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0. Introduction.

Given a Lévy type generator L acting on test functions on R¢?, there are
various formulations of Markov processes associated with L. One is a weak
solution of the stochastic differential equation of jump type with coefficients cor-
responding to the local characteristics of the operator L. Another is a Markov
process whose resolvent {R;} satisfies that R;(A—L)f=/f for any test function
f. These formulations are unified as the martingale problem for the operator L.
Each probability measure P on the path space is said to solve the martingale
problem for L if the process

FXo—FXo={ Li(X)ds

is a P-martingale for any test function f on R¢. The martingale problem was
introduced by Stroock and Varadhan to prove the uniqueness of the diffusion
process whose generator is a given elliptic differential operator with continuous
coefficients. In the present paper we shall discuss the existence and the unique-
ness of solutions of the martingale problem for a class of non-degenerate Lévy
type generators L whose local characteristics are not always continuous, to prove
the existence and the uniqueness of Markov processes with jumps having L as
their generators. Grigelionis [6] and gave another martingale formulation
for jump type processes.

We shall say that a Lévy type generator L is non-degenerate if it is so as
a pseudo-differential operator, i.e. there is a constant «, 0<a=2, and

et L ) =g (x, £+ (x, §),

where ¢‘“(x, §) is a homogeneous function in § with index a such that the real
part of ¢‘®(x, §) is strictly negative for £+0, and ¢ (x, §)=0(|£|*) for large
|&€]. In the case a=2, the existence and the uniqueness were discussed by
Komatsu and Stroock [14]. So far, for a+2, they have been investigated
only in the context that the real part of the principal part ¢‘®(x, &) of the
symbol of L is independent of the variable x. Tsuchiya investigated the
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uniqueness of solution in the case where a=1 and ¢‘“(x, §)=—|§|+ib(x)-§.
And Tsuchiya studied the uniqueness in the case where 1<a<2 and ¢‘(x,§)
=—|&|%. Moreover Komatsu discussed the uniqueness in the case where
0<a<2and ¢‘“(x, £ is not always isotropic but independent of the variable x.
In this paper we shall study the general case where ¢‘®(x, &) depends on x.

The author wishes to express his hearty thanks to Professor T. Watanabe
for his valuable advice.

1. Main theorems.

Let ¢ (x, &) be a function on R*XR? such that, for any fixed z&R?, the
function —¢®(z, €) is the exponent of a stable process with index @, 0<a=2.
The generator A{* of the stable process is given by

(1.1) AP f()=3 [P (2, Ff()](x),

where F denotes the Fourier transform and -, the inverse transform :
FfQ)= ez, Fpw=0nerepeds.

The function ¢‘®(z, &) has the following expression (cf. Lévy [12]).

$(e, O=—| _|0-§l%(1~i tan (ar/2) sgn (@ &M, do)
0<a<2, a#l),

AD Vg, g=—{ (lo€l+2-iwe oglo-&] MO, da+iba) £,

PO, == &0k,

where M{*(z, dw) is a finite measure on S?'={wesR? ; |w|=1}, b(z)eR® and
a(z)=(a;;(z)), a non-negative definite matrix. It is assumed that

S\ |~1wMél)(Z, dw)=0 (a=1).

Define

a2*I'(1+a)/2)

M (z, dy)= VAl (C—a)/2) M{®(z, do)yr*-*dr (y=|y|o=rw).

Then the operator A{* is expressed as follows:
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A =[x+ 9= FIM@, dy) 0<a<1),

AP F)= (4 3)= F=O.Ly1- D CNDMDC, dy)+b(@)-0f(x),
(1.3)
A f(0)=\(f(x+3)—f(x)—y-0f ()M (z, dy) (1<a<2),

AP f(0)=F @0, (2

where 0,=0/0x;, 0=(0y, -+, 04) and @[ y1=Iqyicny. Forv=(v, -, vq), v,€Z,,
set |v|=v;+ -+ +vq and 04=(0/0x,)*1 -+ (0/0x4)*¢. Throughout this paper the
next assumption is maintained.

ASSUMPTION [A;]. In case 0<a<2, the measure M‘®(z, dy) has the density
function m'®(z, y) which is not identically zero with respect to the Lebesgue
measure dy, and partial derivatives d0ym‘®(z, y) (|v|=d) are bounded measurable
on R*x 8% In case a=2, a(z) is bounded measurable on R*® and positive definite.

