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Introduction.

By a polarized manifold we mean a pair $(M, L)$ of a projective manifold $M$

and an ample line bundle $L$ on $M$. Set $n=\dim M,$ $d(M, L)=L^{n}$ and $\Delta(M,$ $L\rangle$

$=n+d(M, L)-h^{0}(M, L)$ . Then $\Delta(M, L)\geqq 0$ for any polarized manifold $(M, L)$

(see [F2]). We have classified polarized manifolds with $\Delta=0$ in [F2] and those
with $\Delta=1$ in [F5] (as for positive characteristic cases, see [F6]). In this series
of papers we will study polarized manifolds with $\Delta=2$ . However, because of
various technical reasons, we assume here that things are deflned over the
complex number field $C$ , although some arguments work in positive characteristic
cases too.

This series is an improved version of [F1], which contains most results here,
but, unfortunately, is hardly readable. We remark that Ionescu [I] obtained
independently the classification of $(M, L)$ with $\Delta=2$ such that $L$ is very ample.

\S 0. Outline of the classification.

In this section we give a brief account of the classification of polarized
manifolds with $\Delta=2$ . We freely use the notation in [F2], [F5], [F6], etc.
The following result is used to reduce various problems to lower dimensional
cases.

(0.1) THEOREM. Let $(M, L)$ be a polarized manifold with dimM$=n\geqq 3$,
$d(M, L)=d\geqq 2$ and $\Delta(M, L)=2$ . Then any general member $D$ of $|L|$ is non-
srngular. Moreover, the restriction homomorphism $r:H^{0}(M, L)arrow H^{0}(D, L_{D})$ is
surjective and $\Delta(D, L_{D})=2$ .

PROOF. [F7; (4.1)] shows that $D$ is smooth. If $r$ is not surjective, we
have $H^{1}(M, O_{M})>0$ and $\Delta(D, L_{D})<2$ . The latter implies $H^{1}(D, L_{D})=0$ by [F2]
and [F5]. This is absurd because we have an exact sequence $H^{1}(M, -L)arrow$

$H^{1}(M, O_{M})arrow H^{1}(D, O_{D})$ and $H^{1}(M, -L)=0$ by Kodaira’s vanishing theorem. Thus
$r$ is surjective and hence $\Delta(D, L_{D})=2$ .

(0.2) THEOREM. Let $(M, L)$ be a polarized manifold with dimM$=n\geqq 2$ ,
$\Delta(M, L)=2$ and $g(M, L)\leqq 1$ , where $g(M, L)$ is the sectional genus. Then $M\cong P(E\rangle$
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for an ample vector bundle $E$ of rank two over an elliptic curve $C$ and $L$ is the
tautological line bundle on it.

PROOF. We consider first the case $d(M, L)=d=1$ . Then $h^{0}(M, L)=n+d-\Delta$

$=n-1$ , while dimBsl $L|\leqq 1$ by [F2; Theorem 1.9]. Therefore, if $D_{1}$ , , $D_{n-1}$

are general members of $|L|$ and if $C=D_{1}\cap\cdots\cap D_{n- 1}$ , then Bsl $L|=Supp(C)$ is
a curve. Moreover $LC=L^{n}=1$ . Hence the scheme theoretic intersection $C$ is
an irreducible reduced curve. By [F2; Proposition 1.3] we have $h^{1}(C, O_{C})$

$=g(M, L)\leqq 1$ .
Assume that $H^{1}(M, O_{M})=0$ . Then we claim $H^{i}(V_{j}, (1-i)L)=0$ for each

$j=1,$ $\cdots$ , $n$ and $i=1,$ $\cdots$ , $j-1$ , where $V_{j}=D_{j}\cap D_{j+1}\cap\cdots\cap D_{n-1}$ (set $V_{n}=M$ and
$V_{1}=C)$ . Indeed, this is true when $j=n$ by the assumption and Kodaira’s vanish-
ing theorem. In case $j<n$ , we use the exact sequence $H^{i}(V_{j+1}, (1-i)L)arrow$

$H^{i}(V_{j}, (1-i)L)arrow H^{i+1}(V_{j+1}, -iL)$ and the descending induction on $j$ from above
to prove the claim. Thus we have $H^{1}(V_{j}, O)=0$ for each $j\geqq 2$ , which implies
$\Delta(M, L)=\Delta(V_{n}, L)=\ldots=\Delta(V_{1}, L)=\Delta(C, L)$ . However $\Delta(C, L)\leqq 1$ because
$h^{1}(C_{y}O_{C})\leqq 1$ . This contradiction shows that $H^{1}(M, O_{M})\neq 0$ .

On the other hand, by a similar argument as above, we get $H^{i}(V_{j}, -tL)=0$

for any $i<j,$ $i>0$ by the descending induction on $j$ and hence $H^{1}(V_{j+1}, O)arrow H^{1}(V_{j}, O)$

is injective for each $j\geqq 1$ . Therefore $h^{1}(M, O_{M})\leqq h^{1}(C, O_{C})\leqq 1$ . So we conclude
that $H^{1}(M, O_{M})arrow H^{1}(C, O_{C})$ is bijective and $g(M, L)=h^{1}(C, O_{C})=1$ .

Since $h^{1}(M, O_{M})=1$ , the Albanese variety $A$ of $M$ is an elliptic curve. Let
$\alpha;Marrow A$ be the Albanese morphism. Then $\alpha(C)=A$ because $H^{1}(A, O_{A})arrow$

$H^{1}(M, O_{M})arrow H^{1}(C, O_{C})$ is bijective. In view of $h^{1}(C, O_{C})=1$ , we infer that $C$ is
a non-singular elliptic curve.

Now, when $n=2$, we apply [F5; (1.11)] to prove the theorem. So we will
consider the case $n\geqq 3$ by induction on $n$ . Let $\pi;M’arrow M$ be the blowing-up
with center $C$, let $E=\pi^{-1}(C)$ be the exceptional divisor, and let $D_{j}’$ and $V_{j}’$ be
the proper transforms of $D_{j}$ and $V_{j}$ respectively. Since $C$ is the ideal theoretical
intersection of $D_{j}’ s$, we have $D_{1}’\cap\cdots\cap D_{n-1}’=\emptyset$ . So Bs $|\pi^{*}L-E|=\emptyset$ because
$D_{j}’\in|\pi^{*}L-E|$ . This linear system gives a morphism $\rho$ : $M’arrow P^{n-2}$, whose
restriction to each fiber of $Earrow C$ is an isomorphism. From this we infer $E\cong$

$C\cross P^{n-2},$ $D_{j}’\cap E\cong C\cross P^{n-3}$ and $V_{j}’\cap E\cong C\cross P^{j-2}$ . This implies that $V_{j}$ is smooth
along $C$ and $V_{j}’$ is the blowing-up of $V_{j}$ with center $C$. Thus, by Bertini’s
theorem, $V_{j}$ is a submanifold of $M$. So, to prove the theorem, it suffices to
derive a contradiction assuming $n=3$ .

When $n=3$, any general member $D$ of $|L|$ is a $P^{1}$-bundle over $A=Alb(M)$
$\cong Alb(D)$ by [F5; (1.11)]. Hence $\alpha;Marrow A$ is a $P^{2}$-bundle by [F4; (4.9)].

Moreover $M\cong P_{A}(\mathcal{E})$ for some ample vector bundle $\mathcal{E}$ of rank 3 on $A$ and $L$ is
the tautological line bundle on it. Then, as is well-known (cf., e.g., [I; Prop-
osition 3.11]), we have $h^{0}(M, L)=h^{0}(A, \mathcal{E})=\deg(\det \mathcal{E})=L^{3}=d$ , contradicting
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$\Delta(M, L)=2$ . Thus we complete the proof in case $d(M, L)=1$ .
Next we consider the case $d(M, L)>1$ . Using (0.1) and by similar arguments

as above, we reduce the problem to the case $n=2$ . The case in which $|L|$ has
fixed components will be studied in the next section (cf. (1.13)). Here we assume
that $|L|$ has at most finitely many base points. Then a general member $C$ of
$|L|$ is a smooth curve by [F7; (2.8)]. So, similarly as in the case $d(M, L)=1$ ,
we infer $h^{1}(M, O_{M})>0,$ $H^{1}(M, O_{\psi})arrow H^{1}(C, O_{C})$ is bijective, $g(M, L)=h^{1}(C, O_{C})=1$

and hence [F5; (1.11)] applies.
(0.3) In case $g(M, L)>1$ , since dim Bsl $L|<\Delta(M, L)=2$ , we consider the

following cases separately:
a) $d(M, L)=1$ .
b) $d(M, L)>1$ and dim Bsl $L|=1$ .
c) $d(M, L)>1$ and dim Bsl $L|\leqq 0$ .

In case a), the precise structure of $(M, L)$ is still a “mystery”. Similarly
as in (0.2), we can say that the scheme theoretic intersection $C$ of general
members $D_{1},$ $\cdots$ , $D_{n-1}$ of $|L|$ is an irreducible reduced curve of arithmetic genus
$g(M, L)$ with $LC=1$ . But we do not know whether $C$ is smooth or not.

The main purpose of this part I is the study of the case b).

(0.4) In view of $g(M, L)>1$ we divide the above case c) in the following
subcases :
(c- i) $d(M, L)>4$ .
(c-ii) $d(M, L)=4$ .
(c-iii) $d(M, L)=2$ or 3.

(0.5) In case (c-i), we have $g(M, L)=2$ and $L$ is simply generated (hence

very ample) by [F3; Theorem 4.1, $c)$ ]. Moreover $H^{i}(M, tL)=0$ for any $0<i<n$

and any $t\in Z$ by [F6; (3.8)]. Using this we infer $Bs|K+(n-1)L|=\emptyset$ for the
canonical bundle $K$ of $M$ by induction on $n$ . This linear system gives the so-
called adjunction mapping $f$ . Since $g(M, L)=2,$ $f$ is a mapping onto $P^{1}$ . It
turns out that $\mathcal{E}=f_{*}(G_{M}[L])$ is a locally free sheaf of rank $n+1$ with $\deg(\det \mathcal{E})$

$=d-3$ , and $M$ is a member of the linear system $|2H_{\zeta}+(6-d)H_{\xi}|$ on $P=P(\mathcal{E})$ ,

where $H_{\zeta}$ is the tautological line bundle of $P$ and $H_{\xi}$ is the pull-back of $O_{P^{1}}(1)$ .
Moreover $L$ is the restriction of $H_{(}$ to $M$. We list up below all such polarized
manifolds $(M, L)$ . As for proofs of these facts, see [F1] or [I].

(I) The cases $n=2$ .
(I-O) $M$ is a blowing-up of $P_{\zeta}^{1}\cross P_{\xi}^{1}$ with center being $12-d$ points. $L=2H_{\zeta}$

$+3H_{\xi}-E$ , where $E$ is the sum of $12-d$ exceptional curves over these points.
(I-1) $M\cong\Sigma_{1}\cong P(H_{\beta}\oplus \mathcal{O})$ , a $P^{1}$-bundle over $P_{\beta}^{1}$ , and $L=2H_{\alpha}+2H_{\beta}$ , where $H_{\alpha}$

is the tautological line bundle. It is well-known that $\Sigma_{1}$ is a blowing-up of $P^{2}$

with center being a point, and that the exceptional curve $C$ is the unique section
of $\Sigma_{1}arrow P_{\beta}^{1}$ with negative self-intersection number.
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(I-1) $M$ is a blowing-up of $\Sigma_{1}$ with center being a point $P$ lying on $C$, and
$L=2H_{a}+2H_{\beta}-E_{p}$ , where $E_{p}$ is the exceptional curve over $p$ .

