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Introduction.

Let x : M*—EY be an isometric immersion of a compact Riemannian mani-
fold into the Euclidean space. Let A be the Laplace-Beltrami operator of M
acting on differentiable functions and Spec(M)={0<2;+ A, <A+ 4, < -} the
spectrum of A, where each eigenvalue is repeated as many times as its multi-
plicity indicates. If ¢ : M—EY is a differentiable mapping we put ¢=(¢", ---, ¢"),
where ¢' is the i-th coordinate function of ¢, and Ag=(Ag, ---, Ag"). We
have the decomposition x=3,x:, k<N, where x, : M—E" is a differentiable
mapping, Ax,=21;x;, and the addition is convergent, componentwise, for the
L*-topology on C=(M). Moreover x, is a constant mapping (it is the center of
gravity of M) and {x,}, are orthogonal mappings, that is

SMg(xk, x)=0 for all k,r, k+r,

where g is the Euclidean metric on E¥. We have the relations

Ax=—nH= kZ} AvXp,
21
Azx:——nAHzgllﬁxk s

where H is the mean curvature vector of M in EV. Let k,, k,eN, 05k, <k,.
We say that the immersion x is of order {k,, k,} if

x,=0 for all k=N, k+0, kyor k,.

If 2,=0 we say simply that the immersion is of order k..

It is well-known that the complex projective space, CP™, with the Fubini-
Study metric, admits an isometric imbedding of order 1 in the Euclidean space,
which has parallel second fundamental form. In S. Tai gives a simple
version of this one. From this fact we can view any submanifold, M™", of
CP™ as a submanifold of the Euclidean space, x : M*—E¥. In we have
obtained some information about the spectral geometry of submanifolds in the
complex projective space, studying Ax and the order % immersion. In this paper
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we want to study spectral geometry of Kaehler submanifolds in CP™, corre-
sponding to A%x and to immersion of order {k;, 2;}. The main results are in
section 5. We give a spectral inequality involving 4, and 4, in Spec(M), and
we characterize some submanifolds in terms of these geometric invariants.

Manifolds are assumed to be connected and of real dimension =2, unless
mentioned otherwise. For the necessary knowledge and notations of geometry
of submanifolds see [3], for particular Kaehler submanifolds [9], and for spectral
geometry see [2].

However we give the basic tools of submanifolds theory. Let M™ be an
n-dimensional isometrically immersed submanifold of M™. Let X, Y, Z (resp.
£) be tangent (resp. normal) vector fields to M. Let ¥V and V be the Riemannian
connections of M and M respectively and V* the normal connection of M in M.
The second fundamental form o and the Weingarten endomorphism /A of the
immersion are given by o(X, Y)=V;Y —V;Y and 4. X=V4%E—V & respectively.
Moreover the covariant derivative of ¢ is given by (Vo)x (Y, Z2)=V%a(Y, Z)—
o(NxY, Z)—o(Y,VxZ), and the mean curvature vector of the immersion is
H=Q1/n)>0(E; E;), where {E;};-: . . iS an orthonormal basis in the tangent
space at any point of M.

1. The complex projective space.

For details in this section see [10].
Let HM(m)={A<gi(m, C) | A=A} be the space of m X m-Hermitian matrices.
We define on HM(m) the metric

1.1) g(A, B)=2trAB  for all A, B in HM(m).

We consider the submanifold CP™={A<sHM(n+1)| AA=A, trA=1}. It is
known that CP™, with the metric induced by the one on HM(@m+1), is isometric
to the complex projective space with the Fubini-Study metric of constant holo-
morphic sectional curvature 1. The tangent space, with the usual identification,
and the normal space at any point A of CP™ are given by

(1.2) TACP™={XeHM(m+1)| XA+AX=X}, and
(1.3) Ti#CP™M={Z=sHM(m+1)| ZA=AZ},
respectively. The complex structure is given by