Let o(dw) denote the area element of the surface S¢-!. Then

m®(z, rm)o(dw)yr®dr=m®(z, y)dy=M(z, dy)
=const. M{¥(z, dw)r-*-*dr with y=|y|lo=roe.

This implies that r¢**m‘®(z, rw) is independent of »>0, so the function m®(z, y)
is homogeneous in y with index —d—a.
Next we shall introduce the operator B® :

B f(x)=(f(x+ )= FOIN(x, &) 0<as),

(1.4)
B<“>f<x):5<f<x+y)—f(x)—&m-af<x>>N<a><x, dy)+b (x)-9 £ (x)

{ (1<as?).

We shall be concerned with this operator under the following assumption.

ASSUMPTION [A,]. N®(x, dy) is a signed kernel such that |N‘®(x, dy)| is
bounded by some measure N (dy), independent of x, satisfying

(L.5) [1v12A1 N (dy) <o

In case 1<a=2, the vector b‘®(x) is bounded measurable on R%.  Moreover
M@ (x, dy)+N(x, dy)=0 in case a+2, however N®(x, dy)=0 in case a=2.
From assumption [A,] the symbol ¢‘®(x, §)=e~*** B®(¢**'%) of the pseudo-
differential operator B‘® satisfies that ¢‘®(x, §)=0(|£|%) as [§]|—co. On the
other hand ¢‘“(x, &) is a homogeneous function in £ with index a. Define pseudo-
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differential operators A‘®> and L by

(1.6) AP f()=A f(x)=¢(x, 0.) f()=F [P (x, )Ff1(x),
(L.7) L=A®{B®

Let W=D(R,—R?%): the space of right continuous functions having left hand
limits, X,(w)=w() for weW, ‘I/Vr—‘QOa{Xs ; s<t+e¢} and CW:MCWt. Let 9 be
€ 0

the space of test functions, i.e. smooth functions on R?¢ with compact supports.
We shall say that a probability measure P, on the space (W, 9) solves the
martingale problem for L starting from x if the process

M{=f(Xo— (X~ Li(X)ds

is a martingale with respect to (%,, P,) such that M4{=0 for any f=9. Here
we shall introduce a condition.

ConDITION [Cy]. In case 0<a<2, o4ym'®(x, v) (|v|=d) are continuous on
R%x 8%t moreover b(x) is continuous in case a=1. In case a=2, a(x) is con-
tinuous.

One of the main results of this paper is the following existence theorem.

THEOREM 1. Assume [A,], [A.] and [C.]. Given any x, there exists a prob-

ability measure P, solving the martingale problem associated with the operator L
starting from x.

Let us introduce a technical assumption for the uniqueness of solution. The
assumption is not necessary in the case where A{® is independent of z (cf. [10]).

ASSUMPTION [A;]. In case 0<a<2, the function m‘®(x, y) is strictly positive.
Moreover, in case 0<a<1, the signed measure N‘®(x, dy) has the density function
n(x, vy) with respect to the Lebesgue measure dy such that the measure

N (dy)=(sup sup [n(x, 0y)|6)dy
r p-lsfsp

satisfies
(1.8) [IvleniNg@y <o for any pz1.

Another main result of this paper is the following uniqueness theorem.

THEOREM 2. Assume [A:i], [As]l, [As] and [C,]. Then there is at most one
probability measure P, on the space (W, W) solving the martingale problem for
the operator L for each starting point x.

In case a=2, the existence and the uniqueness of solutions hold under [A,],
[A,] and [C,]. These have already been proved in Komatsu [9] and Stroock
[14]. The continuity condition [C,] can be relaxed to some extent.
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2. Singular integrals.

Let 1<p<oco and ||-||.» denote the LP-norm and |||, the norm of supremum.
In our consideration the LP-boundedness of singular integral operators plays an

essential role. The following theorem is a generalization of a theorem in
Hormander [8].