(I-2) $M\cong\Sigma_{2}\cong P(2H_{\beta}\oplus O)$ and $L=2H_{\alpha}+H_{\beta}$ , where $H_{\alpha}$ is the tautological
line bundle.

(II) The cases $n=3$ .
(II-1) $\mathcal{E}=O(1,1,0,0)$ . This means that $\mathcal{E}$ is the direct sum of four line

bundles over $P^{1}$ of degrees 1, 1, $0,0$ . So $d=5$ .
(II-2) $\mathcal{E}=O(1,1,1,0)$ . So $d=6$ . $M$ is a double covering of $P^{1}\cross P^{2}$ with

branch locus being a divisor of bidegree $(2,2)$ .
(II-3) $\mathcal{E}=O(1,1,1,1)$ . $d=7$ . $M$ is a blowing-up of $P^{3}$ with center being a

complete intersection curve of type $(2,2)$ .
(II-4) $\mathcal{E}=O(2,1,1,1)$ . $d=8$ . $M$ is a blowing-up of a hyperquadric with center

being a smooth conic curve.
(II-5) $\mathcal{E}=O(2,2,1,1)$ . $d=9$ . $M\cong P^{1}\chi\Sigma_{1}$ .
(III) The cases $n>3$ . In this case we have:
$\mathcal{E}=O(1,1,1,1,1)$ and $(M, L)$ is the Segre product of $(P^{1}, O(1))$ and $(Q^{3}, O(1))$ .
Here, given polarized manifolds $(M_{1}, L_{1})$ and $(M_{2}, L_{2})$ , by Segre product we

mean the polarized manifold $(M_{1}\cross M_{2}, p_{1}^{*}L_{1}+p_{2}^{*}L_{2})$ , where $p_{i}$ denotes the pro-
jection onto $M_{i}$ .

(0.6) In case (c-ii), we have Bsl $L|=\emptyset$ by [F3; Theorem 4.1, $b$]. In view
of [F9; (1.4)], we infer that there are three possibilities.
(1) $g(M, L)=2$ and $(M, L)$ is the normalization of a singular hypersurface of
degree four. It turns out that this is possible only when $n<4$ .
(2) $g(M, L)=3$ and $(M, L)$ is a smooth hypersurface of degree four.
(3) $(M, L)$ is hyperelliptic in the sense of [F9]. Namely, $\rho_{|L|}$ makes $M$ a
double covering of a hyperquadric $W$ . In view of Tables I and II in [F9;

p. 24], we infer that $(M, L)$ is of type $(II_{a}^{n}),$ $(\Sigma(1,1)_{a.b}^{+}),$ $(\Sigma(1,1)_{b}^{0})$ or $(^{*}II_{a})$ in the
notation of [F9]. In particular $W$ is non-singular if $n\geqq 3$ .

(0.7) In case (c-iii), there are various types which do not appear in case
(c-i) and (c-ii). For details, see [F1] or forthcoming parts of this series of
papers.

\S 1. The rational mapping defined by $|L|$ .
(1.1) From now on, throughout in this part I, let $(M, L)$ be a polarized

manifold with $n=\dim M\geqq 2,$ $d(M, L)=d\geqq 2,$ $\Delta(M, L)=2$ and dim Bsl $L|=1$ .
(1.2) Set $\Lambda=|L|$ and take a Hironaka model $(M’, \Lambda’)$ of $(M, \Lambda)$ as in [F7;

(1.4)]. We shall freely use the notation in [F7; (1.6)].

(1.3) By [F7; (4.2) &(4.13)] we have dimW$=n-1$ , where $W$ is the image
of the rational mapping $M’arrow P^{n+d- 3}$ defined by $\Lambda’$ . Moreover, applying [F7;
(3.6)], we obtain $w=\deg W=d-1,$ $LX=1$ and $\Delta(W, H)=0$ where $X$ is a general
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fiber of $\rho:M’arrow W$ .
(1.4) By [F7; (4.5)], $Y=Bs\Lambda$ is an irreducible rational normal curve. There-

fore, the first blowing-up $\pi_{1}$ ; $M_{1}arrow M$ of the sequence $M’=M_{r}arrow M_{r-1}arrow\cdotsarrow M_{1}arrow M$

may be assumed to be the blowing-up of $Y$ . We claim Bsl $\pi_{1}^{*}L-E_{1}|=\emptyset$ , where
$E_{1}$ is the exceptional divisor lying over $Y$ .

To see this we use the induction on $n$ . When $n=2$ , we have $M_{1}=M$,
$E_{1}=Y$ and $LE_{1}=1$ by [F7; (3.7)]. We have also $E_{1}X=1$ and $E_{1}(L-E_{1})$

$=wE_{1}X=d-1$ by [F7; (3.10)]. So $(L-E_{1})^{2}=0$ . On the other hand, using [F7;

(3.9)&(3.7)], we infer that $|L-E_{1}|$ has no fixed component. Combining them
we obtain Bsl $L-E_{1}|=\emptyset$ .

When $n\geqq 3$, take a general member $D$ of $|L|$ and let $D_{1}$ be the proper
transform of $D$ in $M_{1}$ . Then $D$ is non-singular by (0.2) and hence $D_{1}$ is the
blowing-up of $D$ with center $Y$ . The restriction of $\Lambda_{1}=|\pi_{1}^{*}L-E_{1}|$ to $D_{1}$ is a
$ComPlete^{\mathfrak{l}}$ linear system by (0.2). So this has no base point by the induction
hypothesis. Hence Bs $|\Lambda_{1}|=\emptyset$ because $D_{1}\in\Lambda_{1}$ . This completes the proof of
the claim.

(1.5) Thus we see that $\pi$ : $M’arrow M$ is the blowing-up with center $Y=Bs\Lambda\cong P^{1}$ ,
$E=E_{1}$ and $\Lambda’=|\pi^{*}L-E|$ . Since $XE=\pi^{*}L\cdot X=1$ for any general fiber $X$ of
$\rho$ : $M’arrow W$, the restriction $\rho_{E}$ of $\rho$ to $E$ is a birational morphism onto $W$.
Moreover, $\rho_{E}$ is the rational mapping dePned by $|\rho_{E}^{*}H|$ , or equivalently, the
natural mapping $H^{0}(W, H)arrow H^{0}(E, \rho_{E}^{*}H)$ is bijective. Indeed, the injectivity is
obvious, while we have $h^{0}(E_{y}H_{E})=\dim E+d(E, H_{E})=n+d-2=h^{0}(W, H)$ since
$E$ is a $P^{n-2}$-bundle over $P^{1}$ .

(1.6) CLAIM. $\rho_{E}$ is an isomorphism.
By the above observation, this is equivalent to saying that $\rho_{E}^{*}H$ is ample.

When $n=2$, the claim is obvious.
(1.7) Here we prove (1.6) in case $n=3$ and $d\geqq 3$ . If $\rho_{E}$ is not an isomor-

phism, then $W$ is a cone over a Veronese curve of degree $d-1$ since $\Delta(W, H)=0$ .
Since $E$ is a $P^{1}$-bundle over $Y\cong P^{1}$ , we have $E\cong P_{Y}(O(d-1)\oplus O)$ , the Hirzebruch
surface $\Sigma_{d-1}$ . The morphism $\rho_{E}$ contracts the unique section $C_{\infty}$ of $Earrow Y$ with
$C_{\infty}^{2}=1-d$ to a normal point $v$ on $W$, and $v$ is the vertex of the cone $W$ . We
will derive a contradiction from this.

For any point $w$ on $W$ other than $v$ , the fiber $X_{w}=\rho^{-1}(w)$ is an irreducible
reduced curve. Indeed, $t\pi^{*}L-E$ is ample on $M’$ for $t\gg O$ . The restriction of
this to $X_{w}$ is $(t-1)E_{x_{w}}$ , because $L=E$ in $Pic(X_{w})$ . So the restriction of $E$ to
$X_{w}$ is an ample divisor. On the other hand, $E\cap X_{w}$ is a point and $EX=1$ .
Hence $X_{w}$ must be an irreducible reduced curve.

For $y\in Y$ , let $E_{y}$ be the fiber of $Earrow Y$ over $y$ . Then $(d-1)E_{y}+C_{\infty}$ is a
member of $|\rho_{E}^{*}H|$ . Let $H_{y}$ be the corresponding hyperplane section of $W$ and
set $D_{y}=\rho^{*}H_{y}$ . $D_{y}$ is an effective Cartier divisor on $M’$ such that the restriction
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to $E$ is $(d-1)E_{y}+C_{\infty}$ . The prime decomposition of $D_{y}$ is of the form
$(d-1)F_{y}+Z_{y}$ , where $\rho(F_{y})=H_{y}$ and $Z_{y}$ is the sum of components contained in
$\rho^{-1}(v)$ . If $Z_{y}=0$, then $D_{y}$ is divisible by $d-1$ and hence so is the restriction
of $D_{y}$ to $E$ . This contradicts the above observation. So $Z_{y}\neq 0$ . Moreover, we
see easily that the restrictions of $F_{y}$ and $Z_{y}$ to $E$ are $E_{y}$ and $C_{\infty}$ respectively.

Thus, the scheme theoretical intersection $Z_{y}\cap E$ is the non-singular rational
curve $C_{\infty}$ . On the other hand, this is an ample divisor on $Z_{y}$ because $Z_{y}\subset\rho^{-1}(v)$

and $[E]=L$ in $Pic(Z_{y})$ . Since $Z_{y}$ is smooth along $C_{\infty},$ $Z_{y}$ is irreducible and
has at most finitely many singular points. Since every 2-dimensional component
of $\rho^{-1}(v)$ is a component of $Z_{y}$ , there is only one such component. In particular,
$Z_{y}$ is independent of the choice of $y\in Y$ . Anyway, $Z=Z_{y}$ is normal by Serre’s
criterion. Now, [F2; Theorem 2.1, $d)$ ] applies since $[E]_{c_{\infty}}=L_{c_{\infty}}=O(1)$ . Thus
we infer $Z\cong P^{2}$ .

Now we claim that $F_{y}\cap F_{y’}\neq\emptyset$ for any $y\neq y’$ on $Y$ . Indeed, both $F_{y}\cap Z$

and $F_{y^{l}}\cap Z$ are non-trivial effective divisors on $Z\cong P^{2}$ because $F_{y}\cap C_{\infty}\neq\emptyset$ and
$F_{y’}\cap C_{\infty}\neq\emptyset$ . So $F_{y}\cap F_{y’}\cap Z\neq\emptyset$ .

Thus we see $\dim(F_{y}\cap F_{y’})\geqq 1$ . It is also clear that $F_{y}\cap F_{y’}\subset\rho^{-1}(v)$ . Hence
$[E]$ is ample on $F_{y}\cap F_{y’}$ . So $F_{y}\cap F_{y’}\cap E\neq\emptyset$ . On the other hand we have
$F_{y}\cap E=E_{y}$ , $F_{y’}\cap E=E_{y’}$ and $E_{y}\cap E_{y’}=\emptyset$ . This gives a contradiction, as
desired.

(1.8) Assuming $d\geqq 3$ , we will prove (1.6) by induction on $n$ . We should
consider the case $n>3$ here.

Let $T$ be a general hyperplane section of $W$ and let $N$ be the corresponding
member of $|L|$ . Namely $N=\pi(N’)$ for $N’=\rho^{*}T$ . Then $(N, L_{N})$ is a polarized
manifold with $\Delta=2$ of the type under consideration. Therefore, by the induction
hypothesis, the restriction of $\rho$ to $E_{T}=E\cap N’$ is an isomorphism onto $T$ . Taking
$\pi_{*}$ of the exact sequence $0arrow O_{E}arrow O_{E}[H]arrow O_{E_{T}}[H]arrow 0$, we get an exact sequence
$0arrow O_{Y}arrow \mathcal{E}arrow \mathcal{F}arrow 0$ of locally free sheaves on Y. $\mathcal{F}$ is ample by assumption. So,
if this sequence does not split, then $\mathcal{E}$ is ample (cf., $e.g.$ , [F4; (4.16)]) and
hence $H_{E}$ is very ample. Therefore we may assume that the above exact
sequence splits. In this case $E$ has a section $C_{\infty}$ such that $\rho(C_{\infty})$ is a point $v$

on $W$ . Moreover $W$ is the cone over $T$ with vertex $v$ . We will derive a con-
tradiction from this.

