\varphi})} \mu
$$

where μ is a unit of $\boldsymbol{Z}_{p}\left[\zeta_{g}(\bar{\chi})\right]$. One has $m(\bar{\phi}) \geqq 0$ because $(g(\bar{\chi}), p)=1$ and $\bar{\chi} \neq \boldsymbol{\omega}$. Moreover we define

$$
e_{K}(\bar{\varphi})=\frac{1}{[K: \boldsymbol{Q}]} \sum_{\sigma \in \operatorname{Gal}(K / Q)} \bar{\phi}(\sigma) \sigma^{-1} .
$$

Let A_{K} be the p-Sylow subgroup of the ideal class group of K. It is known (cf. [2], Theorem I.2) that

$$
p^{m(\bar{\zeta})} e_{K}(\bar{\phi}) A_{K}=0 .
$$

Let \mathfrak{p} be a prime ideal of K lying above p and denote by $N \mathfrak{p}$ its norm. It is clear that $\alpha^{N p-1} \equiv 1\left(\bmod 1-\zeta_{p}\right)$ for any integer α in K prime to $1-\zeta_{p}$. An integer α in K is said to be p-primary if

$$
\alpha^{N p-1} \equiv 1 \quad\left(\bmod \left(1-\zeta_{p}\right)^{p}\right) .
$$

Theorem 1. Let K be an abelian number field containing ζ_{p} of degree prime to p. Denote by ϕ a non-trivial even p-adic character of the Galois group $\operatorname{Gal}(K / Q)$. Then a ϕ-relative cyclotomic unit η_{ϕ} is a p-th power in K if and only if $m(\bar{\phi})>0$ and for any ideal \mathfrak{a}, prime to p, representing a class in $e_{K}(\bar{\phi}) A_{K}$ there is a p-primary integer α in K such that

$$
\mathfrak{a}^{p^{m(\bar{\phi})}}=(\alpha) .
$$

This result will be proved in Section 5. If a principal ideal \mathfrak{b} of K is not generated by any p-primary integer, then \mathfrak{b} is not a p-th power of a principal ideal of K. Hence we obtain

Corollary. Let the notation and assumptions be as in Theorem 1. When $m(\bar{\phi})>0$, it holds that $\eta_{\phi} \neq \varepsilon^{p}$ for any unit ε of K if and only if $e_{K}(\bar{\phi}) A_{K}$ has a cyclic subgroup of order $p^{m(\bar{\phi})}$ generated by an element of A_{K} containing an ideal, prime to p, whose $p^{m(\bar{\rho})}$-th power is not generated by any p-primary integer.

§ 3. Cyclotomic units and Jacobi sums.

It is our aim in this section to give a relation between cyclotomic units and certain Jacobi sums. Let χ be an even primitive Dirichlet character modulo $f(\chi)>1$, of order prime to p. We can write either $\chi=\psi$ or $\chi=\psi \omega^{k}$ with k, $1 \leqq k \leqq p-2$, where ψ is a primitive Dirichlet character modulo $f,(f, p)=1$, and ω denotes the Teichmüller character with respect to p, i.e. $\omega(a) \equiv a\left(\bmod p \boldsymbol{Z}_{p}\right)$ for any a in \boldsymbol{Z}. For convenience we put $\psi \boldsymbol{\omega}^{0}=\psi$.

Let Q be a prime ideal of $L=\boldsymbol{Q}\left(\zeta_{f p}\right)$ relatively prime to $f p$. The residue class ring

$$
F_{\Omega}=\boldsymbol{Z}\left[\zeta_{f p}\right] / \Omega
$$

is a finite field with $N \mathbb{Q}$ elements, where $N \mathbb{Q}$ means the norm of \mathfrak{Q}. Note that $N \Omega-1$ is divisible by $f p$. Let $\theta=\theta \Omega$ be a character of the multiplicative cyclic group F_{Ω}^{*} of order $f p$. Put $\theta(0)=0$. We treat the Jacobi sums $J\left(\theta^{a}, \theta^{b}\right)$
defined by

$$
J\left(\theta^{a}, \theta^{b}\right)=-\sum_{x \in F_{Q}^{a}} \theta^{a}(x) \theta^{b}(1-x)
$$

with a, b in \boldsymbol{Z}. Let $r=r_{0}$ be a fixed generator of $F_{\mathfrak{2}}^{*}$. For each x in $F_{\mathfrak{\infty}}^{*}$ we define a rational integer ind $x=$ ind $_{a} x$ by

$$
x=r^{\text {ind } x} \quad \text { and } \quad 0 \leqq \text { ind } x \leqq N \Omega-2 .
$$

Then one has

$$
\begin{equation*}
J\left(\theta^{a}, \theta^{b}\right)=-\sum_{v=1}^{s} \theta(r)^{a v} \theta(r)^{b \operatorname{ind}(1-r v)} \tag{2}
\end{equation*}
$$

with $s=N Q-2$. For a primitive Dirichlet character λ modulo $m>0$ we consider the Gauss sum

$$
S\left(\lambda, \zeta_{m}\right)=\sum_{u=0}^{m-1} \lambda(u) \zeta_{m}^{u}
$$

It is known that

$$
\begin{gather*}
S\left(\lambda, \zeta_{m}\right) S\left(\lambda^{-1}, \zeta_{m}\right)=\lambda(-1) m \tag{3}\\
S\left(\omega^{-a}, \zeta_{p}\right) \equiv\left(1-\zeta_{p}\right)^{a} / a!\quad\left(\bmod p \boldsymbol{Z}_{p}\left[\zeta_{p}\right]\right) \tag{4}
\end{gather*}
$$

for $a, 1 \leqq a \leqq p-2$. To describe our results we also need a polynomial $\log (X)$ in $\boldsymbol{Z}_{p}[X]$ defined by

$$
\log (1+X)=\sum_{n=1}^{p-1}(-1)^{n+1} X^{n} / n
$$

Let d be the least common multiple of $f p, p-1$ and $g(\chi)$. All integers in the following are contained in $\boldsymbol{Z}_{p}\left[\zeta_{d}\right]$.