(1.4) JX=~=1(I—-2A)X for all X in T,(CP™),

where I is the (m-+1) X (m—+1)-identity matrix. Let D be the Riemannian cone
nection of HM(m-+1), V the induced connection in CP™, & the second fundamental
form of the immersion, ¥* and A the normal connection and the Weingarten
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endomorphism, and H the mean curvature vector of CP™ in HM(@m—+1). Then
we have

(1.5) #(X, V)=(XY+Y X)I—24),
(1.6) A X=(XZ—ZX)I-2A),
(L.7) H=(1/2m)[I—(m+1)A7,
(1.8) a(JX, JY)=6(X,Y),

where X, Y are in T (CP™), Z is in T4(CP™). Moreover
(1.9) Vé=0,

that is,;the second fundamental form is parallel. The action of the unitary
group U(m-+1) over CP™ is given by (P, A)—» PAP™', where P is in U(m-+1)
and A is in CP™. Hence the imbedding of CP™ in HM@m+1) is U(m~+1)-
equivariant. The standard projection of C™*'— {0} over CP™ is as follows

(1.10) z—>(1/z2Y)z'z,
where z=(2° ---, z™) is in C™*'—{0}. We put

1

Then B is in CP™. Moreover X is in Tg(CP™) if and only if
0 b
(1.11) X=| _ , where b is in C™.
bt 0
From [1.1), (1.4), [1.5) and [1.1II), and as the imbedding is equivariant we obtain
(1.12)  g(a(X, Y), a(V, W))=(1/2)g(X, Y)g(V, W)+1/H{gX, W)g(¥, V)
+g(X, V)glt, W)+g(X, JW)g(Y, JV)+gX, JV)g¥, JW)},
XY, V, WeT (CP™).

Hence
1.13)  dsxnV=01/2gX, V)V+1/4){gY, V)X+g(X, V)Y

+g(JY, V)JX+g(JX, V)]Y}, X, Y, VeT(CP™).
We also consider the relations

(1.14)  g(6(X, Y), D=0, g@(X,Y), A=—gX,Y), X,YT(CP™).
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2. An example: the complex quadric.

If we take in the (n-+1)-dimensional complex projective space the homogene-
ous coordinate system determinated by the canonical projection [1.1I0), the
(standard) complex quadric of complex dimension 7, @", is given by the set of
points (2°% ---, z"*Y) verifying >3;(z9)?=0. Then Q" is a Kaehler hypersurface
of CP™*! holomorphically isometric to the Hermitian symmetric space SO(n-+2)
/SO@2)xXSO(n). Now we prove that Q" is a submanifold of order {1, 2} of
HM(n+2). From we have easily

Q"={AsCP"" | AA'=0}.

The action of SO(n+2) over Q" is given by (P, A)—»PAP™, where P is in
SO(n—+2) and A isin Q. Hence the imbedding of @ in HM(n+2) is SO(n+2)-
equivariant. We choose C in HM(n—+2) as follows

(o o) om0
C= , with c¢=—= . .
0 0 2\ _v=1 1

Then C is in @™ and

To(@")={XeT(CP*") | XC'+CX'=0} .
Let {Ei, JE}i-s,...n+1 be the orthonormal basis of T(Q") defined by

(€3]

0 - 1 e 0
0 0 -+ —a/—1 - 0
i 0 O
E,=—— : :
242 o
@l 1 /=1 O
0 0

Let H be the mean curvature vector of @ in HM(n+2). As Q™ is minimal}lin
CP™!, using we have

He=— ¥ &(E; Ey).
ni +1

1=2,,n

A direct calculation proves that

(_nc e 0 ]

B B R ot
He=+ 0 I = 5, U=+ DC-C1,
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and the imbedding being equivariant we obtain

H=Q1/2n[I—n+1)A—A"], for all A in Q™.

Hence
AL(A-—A”)—ni(A—A‘)
2 ) ’
l AV 1 — _1_ t __1
A[Z (A+49 n-+2 I]—(nJrZ)[z (A+4% n+2 I]’
where A is the Laplace-Beltrami operator of @*. Moreover
S SRR ST Y N ]
A=— s I+ (A A>+[2(A+A) 1.