Set $Z=\rho^{-1}(v)$ . Then $E\cap Z=C_{\infty}$ is an ample divisor on $Z$ . Hence $\dim Z\leqq 2$ .
For any point $y$ on $Y$ , let $T_{y}$ and $E_{y}$ be the fibers of $E_{T}arrow Y$ and $Earrow Y$

respectively. Then $\rho(T_{y})$ and $\rho(E_{y})$ are linear subspaces in $P^{n+d-3}\supset W$ and
$\rho(E_{y})$ is the linear span of $\rho(T_{y})$ and $v$ . Let $F_{y}$ be the $(n-1)$-dimensional com-
ponent of $\rho^{-1}(\rho(E_{y}))$ . Clearly $F_{y}\cap E=E_{y}$ and $\rho^{-1}(\rho(E_{y}))=F_{y}\cup Z$ . Moreover
$Z_{y}=F_{y}\cap Z$ is a curve in $Z$ .

Take another point $y’$ on $Y$ . Then $\rho(F_{y}\cap F_{y’})\subset\rho(E_{y})\cap\rho(E_{y’})=v$ . So
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$F_{y}\cap F_{y’}\subset Z$ . If $F_{y}\cap F_{y’}\neq\emptyset$ , then $\dim(F_{y}\cap F_{y^{r}}\cap E)\geqq n-3$ because $E$ is ample
on $Z$ . But $F_{y}\cap F_{y’}\cap E=E_{y}\cap E_{y’}=\emptyset$ . Hence $F_{y}\cap F_{y’}=\emptyset$ , so $Z_{y}\cap Z_{y’}=\emptyset$ .
Thus $Z$ contains a one-dimensional family of curves. So dimZ $=2$ . Moreover,
since $C_{\infty}\cong P^{1}$ and $[E]_{c_{\infty}}=o(1)$ , the normalization $\tilde{Z}$ of $Z$ is isomorphic to $P^{2}$ by

[F2; Theorem 2.1, $d)$ ]. But $Z_{y}$ and $Z_{y’}$ are curves on $Z$ disjoint with each
other. This is impossible. Thus we get a contradiction.

(1.9) Now we consider the remaining case $d=2$ . When $n=2$ , we have
$E(L-E)=1=LE$ and so $E^{2}=0$ . Since $E=Y$ is a component of $Bs|L|$ , we have
$h^{0}(M, E)=1$ . Therefore $E$ is a fiber of a ruling $\alpha:Marrow A$ over an irrational
curve A. $LF=LE=1$ for every fiber $F$ of $\alpha$ . Hence $\alpha$ is a $P^{1}$-bundle. More-
over $\rho$ : $Marrow W\cong P^{1}$ is an isomorphism restricted to each fiber $F$. So $M\cong A\cross W$

with $\alpha$ and $\rho$ being the first and second projections respectively.
Next we consider the case $n=3$ . For any general member $S$ of $|L|,$ $(S, L_{S})$

is a polarized surface of the above type. So $S\cong A\cross P^{1}$ for an irrational curve
$A$ . Using the Albanese mapping we can extend the morphism $Sarrow A$ to a
morphism $\mu:Marrow A$ . Moreover, by [F4; (4.9)], $\mu$ is a $P^{2}$-bundle. $Y$ is a line
in a fiber $F\cong P^{2}$ of $\mu$ . Combining $\rho$ and $\mu$ we get a birational morphism $M_{1}’arrow$

$A\cross P^{2}$ . One easily sees that this is nothing but the contraction of the proper
transform $F’$ of $F$ to a point $p$ . Thus, from the converse view-point, $M’$ is the
blowing-up of $A\cross P^{2}$ at a point $p$ . Now, let $Z$ be the proper transform on $M’$

of the fiber of $A\cross P^{2}arrow P^{2}$ passing $p$ . Then $E\cap Z=\emptyset$ and $H_{Z}=0=L_{Z}$ . This
is impossible because $tL-E$ is ample on $M’$ for $t\gg O$ . Thus the case $n=3$ is
ruled out.

In view of (0.1), we conclude $n=2$ if $d=2$ . In particular, the claim (1.6)

is true in this case too. Thus we have completed the proof of (1.6).

(1.10) For every fiber $X$ of $\rho,$
$E_{X}$ is an ample divisor on $X$ and $E_{X}$ is a

simple point. Hence $X$ is an irreducible reduced curve. So $\rho$ is a flat morphism.
In particular every fiber is of the same arithmetic genus $g$ .

(1.11) The sectional genus $g(M, L)$ of $(M, L)$ is equal to $(d-1)g$ . In order
to see this, we take general members of $|L|$ , use (0.1) and reduce the problem
to the case $n=2$ . When $n=2$, we have $E^{2}=E(L-H)=LE-(d-1)XE=2-d$
and $KE=-2-E^{2}=d-4$ for the canonical bundle $K$ of $M=M’$ . Using $KX=2g-2$

we get $KL=K((d-1)X+E)=2(d-1)(g-1)+d-4$ and $2g(M, L)-2=(K+L)L$

$=2(d-1)(g-1)+2d-4$ . This gives $g(M, L)=(d-1)g$ .
(1.12) We claim $g\geqq 1$ . To prove this, we may assume $n=2$ as in (1.11).

If $g=0,$ $\rho$ : $Marrow W\cong P^{1}$ is a $P^{1}$-bundle. Then $H^{1}(M, L-E)=H^{1}(M, (d-1)X)=0$

and $H^{0}(M, L)arrow H^{0}(E, L_{E})$ is surjective. This contradicts $E\subset Bs|L|$ .
(1.13) Now we complete the proof of (0.2). We should consider the case

dim $Bs|L|=1$ here. By (1.11), we infer $d=2$ from $g(M, L)=1$ and $d\geqq 2$ . So
the argument (1.9) proves (0.2).
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(1.14) Summarizing the preceding arguments we obtain the following

THEOREM. Let $(M, L)$ be a p0larized manifold with dimM$=n\geqq 2,$ $d(M, L)$

$=d\geqq 2,$ $\Delta(M, L)=2$ and dim $Bs|L|=1$ . Then
1) $Y=Bs|L|$ is an irreducible rational normal curve.
2) Let $\pi;M’arrow M$ be the blowing-up of $Y$ and let $E$ be the exceptjonal divisor

over Y. Then Bs $|\pi^{*}L-E|=\emptyset$ .
3) Let $W$ be the image of the morphism $M’arrow P^{n+d-3}$ defined by $|\pi^{*}L-E|$ .

Then dim$W=n-1$ , deg$W=d-1$ and $\Delta(W, \mathcal{O}_{W}(1))=0$ .
4) $E$ is a section of the morphe $sm\rho$ : $M’arrow W$. So $E\cong W$ and this is a $P^{n-2_{-}}$

bundle over $Y$.
5) $\rho$ is flat and every fiber of $\rho$ is an irreducible reduced curve of arithmetic

genus $g\geqq 1$ . This number $g$ is determined by the relation $g(M, L)=(d-1)g$ .
6) If $n\geqq 3,$ $(D, L_{D})$ is a p0larized manifold of the above type for any general

member $D$ of $|L|$ .
7) If $d=2$, then $n=2$ and $M\cong A\cross P^{1}$ for some curve $A$ of genus $g\geqq 1$ .

Moreover $L=E+X$ where $E$ (resp. $X$) is a fiber of the pr0jecti0n onto $A$ (resp.
$P^{1})$ .

(1.15) COROLLARY. There exists a morphism $\psi:Marrow Y\cong P^{1}$ such that $\psi_{Y}$ is
the identity and that $(M_{y}, L_{y})$ is a polarized manifold with $d(M_{y}, L_{y})=\Delta(M_{y}, L_{y})=1$

for any smooth fiber $M_{y}=\psi^{-1}(y)$ over $y\in Y$. Here $L_{y}$ denotes the restriction of $L$

to $M_{y}$ .
To see this, consider the morphism $M’arrow W\cong Earrow Y$. It is easy to see that

this factors through $M$. So we have a morphism $\psi:Marrow Y$. Comparing (1.14)

and [F5; (13.7)], we infer $d(M_{y}, L_{y})=\Delta(M_{y}, L_{y})=1$ for any smooth fiber $M_{y}$ .
(1.16) Here we consider the converse of (1.14).

Let $W$ be a rational scroll in $P^{n+d-3}$ with dim$W=n-1$ , deg$W=d-1$ and
$\Delta(W, H)=0$. So $W$ is a $P^{n-2}$-bundle over $Y\cong P_{\xi}^{1}$ . Suppose that we have a flat
morphism $f:N’arrow W$ such that every fiber of $f$ is an irreducible reduced curve of
arithmetic genus $g\geqq 1$ . Suppose further that there is a section $E$ of $f$ with its
normal bundle $[E]_{E}$ being $H_{\xi}-H$, where $H_{\xi}$ is the pull-back of $O_{Y}(1)$ . Then,
the restriction of $[E]$ to a fiber of $E\cong Warrow Y\cong P_{\xi}^{1}$ is $O(-1)$ and hence $E$ can be
blown-down smoothly to $Y$. Let $\pi;N’arrow N$ be the blowing-down morphism.
From the converse view-point, $N’$ is the blowing-up of $N$ with center $Y\subset N$ and
$E$ is the exceptional divisor. We have a line bundle $L$ on $N$ such that $\pi^{*}L$

$=f^{*}H+E$, because the restriction of $f^{*}H+E$ to each fiber of $Earrow Y$ is trivial.
Then $(N, L)$ is a polarized manifold with $d(N, L)=d,$ $\Delta(N, L)=2$ and Bsl $L|=Y$.

Indeed, the ampleness of $L$ is proved similarly as in [F5; (13.7)]. Here the
irreducibility of every fiber of $f$ is essential. We have $L^{n}=L^{n-1}(E+H)$

$=L^{n-1}H=\ldots=L^{2}H^{n-2}=LEH^{n-2}+EH^{n-1}=1+(d-1)=d$ in the Chow ring of $N’$ .
So $d(N, L)=d$ . Since $g\geqq 1,$ $E$ is in the fixed part of $|f^{*}H+E|$ and we have
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$h^{0}(N, L)=h^{0}(N’, f^{*}H+E)=h^{0}(N’, f^{*}H)=h^{0}(W, H)=n+d-2$ . Hence $\Delta(N, L)=2$ .
Moreover Bsl $f^{*}H+E|=E$ implies that $Bs|L|=Y$.

(1.17) THEOREM. Let things be as in (1.14). Then $d>n$ . Moreover, if
$d=n$ , then the fibration $\psi:Marrow Y\cong P_{\eta}^{1}$ in (1.15) is trivial and $(M_{y}, L_{y})\cong(N, A)$

for some fixed polarized manifold $(N, A)$ with $d(N, A)=\Delta(N, A)=1,$ $g(N, A)=g$ .
Thus $(M, L)$ is the Segre product of $(N, A)$ and $(P_{\eta}^{1}, H_{\eta})$ .

PROOF. $W\cong E$ is a $P^{n-2}$-bundle over $Y$ and $\mathcal{F}=\pi_{*}O_{E}[H]$ is an ample locally
free sheaf on $Y$. So $d-1=\deg W=\deg(\det \mathcal{F})\geqq rank\mathcal{F}=n-1$ , proving the in-
equality.