We now state the following basic lemma.
Lemma 1. With the notation as above it holds that

$$
\sum_{c=1}^{p-1} \omega^{-1}(c) \sum_{\sigma \in G_{L}} \chi \omega^{-1}(\sigma) \log \left(J\left(\theta, \theta^{c f}\right)^{\sigma}\right) \equiv 0 \quad\left(\bmod \mathfrak{S}^{p}\right)
$$

with $G_{L}=\operatorname{Gal}(L / \boldsymbol{Q})$ and $\mathfrak{P}=\left(1-\zeta_{p}\right) \boldsymbol{Z}_{p}\left[\zeta_{d}\right]$ if and only if

$$
\sum_{v=1}^{s} \chi^{-1}(v) \operatorname{ind}\left(1-r^{v}\right) \equiv 0 \quad(\bmod \mathfrak{ß})
$$

Proof. Put $\zeta=\theta(r)$. Then ζ^{p} (resp. ζ^{f}) is a primitive f-th (resp. p-th) root of unity. We use the Gauss sums $S(\psi)=S\left(\psi, \zeta^{p}\right), S\left(\omega^{a}\right)=S\left(\omega^{a}, \zeta^{f}\right)$ with a, $1 \leqq a \leqq p-2$. For convenience we set $S\left(\omega^{0}\right)=-1$. We now consider a polynomial $h(X)$ defined by

$$
h(X)=-\sum_{v=1}^{s} \zeta^{v} X^{\operatorname{ind}\left(1-r^{v}\right)}
$$

Since $h(1)=1$ one has

$$
\log (h(1-X))=\sum_{n=1}^{(p-1) s} \gamma_{n} X^{n}
$$

with γ_{n} in $\boldsymbol{Z}_{p}[\zeta]$. From (2) we obtain

$$
\begin{array}{ll}
\sum_{c=1}^{p-1} \omega^{-1}(c) \sum_{\sigma \in G_{L}} \chi_{1} \omega^{-1}(\sigma) \log \left(J\left(\theta, \theta^{c f}\right)^{\sigma}\right) & \\
\equiv \sum_{c=1}^{p-1} \omega^{-1}(c) \sum_{\sigma \in G_{L}} \chi \omega^{-1}(\sigma) \sum_{n=1}^{p-1} \gamma_{n}^{\sigma}\left(1-\left(\zeta^{\sigma}\right)^{c f}\right)^{n} & \left(\bmod \mathfrak{B}^{p}\right) \\
\equiv S\left(\omega^{-1}\right) \sum_{\sigma \in G_{L}} \chi_{L} \omega^{-1}(\sigma) \sum_{n=1}^{p-1} \gamma_{n}^{\sigma} \sum_{i=1}^{n}\binom{n}{i}(-1)^{i} \omega(i) \omega(\sigma) & \left(\bmod \mathfrak{P}^{p}\right) \\
\equiv-S\left(\omega^{-1}\right) \sum_{\sigma \in G_{L}} \chi(\sigma) \gamma_{1}^{\sigma} & \left(\bmod \Re^{p}\right)
\end{array}
$$

because $\binom{n}{i} \omega(i) \equiv n\binom{n-1}{i-1}\left(\bmod \mathfrak{P}^{p-1}\right)$ holds if $1 \leqq i \leqq n \leqq p-1$. It is easy to see

$$
\gamma_{1}=\sum_{v=1}^{s} y^{v} \operatorname{ind}\left(1-r^{v}\right)
$$

Hence we compute

$$
\begin{aligned}
& \sum_{\sigma \in G_{L}} \chi(\sigma) \gamma_{1}^{\sigma}=\sum_{i=1}^{p-1} \sum_{(j, j=1}^{f-1} \chi(i f+j p) \sum_{v=1}^{s} \zeta^{(i f+j p) v} \operatorname{ind}\left(1-r^{v}\right) \\
& \equiv \phi(p) \omega^{k}(f) S(\psi) S\left(\omega^{k}\right) \sum_{v=1}^{s} \chi^{-1}(v) \operatorname{ind}\left(1-r^{v}\right) \quad\left(\bmod \mathfrak{P}^{p-1}\right) .
\end{aligned}
$$

It follows from (3) and (4) that $S(\psi) S\left(\omega^{k}\right)$ is not divisible by \mathfrak{P}^{p-1}. Since $g(\chi)$ is prime to p, we have

$$
\mathfrak{P} \cap \boldsymbol{Z}_{p}\left[\zeta_{\boldsymbol{g}(x)}\right]=p \boldsymbol{Z}_{p}\left[\zeta_{\boldsymbol{g}(x)}\right] .
$$

Thus any integer α in $\boldsymbol{Q}_{p}(\chi)$ satisfying $\alpha \equiv 0(\bmod \mathfrak{P})$ is divisible by \mathfrak{P}^{p-1}. This proves the lemma.