So from table 1 the imbedding of Q" in HM(n+2) is of order {1, 2}.

3. Kaehler submanifolds.

Let M™ be a Kaehler submanifold, of complex dimension 7, immersed in
the (n-+p)-dimensional complex projective space, and let A : M*—CP™*? be
the immersion. Let E,, ---, E,, Ev+w=JE,, -+, Exw=JE,, &1, -+, &p, §0e=J&4, -+,
Enr=J&, be a local field of orthonormal frames of CP™*?, such that, restricted
to M, E,, -, E,, Eu -+, E,. are tangent to M.V’ Let V, o, V* and 4 be the
Riemannian connection, the second fundamental form, the normal connection
and the Weingarten endomorphism of M™ in CP™*? respectively, and H the
mean curvature vector of M™ in HM(n+p+1). We write 4; for 4;, and we
put o(E;, E;)=2:h%;6:. We denote by A the Laplace-Beltrami operator of M
acting on functions in C*(M). The natural extension of this operator to the
space of differentiable mappings of M™ in HM(n+p-+1) is also denoted by A.

LEMMA 3.1. We have the following relations:

3.1) H=—36(E, Ey),
2n 3
1
(3.2) AH:(n+1)H+7§6<A0<Ei,EﬁEi, Ej)

—;I{g;a(a(Ei, E,), o(Es, E)).

P For the range of indices we use the following convention throughout sections 3
and 4:

a,b=1, -, n pofo ifiza
i,7,k r,5=1, -, m 1% - n* a if i=a*
a, f=1, -, p 2*={a* if 2=
2, U, x, y:l’ -, D, 1*’ e, p* a if 1=a*.
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PrROOF. Since Kaehler submanifolds are minimal submanifolds we have [3.1).
We compute the differential of the mapping H : M*—>HM(n+p-+1).

1 ~ -
dH(Ej):DEsziggtvija(Ei, E)—A45 (E,-,EpEj]

1

;;&(VE E;, E)— Z/Iauz1 o E;
_1‘2 (VE.EH‘U(Ei, Ej), Ei)—vn_i_l Ej;
nq J 2n

where we have used and (1.13). Now we prove that 3;6(Vg,E;, E:)=0.
Effectively, from (1.12) we obtain

a(D5(Ts,E0, B, 3B, E))=0  forall j,7,s.

But Zi&(VEjEi, Ei)ESPan{l}(En Es)}r,s- SO

n+l
2n

Let x be an arbitrary point of M. We may assume without loss of generality
that VE E;=0 at x. We compute AH at x.

dH(E]):-};"E&(O'(E“ Ej), E;)— Ej.
AH(x)=—3Ds <dH<E,>>x~——;DE]a<a<Ez, E), Eg+—t EDE,

—— LS9 5(0(Es, E)), Ed)
n i; J

n—I—l

_Zﬁ(a(Ei,Ej),Ei)Ej]+ E[G(EJ, Ep+a(E; E5)].
From we have
V'?Ej&(a(Ei, E), Ei):&(ﬁEja(Ei, E), E)+a(o(E;, Ey), \~7EJ,E¢)
—3(3,0(Es, Ep— Aoy 5pEs, E)+3(a(Es, By, o(Ey, E).
From (1.13) we obtain
lzjﬂswi,Eﬁ.Ei)Ej:Jz_o(Ej, E)=0.
Finally

n+1,
2n

?[U(Ej, E)+6(E,, Ep]l=n+1)H.
So

1 1
AH(X):“‘Z%&((VU)Ej(Ei, E), Ei>+;i2j&(Ao(E’i,Ej)Ej: Ey)
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—'}1“%35(0(&, Ej), o(E;, E))+(n+1)H.

Now, it is enough to prove that the first term is zero. From Codazzi equation
(Vo)e(Ei, E)=(No)g(Ej Ej)=—No0)g,(Ep Ep).
Then we have [3.2). Q.E.D.