THEOREM 2.1. There is a constant C, such that
2.1 Isup| L. Ff 112 =Cylsup sup 3> 12,117

for any system {§,(E)} of homogeneous functions with index 0 and fE 9.
PROOF. Let F'¢, denote the inverse Fourier transform of ¢, in the distribu-
tion sense and p(g,), the average of ¢, over S¢*:

pg= _piwode) /| ada).

lwl=

Suppose that
SR B, 13O <co.
In exactly the same way as the proof of Lemma 1.2 in we can prove that

the generalized function h,(x)=F1¢,(x)—pu(¢,)0(x) is a homogeneous function
with index —d and satisfies

S.m:;hZ(w)o(dw):O , IS-ZLIIBII h(x)| =¢ sup Mzé)d EZXGIP

where ¢, denotes a constant independent of ¢,. It can be also proved that

2.2) lim sup|sxllpllh,(x+y)—hz(x)|:0.

lyi=0 2
Define singular integrals

hof=lm | ) fx—y)dy.

1yi

The Calderén-Zygmund inequality (cf. and [3])) can be generalized to the
following. As long as is satisfied we have

2.3) lsup| % flllLr=cosup sup [A,(x) DI fll7,

where ¢, is a certain constant independent of {4,} and f. This inequality can

be proved in a similar way to Dunford and Schwartz [4], XI-7, so the proof is

omitted. Since F [ ¢, Ff1=hxf+pu(d,)f, we have inequality (2.1). g.e.d.
For 0< <1, let Hg(f) denote the semi-norm

Hy(f)=sup | x—x"|7B] f(x)— f(x)] .
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The following is a modification of the Ho6lder-Kohn-Lichtenstein-Giraud inequality

(cf. [ID.

LEMMA 2.1. There is a constant Cg such that

(2.9) Hy(F ' [¢FfDN=Cs(sup 3 |0tp(&)NH5(f)

1§1=1 lv|sd+1

for all f€9D and homogeneous functions ¢ with index 0.

PrOOF. Let u(¢) be the average of the function ¢ over S¢-'. The homo-
geneous function h(x)=9 '¢(x)—pu(¢)d(x) with index —d satisfies, for any x=+0
and y=(yy, *-+, va),

deh()=lim 2ot g+ Iy~ D! (@ r+ie)Ma(d),

where @’=w¥1 - wkd. In a way similar to the proof of Lemma 1.2 in we
have

Sup(lh(x>l+lah(x)l)§cll§up > o),

lxi=1 =1 1vIsd+1

S‘ _ h@a(de)=0.

From the Hoélder-Kohn-Lichtenstein-Giraud inequality, there is a constant ¢, such
that

Hp(h*f) = ca sup (|h(x)| +10h(0) DH3(f) -

Since Hg(F'[¢FfD<Hp(h*f)+|pld)| Hs(f), we have [2.4). g.e.d.
Now fix a point x, in R% The A-potential operator G{® =G:2) of the stable
process with the generator A{?’ is given by

(2.5) G f(x)=F '[A—P“(xo, NT'FfIx)
=T ngper gy,

Using the Young inequality we have, for all fe9,

(2.6) 1G® fler=27fller, NG SIS27MfN, He(G{® )= Hy(f) .
For 0<d<1, let |9|° denote the pseudo-differential operator defined by

2.7) [0] Bf(x)z.cf‘l[lfl"le(E)](x):-Cag(f(ery)—*f(X)) |y1-2-dy,

where cs=+/7 °I'((d+0)/2)["(—6/2)". There are constants ¢; and ¢, for which

2.8) [Hy+z1-e=1y-eidy=cilzr,



Pseudo-differential operators 393

2.9) flata) f=ef(ly+21-5= 1319131 f(x—3)dy
for all feD (cf. in [10]).

Let 2§®(x,) be the minimum eigenvalue of a(x,) and 2{®(x,), the maximum
eigenvalue of it. For 0<a<2, set

k™ (xg)= linf
I

3 =1Slw|=1 1§-wl*m@(x,, w)o(dw),

k{®(xo)= sup Zé:d |a;m(a)(x0’ W+ =1 |b(x0) ],

1Y1=1 1y

where [q-n=1 if a=1 and [-y,=0 if a#1. Assumption [A,] implies that
k{®(x0)>0 and k{®(xe)<co. From (1.2) we see that

lgifl (—Re ¢ (x,, &) ggonst. R§®(xe)>0.

It can be proved in the same way as Lemma 1.1 in that’

sup > 0% (x,, £)| Sconst. k{®(x,)<co.
181=1 1v|Sd+1

Hereafter, let 2(x,)’s denote positive constants which continuously depend on the
values 1/k§%(x,) and 2{®(x,).