We prove the assertion for the case $d=n$ by induction on $n$ . When $n=2$ ,
(1.9) shows our assertion. So we consider the case in which $n\geqq 3$ .

Since $\deg(\det \mathcal{F})=rank\mathcal{F}$ , we infer that $\mathcal{F}$ is a direct sum of $H_{\eta}’ s$ . So $W$

is a Segre variety $\cong P_{\eta}^{1}\cross P_{\xi}^{n-2}$ and $H=H_{\eta}+H_{\xi}$ . Let $Z$ be a general member of
$\rho^{*}|H_{\xi}|$ . Then we have $E\cap Z\cong P_{\eta}^{1}\cross P_{\xi}^{n-3},$ $\pi(E\cap Z)=Y,$ $\pi(Z)$ (denoted by $T$ in
the sequel) is a non-singular member of $|L-\psi^{*}H_{\eta}|$ and $\pi_{Z}$ ; $Zarrow T$ can be viewed
as the blowing-up of the manifold $T$ with center $Y$. Furthermore, in view of
(1.16), we see that $(T, L)$ is a polarized manifold of the type (1.14) such that
$d(T, L)=d-1$ . The rational scroll associated to $(T, L)$ is identified with the
member of $|H_{\xi}|$ on $W$ corresponding to $Z$. Applying the induction hypothesis
to $(T, L)$ , we see that the restriction of $\psi$ to $T$ is a trivial fibration and $T\cong Y\cross F$

for the fiber $F$. Note also that $[T]_{T}=[L-H_{\eta}]_{T}$ is the pull-back of an ample
line bundle on $F$.

Now it follows that $H^{1}(T, [mT])=0$ and Bs $|[mT]_{T}|=\emptyset$ for any $m\gg O$ . So the
mapping $H^{1}(M, (m-1)T)arrow H^{1}(M, mT)$ is surjective and $h^{1}(M, mT)$ is a non-
increasing function in $m$ . Hence we have an integer $m_{0}\gg 0$ such that $h^{1}(M, mT)$

$=h^{1}(M, m_{0}T)$ for every $m\geqq m_{0}$ . Then $H^{0}(M, mT)arrow H^{0}(T, [mT]_{T})$ is surjective
for any $m>m_{0}$ . This implies Bsl $mT|=\emptyset$ for every $m\gg O$ .

Now, applying (A1) in the Appendix, we obtain a fibration $f:Marrow N$ over
a normal variety $N$ together with an ample line bundle $A$ on $N$ such that
$f^{*}A=[T]$ . Define a morphism $\Psi:Marrow Y\cross N$ by $\Psi(x)=(\psi(x), f(x))$ . Since
$L=\Psi^{*}(H_{\eta}+A)$ is ample, $\Psi$ is a finite morphism. Clearly $Y\cross N$ is normal. We
have $d=L^{n}=(\deg\Psi)\cdot(H_{\eta}+A)^{n}\{Y\cross N\}=(\deg\Psi)\cdot n\cdot A^{n-1}\{N\}$ . So the assumption
$d=n$ implies $A^{n-1}\{N\}=\deg\Psi=1$ . Thus $\Psi$ is birational. Hence $\Psi$ is an isomor-
phism by Zariski’s Main Theorem.

The rest of our assertion is now obvious.

\S 2. The case of elliptic fibration.

(2.1) Let things be as in (1.14) and we assume $g=1$ in this section. By the
method in [F5; \S 14], we study the structure of $(M, L)$ in the following way.
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(2.2) Set $\mathcal{D}=O_{M’}[\pi^{*}2L]$ and $\mathcal{F}=\rho_{*}\mathcal{D}$ . Then $\mathcal{F}$ is a locally free sheaf of
rank two on $W$ and the natural homomorphism $\rho^{*}\mathcal{F}arrow \mathcal{D}$ is surjective. So we
have a morphism $\beta:M’arrow P_{W}(\mathcal{F})=V$ such that $\beta^{*}O_{V}(1)=\mathcal{D}$ . Of course $V$ is a
$P^{1}$-bundle over $W$ and $S=\beta(E)$ is a section of $p:Varrow W$. $\beta$ is a finite double
covering and hence $M’\cong R_{B}(V)$ in the notation in [F9] etc., where the branch
locus $B$ is a smooth divisor on $V$. Furthermore, $S$ is a component of $B$ and $E$

is a component of the ramiPcation locus of $\beta$ .
(2.3) Let $H_{\eta}$ denote the pull-back of $O_{Y}(1)$ (recall that $W$ is a $P^{n-2}$-bundle

over $Y\cong P_{\eta}^{1}$) and set $H_{\xi}=H-H_{\eta}$ . Then $Pic(W)\cong Pic(S)\cong Pic(E)$ is generated by
$H_{\eta}$ and $H_{\xi}$ . The normal bundle of $E$ in $M’$ is $[L-H]_{E}=-H_{\xi}$ . Since $\beta^{*}S=2E$,
the normal bundle of $S$ in $V$ is $-2H_{\xi}$ . Taking $p_{*}$ of the exact sequence
$0arrow O_{V}[2H_{\xi}]arrow O_{V}[S+2H_{\xi}]arrow O_{S}arrow 0$, we get an exact sequence $0arrow O_{W}[2H_{\xi}]arrow \mathcal{E}arrow O_{W}$

$arrow 0$ , where $\mathcal{E}$ is a locally free sheaf such that $V\cong P(\mathcal{E})$ .
If $H_{\zeta}$ is the tautological line bundle of $P(\mathcal{E})$ , we see $S\in|H_{\zeta}-2H_{\xi}|$ and

$[H_{(}]_{S}=\mathcal{O}_{S}$ . Now, we have $H^{1}(W, 2H_{\xi})=0$ since $H=H_{\xi}+H_{\eta}$ is ample on the
rational scroll $W$. Hence the above exact sequence splits and $\mathcal{E}\cong[2H_{\xi}]\oplus O_{W}$ .

Write $B=S+B^{*}$ . Since $B$ is non-singular, we have $S\cap B^{*}=\emptyset$ . We may
set $[B^{*}]=zH_{\zeta}+xH_{\xi}+yH_{\eta}$ , because Pic(V) is generated by $H_{\zeta},$ $H_{\xi}$ and $H_{\eta}$ . Then
$x=y=0$ because $[B^{*}]_{S}=0$ . Moreover $z=3$ since the restriction of $\beta$ over $w\in W$

is the rational mapping $X_{w}arrow V_{w}\cong P^{1}$ defined by $|2E|_{X_{w}}$ , which is ramified over
four points. Thus $B^{*}\in|3H_{\zeta}|$ .

It is easy to see Bs $|H_{\zeta}|=\emptyset$ on $V$, since $\mathcal{E}$ is generated by global sections.
On the other hand, we have $H_{\zeta}^{2}H_{\xi}^{n-3}H_{\eta}\{V\}=c_{1}(\mathcal{E})H_{\xi}^{n-3}H_{\eta}\{W\}=2H_{\xi}^{n-2}H_{\eta}\{W\}=2$ .
Hence $\dim\rho_{1H_{\zeta^{1}}}(V)\geqq 2$ and $H^{1}(V, -3H_{\dot{\zeta}})=0$ by Kodaira-Ramanujam’s vanishing
theorem. So $B^{*}$ is connected.

(2.4) Summarizing we obtain the following

THEOREM. Let $(M, L)$ be a polarized manifold of the type (1.14) and suPpose
that $g=1$ . Then $M’$ is a finite double covering of a $P^{1}$-bundle $V=P_{E}(O_{E}\oplus[2H_{\xi}])$

over $E\cong W$, where $H_{\xi}=H_{E}-L_{E}$ . The image $S$ of $E$ by the morphism $\beta:M’arrow V$

is the unique member of $|H_{\zeta}-2p^{*}H_{\xi}|$ , where $H_{\zeta}$ is the tautological line bundle
on $V$ and $p$ is the morphusm $Varrow E$ . The branch locus $B$ of $\beta$ is of the form
$B^{*}+S$, where $B^{*}$ is a smooth connected member of $|3H_{\zeta}|$ and $B^{*}\cap S=\emptyset$ .

(2.5) For further study of such polarized manifolds, see \S 4.

\S 3. The case of hyperelliptic fibration.

(3.1) Let things be as in (1.14) and we assume $g\geqq 2$ in this section. Let
$\omega$ be the dualizing sheaf of $M’$ and set $\mathcal{F}_{t}=\rho_{*}(\omega^{\otimes t})$ for each positive integer
$t$ . Similarly as in [F5; \S 15], $\mathcal{F}_{t}$ is a locally free sheaf for each $t\geqq 1$ and the
natural morphism $\rho^{*}\mathcal{F}_{1}arrow\omega$ is surjective. So we have a morphism $\beta:M’arrow P(\mathcal{F}_{1})$
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such that the restriction $\beta_{w}$ of $\beta$ to each fiber $X_{w}=\rho^{-1}(w)$ over $w\in W$ is the
canonical mapping of the curve $X_{w}$ . Let $V$ be the image of $\beta$ .

(3.2) DEFINITION. We say that the fibration $\rho$ : $M’arrow W$ is hyPerelliptic if
any general fiber $X_{w}$ of $\rho$ is a hyperelliptic curve.

From now on, throughout in this part I, we assume that $\rho$ is hyperelliptic.
Then, by a similar reasoning as in [F5; \S 15], we infer that $V$ is a $P^{1}$-bundle
over $W$ and $\beta:M’arrow V$ is a double branched covering. The branch locus $B$ of
$\beta$ is a smooth divisor on $V$.

(3.3) Let $i$ be the involution of $M’$ such that $M’/i\cong V$. Then we have
the following three possibilities:
a) $i(E)=E$ .
b) $i(E)\cap E=\emptyset$ .
c) $i(E)\neq E$ and $i(E)\cap E\neq\emptyset$ .

In case a) (resp. b), $c$)), $(M, L)$ is said to be of $typ\dot{e}$ (–) (resp. $(\infty),$ $(+)$ ).

(3.4) REMARK. Let $\psi:Marrow Y\cong P^{1}$ be as in (1.15). Then $\rho$ is hyperelliptic
if and only if $(M_{y}, L_{y})$ is sectionally hyperelliptic in the sense of [F5; III] for
any general point $y$ on Y. In this case we will see that $(M, L)$ is of type (–)

(resp. $(\infty),$ $(+)$ ) if and only if $(M_{y}, L_{y})$ is of type (–) (resp. $(\infty),$ $(+)$).

This is almost clear by the definition of $\psi$ . But we should prove that ( $M_{y},$ $L_{y}\rangle$

is of type $(+)$ if $(M, L)$ is of type $(+)$ . See \S 6.

\S 4. Type (–).

In this section we assume that $\rho$ : $M’arrow W$ is hyperelliptic and that ( $M,$ $L\rangle$

is of type (–).

(4.1) Since $i(E)=E$, the restriction of $i$ to $E$ is the identity. So $S=\beta(E)$

is a component of the branch locus $B$ of $\beta$ : $M’arrow V$. By a quite similar method
as in (2.3), we obtain the following

THEOREM. Let things be as in (1.14) and assume that $\rho$ : $M’arrow W$ is hyper-
elliptic and of tyPe (–). Then $M’$ is a double branched covering of a $P^{1}$-bundle
$V=P(O_{W}\oplus[2H_{\xi}]_{W})$ over $W$, where $H_{\xi}$ denotes $[\rho^{*}H-\pi^{*}L]_{E}\in Pic(E)\cong Pic(W)$ .
The image $S$ of $E$ by $\beta$ : $M’arrow V$ is a section of $p:Varrow W$ and is the unique
member of $|H_{\zeta}-2p^{*}H_{\xi}|_{y}$ where $H_{\zeta}$ is the tautological line bundle on V. The
branch locus $B$ of $\beta$ is of the form $S+B^{*}$ , where $B^{*}$ is a smooth connected
member of $|(2g+1)H_{\zeta}|$ such that $S\cap B^{*}=\emptyset$ .