REMARK. H and AH arein T4, (CP"*?) for all xeM. If we put o(E;, E))
=>:1h%&:, we have

Gy AH=(n+DH+— S hhta(By, )= 3 b, ).
LEMMA 3.2. We have the following relations:

(3.4) g(A, A)=2,

(3.5 g4, H)=-1,

(36) g4, AH)=—(n+1),

_nt
BT gH, H="5=,
_ (n+1) 1 2
(3.8) g(H, AH)=—" ||,
_ (n+1)® n+1 ., 1 ., 1 2\2
(3.9) gAH, AH)=—"F" +( - Yol SREDICY IV +—n2tr(22:/14).

The proof can be obtained from lemma 3.1 and a systematic use of (1.12)
and (1.14).

The normal space of M™ in CP™*? at x is denoted by Ti(M™). We define
the tensor T : Ti(M)XTi(M)—R by

TE, p)=tr(ded,), for all &, peTiM).

LEMMA 3.3.

(3.10) ol SITIS ol
2p 2

The first equality holds if and only if T=kg, where k is a real number and g is
the metric restricted to T(M). :

ProOF. We have ||T|*=3,(tr4;4,)?% |ol*=Xatr A5 There exists an
orthonormal basis in Tz(M), we suppose that this basis is &, -+, &p, &ie, ==+, Epry
such that the 2px2p matrix (tr4;4,):, is a diagonal matrix, see [9] We
take v=(1, ---, 1) and w=(tr 4%); in R?*. Then Schwartz inequality, (vw®)*=<
() (ww?), is just the first inequality in [3.10). The equality holds if and only
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if w=*kv, k=R, that is T=kg. The second inequality is proved in [9].
Q.E.D.
Now we give some other well-known results for Kaehler submanifolds in
CP"*?, Let S be the Ricci tensor of M. Then we have

1
(3.11) S, V=("3)aX, V)~ Sg(1X, V).
Let r be the scalar curvature of M. Then we have
(3.12) r=n{n+1)—|o|>.
Let R be the curvature tensor of M. Then
(3.13) ISlt= g n(n+ =t Do ee(.43)’,
2
(3.14) IRI=2n(n-+1)—4o|*+22 0 4: 4,
(315)  —Alol= Vol r(n+ 2ol —2e(£A43) — Ser 4, 4,)
. FAlol*=[Vo|*+5(n o rl,lulr;p.

Moreover, with the same notations, for any Kaehler manifold we have
(3.16) St Dnl RIPZ2n] S,

The first equality holds if and only if M has constant holomorphic sectional
curvature, and the second equality holds if and only if M is Einstein. From

(3.12), [(3.13) and [3.16) we obtain

2 2 1 4
(3.17) tr(zx)/h) =5 ol

The equality holds if and only if M is Einstein.

4. Immersions of order {k,, &,}.

Let x : M*—EY be an isometric immersion of a compact Riemannian mani-
fold into the Euclidean space. If x is of order {ki, k;} we have x=1x,+x4,+ x4,
—nH=2;, %%, Ar,xr, and —nAH=12} x; +A;,x,,. Hence AH=(A;,+1:,)H+
(1/n)Ar,Ar,(x—xo). Conversely, if AH=aH+b(x—x,), for some real constants
a, b, we have X ,5oix =02 p>0ds X p—NbD 1>0x 1, and 80 X pso(A2—aldp+nb)x,=0.
Then x,=0 except, possibly, for two different values of 2. So x is of order
{ky, ks}, for some k,, k,, if and only if AH=aH-+b(x—x,), for some real con-
stants a, b.

THEOREM 4.1. Let M™ be a compact Kaehler submanifold, of complex
dimension n in CP™P? such that the immersion A : M®*—>CP"*? is full. Then
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M is a submanifold of order {k., ks} in HM(n—+p-+1) for some natural numbers
ky, ks, if and only if M is an Einstein submanifold with T=Fkg.