LEMMA 2.2. There is a constant k(x,) such that, for f€9,
Ho1*Gi® fller=k(xol fllz 0<a<l),
(2.10) [1019710;Gi flrrsk(x) fllr  (1=a<2),
10:0,G fllLr=k (x|l fllz? .
For 0<B<1, there is a constant k’(x,) such that, for fe9,
Hg(|014Gi® )=k’ (xo)Hp(f) 0<a<l),
(2.11) Hy(1019710,G{ NSk (x)H(f)  (1=2a<2),
H0:0;G f)= k' (xo)Hg(f) .
PROOF. Suppose that 0<a<1. Then
101G f=F[I€]*(A—¢(xo, E)7'F ]
=F[([&]%/ @ (x0, ENFLAGVf— 1]

Therefore and follow immediately from [Theorem 2.1, Lemma 2.1 and
2.6). Similarly [2.10) and [2.1I) are proved in case 1<a <2, because

13]%70,G5 f =G TG1§1* 78,/ (xo, DFLAGE™— F]]

for 1<a<?2 and
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0:0,GP f=9F[(—28:£;/€- a(x0))F G f— f]]. g.e.d.

LEMMA 2.3. Let 7 be a positive constant and 0<d<yAl. There exists a
constant k(x,) such that

@212 (F]x] 0| Fget Vo)) | Sk(e)(sup 3 185

isd

for any homogenedus Sfunction ¢ (&) with index 7.

PROOF. Set ¢(&)=¢®(x,, §). For each v with |v|=d, we have [ ¢pe?]=
e?(0+0¢)*¢. Hence there are homogeneous functions ¢,(§) of index na+r—d
such that

d
v y O ¢
n,sllglpzl(lgbnl+lasénl)élel(ﬁco)(‘g}l:ql Z 106bD), il pe?]= 2 ae” .

visd

It suffices to prove that
|2 12| F ' Lpne?I(x)| = ka(xo) Sup (| ¢n|+10¢n1) .
In case na+7r>1 the above inequality holds, because
%8 Tae? 10| S @)~ 10,(Gne?) | dES k20 31D (| B0 + 13 ]).
Suppose that na+y=<1. Set |£|=r and |&|"*¥=w. Then
1101%(@ne?)E) éclr"“”‘d‘as | @n(@—)e™? @V — (@)™ | | y| =2y .
Set k=2"*inf{—Re ¢(&) ; |£]|=1}. We have

Slmﬂ/z | @nl@w— )™V — (@)e™? | | y| ~2~%dy

§e-kf“§ | Gal@—3)—gu(@)| | y]~¢-2dy

lylsi/2

Hga@lree | g——g@]1y]-4dy

ly1s1/2

§k4(xo)e"”“(1+r“)l§}1=g (1¢al+10421),

TP (0) I
[ Iga@er s || y] -4y k(o) sup | a1
Moreover we have

[ Igaw—y)ers@ | y|-2y
lo-yis1/2

r&%g(2) -na-
ai | 16a@0 O dzS k) AAP ) sup I
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w—y)eT ¢ @-» —d—Jd
Slyl>1/2,lw—y|>1/2‘¢n( y) | l.yl y

écag | pn(2)| e k@120 2| ~4-0dz< k7(xo)(1/\e"‘”“)l§ug | @l .
1=

121>1/2

From these inequalities we see that
1819861 S kx0T Ar=9) sup (1] + 1351
for rre =9I Ar=me)<r7' Ar~°. Hence we have
2171 G gne? 100
=)k 1817418172 A 181 0)dE sup (1§l + 136, 1)

= ko(20) SUp (| §n [ +10841) - q.e.d.
LEMMA 2.4.
{i) If ap>d, then there is a constant k(x,) such that
NGi® fIISk(x0)A7 1P| fllLp for fe9.