In the rest of this section we shall show the following
Theorem 2. Let χ be an even primitive Dirichlet character modulo $f(\chi)>1$, of order prime to p, and let ϕ be the p-adic character over χ. Denote by $f p$ the least common multiple of p and $f(\chi)$ with f prime to p. Then a ϕ-relative cyclotomic unit η_{ϕ} is a p-th power in $L=\boldsymbol{Q}\left(\zeta_{f p}\right)$ if and only if

$$
\begin{equation*}
\sum_{c=1}^{p-1} \omega^{-1}(c) \sum_{\sigma \in G_{L}} \phi \omega^{-1}(\sigma) \log \left(J\left(\theta_{\mathfrak{Q}}, \theta_{\mathfrak{Q}}^{c}\right)^{\sigma}\right) \equiv 0 \quad\left(\bmod \mathfrak{P}^{p}\right) \tag{5}
\end{equation*}
$$

holds for any prime ideal Ω of L prime to $f p$, and for any character θ_{Ω} of F_{Ω}^{*} of order $f p$, where $G_{L}=\operatorname{Gal}(L / Q)$ and $\mathfrak{P}=\left(1-\zeta_{p}\right) \boldsymbol{Z}_{p}\left[\zeta_{d}\right]$.

Lemma 2. Let the notation and assumptions be as in Theorem 2. Then η_{ϕ} is a p-th power in L if and only if for any prime ideal \mathfrak{Q} of L not dividing f, and for any τ in $H=\operatorname{Gal}\left(\boldsymbol{Q}_{p}(\chi) / \boldsymbol{Q}_{p}\right)$

$$
\begin{equation*}
\sum_{v=1}^{s} \chi^{-1}(v)^{r} \operatorname{ind}_{\mathfrak{\Omega}}\left(1-r^{v}\right) \equiv 0 \quad(\bmod \mathfrak{B}) \tag{6}
\end{equation*}
$$

is valid with $s=N Q-2$.

Proof. Let \mathfrak{Q} be a prime ideal of L with $(\mathbb{Q}, f p)=1$. First we note that the left hand side of (6) is equal to

$$
\sum_{v=1}^{f(x)-1} \chi^{-1}(v)^{\tau} \sum_{w=0}^{t-1} \operatorname{ind}_{\mathfrak{N}}\left(1-r^{v+w f(x)}\right)
$$

with $t=(N \Omega-1) / f(\chi)$. Choose an integer β in L representing a generator r_{Ω} of the cyclic group F_{2}^{*}. One has

$$
\prod_{w=0}^{t-1}\left(1-\beta^{v+w f(x)}\right) \equiv 1-\beta^{t v} \quad(\bmod \mathfrak{Q}) .
$$

Remark that $\beta^{t} \equiv \xi(\bmod \mathfrak{Q})$ for a certain primitive $f(\chi)$-th root ξ of unity. We may put $\zeta_{f(x)}=\xi$ in the definition (1). Let y be the residue class in $F_{\mathbb{0}}$ represented by η_{ϕ}. For any σ in G_{L} we can see

$$
\begin{equation*}
\operatorname{ind}_{\mathfrak{Q}} y^{\sigma} \equiv g(\chi)^{-1} \sum_{\tau \in H} \chi(\sigma)^{\tau} \sum_{v=1}^{s} \chi^{-1}(v)^{\tau} \operatorname{ind}_{\mathfrak{Q}}\left(1-r_{\mathfrak{\Omega}}^{v}\right) \quad(\bmod \mathfrak{ß}) . \tag{7}
\end{equation*}
$$

Take an automorphism ρ in G_{L} whose restriction to K_{χ} generates the cyclic group G_{χ}. Then

$$
\sum_{l=0}^{g(x)-1} \chi^{-1}\left(\rho^{l}\right)^{r} \operatorname{ind}_{\mathfrak{N}}\left(y^{\rho}\right)
$$

is congruent to the left hand side of (6) modulo \mathfrak{P}. Thus if η_{ϕ} is a p-th power in L then ind $y^{\sigma} \equiv 0(\bmod p)$ for any Q and for any σ in G_{L}, and hence the congruence (6) is true for any \mathbb{Q} and for any τ.

Conversely we assume that $\eta_{\phi} \neq \varepsilon^{p}$ for any unit ε of L. Since L contains ζ_{p}, the field $L\left(\eta_{\phi}^{1 / p}\right)$ is a normal extension of L of degree p. It is known that there are infinitely many prime ideals of L, relatively prime to $f p$, which remain prime in $L\left(\eta_{\phi}^{1 / p}\right)$. For such a prime ideal Ω it is shown that ind ${ }_{\Omega} y \neq 0(\bmod p)$. Indeed, if $\eta_{\phi} \equiv \alpha^{p}(\bmod \mathfrak{Q})$ with some integer α in L, then $\eta_{\phi}^{1 / p} \zeta_{p}^{u} \equiv \alpha(\bmod \mathfrak{Q})$ for any u in \boldsymbol{Z}. This gives a contradiction because $\left(\Omega, 1-\zeta_{p}\right)=1$. Hence from (7) we see that (6) does not hold for this prime ideal. Thus the proof is complete.

Proof of Theorem 2. For any τ in H, χ^{τ} is also a character under ϕ. We set

$$
C\left(\chi^{\tau}, \theta_{\mathfrak{\Omega}}\right)=\sum_{c=1}^{p-1} \omega^{-1}(c) \sum_{\sigma \in G_{L}} \chi^{\tau} \omega^{-1}(\sigma) \log \left(J\left(\theta_{\mathfrak{\Omega}}, \theta_{\mathfrak{\Omega}}^{c \mathcal{c}}\right)^{\sigma}\right) .
$$