ProoF. We suppose that AH=aH+b(A—Q), where Q is the center of
gravity of M. If b=0 then the immersion is of order %, for some k. From
we have that M is totally geodesic in CP™**?. Hence we consider b=+0.
As A, H and AH are normal to CP"*? we have that QT4 ., (CP*?), for all
x in M. So, from [1.3), A(M) is contained in the linear subspace L of HM(n+p-+1)
defined by the equation AQ=QA.

We can suppose that @Q is a diagonal matrix (otherwise we can use an isometry
of HM(n+p+1) of the type A—PAP~*, where PeU(n+p-+1)). We put

al ml
L3 a
Q = *s , aﬁkaj (i#]) .
aw
o
Then CP"*?N\L is a disjoint union of the linear subvarieties in CP"*?, S, ---, S,,

with dimS;=m;. Since M is connected and the immersion is full we conclude
that @ is a scalar matrix. But trA=1 for all A in CP™*?, then Q=1/(n+p+1)I.
Hence

“4.1) AH=aH+-b(A—1/(n+p+1I).

Take 7, s, such that r+#s, s*. Applying g(é(E,, E,), —) to both sides of
from (1.12), (1.14) and we obtain 3;;h%h%4,=0. On the other hand
Siahthi.=0. That is ;43 is a diagonal matrix. Applying g((E,, E,), —)
to we obtain

(nFD* Lyl
o +n%)hlrhzr— on @ b.
Hence
2
(42) ;Ai:[n—;—l a—nb— (n—iz—l) ][2nx2n .

From and we see that M is Einstein. We choose x, y such that
x#+y, y* Applying g(6(§., &,), —) to both sides of we obtain X};;AFhY=0.
On the other hand X;;h#hf;=0. Hence the matrix (tr4;4,):, is a diagonal
matrix. Applying g(5(., £2), —) to we obtain
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n+l1 1 epr_ L
2 _—;L—zzj:hijhij_ 2 a b.

So
tr A, 4,= —é—n(n+1—a+2b) .
Then we have finally

4.3) Tz—;—n(n+1—a+2b)g.

Conversely, suppose that M™ is an Einstein submanifold such that T=kg.
Then, if 314%=hlsn2q, We have

1
AH:(n-H)H—I--—l 2 hihie(Er, Ep—— 3 hiht6(62, €
N ijki Nn ijkp

(A DHY L35, E)— L3, &)
n n 2

=+ DH+ R 258, B)— IS0(E, B)+Sos, 6]

=En+1+2(h+k>]H—3@%ﬂ’lﬁ ,

where H is the mean curvature vector of CP™? in HM(n-+ p+1). Now from

(1.7) we have that the immersion of M into HM(n+p+1) is of order {k,, k.}.
Q.E.D.

COROLLARY 4.2. Let M™ be a compact Kaehler submanifold, of complex
dimension n, in CP"*? such that the immersion is full. Suppose that M is
Einstein and T=kg. Then

at  Flerr o (1= 2 o) o]

are in Spec(M).
Proor. We suppose that M is Einstein with T=kg. Then we have

(4.5) AH=aH+b(A—7+%rTI) for some a, b in R.

Applying g(A, —) and g(H, —) to both sides of (4.5) we obtain

a=n+1+- 2" f’*" lol2,
4.6)
p— prntl j)+n+l Il
2pn

From theorem 4.1 we have
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_ 1
n+p+1
—2nH=Ap A, + A2, Ary»
l——ZnAH: P AT AR A, -
By (4.5) and (4.7) we obtain

A I:Ak1+Ak2;

4.7

a:2k1+2k2 ,
4.8) 1
b: “2;{21”21!2 .
From [(4.6) and we have [4.4). , Q.E.D.

LEMMA 4.3. Let M™ be a compact Kaehler submanifold, of complex dimension
n, in CP™? such that the immersion is full.

i) If M is Einstein and T=kg, then we have
s Np(n+2)
4.9) lall gP——ijH—n .

The equality holds if and only if Va=0, that is the second fundamental form of
M in CP™*? is parallel.

ii) If ”0”2:/%—!_72) then, VYo=0 if and only if M is Einstein with T=kg.