(4.2) Because of the similarity of this theorem and (2.4), the case $g=1$ may
be regarded as a special case of type (–). In particular, the following results
in this section are valid in case $g=1$ too.

(4.3) Conversely, let $W\subset P^{n+d- 3}$ be a rational scroll with $\deg W=d-1$ ,

dim$W=n-1$ , let $\pi$ : $Warrow Y\cong P_{\eta}^{1}$ be the $P^{n-2}$-bundle morphism, let $H_{\xi}=H-\pi^{*}O_{Y}(1)$ ,
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let $V$ be the $P^{1}$-bundle $P(O_{W}\oplus[2H_{\xi}])$ over $W$ with the tautological bundle $H_{\zeta}$,

let $S$ be the unique member of $|H_{\zeta}-2H_{\xi}|$ and let $B^{*}$ be a smooth member of
$|(2g+1)H_{\zeta}|$ with $g\geqq 1$ . Then, taking a double covering $\beta:N’arrow V$ with branch
locus $B=S+B^{*}$ , we obtain $\rho$ : $N’arrow W$ as in (1.16). So, by blowing-down
$E=\beta^{-1}(S)$ to a smooth rational curve $\cong Y$, we get a polarized manifold $(M, L)$

of the type (4.1).

Note that the isomorphism class of $(M, L)$ depends only on the type of the
rational scroll $W$ and on the choice of $B^{*}$ .

(4.4) For any fixed $(n, d, g)$ , all the polarized manifolds of the type (4.1)

with $n=\dim M,$ $d=d(M, L)$ and with $g$ being the genus of general fibers of $\rho$

\langle or equivalently, with $g(M, L)=(d-1)g)$ are deformations of each other.
This is clear if the rational scroll $W$ is the same. In general, we prove

the assertion similarly as in [F9; (8.12)]. We sketch the outline of the proof.
Suppose that we have a family $\{\mathcal{E}_{t}\}$ of vector bundles on $Y\cong P_{\eta}^{1}$ with

rank $(\mathcal{E}_{t})=n-1$ , $\deg(\det(\mathcal{E}_{t}))=d-n$ parametrized by $t\in A^{1}$ . Assume that the
tautological line bundle $(H_{\xi})_{t}$ on $P(\mathcal{E}_{t})=W_{t}$ is semipositive (or equivalently,
$H_{\xi}+H_{\eta}$ is ample on $W_{t}$ ) for every $t$ . Set $V_{t}=P(2H_{\xi}\oplus O_{W_{t}})$ . Then $\{V_{t}\}$ is a
family of manifolds and $h^{0}(V_{t}, (2g+1)[H_{\zeta}]_{t})$ does not depend on $t$ , where $[H_{\zeta}]_{t}$

is the tautological line bundle on $V_{t}$ . So, all the pairs consisting of $V_{t}$ and a
smooth member of $|(2g+1)[H_{\zeta}]_{t}|$ are parametrized by a connected (non-compact)
manifold, which is fibered over $A^{1}$ . Performing the construction (4.3) simultane-
ously we get a family of polarized manifolds of the type (4.1). Thus we see
that the deformation type of $(M, L)$ depends only on the deformation type of
$W$. On the other hand, rational scrolls of the same $(n, d)$ are deformations of
each other. Putting things together, we complete the proof.

(4.5) LEMMA. Let $(M, L)$ be as in (4.1) and suppose that $d>n$ . Then there
is a polarized manifold $(M^{\#}, L^{\#})$ with $\dim M^{\#}=n+1$ of the tyPe (4.1) such that,
for any smooth member $D$ of $|L^{\#}|,$ $(D, LB)$ is a polarized deformation of $(M, L)$ .

PROOF. Obvious by (4.3) and (4.4).

(4.6) PROPOSITION. Let $(M, L)$ be as in (4.1) and let $\psi:Marrow Y\cong P_{\eta}^{1}$ be as in
\langle 1.15). Then
1) $H^{q}(M, O_{M})=0$ for any $0<q<n$ unless $q+1=n=d$ .
2) $M$ is simply connected if $d>2$ .
3) The canonical bundle $K^{M}$ of $M$ is $(2g-n)L+(d-2-2g)H_{\eta}$ .
4) $Pic(M)$ is generated by $L$ and $H_{\eta}$ if $d>3$ and $n\geqq 3$ .

PROOF. 1). Similarly as in [F9], we have $h^{q}(M, O_{M})=h^{q}(M’, O)=h^{q}(V, -F)$ ,
where $F=B/2=(g+1)H_{\zeta}-H_{\xi}$ . By Serre duality we have $h^{q}(V, -F)$

$=h^{n-q}(V, K^{V}+F)=h^{n-q}(V, (g-1)H_{\zeta}-(n-2)H_{\xi}+(d-n-2)H_{\eta})=h^{n-q}(W,$ $S^{g-1}(2H_{\xi}\oplus$

$O_{W})\otimes[-(n-2)H_{\xi}+(d-n-2)H_{\eta}])$ . If this does not vanish, then $h^{n-q}(W,$ $jH_{\xi}$

$+(d-n-2)H_{\eta})>0$ for some $j\geqq 0$ , because $W$ is a $P^{n-2}$-bundle over $P_{\eta}^{1}$ . This is
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possible only when $n-q=1$ and $d-n-2\leqq-2$ since $H_{\xi}$ is semipositive. From
this observation we deduce the assertion 1).

2). By virtue of (4.5) and Lefschetz Theorem, we may assume $n\geqq 3$ . Let
$\Sigma$ be the singular locus of $\psi:Marrow Y$ and set $U=Y-\Sigma$ . Then $M_{y}=\psi^{-1}(y)$ is
simply connected by [F5; (16.6; 6)] for every $y\in U$. Since $\psi_{U}$ : $\psi^{-1}(U)arrow U$ is
topologically locally trivial, we infer $\pi_{1}(\psi^{-1}(U))\cong\pi_{1}(U)$ . Then, by the technique
in [F8; (4.19)], we obtain $\pi_{1}(M)=\{1\}$ because $L^{n-1}\{M_{y}\}=1$ implies that every
fiber of $\psi$ is irreducible and reduced.

3). In general, for any locally free sheaf $\mathcal{F}$ of rank $r$ over a manifold $X$,
the canonical bundle $K^{P}$ of $P(\mathcal{F})=P$ is $K^{X}-H+\det \mathcal{F}$ , where $H$ is the tautological
line bundle $O_{P}(1)$ . So we infer $K^{W}=-2H_{\eta}-(n-1)(H_{\xi}+H_{\eta})+(d-1)H_{\eta}=-(n-1)H_{\xi}$

$+(d-n-2)H_{\eta}$ and $K^{V}=-2H_{\zeta}-(n-3)H_{\xi}+(d-n-2)H_{\eta}$ . Hence $K^{K}‘=K^{V}+[B]/2$

$=(g-1)H_{\zeta}-(n-2)H_{\xi}+(d-n-2)H_{\eta}$ . On the other hand, we have $K^{M^{l}}=K^{M}$

$+(n-2)E$ while $L=E+H_{\xi}+H_{\eta}$ and $2E=[S]=H_{(}-2H_{\xi}$ in $Pic(M’)$ . So $K^{M}$

$+(n-2)L=K^{M’}+(n-2)(H_{\xi}+H_{\eta})=(g-1)H_{\zeta}+(d-4)H_{\eta}=(2g-2)L+(d-2-2g)H_{\eta}$ .
From this we get 3).

4). We have $h^{1}(M, O)=h^{2}(M, O)=0$ by 1). So $Pic(M)\cong H^{2}(M;Z)$ . Hence,
by virtue of (4.5), we may assume $n\geqq 4$ . Then, for any $F\in Pic(M)$ , the restric-
tion of $F$ to $M_{y}=\psi^{-1}(y)$ is $mL_{y}$ for some integer $m$ by [F5; (16.6, 5)]. Then
$\mathcal{F}=\psi_{*}(O_{M}[F-mL])$ is an invertible sheaf on $Y$ and the natural homomorphism
$\psi^{*}\mathcal{F}arrow O_{M}[F-mL]$ is an isomorphism. Therefore $F$ is an integral combination“ of
$L$ and $H_{\eta}$ .

REMARK. The conditions in 2) and 4) are best possible. Indeed, $M$ is not
simply connected if $d=n=2$ . If $d=n=3,$ $M$ is isomorphic to $Y\cross N$ for a surface
$N$ by (1.17). So 4) is not true in this case unless $Pic(N)$ is generated by $L_{N}$ .

(4.7) THEOREM. Let $(M, L)$ be a polarized manifold as in (1.14). Then the
following conditions are equivalent to each other.
a) The fibration $\rho$ : $M’arrow W$ is hyperelliptic of type (–).
b) $Bs|2L|=\emptyset$ .
c) $h^{0}(M, 2L)\geqq n(n-1)/2+3d$ .

PROOF. Note first that $(W, H)$ is a rational scroll and hence $(W, H)$

$\cong(P(F), O(1))$ for some ample vector bundle $F$ on $P_{\eta}^{1}$ . So $h^{0}(W, 2H)=h^{0}(P^{1}, S^{2}F)$

$=rank(S^{2}F)+c_{1}(S^{2}F)=n(n-1)/2+3(d-1)$ since rank$(F)=\dim W=n-1$ and $c_{1}(F)$

$=\deg W=d-1$ .
$a)arrow c)$ : By (4.1), we have $h^{0}(M, 2L)=h^{0}(M’, 2L)=h^{0}(M’, H_{\zeta}+2H_{\eta})$

$\geqq h^{0}(V, H_{\zeta}+2H_{\eta})=h^{0}(W, 2H_{\xi}+2H_{\eta})+h^{0}(W, 2H_{\eta})=h^{0}(W, 2H)+3=n(n-1)/2+3d$ .
$c)arrow b)$ : Since $E$ is a section of $\rho’$ : $M’arrow W$ and $g>0,$ $E$ must be a fixed

component of 2$H+E|=|L+H|$ on $M’$ . So $h^{0}(M’, L+H)=h^{0}(M’, 2H)$

$=n(n-1)/2+3d-3$ . In view of the exact sequence $0arrow H^{0}(M’, L+H)arrow H^{0}(M’, 2L)$

$arrow H^{0}(E, 2L_{E})$ and the fact $L_{E}=H_{\eta}$ , we infer that $H^{0}(M’, 2L)arrow H^{0}(E, 2L_{E})$ is
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surjective. So $Bs|2L|=Bs|2L_{E}|=\emptyset$ .
$b)arrow a)$ : For anv general fiber $X$ of $\rho^{f}$ , we have $Bs|2L_{X}|=\emptyset$ . So $X$ is a

hyperelliptic curve. Moreover, since $L_{X}=E_{X},$ $E\cap X$ is a ramification point of
the canonical mapping of $X$ . So $(M, L)$ is of type (–) by the reasoning as in
\S 2.