Then $\Sigma_{\tau \in H} C\left(\chi^{\tau}, \theta_{\Omega}\right)$ is equal to the left hand side of (5). Further let ρ be as in the proof of Lemma 2. We have

$$
J\left(\theta_{\mathfrak{\Omega}}, \theta_{\Omega}^{c f}\right)^{\rho}=J\left(\theta_{\Omega}^{b}, \theta_{\Omega}^{b c f}\right)
$$

for some integer b in \boldsymbol{Z}, prime to $f p$. Hence it follows that

$$
\sum_{l=0}^{g()_{1}-1} \chi \omega^{-1}\left(b^{l}\right)^{z^{\prime}} \sum_{\tau \in H} C\left(\chi^{\tau}, \theta_{\mathfrak{\Omega}}^{b^{l}}\right)
$$

$$
\begin{aligned}
& =\sum_{l=0}^{g\left(\chi^{\prime}\right)-1} \chi \omega^{-1}\left(b^{l}\right)^{\tau^{\prime}} \sum_{\tau \in H} \chi^{-1} \omega\left(b^{l}\right)^{\tau} C\left(\chi^{\tau}, \theta_{\mathfrak{\Omega}}\right) \\
& =g(\chi) C\left(\chi^{\tau^{\prime}}, \theta_{\Omega}\right)
\end{aligned}
$$

for any τ^{\prime} in H. Note that the order of $\theta_{\infty}^{b l}$ is also equal to $f p$. Applying Lemmas 1,2 we obtain the assertion of Theorem 2.

§4. Prime factorization of Jacobi sums.

In this section let χ be an odd primitive Dirichlet character modulo $f(\chi)$ such that $(g(\chi), p)=1$ and $\chi \neq \omega$. We denote by ϕ the p-adic character over χ. We recall the first Bernoulli number $B_{1}\left(\chi^{-1}\right)$ associated with χ^{-1} defined as follows:

$$
B_{1}\left(\chi^{-1}\right)=f(\chi)^{-1} \sum_{u=0}^{f(\chi)-1} \chi^{-1}(u) u
$$

As in Section 2 we consider an invariant $m(\phi)$ such that $B_{1}\left(\chi^{-1}\right)=p^{m(\phi)} \mu$ with a unit μ in $\boldsymbol{Z}_{p}\left[\zeta_{g(x)}\right]$. It is clear that $m(\phi)$ is determined independently of the choice of a character χ under ϕ.

Let $f p$ be the least common multiple of p and $f(\chi)$ with f prime to p. Take a prime ideal \subseteq of $L=\boldsymbol{Q}\left(\zeta_{f p}\right)$ not dividing $f p$. Moreover let θ be a character of F_{Q}^{*} of order $f p$ such that if a residue class $x \neq 0$ in F_{Q} contains an integer α satisfying $\alpha^{(N \Omega-1) / f p} \equiv \zeta_{f p}(\bmod \mathbb{Q})$, then $\theta(x)=\zeta_{f p}$. It is known (for instance, cf. [4]) that for rational integers a, b with $a+b \not \equiv 0(\bmod f p)$,

$$
\begin{equation*}
\mathfrak{Q}^{d(a, b)}=\left(J\left(\theta^{a}, \theta^{b}\right)\right) \tag{8}
\end{equation*}
$$

where

$$
d(a, b)=\sum_{\substack{0<u<f \underline{p} \\(u, f p)=1}}\left(\left\langle\frac{a u}{f p}\right\rangle+\left\langle\frac{b u}{f p}\right\rangle-\left\langle\frac{(a+b) u}{f p}\right\rangle\right) \sigma_{u}^{-1} .
$$

Here for a real number s we mean by $\langle s\rangle$ its fractional part; namely $0 \leqq\langle s\rangle<1$ and $s-\langle s\rangle$ is in \boldsymbol{Z}. Further σ_{u} denotes the automorphism of L such that $\zeta_{f}^{\sigma}=\zeta_{f p}^{u}$. If $a \neq 0(\bmod f p)$ then $J\left(\theta^{a}, \theta^{-a}\right)=1$. So we may put $d(a,-a)=0$ in this case.

For each automorphism σ of L let σ^{\prime} be its restriction to K_{χ}. By simple calculation we can see that

$$
\begin{equation*}
\sum_{u}\left\langle\frac{c u}{f p}\right\rangle\left(\sigma_{u}^{\prime}\right)^{-1} e(\phi)=g(\chi)^{-1} \sum_{\tau \in H} \sum_{u} \chi^{-1}(u)^{\tau}\left\langle\frac{c u}{f p}\right\rangle_{\sigma \in G} \sum_{\chi} \chi(\sigma)^{\tau} \sigma^{-1} \tag{9}
\end{equation*}
$$

for any c in Z, where u runs over the integers such that $0<u<f p,(u, f p)=1$, and $H=\operatorname{Gal}\left(\boldsymbol{Q}_{p}(\chi) / \boldsymbol{Q}_{p}\right)$. Also we compute

$$
\sum_{u} \chi^{-1}(u)\left\langle\frac{c u}{f p}\right\rangle=t_{\chi}(c) B_{1}\left(\chi^{-1}\right)
$$

where

$$
t_{\chi}(c)= \begin{cases}(p-1) \chi(c / p) & \text { if } f(\chi)=f \quad \text { and } \quad p \mid c \tag{10}\\ \left(1-\chi^{-1}(p)\right) \chi(c) & \text { otherwise }\end{cases}
$$

For a, b in \boldsymbol{Z} let $d^{\prime}(a, b)$ be the element of $\boldsymbol{Z}\left[G_{\chi}\right]$ induced from $d(a, b)$ by restriction. A theorem of Leopoldt [6] shows that $d^{\prime}(a, b)$ annihilates the ideal class group of K_{x}. From (9) we get

$$
\begin{align*}
& d^{\prime}(a, b) e(\phi)=p^{m(\phi)} g(\chi)^{-1} \sum_{\tau \in H} \mu(a, b)^{\tau} \sum_{\sigma \in \epsilon_{X}} \chi(\sigma)^{\tau} \sigma^{-1} \tag{11}\\
& \text { with } \mu(a, b)=\left(t_{\chi}(a)+t_{\chi}(b)-t_{\chi}(a+b)\right) B_{1}\left(\chi^{-1}\right) / p^{m(\phi)} .
\end{align*}
$$