ProOF. i) From [3.10), (3.15) and we obtain

2 2\,
olt=(S5 = lol= "5 ol

So we conclude [4.9). In the same way we prove ii). Q.E.D.

REMARK. In the case Vo=0, o+0, the eigenvalues in [(4.4) are n(n+p+1)
/(2p+n) and n+2. Let CP™(1/2) be the complex projective space with constant
holomorphic sectional curvature 1/2. There exists an isometric imbedding of
CP™1/2) in CP*+@/at+br gych that Vo=0. We call this imbedding the Veronese
imbedding. From lemma 4.3 we have easily that the Veronese imbedding is of
order {1, 2} in HM(n+(1/2)(n+1)n+1).

LEMMA 4.4. Let M™ be an n-dimensional compact Kaehler submanifold of

CP™*? such that the immersion is full. Suppose that M is Einstein and T=kg.
Then

(4.10) —;—(n—i—l)n;p.

The equality holds if and only if M is the Veronese submanifold.
Proor. From [3.10Y, [3-12), [3.14) and [3.16) we obtain [4.10). The equality

holds if and only if M has constant sectional holomorphic curvature. But the
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only possibility, for this codimension, is the Veronese imbedding [9] Q.E.D.

5. Spectral inequalities.

Let M™ be a compact manifold, of real dimension n, and x : M"—>E" an

isometric immersion in the Euclidean space. We have, following the introduction
section,

X=X,
kz0
Ax=—nH= Elkxk 5
ES1

A’ x=—nAH= kzllﬁx k-

Moreover
SMg(xk, =0 if k#r.
We put
SMg(xk, Xp)=ay, for all 2 in V.
Then
—n{_gx, B)= S dua,
M kz1
n| g(H, H)=3 2.,
M kz1
n?| gt AH)=3 Aa, .
M kz1
We put

gt
H=n XMg(H, H)—i—nZISMg(x, H), and

Q:mSMg(H, AH)—nUISMg(H, H).

Then from the above relations we obtain

(5.1) Ezgzlk(/?k—lﬂak_%(),
(5.2) Q:kgzl/zz(lk_/h)ak%(),

(5.3) Q== (2 —2)Ax—2)a, =0.

kz3

The equality in holds if and only if the immersion is of order 1. For the

equality in we have the same condition. The equality in [5.3) holds if and
only if the immersion is of order {I1, 2}.

Now for Kaehler submanifolds in the complex projective space we have
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THEOREM 5.1 [4, 10]. Let M™ be an immersed compact Kaehler submanifold
of complex dimension n in CP™. Let 2, be the first eigenvalue of the Laplace-
Beltrami operator of M acting on functions. Then

(5.4) n+1=1,.

The equality holds if and only if M is totally geodesic.
PrROOF. From lemma 3.2 we obtain &=2n(n-+1—2,)vol(M) and

Q=2n(n+1)(n+1—21)V01(M)+28M||Ullz,

where vol(M) denotes the volume of M. By we have [5.4). If =0 then
2=0, so |le]|=0. The converse is well-known. Q.E.D.

REMARK. This proof of theorem 5.1 differs from that in [10]. It is due
essentially to N. Ejiri [4].

THEOREM 5.2. Let M™ be an immersed compact Kaehler submanifold of
complex dimension n in CP™. Then
5.5) ALnL+(n+ 1= )+ 1—2)1vol Dz | 7,
being 2, and 2, the first and the second eigenvalues of the Laplace-Beltrami
operator of M, vol(M) the volume of M and v the scalar curvature of M. If the
equality holds then M is Einstein and (if the immersion is full) T=Fkg.

PrOOF. From lemma 3.2, [3.12) and [5.3)] we obtain [5.5). If the equality
holds, let CP"*? be the smallest linear subvariety of CP™ which contain A(M),
being A the immersion. From theorem 4.1 we conclude the proof. Q.E.D.

For complete intersection we have the next result

COROLLARY 5.3. Let M™ be an n-dimensional compact Kaehler submanifold
imbedded in CP™?. If M is a complete intersection of p non-singular hyper-
surfaces of degree a,, -+, a, in CP™*?, then

(5.6) (n+1—-A)(n+1-2)=p—3a..