\S 5. Type $(---)$ .
(5.1) Suppose that $\rho$ : $M^{f}arrow W$ is hyperelliptic and that $(M, L)$ is of type

$(\infty)$ . Since $E \bigcap_{1}i(E)=\emptyset$ , both $E$ and $i(E)$ do not meet the ramification locus of
$\beta:M’arrow V$. Therefore $S=\beta(E)=\beta(i(E))$ is isomorphic to $E$ and gives a section
of $p:Varrow W$. Moreover the normal bundle of $S$ is $[E]_{E}=L_{E}-H_{E}$ . Set $H_{=}=[-S]_{S}$

$\in Pic(S)\cong Pic(Tf^{r})\cong Pic(E)$ .
Taking $P*of$ the exact sequence $0arrow O_{V}[p^{*}Hs^{-}\sim]arrow O_{V}[S+p^{*}H_{\xi}]arrow G_{S}[S+H_{\vee}=]arrow 0_{y}$

we obtain $0arrow O_{W}[H_{\hat{\sigma}}]arrow \mathcal{E}arrow O_{W}arrow 0$ , where $\mathcal{E}$ is a locally free sheaf on $W$ such
that $V\cong P(\mathcal{E})$ . Let $H_{\zeta}$ be the tautological line bundle on $V$. Then $S$ is a member
of $|H_{\zeta}-p^{*}H_{\xi}|$ and $[H_{\zeta}]_{S}=0$ . Furthermore, since $H_{\xi}$ is semipositive on the
rational scroll $TT^{r}$, we have $H^{1}(W, H_{\xi})=0$ . This implies $\mathcal{E}\cong O_{W}[H_{\xi}]\oplus O_{W}$ .

Let $B$ be the branch locus of $\beta$ . We may set $[B]=zH_{\zeta}+xH_{\xi}+yH_{\eta}$ because
Pic(V) is generated by $H_{\hat{\sigma}},$ $H_{\eta}$ and $H_{\zeta}$ . Since $[B]_{S}=0_{y}$ we have $x=y=0$ .
Similarly as before, we have $z=2g+2$ . Hence $B$ is a non-singular member of
$|(2g+2)H_{\zeta}|$ . Moreover, similarly as in (2.3), we obtain $H^{1}(V, [-B])=0$ from
$H_{\zeta}^{2}H_{\xi}^{n-3}H_{\eta}\{V\}=H_{\xi}^{n- 2}H_{r}\{W\}=1$ . So $B$ is connected.

Thus we obtain the following

(5.2) THEOREM. Let $(M, L)$ be a p0larized manifold as in (1.14) and supp0se
that $\rho$ : $M’arrow W$ is h.vperelliptic and that $(M, L)$ is of type $(\infty)$ . Then $M’$ is a
double $coven?\iota g$ of a $P^{1}$-bundle $V=P(H_{\xi}\oplus O_{W})$ over $W$, where $H_{\xi}=H-H_{r}$ . The
image $S$ of $E$ via $\beta 5_{-}\backslash I’arrow V$ is a section of $p:Varrow W$ and is the unique member
of $|H_{\zeta}-p^{*}H_{\xi}|$ , where $H_{b}t$ is the tautological line bundle on V. The branch locus
$B$ of $\beta$ is a smooth connected ?nember of $|(2g+2)H_{\zeta}|$ such that $S\cap B=\emptyset$ .

(5.3) COROLLARY. Let $(M, L)$ be as in (5.2). Then, any smooth fiber
$(M_{y}, L_{y})$ of $\psi:\Lambda farrow 1’-$ in (1.15) is a polarized ?nanifold with $\Delta(M_{y}, L_{y})=d(M_{y}, L_{y})$

$=1,$ $g(M_{y}, L_{y})=gn’ 1_{l}icl\iota$ is sectionally hyperelliptic of type $(\infty)$ in the sense of
[F5; \S 17].

(5.4) REMARK. Let $\mathcal{F}$ be the locally free sheaf on $Y\cong P_{\gamma}^{1}$ such that
$(P(\mathcal{F}), O(1))\cong(W, H_{\overline{\backslash }}\wedge)$ . Then, $V$ is the blowing-up of V” $=P(\mathcal{F}\oplus O_{Y})$ with center
$C$ being the section corresponding to the quotient bundle $O_{Y}$ of $\mathcal{F}\oplus O_{Y}$ . More-
over, the exceptional divisor of this blowing-up is $S$. The pull-back of $O_{V’}(1)$

to $V$ is $H_{\zeta}’$ . So, by abuse of notation, $O_{V’}(1)$ will be denoted by $H_{b}’$ . Note that
$B$ is mapped isomorphically onto a divisor $B’’$ on $V^{ff}$ . It is now easy to see
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that $J:$[ is a blowing-up of the double covering $M’$ of $V’’$ with branch locus $B’’$ ,
and the exceptional divisor of this blowing-up is $\pi(i(E))$ . The structure of such
a double covering $M’’arrow V’’$ is studied in [F9; \S 5]. From these observations,
we obtain, for example:

(5.5) COROLLARY. $M$ is simply connected (cf. [F9; (5.17)]).
(5.6) Applying [F5; (17.14)] to $(M_{y}, L_{y})$ in (5.3), we infer $n-1\leqq g+1$ . So

$g\geqq n-2$ in case (5.2).

We will further analyse the case $g=n-2$ using the technique in [F5; \S 17].
$B$ gives a section $b$ of the bundle $P((S^{2g+2}\mathcal{E})^{\vee})$ over $W$. On the other hand, we
have a natural morphism $\mu:P((S^{g+1}\mathcal{E})^{\vee})=Garrow P(S^{2g+2}\mathcal{E}^{v})$ defined by square. Then
we should have $b(W)\cap\mu(G)=\emptyset$ (compare [F5; (17.7)]).

By a similar calculation as in [F5; (17.9)], we infer $0=(2H_{\tau}+H_{\xi})\cdots$

$(2H.+(2g+2)H_{\xi})\{G\}$ for the tautological line bundle $H_{-}$ on $G$ . This intersection
number is equal to $d(W, H_{\xi})\cdot 2^{g+1}\cdot\Pi_{t=0}^{g}(2t+1)$ as in [F5; (17.11)]. Hence
$0=H_{\xi}^{n-1}\{W\}=d-n$ . So (1.17) applies. Thus we obtain:

(5.7) COROLLARY. Let thngs be as in (5.2). Then $n\leqq g+2$ . Moreover, if
the equality holds, then $d=n$ and $M$ is a product of $P_{\eta}^{1}$ and a polarized manifold
of the type [F5; \S 17].

(5.8) Conversely, suppose that we are given a rational scroll $W\subset P^{N}$ with
$n-1=\dim W$, $d-1=\deg W$. Set $H_{\xi}=H-H_{\eta}$ , $V=P(H_{\xi}\oplus O_{W})$ and let $H_{\zeta}$ be the
tautological line bundle on $V$. Then a general member $B$ of $|(2g+2)H_{\zeta}|$ is non-
singular because Bsl $H_{\zeta}|=\emptyset$ . Moreover, if $g\geqq n-1$ , we easily see $b(W)\cap\mu(G)$

$=\emptyset$ , where $b,$
$\mu$ and $G$ are as in (5.7). This implies that, on every fiber of

$Varrow W$, the restriction of $B$ is not divisible by two as a divisor. So, if $\beta:M’arrow V$

is the double covering with branch locus $B$, every fiber of $0;\wedge 1l^{f}arrow W$ is an
irreducible reduced curve.

Let $S$ be the unique member of $|H_{\zeta}--H_{\xi}|$ on $V$. Then $S$ is a section of
$p:Varrow W$ and $S$ can be blown-down with respect to the mapping $S\cong Warrow P_{\eta}^{1}$ .
Since $B\cap S=\emptyset,$ $\beta^{-1}(S)$ consists of two connected components, each of which
is isomorphic to $S$ and can be blown-down to $P^{1}$ . So (1.16) applies and we get
a polarized manifold $(M, L)$ of the type (5.2) by blowing-down one of these two
components of $\beta^{-1}(S)$ .

(5.9) Similarly as in (4.4), we now see that polarized manifolds of the type
(5.2) form a single deformation family for any fixed triple $(n, d, g)$ . Using this
fact one can get an alternate proof of (5.5). Compare (4.7; 1).

\S 6. Type $(+)$ .
(6.1) Suppose that $\rho$ : $M’arrow W$ is hyperelliptic and that $(_{\lambda}t/f, L)$ is of type $(+)$ .

Let $\beta:M’arrow V$ and $p:Varrow W$ be as in (3.2), and let $B$ be the branch locus of
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the double covering $\beta$ . The image $\beta(E)=S$ is a section of $p$ . We have $S\cap B$

$\neq\emptyset$ since $E\cap i(E)\neq\emptyset$ . But $E\neq i(E)$ . This is possible only when the restriction
of the Cartier divisor $B$ to $S$ is divisible by two. So we set $B_{S}=2Z$. Then
$[Z]_{E}=[i(E)]_{E}$ . Hence the pull-back of the normal bundle $[S]_{S}$ of $S$ in $V$ to
$Pic(E)$ is equal to $[Z]+[E]_{E}$ .

(6.2) When $n=2$ , we have $W\cong P_{\eta}^{1}$ and $M’\cong M$. Therefore, replacing the
polarization suitably, $M$ can be viewed as a hyperelliptic polarized surface in
the sense of [F9]. Moreover, one easily sees that it is of type $( \sum^{+})$ or $( \sum^{-})$ .

In fact, we actually find various polarized surfaces of this type.
(6.3) From now on, we consider the case $n\geqq 3$ . First, by a similar argument

as in [F5; (18.3)], we have $[S]_{Z’}=[B]_{Z’}$ for each prime component $Z’$ of $Z$.
Suppose that $Pic(S)\cong Pic(W)\cong Pic(E)$ is generated (after tensored by $Q$ ) by

the classes of components of $Z$. Then, by the above observation we infer $[S]$

$=[B]=2[Z]$ . Hence $[Z]=[E]$ by (6.1). But $0\leqq ZF=EF=-1$ for any general
fiber $F$ of $Earrow Y$. This contradiction shows that $Pic(S)$ is not generated by
components of $Z$.

Suppose that $Z$ has a component $Z’$ which is a fiber of $Sarrow Y$. By the above
observation we infer that $Z$ has no horizontal component. Hence $[S]_{Z’}=[B]_{Z’}$

$=[2Z]_{Z’}=0$ . So the restriction of $Z+E$ to a fiber of $Earrow Y$ is trivial by (6.1).

This is impossible because $E$ is exceptional.
Thus we see that $Z$ has no vertical component with respect to $Sarrow Y$. So

$Z$ has a horizontal component. From this we infer that any general fiber of
$\psi:Marrow Y$ in (1.15) is a polarized manifold with $\Delta=d=1$ , which is sectionally
hyperelliptic of tvpe $(\perp)$ in the sense of [F5; \S 15]. In particular we have $n=3$

by [F5; (18.3)].

(6.4) Since $n=3$, $W\cong S\cong E$ is a $P^{1}$-bundle over $Y\cong P_{\eta}^{1}$ . So we set
$W\cong P([kH_{\eta}]\oplus O\rangle$ for some $k\geqq 0$, and let $H_{\xi}$ be the tautological line bundle on it.
Note that, if $k>0,$ $W$ has a unique section $Y_{\infty}$ such that $Y_{\infty}^{2}=-k$ and $[H_{\xi}]_{Y_{\infty}}$

$=0$ . If $k=0$ , then $W\cong P_{\xi}^{1}\chi P_{\eta}^{1}$ .
Set $[Z]_{S}=xH_{\xi}+yH_{\eta}$ and $[E]_{E}=-H_{\xi}+\alpha H_{\eta}$ . Then $[B]_{S}=2xH_{\xi}+2yH_{\eta}$ .

Moreover, in view of the results in [F5; \S 18], we infer $[S]_{S}=\sigma H_{\eta}$ for some
$\sigma$ . Then $[E+i^{*}(E)]=\beta^{*}[S]$ implies $x=1$ and $y+\alpha=\sigma$ . From $x=1$ we infer
that $Z$ is a section of $Sarrow Y$ because $Z$ has no vertical component. Furthermore,
the relation $[S]_{Z}=[B]_{Z}$ gives $\sigma=2(k+2y)$ . Hence $y+\alpha=2(k+2y)$ , or equivalently,
$2k+3y=\alpha$ .