Note that $\mu(a, b)$ is contained in $\boldsymbol{Z}_{p}\left[\zeta_{g}(x)\right]$. By (10) we have

$$
\sum_{c=1}^{p-1} \omega^{-1}(c) \mu(1, c f) \equiv \sum_{c=1}^{p-1} \omega^{-1}(c) t_{\chi}(1+c f) \not \equiv 0 \quad\left(\bmod p \boldsymbol{Z}_{p}\left[\zeta_{g(x)}\right]\right)
$$

because $\chi(1+c f)=\boldsymbol{\omega}^{l}(1+c f) \equiv(1+c f)^{l}\left(\bmod p \boldsymbol{Z}_{p}\right)$ for some l in \boldsymbol{Z}. We now put

$$
\delta=\sum_{c=1}^{p-1} \omega^{-1}(c) d^{\prime}(1, c f)
$$

It follows from (11) that

$$
\delta e(\phi)=p^{m(\phi)} g(\chi)^{-1} \sum_{\tau \in H} \mu^{\tau} \sum_{\sigma \in \sigma_{X}} \chi(\sigma)^{\tau} \sigma^{-1}
$$

with a unit μ in $Z_{p}\left[\zeta_{g(x)}\right]$. Let $\Phi(X)$ be a polynomial in $Z_{p}[X]$ such that $\Phi(\chi(\rho))=\mu^{-1}$, where ρ is a generator of the cyclic group G_{χ}. Putting $\gamma=\Phi(\rho)$ we obtain

$$
\begin{equation*}
\gamma \delta e(\phi)=p^{m(\phi)} e(\phi) . \tag{12}
\end{equation*}
$$

The above argument implies that

$$
\begin{equation*}
p^{m(\phi)} e(\phi) A_{K_{\chi}}=0 . \tag{13}
\end{equation*}
$$

§ 5. Proof of Theorem 1.

In this section let the notation and assumptions be as in Theorem 1. Denote by χ a character of $\operatorname{Gal}(K / \boldsymbol{Q})$ under ϕ. We regard χ as a Dirichlet character and write $\chi=\psi \omega^{k}$ with $k, 0 \leqq k \leqq p-2$, where ψ is a primitive Dirichlet character modulo $f,(f, p)=1$, and ω denotes the Teichmüller character with respect to p. Then $\bar{\chi}=\psi^{-1} \omega^{1-k}$. We put $L=\boldsymbol{Q}\left(\zeta_{f p}\right)$.

We start with the following
Lemma 3. Let K^{\prime}, M be number fields contained in L such that $K^{\prime} \subset M$ and $\left[M: K^{\prime}\right]=p$. If the degree $\left[K^{\prime}: Q\right]$ is not divisible by p, then there exists a prime ideal of K^{\prime}, relatively prime to p, which is ramified in M.

Proof. Since M is an abelian extension of \boldsymbol{Q} and $g^{\prime}=\left[K^{\prime}: \boldsymbol{Q}\right]$ is prime to p, there exists an extension M^{\prime} of \boldsymbol{Q} of degree p such that $M^{\prime} K^{\prime}=M$. We can
find a prime q ramified in M^{\prime}. Because (g^{\prime}, p) $=1$, any prime ideal of K^{\prime} lying above q is ramified in M. On the other hand the ramification index of \mathfrak{p}_{0} over p is $p-1$, where \mathfrak{p}_{0} means a prime ideal of L lying above p. Thus $q \neq p$. This proves the lemma.

We recall some properties of the polynomial $\log (X)$. Put $\pi=1-\zeta_{p}$. One knows (for instance, cf. [1]) that for any integers α, β in $\overline{\boldsymbol{Q}}_{p}$ satisfying $\alpha \equiv \beta \equiv 1$ $(\bmod \pi)$,

$$
\begin{equation*}
\log (\alpha \beta) \equiv \log (\alpha)+\log (\beta) \quad\left(\bmod \pi^{p}\right) . \tag{14}
\end{equation*}
$$

Denote by $N \mathfrak{p}$ the norm of a prime ideal \mathfrak{p} of K lying above p. Since $(N p-1, p)$ $=1$, it is seen that an integer α in K is p-primary if and only if $\log (\alpha) \equiv 0$ $\left(\bmod \pi^{p}\right)$. In particular if $\alpha=\beta^{p}$ with β in K then α is p-primary. We define a polynomial $\operatorname{Exp}(X)$ in $\boldsymbol{Z}_{p}[X]$ by

$$
\operatorname{Exp}(X)=\sum_{n=0}^{p-1} X^{n} / n!
$$

Then $\log (\operatorname{Exp}(\alpha)) \equiv \alpha\left(\bmod \pi^{p}\right)$ for any integer α in $\overline{\boldsymbol{Q}}_{p}$ divisible by π.
Let $\varepsilon=\eta_{\phi}^{1 / p}$ be a p-th root of η_{ϕ}. Assume that ε is not contained in $K^{\prime}=$ $K_{\chi}\left(\zeta_{p}\right)$. Then $K^{\prime}(\varepsilon)$ is an extension of K^{\prime} of degree p. Note that $K^{\prime} \subset K \cap L$. Since [$K: K^{\prime}$] is prime to p, K does not contain ε. If ε is in L, by Lemma 3 we can find a prime ideal \mathfrak{q} of K^{\prime}, prime to p, which is ramified in $K^{\prime}(\varepsilon)$. On the other hand \mathfrak{q} does not divide the discriminant

$$
\prod_{0 \leq i, j \leq p-1}\left(\varepsilon \zeta_{p}^{i}-\varepsilon \zeta_{p}^{j}\right)= \pm \eta \frac{p-1}{p} p^{p} .
$$

Hence ε is not a unit of L. This implies that ε is contained in K if and only if it is in L.