The equality holds if and only if M=CP" is a linear subvariety of CP™*? or
M=Q" is the complex quadric in some linear subvariety CP™*' of CP"*?,

PrROOF. For complete intersection K. Ogiue has proved the formula
5.7) SMr:n(n L ptl—Sa)vol(M).

From and we obtain [5.6). If the equality holds, then M is Einstein.

Then by a result of J. Hano [5], M is a linear subvariety or the complex quadric

in some (n--1)-linear subvariety of CP"*?. The converse follows from table 1.
Q.E.D.
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COROLLARY 5.4. Let M™ be an n-dimensional compact Kaehler submanifold
immersed in CP™. Let A, and A, be the first and the second eigenvalues of the

Laplace-Beltrami operator of M. If le(SMr) / (nvol(M)), and M is not totally

geodesic, then
(5.8) n+2=4,.

If the equality holds then M is an Einstein submanifold and the second fundamental
form of the immersion is parallel.

PROOF. By [5.5] we have n--1-+(n-1—2a)(n+1—2,) g(SMr) / (nvol(M))=2,.

So (n+1—A)(n+2—2,)=0. If M is not totally geodesic, from theorem 5.1 we
have n+1—2,>0. Hence we obtain [5.8}.

If the equality holds, the equality holds in [5.5). From and [4.8)] we
obtain the equality in [4.9). Q.E.D.

In H. Nakagawa and R. Takagi, see also M. Takeuchi [12], give a
classification of Kaehler submanifolds in the complex projective space with
parallel second fundamental form. From their result we have that every compact
Einstein Kaehler submanifold in the complex projective space with parallel second
fundamental form is a linear subvariety, or an imbedded submanifold congruent
to the standard imbedding of some AM; in table 1.

In the following table n is the complex dimension, p the full complex
codimension, » the scalar curvature, and 4;, 4., the first and the second eigen-
values of the Laplace-Beltrami operator of M;. For every homogeneous compact
Einstein Kaehler manifold, with »>0, we know from M. Obata that A,=r/n.
On the other hand eigenvalues for classical symmetric spaces are computed by
T. Nagano [6]. The author does not know 2, for M,.

Table 1.

Submanifold n p r A Ay
M,=CP"™(1/2) n (1/2nn+1) 1/2nn+1)) 1/2)(n+1) | n+2 \
M,=Q™ n 1 nt n n+2
M,=CP"x CP" 2n n 2n(n+1) n+1 2n+2 |

‘ x
M4:U(s+2)/U(s)><§Jé2§ ; 25 | (1/2)s(s—1) | 2s(s+2) \ s+2 25+2
= | |
M,=S50(10)/U(5) 10 i 5 | 80 8 12 }
M=E:/Spin(10)X T 16 \1 10 192 12 1
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Because dim(M), vol(M) and SMr are spectral invariants, from corollary 5.4

and table 1, we have the following inverse result.

COROLLARY 5.5. Let M™ be an n-dimensional compact Kaehler submanifold
immersed in CP™. If Spec(M)=Spec(M;) for some i=1, ---, 5 then M is congruent
to the standard imbedding of M,.

REMARK. If /=2, that is, for the complex quadric, corollary 5.5 is obtained

in [11]
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Added in proof. Recently B.Y.Chen has studied compact submanifolds in
Euclidean space for which the decomposition x=3>},x, has only a finite number
of non zero terms. Some of his results are similar to general arguments exposed
in the beginning of sections 4 and 5 (“On the total curvature of immersed mani-
folds VI: Submanifolds of finite type and their applications”, Bull. Math. Acad.
Sinica, 11(1983), 309-328).



	Introduction.
	1. The complex projective ...
	2. An example: the complex ...
	3. Kaehler submanifolds.
	4. Immersions of order ...
	THEOREM 4.1. ...

	5. Spectral inequalities.
	THEOREM 5.1 ...
	THEOREM 5.2. ...

	References