Recall that $H+E=L_{E}=H_{\eta}$ . So $H_{W}=H_{\xi}-(\alpha-1)H_{\eta}$ . As we have seen before,
$H_{W}-H_{\eta}=H_{\xi}-\alpha H_{\eta}$ is semipositive. Hence $0\leqq(H_{\xi}-\alpha H_{\eta})\{Z\}=k-\alpha+y=-k-2y$ .
When $k=0$, we obtain $y=0$ from this. When $k>0$ , we obtain $y<0$ , which
implies $Z=l_{\infty}’$ because $ZY_{\infty}=y<0$ . Therefore $y=-k$ . In either case we have
$y=-k$ , and hence $\alpha=-k,$ $\sigma=-2k$ . So $d-1=H_{W}^{2}=k-2(\alpha-1)=3k+2$ .
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(6.5) Since $[S]_{S}=-2kH_{\eta}$ , the exact sequence $0arrow O_{V}[2kH_{\eta}]arrow O_{V}[S+2kH_{\eta}]$

$arrow O_{S}arrow 0$ gives an exact sequence $0-arrow O_{W}[2kH_{\eta}]arrow \mathcal{E}arrow O_{W}arrow 0$ on $W$, which splits
because $H^{1}(W, 2kH_{\eta})=0$ . Hence $V\cong P_{W}([2kH_{\eta}]\oplus O_{W})$ . Moreover, letting $H_{\zeta}$

denote the tautological line bundle on it, we have $S\in|H_{(}-2kH_{\eta}|$ and $[H_{\zeta}]_{S}=0$ .
Since $[B]_{S}=2Z$, it is now easy to see $[B]=(2g+2)H_{\zeta}+2H_{\xi}-2kH_{\eta}$ in Pic(V).

Combining these observations (6.3), (6.4) and (6.5), we obtain the following

(6.6) THEOREM. Let $(M, L)$ be a polarized manifold as in (1.14) and suppose
that $\rho:M^{f}arrow W$ is hyperelliptic and that $(M, L)$ is of tyPe $(+)$ in the sense (3.3).

Then $n=\dim M\leqq 3$ . If $n=3$, one has $d=3(k+1)$ for some non-negative integer $k$ .
Moreover, in tfus case, we have $W\cong P([kH_{\eta}]\oplus O),$ $V\cong P_{W}([2kH_{\eta}]\oplus \mathcal{O}_{W}),$ $S=\beta(E)$

$\in|H_{(}-2kH_{\eta}|$ and $B\in|(2g+2)H_{\zeta}+2H_{\xi}-2kH_{\eta}|$ , where $H_{\xi}$ and $H_{\zeta}$ are tautological
line bundles on $W$ and $V$ respectively.

REMARK. $V$ is isomorphic to a fiber product of $W$ and $P([2kH_{\eta}]\oplus O)$ over
$P_{\eta}^{1}$ .

(6.7) COROLLARY. In the above case $n=3,$ $M$ is simply connected, uniruled
and $H^{q}(M, O_{M})=0$ for any $q>0$ . Moreover $H^{1}(M, L)=0$ if $k>0$ .

PROOF. Any general fiber of $\psi:Marrow Y$ is a rational surface by [F5; (18.12)].

So $M$ is uniruled. Similarly as in (4.6; 2), we infer that $M$ is simply connected.
Moreover, using [FR; Proposition 6.7], we obtain $H^{q}(M, O_{M})=0$ for $q>0$ . In
order to show $H^{1}(M, L)=0$ , we recall $H_{W}=H_{\xi}+(k+1)H_{\eta}$ . So $h^{1}(M’,$ $H\rangle$

$=h^{1}(V, H)+h^{1}(V, H-(g+1)H_{(}-H_{\xi}+kH_{\eta})=h^{1}(V, -(g+1)H_{\zeta}+(2k+1)H_{\eta})=h^{1}(\Sigma_{2k}$ ,
$-(g+1)H_{(}+(2k+1)H_{\eta})=h^{1}(\Sigma_{2k}, (g-1)H_{\zeta}-3H_{\eta})$ , where $\Sigma_{2k}=P([2kH_{\eta}]\oplus O_{Y})$ and
$H_{(}$ is the tautological line bundle on it. This is equal to 2 unless $k=0$ . Now,
using the exact sequence $0arrow H^{0}(M’, H)arrow H^{0}(M^{f}, L)arrow H^{0}(E, L_{E})arrow H^{1}(M’,$ $H\rangle$

$arrow H^{1}(M’, L)arrow H^{1}(E, L_{E})$ and $L_{E}=H_{\eta}$ , we infer that $h^{0}(E, L_{E})=2,$ $h^{1}(E, L_{E})=C$

and $h^{1}(M^{f}, L)=h^{1}(M’, H)-h^{0}(E, L_{E})=0$ . This implies $h^{1}(M, L)=h^{1}(M’, L)=0$ .
REMARK. When $k=0,$ $(M, L)$ is the Segre product of $(P^{1}, O(1))$ and a po-

larized manifold $(N, A)$ with $\Delta=d=1$ of the type [F5; \S 18]. See (1.17).

(6.8) Let things be as in (6.6). Then every fiber $V_{x}$ of $V$ over $x\in W$ meets
$B$ at some point with odd multiplicity. Indeed, otherwise, the fiber of $\rho$ : $M’arrow W$

over $x$ would not be irreducible.
Conversely, given $(g, k)$ with $g\geqq 2$ and $k\geqq 1$ , let $Y,$ $W,$ $V,$ $S,$ $H_{\eta},$ $H_{\xi},$ $H_{\zeta}$ be

as in (6.6). Then any general member $B$ of $|(2g+2)H_{(}+2H_{\xi}-2kH_{\eta}|$ is non-
singular and satisfies the above condition. So, via the process (1.16), we can
construct a polarized manifold $(M, L)$ of the type (6.6).

Indeed, since Bsl $B-S|=\emptyset$ , the singular locus of $B$ is contained in $B\cap S$.
Next let $T=p^{-1}(Y_{\infty})$ , where $Y_{\infty}$ is the unique member of $|H_{\xi}-kH_{\eta}|$ on $W$. Then
$T\cong\Sigma_{2k}$ and $[B]_{T}=(2g+2)H_{\zeta}-2kH_{\eta}$ . It is easy to see that $H^{0}(V, [B])$

$arrow H^{0}(T, [B]_{T})$ is surjective. Therefore $B_{T}$ is of the form $S_{T}+B’,$ $B’$ being a
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member of $|(2g+1)H_{\zeta}|$ . In particular $B$ is non-singular along $Supp(S_{T})=S\cap T$.
Since $Supp(B\cap S)=S\cap T$, we conclude that $B$ is non-singular.

Other assertions are easy to verify.

(6.9) COROLLARY. For any fixed $(g, k)$, p0larized threefolds $(M, L)$ of the
type (6.6) form a srngle deformation famly.

\S 7. Deformations.

(7.1) By a deformation family of polarized manifolds over a complex mani-
fold $T$ we mean a proper smooth morphism $f;\mathcal{M}arrow T$ together with an $f$-ample
line bundle $\mathcal{L}$ on $\mathcal{M}$ . Then $(M_{t}, L_{t})$ is a polarized manifold for every $t\in T$,

where $M_{t}=f^{-1}(t)$ and $L_{t}$ is the restriction of $\mathcal{L}$ to $M_{t}$ . Each $(M_{t}, L_{t})$ is said
to be a member of this family.

From now on, we usually consider the case in which $T$ is the disk
$\{z\in C||z|<\epsilon\}$ with radius $\epsilon$ being a small positive number. $(M_{0}, L_{0})$ is called a
special fiber of this family. We say that any general fiber has a property $(\#)$

if there exists a positive number $\delta$ such that $(M_{t}, L_{t})$ has the property $(\#)$ for
every $t$ with $0<|t|<\delta$ . If so, we say that $(M_{0}, L_{0})$ is a specialization of po-
larized manifolds having the property $(\#)$ .

Given a polarized manifold $(M, L)$ , we say that any small deformation of
$(M, L)$ has the property $(\#)$ if, for every deformation family of polarized mani-
folds over the disk $T$ with special fiber being isomorphic to $(M, L)$ , any general
fiber of this family has the property $(|\#)$ .

(7.2) For any deformation family of polarized manifolds over the disk $T$ as
above, $d=d(M_{t}, L_{t})$ is independent of $t$ . So we have $\Delta(M_{t}, L_{t})\geqq\Delta(M_{0}, L_{0})$ for
any general $t$ by the upper-semicontinuity theorem. Moreover we have the
following

(7.3) LEMMA. If $H^{1}(M_{0}, L_{0})=0$ , then $h^{0}(M_{t}, L_{t})=h^{0}(M_{0}, L_{0})$ and $\Delta(M_{t}, L_{t})$

$=\Delta(M_{0}, L_{0})$ for any general $t$ .
(7.4) LEMMA. If $\Delta(M_{t}, L_{t})=\Delta(M_{0}, L_{0})$ for any general $t$ , then dim $Bs|L_{t}|$

$\leqq\dim Bs|L_{0}|$ for any general $t$ .
PROOF. Since $h^{0}(M_{t}, L_{t})$ is a constant function in $t,$ $f_{*}\mathcal{L}$ is locally free at

$0$ . Moreover, we have Bsl $L_{t}|=M_{t}\cap Supp(Coker(f^{*}f_{*}\mathcal{L}arrow \mathcal{L}))$ . From this we
obtain the inequality.

(7.5) THEOREM. Supp0se that there is a deformation fanuly of polarized
manifolds over the disk $T$ and that $\Delta(M_{t}, L_{t})=2$ for any general $t$ . Then
$\Delta(M_{0}, L_{0})=2$ unless $d(M_{0}, L_{0})=1$ .

PROOF. By (7.2) we have $\Delta(M_{0}, L_{0})\leqq\Delta(M_{t}, L_{t})=2$ . If $\Delta(M_{0}, L_{0})\leqq 1$ and if
$d(M_{0}, L_{0})>1$ , then $H^{1}(M_{0}, L_{0})=0$ by [F6; (3.8)] and [F9; (3.1)]. This is impos-
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sible by (7.3).

(7.6) COROLLARY. Suppose that $(M_{t}, L_{t})$ is of the type (1.14) for any general
$t$ . Then $(M_{0}, L_{0})$ is also of the type (1.14).

For a proof, use (7.4).

REMARK. In this case, as a consequence, we see that $\{Bs|L_{t}|\},$ $\{M_{l}’\},$ $\{E_{t}\}$

and $\{W_{t}\}$ become (smooth) deformation families of manifolds.

(7.7) THEOREM. SuPpose that $(M_{t}, L_{t})$ is of the type (1.14) and that $\rho_{t}$ :
$M_{t}’arrow W_{t}$ is hyPerelliptic in the sense (3.2) for any general $t$ . Then $\rho_{0}$ : $M_{0}’arrow W_{0}$

is also hyPerelliptic.
PROOF. Let $M’$ and $W$ be the total spaces of the deformation families $\{M_{t}’\}$

and $\{W_{t}\}$ respectively. Then the natural morphism $\rho$ : $M’arrow W$ is a fibration,
whose general fibers are hyperelliptic curves. So every fiber of $\rho$ is hyperelliptic.
Hence $\rho_{0}$ is also hyperelliptic.

(7.8) THEOREM. Let things be as in (7.7). Suppose that $(M_{t}, L_{t})$ is of the type
\langle --) (resp. $(\infty),$ $(+)$ ) for any general $t$ and that $n=\dim M_{t}\geqq 3$ . Then $(M_{0}, L_{0})$ is
of the same type (–) (resp. $(\infty),$ $(+)$ ).