Next we remark that $\sigma e_{K}(\bar{\phi})=e_{K}(\bar{\phi})$ for any σ in $\operatorname{Gal}\left(K / K_{\bar{\chi}}\right)$. Let \mathfrak{a}_{0} be an ideal of K representing a class c in $e_{K}(\bar{\phi}) A_{K}$. Then $\mathfrak{a}=N_{\bar{\chi}} a_{0}$ represents $\bar{g} c$, where $N_{\bar{\chi}}$ means the norm from K to $K_{\bar{\chi}}$ and $\bar{g}=\left[K: K_{\bar{\chi}}\right]$. Since (\bar{g}, p) $=1$, the class c is also represented by \mathfrak{a}^{t} for some $t>0$. Hence

$$
\mathfrak{a}_{0}\left(\alpha_{1}\right)=\mathfrak{a}^{t}\left(\alpha_{2}\right)
$$

with α_{1}, α_{2} being integers in K. If the p^{l}-th power of \mathfrak{a} is a principal ideal generated by a p-primary integer in $K_{\bar{\chi}}$ for $l>0$, then $\mathfrak{a}_{0}^{p l}=(\alpha)$ holds with α p-primary. Conversely we take an ideal \mathfrak{b} of $K_{\bar{\chi}}$ contained in a class in $e(\bar{\phi}) A_{K_{\bar{\chi}}}$. Let \mathfrak{b}_{0} be the ideal of K induced from \mathfrak{b}. It is easy to see that \mathfrak{b}_{0} represents a class in $e_{K}(\bar{\phi}) A_{K}$. Suppose that $\mathfrak{b}_{0}^{p l}=(\beta)$ holds with β in K and $l>0$. We have $\mathfrak{b}^{\bar{g} p^{l}}=\left(N_{\bar{x}} \beta\right)$. If β were p-primary, the p^{l}-th power of \mathfrak{b} would be originally generated by a p-primary integer in $K_{\bar{\chi}}$. Applying the above arguments we rewrite the assertion of Theorem 1 as follows: η_{ϕ} is a p-th power in L if and
only if $m(\bar{\phi})>0$ and for any ideal \mathfrak{a}, prime to p, representing a class in $e(\bar{\phi}) A_{K_{\bar{\chi}}}$. the $p^{m(\bar{\phi})}$-th power of \mathfrak{a} is generated by a p-primary integer in $K_{\bar{\chi}}$.

For simplicity of notation, from now on we put $K=K_{\bar{z}}$ and use g, G instead of $g(\bar{\chi}), G_{\bar{\chi}}$ respectively.

Let E be the unit group of K. Since $\bar{\phi}$ is odd and is different from ω, one has

$$
\begin{equation*}
\left(E / E^{p}\right)^{e(\bar{\phi})}=1 . \tag{15}
\end{equation*}
$$

By n we mean a sufficiently large natural number. For each p-adic integer α we define a positive rational integer $[\alpha]$ by the congruence

$$
[\alpha] \equiv \alpha \quad\left(\bmod p^{n} \boldsymbol{Z}_{p}\right) .
$$

Let $p^{n \prime} h$ be the class number of K where $n^{\prime} \geqq 0$ and (h, p) $=1$. We put

$$
e^{\prime}(\bar{\phi})=\sum_{\sigma \in G}\left[g^{-1} \bar{\phi}(\sigma)\right] \sigma^{-1}
$$

Then we derive from (13) that

$$
\begin{equation*}
\mathfrak{a}^{p^{m(\phi)} h e^{\prime}(\bar{\phi})} \quad \text { is principal } \tag{16}
\end{equation*}
$$

for any ideal \mathfrak{a} of K. Next for $c, 1 \leqq c \leqq p-1$, we consider the element $d^{\prime}(1, c f)$) of $\boldsymbol{Z}[G]$ induced from $d(1, c f)$, which is defined as in (8), by restriction. We set

$$
\delta^{\prime}=\sum_{c=1}^{p-1} c^{\prime} d^{\prime}(1, c f)
$$

with $c^{\prime}=\left[\omega^{-1}(c)\right]$. Applying (8) one sees that for any prime ideal \mathfrak{Q} of L relatively prime to f,

$$
\begin{align*}
\left(N_{L / K} \mathfrak{Q}\right)^{\delta^{\prime} e^{\prime}(\bar{\phi})} & =\left(\alpha\left(\theta_{\Omega}\right)\right) \tag{17}\\
\text { with } \quad \alpha\left(\theta_{\mathfrak{\Omega}}\right) & =\prod_{c=1}^{p-1}\left(N_{L / K} J\left(\theta_{\Omega}, \theta_{\Omega}^{c f}\right)\right)^{c^{\prime} e^{\prime}(\bar{\phi})},
\end{align*}
$$

where $\theta_{Q 2}$ is a suitable character of $F_{\mathbb{Q}}^{*}$ of order $f p$ and $N_{L / K}$ denotes the norm from L to K.

We are now ready to prove the theorem. Let d be the least common multiple of $f p, p-1$ and g. As in Section 3 we put $\mathfrak{P}=\left(1-\zeta_{p}\right) \boldsymbol{Z}_{p}\left[\zeta_{d}\right]$. First we suppose that η_{ϕ} is a p-th power in L. It follows from (14) and Theorem 2 that

$$
\begin{align*}
\log \left(\alpha\left(\theta_{\mathfrak{\Omega}}\right)\right) & \equiv g^{-1} \sum_{c=1}^{p-1} \omega^{-1}(c) \sum_{\sigma \in G_{L}} \bar{\phi}\left(\sigma^{-1}\right) \log \left(J\left(\theta \Omega, \theta_{\mathfrak{\Omega}}^{c f}\right)^{\sigma}\right) & & \left(\bmod \mathfrak{ß}^{p}\right) \tag{18}\\
& \equiv 0 & & \left(\bmod \mathfrak{ß}^{p}\right)
\end{align*}
$$

for any prime ideal \mathfrak{Q} of L not dividing f, where $G_{L}=\operatorname{Gal}(L / \boldsymbol{Q})$. So $\alpha\left(\theta_{\mathfrak{\Omega}}\right)$ is
p-primary. By (12) we have

$$
\gamma^{\prime} \delta^{\prime} e^{\prime}(\bar{\phi}) \equiv p^{m(\bar{\phi})} e^{\prime}(\bar{\phi}) \quad\left(\bmod p^{n} \boldsymbol{Z}[G]\right)
$$

for some element γ^{\prime} of $\boldsymbol{Z}[G]$. Hence for any \mathfrak{Q} we can find a p-primary integer α in K such that

$$
\begin{equation*}
\left(N_{L / K} \mathfrak{Q}\right)^{\left.p^{m(\bar{\phi}}\right)_{h e^{\prime}}(\bar{\phi})}=(\alpha) . \tag{19}
\end{equation*}
$$

Although the claim that $m(\bar{\phi})>0$ can be derived from a congruence of Gras (cf. [2], [7]), we shall show it in another way. For this purpose we define an integer β^{\prime} in L by

$$
\beta^{\prime}=\left\{\begin{array}{lll}
\sum_{\sigma \in G}\left[\bar{\phi}\left(\sigma^{-1}\right)\right]\left(\zeta_{f} \zeta_{p}\right)^{\bar{\sigma}} & \text { if } & k \neq 1, \\
p \sum_{\sigma \in G}\left[\bar{\phi}\left(\sigma^{-1}\right)\right] \zeta_{f}^{\bar{\sigma}} & \text { if } & k=1,
\end{array}\right.
$$

where for each σ in $G, \bar{\sigma}$ means an automorphism in G_{L} whose restriction to K coincides with σ. It is clear that $\beta^{\prime} \equiv 0(\bmod \mathfrak{F})$. Choose an integer β in L such that $\beta \equiv \operatorname{Exp}\left(\beta^{\prime}\right)\left(\bmod \mathfrak{B}^{p}\right)$ and (β) is prime to $f p$. Assume that $m(\bar{\phi})=0$. Because $e^{\prime}(\bar{\phi})^{2} \equiv e^{\prime}(\bar{\phi})\left(\bmod p^{n} \boldsymbol{Z}[G]\right)$, it is shown from (15) and (19) that

$$
\log \left(\left(N_{L / K}(\beta)\right)^{e^{\prime}(\overline{(\bar{j}}) \equiv 0 \quad\left(\bmod \Re_{\beta^{p}}^{p}\right)}\right.
$$

On the other hand, we put

$$
S^{\prime}(\psi)=\sum_{u=0}^{p-1}\left[\sum_{\tau \in H} \psi(u)^{\tau}\right] \zeta_{f}^{u}, \quad S^{\prime}\left(\omega^{k-1}\right)=\sum_{v=0}^{p-1}\left[\omega^{k-1}(v)\right] \zeta_{p}^{v}
$$

for $k \neq 1$, and $S^{\prime}\left(\omega^{0}\right)=-p$, where $H=\operatorname{Gal}\left(\boldsymbol{Q}_{p}(\bar{\chi}) / \boldsymbol{Q}_{p}\right)$. It is easy to see that

$$
\sum_{\rho \in G}\left[g^{-1} \bar{\phi}(\rho)\right]\left[\bar{\phi}\left(\sigma^{-1} \rho^{-1}\right)\right] \equiv\left[\bar{\phi}\left(\sigma^{-1}\right)\right] \equiv\left[\sum_{\tau \in H} \psi(\sigma)^{\tau}\right]\left[\omega^{k-1}(\sigma)\right] \quad\left(\bmod p^{n}\right)
$$

is valid for any σ in G. Hence we get

$$
\begin{array}{rlr}
\log \left(\left(N_{L / K}(\beta)\right)^{e^{\prime}(\bar{\phi})}\right) \equiv e^{\prime}(\bar{\phi}) \sum_{\sigma \in G a 1(L / K)}\left(\beta^{\prime}\right)^{\sigma} & \left(\bmod \mathfrak{P}^{p}\right) \\
& \equiv S^{\prime}(\psi) S^{\prime}\left(\omega^{k-1}\right) & \left(\bmod \mathfrak{P}^{p}\right) .
\end{array}
$$

Since $S^{\prime}\left(\omega^{k-1}\right)$ is not divisible by \Re^{p}, we have

$$
\sum_{\tau \in H} S\left(\psi^{\tau}, \zeta_{f}\right) \equiv S^{\prime}\left(\psi^{\prime}\right) \equiv 0 \quad(\bmod \mathfrak{P})
$$

Changing ζ_{f} by any conjugate of ζ_{f} in the above argument, we can gain the same conclusion. Let b be a rational integer such that $\psi(b)$ is a primitive $g(\psi)$-th root of unity. Then we see

$$
S\left(\psi, \zeta_{f}\right)=g(\psi)^{-1} \sum_{i=1}^{g(\psi)} \psi\left(b^{i}\right) \sum_{\tau \in H} S\left(\psi^{\tau}, \zeta_{f}^{b^{i}}\right) \equiv 0 \quad(\bmod \mathfrak{P}) .
$$

This is contradictory to (3). Thus we have shown $m(\bar{\phi})>0$.