PROOF. $V_{t}$ is a $P^{1}$-bundle over $W_{t}$ . So $\{V_{t}\}$ is a smooth family of manifolds.
Moreover, $\{S_{t}\}$ gives a family of sections of $\{V_{t}arrow W_{t}\}$ . Comparing (4.1), (5.2)

and (6.6), we infer that $V_{0}$ must be a $P^{1}$-bundle of the same type as $V_{t}$ . Hence
\langle $M_{0},$ $L_{0}$ ) must be of the same type as $(M_{t}, L_{t})$ .

(7.9) Thus, under certain mild conditions, we have seen that these types
\langle --), $(\infty),$ $(+)$ studied in this article are stable under smooth polarized speciali-
zations. We will next study small deformations.

(7.10) THEOREM. Let $(M, L)$ be a p0larized manifold of the type (4.1) and
supp0se that $d=d(M, L)\geqq 5$ or $n=\dim M\geqq 3$ and $d\geqq 4$ . Then any small deformation
of $(M, L)$ is of the same type (4.1).

To prove this, we use the following

(7.11) LEMMA. Let $(M, L)$ be of the type (4.1). Then
1) $H^{1}(M, L)=0$ if $d\geqq 3$ .
2) $H^{1}(M, 2L)=0$ either if $d\geqq 5$ or if $n\geqq 3$ .

PROOF. 1). The involution $i$ of $M’$ acts on the sheaf $\beta_{*}(o_{M’}[-E])$ . Con-
sidering the decomposition with respect to eigenvalues $\pm 1$ of $i$, we see
$\beta_{*}(O_{M’}[-E])\cong O_{V}[-S]\oplus O_{V}[-B/2]\cong 0_{V}[2H_{\xi}-H_{\zeta}]\oplus O_{V}[-(g+1)H_{\zeta}+H_{\xi}]$ . Since
$L=2E+H_{\xi}+H_{\eta}-E=H_{\zeta}-H_{\xi}+H_{\eta}-E$, we have $h^{1}(M, L)=h^{1}(M’, L)=h^{1}(V,$ $H_{\xi}$

$+H_{\eta})+h^{1}(V, -gHs-+H_{\eta})$ . Moreover $h^{1}(V, H_{\xi}+H_{\eta})=h^{1}(W, H_{\xi}+H_{\eta})=0$ and
$h^{1}(V, -gH_{\zeta}+H_{\eta})=h^{n-1}(V, (g-2)H_{\zeta}-(n-3)H_{\xi}+(d-n-3)H_{\eta})= \sum_{J=0}^{g-2}h^{n-1}(W,$ $(2j-n$

$+3)H_{\xi}+(d-n-3)H_{\eta})$ . This is zero unless $n=2$ . When $n=2$ , we have $W\cong P_{\eta}^{1}$

and $[H_{\xi}]_{W}=(d-2)H_{\eta}$ . Then $\deg((2j-n+3)H_{\xi}+(d-n-3)H_{\eta})=2j(d-2)+2d-7\geqq-1$ .
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Thus in any case we have $h^{1}(M, L)=0$ .
Next we prove 2). Similarly as above, we have $h^{1}(M, 2L)=h^{1}(M^{f}, 2L)$

$=h^{1}(V, H_{\zeta}+2H_{\eta})+h^{1}(V, -gH_{\zeta}+H_{\xi}+2H_{\eta})$ . Clearly $h^{1}(V, H_{\zeta}+2H_{\eta})=h^{1}(W, 2H_{\xi}+2H_{\eta})$

$+h^{1}(W, 2H_{\eta})=0$ . By duality we have $h^{1}(V, -gH_{(}+H_{\xi}+2H_{\eta})=h^{n-1}(V, (g+2)H_{\zeta}$

$-(n-2)H_{\xi}+(d-n-4)H_{\eta})$ . If this is not zero, we have $n=2$ and $d-n-4\leqq-2$ .
This is impossible if $d\geqq 5$ .

(7.12) PROOF OF (7.10). By (7.11; 1), we can apply (7.3) to infer $\Delta(M_{t}, L_{t})$

$=2$ for any small deformation $(M_{t}, L_{t})$ of $(M, L)$ . Moreover, by (7.4), we have
dim Bsl $L_{t}|\leqq 1$ .

Assume that Bsl $L_{t}|$ is a finite set. Then, if $d>4=2\Delta$ , we have $g(M_{t},$ $L_{t}\rangle$

$=2$ by [F3; Theorem 4.1, $c)$]. But we have $g(M, L)=(d-1)g\geqq d-1\geqq 4$ by
(1.14; 5). This contradicts the deformation invariance of the sectional genus
$g(M, L)$ . We will derive a contradiction in case $d=4,$ $n\geqq 3$ too. Indeed, we
have $g(M_{t}, L_{t})=g(M, L)\geqq d-1\geqq 3$ similarly as above. By (0.6), $(M_{t}, L_{t})$ is a
smooth hypersurface of degree four or a double covering of a non-singular hyper-
quadric. Then $b_{2}(M_{t})=1$ by Lefschetz theorem (cf. [F9; (3.11)]). On the other
hand we have $b_{2}(M)\geqq 2$ by (4.1).

Thus, from this contradiction, we infer dim Bsl $L_{t}|=1$ . So $(M_{t}, L_{t})$ is of
the type (1.14). Moreover, by virtue of (7.11; 2), we infer $h^{0}(M_{t}, 2L_{t})=h^{0}(M, 2L)$ .
So, by the criterion (4.7), $(M_{t}, L_{t})$ is of the type (4.1).

(7.13) THEOREM. Suppose that $(M, L)$ is a polarized manifold of the type
(5.2) and that $n=\dim M\geqq 3$ . Then any small deformation of $(M, L)$ is of the
same type (5.2) unless $n=d=3$ .

REMARK. When $n=d=3$, we have $M\cong N\cross P^{1}$ for a certain $K3$-surface $N$

(cf. (1.17)).

PROOF OF (7.13). As we saw in (5.4), $M$ is a blowing-up of $M’’$ , which is
a double covering of a $P^{n-1}$-bundle $V’’$ over $P_{\eta}^{1}$ . By virtue of the theory of
Kodaira [$K$ ; Theorem 5], any small deformation of $M$ is a blowing-up of a small
deformation of $M’$ . Furthermore, by [F9; (7.12) &(7.13; 3)], the double cover-
ing structure of $M’’$ is stable under small deformation except when $V’\cong P_{\eta}^{1}\cross P_{\xi}^{2}$

and the branch locus of the mapping $M’arrow V’$ is the pull-back of a hypersurface
of degree 6 on $P_{\xi}^{2}$ . In this exceptional case $M$ has the structure described above.
Moreover $g=2$ .

(7.14) THEOREM. Suppose that $(M, L)$ is a polarized manifold of the type
(6.6) and that $n=3,$ $k\geqq 1$ . Then any small deformation of $(M, L)$ is of the same
type (6.6).

PROOF. (7.3) applies by (6.7). We have $g(M, L)=(d-1)g=(3k+2)g\geqq 10$ .
Recalling (0.5), we infer dim Bsl $L_{t}|=1$ for any small deformation $(M_{t}, L_{t})$ of
$(M, L)$ . So, by (1.14), we obtain a famiy $\{M_{t}’\}$ of deformations of $M’$ . We
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should show that the double covering structure $M’arrow V$ is stable under small
deformation. Similarly as in [F9; (7.12)], it suffices to show $H^{1}(V,$ $\Theta_{V}[-(g+1)H_{\zeta}$

$-H_{\xi}+kH_{\eta}])=0$ where the notations are as in (6.6) and $\Theta_{V}$ denotes the sheaf
of vector fields on $V$.

Using the exact sequence $0arrow[2H_{\zeta}-2kH_{\eta}]arrow\Theta_{V}arrow p^{*}\Theta_{W}arrow 0$ , we get
$h^{1}(\Theta_{V}[-(g+1)H_{\zeta}-H_{\xi}+kH_{\eta}])\leqq h^{1}(V, p^{*}\Theta_{W}[-(g+1)H_{\zeta}-H_{\xi}+kH_{\eta}])$

$=h^{0}(W, R^{1}p_{*}(o_{V}[-(g+1)H_{\zeta}])\otimes\Theta_{W}[-H_{\xi}+kH_{\eta}])$ because $(g-1)H_{\zeta}+H_{\xi}+kH_{\eta}$ is
very ample on $V$ and hence $h^{1}(V, -(g-1)H_{\zeta}-H_{\xi}-kH_{\eta})=0$ . By duality
$R^{1}p_{*}(o_{V}[-(g+1)H_{(}])$ is the dual of $p_{*}(\omega_{V’ W}[(g+1)H_{\zeta}])=p_{*}(\mathcal{O}_{V}[(g-1)H_{\zeta}+2kH_{\eta}])$

$\cong\oplus_{j=1}^{g}O_{W}[2kjH_{\eta}]$ . Hence it suffices to show $h^{0}(W, \Theta_{W}[-H_{\xi}-k(2j-1)H_{\eta}])=0$

for each $j=1,$ $\cdots$ , $g$ . We have an exact sequence $0arrow[2H_{\xi}-kH_{\eta}]arrow\Theta_{W}arrow[2H_{\eta}]$

$arrow 0$ on $W$. Therefore $h^{0}(\Theta_{W}[-H_{\xi}-k(2j-1)H_{\eta}])\leqq h^{0}(W, H_{\xi}-2kH_{\eta})=0$ . This
completes the proof.

Appendix.

THEOREM (A1). Let $L$ be a line bundle on a variety V. Then the following
conditions are equivalent to each other.
a) There is an integer $m$ such that Bsl $tL|=\emptyset$ for every $t\geqq m$ .
b) There is a morphism $f:Varrow W$ and an ample line bundle $A$ on $W$ such
that $L=f^{*}A$ .

PROOF. Clearly b) implies a). So we show that a) implies b). For each $t$ ,
let $W_{t}$ be the image of the rational mapping $\rho_{t}$ defined by $|tL|$ . Let $X$ be the
image of the mapping $g:Varrow W_{m}\cross W_{m+1}$ given by $\rho_{m}$ and $\rho_{m+1}$ . Let $Varrow Warrow X$

be the Stein factorization of $g$ . So, $f_{*}O_{V}=O_{W}$ for $f:Varrow W$ and $\pi;Warrow X$ is
finite. Let $H_{m}$ and $H_{m+1}$ be pull-backs of hyperplane sections on $W_{m}$ and $W_{m+1}$

respectively and set $A=H_{m+1}-H_{m}$ . We claim that $(W, A)$ has the desired
property b).

In fact, $f^{*}A=f^{*}H_{m+1}-f^{*}H_{m}=(m+1)L-mL=L$ . Furthermore, by Lemma
(A2) below, we have $mA=H_{m}$ and $H_{m+1}=(m+1)A$ . Since $\pi$ is finite, $H_{m}+H_{m+1}$

is ample on $W$. Hence so is $A$ . Thus we prove the claim.

LEMMA (A2). Let $f:Varrow W$ be a $morp/usm$ of schemes such that $f_{*}O_{V}=\mathcal{O}_{W}$ .
Then $f^{*}:$ $Pic(W)arrow Pic(V)$ is injective.

PROOF. Suppose that $f^{*}\mathcal{F}=O_{V}$ for some $\mathcal{F}\in Pic(W)$ . Then the natural
homomorphism $\mathcal{F}arrow f_{*}f^{*}\mathcal{F}$ is an isomorphism. So $\mathcal{F}=O_{W}$ .

REMARK (A3). In case (A1), $W$ can be taken to be normal if $V$ is normal.
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