Let I be the group of fractional ideals of K and I_{0} the subgroup of all principal ideals in I. Assume that there is a class in $e(\bar{\phi}) A_{K}$ containing an ideal \mathfrak{a} prime to p such that

$$
\begin{equation*}
\mathfrak{a}^{p^{m(\bar{\phi})}} \neq(\alpha) \tag{20}
\end{equation*}
$$

for any p-primary integer α in K. Let $H_{1}=I^{p} I_{0}$. Remark that a is not contained in H_{1}. By M_{1} we denote the class field belonging to H_{1}. Then M_{1} is the maximal unramified elementary abelian p-extension of K. From Lemma 3 we have $M_{1} \cap L=K$. Hence by class field theory one can find a prime ideal \mathfrak{q} of K, totally decomposed in L, such that $(\mathfrak{q}, f p)=1$ and $a H_{1}=\mathfrak{q} H_{1}$. Thus $\mathfrak{q}=N_{L / K} \mathfrak{Q}$ for some prime ideal \mathfrak{Q} of L not dividing $f p$, and

$$
\mathfrak{a c _ { 1 }}=\mathfrak{q c _ { 2 }}
$$

for some ideals $\mathfrak{c}_{1}, \mathfrak{c}_{2}$ in H_{1}. As a represents a class in $e(\bar{\phi}) A_{K}$ and $(h, p)=1$, there exist integers β_{1}, β_{2} in K and t in Z such that

$$
\mathfrak{a}\left(\beta_{1}\right)=\mathfrak{a}^{h t e^{\prime}(\bar{\phi})}\left(\beta_{2}\right)
$$

We may assume that $\mathfrak{c}_{1}, \mathfrak{c}_{2},\left(\beta_{1}\right)$ and $\left(\beta_{2}\right)$ are all prime to p. Observing $m(\bar{\phi})>0$, we obtain by (16) that the $p^{m(\bar{\phi})} h e^{\prime}(\bar{\phi})$-th power of \mathfrak{c}_{i} is a p-th power of a principal ideal for $i=1,2$. Hence it follows from (19) that $\mathfrak{a}^{p^{m(\bar{\phi})}}=(\alpha)$ with α p-primary. This is contrary to (20). Thus we have proved a half of the assertion.

Next we suppose that $\eta_{\phi} \neq \varepsilon^{p}$ for any unit ε of L and that $m(\bar{\phi})>0$. By means of Theorem 2 we can find a prime ideal \mathfrak{Q} of L, prime to $f p$, for which (18) is not valid. If we put $\mathfrak{b}=\left(N_{L / K} \mathfrak{Q}\right)^{)^{\prime} e^{\prime}(\bar{\phi}) / p^{m(\bar{\phi})}}$ then \mathfrak{b} represents a class in $e(\bar{\phi}) A_{K}$ and

$$
\mathfrak{b}^{p^{m(\bar{\phi})}}=(\beta) \quad \text { with } \quad \beta=\alpha\left(\theta_{\mathfrak{\mathfrak { n }}}\right) .
$$

Here β is not p-primary. Any integer α in K which generates the $p^{m(\bar{\phi})}$-th power of \mathfrak{b} is written as $\alpha=\eta \beta$ with a unit η of K. Applying (15) and (17) we compute

$$
\begin{aligned}
e^{\prime}(\bar{\phi}) \log (\alpha) & \equiv \log \left(\eta^{e^{\prime}(\bar{\phi})}\right)+\log \left(\beta^{e^{\prime}(\bar{\phi})}\right) & & \left(\bmod \mathfrak{P}^{p}\right) \\
& \equiv \log (\beta) \not \equiv 0 & & \left(\bmod \mathfrak{B}^{p}\right) .
\end{aligned}
$$

This implies $\log (\alpha) \not \equiv 0\left(\bmod \mathfrak{P}^{p}\right)$. Therefore the $p^{m(\bar{\phi})}$-th power of \mathfrak{b} is not generated by any p-primary integer in K. This completes the proof.

References

[1] Z. I. Borevich and I. R. Shafarevich, Number theory, Academic Press, London and New York, 1966.
[2] G. Gras, Classes d'idéaux des corps abeliens et nombres de Bernoulli généralisés, Ann. Inst. Fourier (Grenoble), 27 (1977), 1-66.
[3] K. Iwasawa, A note on cyclotomic fields, Invent. Math., 36 (1976), 115-123.
[4] S. Lang, Cyclotomic fields, Springer-Verlag, New York, 1978.
[5] H. W. Leopoldt, Zur Struktur der l-Klassengruppe galoisscher Zahlkörper, J. Reine Angew. Math., 199 (1958), 165-174.
[6] H. W. Leopoldt, Zur Arithmetik in abelschen Zahlkörpern, J. Reine Angew. Math., 209 (1962), 54-71.
[7] T. Uehara, On some congruences for generalized Bernoulli numbers, Rep. Fac. Sci. Engrg. Saga Univ. Math., 10 (1982), 1-8.
[8] A. Wiles, Modular curves and the class group of $Q\left(\zeta_{p}\right)$, Invent. Math., 58 (1980), 1-35.

Tsuyoshi Uehara
Department of Mathematics
Faculty of Science and Engineering. Saga University
Saga 840
Japan

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 58540115), Ministry of Education.