(ii) If (a—1)p>d, then there is a constant k(x,) such that
10,Gi® fI S k(xo)a 1 axdiear| flip for feD.
(iii) If 0<B<aAl and (a—pB)p>d, then there is a constant k(x,) such that
Hg(Gi® f)sk(x)d 1 *Blerdiar| fl e for fed.
PROOF. It is easy to prove that
A+ x| DI FLe? 000N (x) | S ka(xo)
(L+]x [ 44| F €02 @000 (x)| S ko(x0) -
From we see that

A+ |x |22 | FIL|E|Pe? @ @00 (x)| Shy(x0) .
Define

g1 ()= e g e ()t
0
Let p7*4+¢~!'=1. As long as ap>d, we have

128800 12w = || 20730 g-arere-ereagaper @ wogmrax))ar

N T
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This implies that
lgs® e ki(x)21+42?  as long as ap>d.
Similarly we have
10,85 (| L= ky(xo)A~H1/ ardiap as long as (a—1)p>d,
110]8gi® e kj(xo)A 1+E/2+d/ar a5 long as (a—B)p>d.

Since G{® f=g{®xf and 0,G{® f=(0;g{*)*f, (i) and (ii) of the present lemma
follow immediately from the Hélder inequality. Using and [2.9),

Hg(G{® f)<const.|||3] °G{® f| <const.| 8] g{* |2l fll.7,

which proves (iii) of the lemma. q.e.d.
In a similar way to the above proof we have

10,85 | 2:1= k(x)A"1*2  as long as a>1.
From the Young inequality we see that, for a>1,
10;G{® fler=k(xaA™ | fllz7,
(2.13) 10,G{® fll=k(x)2= M| f1,
Hy(@,G{® )= k(x)A 1 H(f) .

LEMMA 2.5. Let 0<B3<aAl.
(i) There is a constant k(x,) such that

@.14) |5 [9FLCL™ FIISk(xad#Hy(F)sup 3 1356(@))

Isd

for any f<9D and homogeneous function ¢(§) with index a.
(ii) There is a constant k’(x,) such that, for f€9D,

H31°GE FISK GO PHy(f)  (0<a<D),
2.15) 1131°-19,G( FISE (02 PeHy(f)  (1Sa<2),
100,64 FIS (x)2-PHy(f)
PROOF. Set ¢=¢*(x,, §). Note that
|-10pe1ndy =00} a[ge"], FaD=<pet¥, 3)=0

for any homogeneous function ¢ with index a«. Therefore, for fe9,

| F 1 LFLGi* fII(x) | =

S?Se““ff“[¢e‘¢](y)f(x—y)dt dyl

=[{ Jera-pe 10X Pt —2)— Fedt dy|

0
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oo
0

<Hy(N| o1 31819 g J(r) dt dy

=Hy(NI(B/)d-'%(| 3171 F-'Tge?1(») | dy

§Hﬁ(f)2“9"’k(xo)(§}l_g > loggl)  (by Lemma 2.3).

=1 |visd+1

This proves (i). Applying inequality for p=1&|%, ¢=|&|*7&; or p=&&,,
we have (2.15). g.e.d.

Now define

4°(x, )=sup 3 [0;(m (x, y)=m®(z, y))

=11lvisd
(2.16) F1 o=y |b(x)—b(2)| 0<a<?),
4 (x, Z):izj‘ aij(x>_aij(2)l .

In the same way as Lemma 1.1 in it can be proved that

(2.17) %1:;11 I:;é)d[fig(gb“’)(x, E—¢®(z, &) Zconst. 4 (x, 2).
THEOREM 2.2.

(1) There is a constant k,(x,) such that, for fe€9 and 1>0,

lIsup| (ALY —A:)Gi® F11|r =k p(xo) sup 4 (xo, 2)|| f]22 -

(ii) Let 0<B8<aAl. There is a constant kg(x,) such that, for f€9D and 21>0,
sup||(AL —Ai)G{® fIIAP*+-sup Hp((ALY — Ai)G® f)

=k g(xo)sup 4 (xo, 2)Hy(f) -

PROOF. Observe that
(AL —A)GE f=F (¢ V(2 )/ (%o, E)—DIFLf—AG¥ f]1].

Hence assertion (i) follows immediately from [Theorem 2.1, and (2.17).
From with ¢(§)=¢“(x,, §)—¢ (2, §), we have

(ALY — AL G fllaP1=
Ski(x)Hg(f =G ) sup 3 10K¢ (2, £/ (xo, £)— D]

I=11visd+1

Sky(x)Hg()A (x4, 2) (by and (2.17)).
On the other hand, by Lemma 2.1,
Hy((AD—A)GE™ )



398 T. KomMATsu

=CpHp(f—2G" f) sup 3, |08 (2, £)/¢  (x0, §)—1)|

1§1=1 visd+1

= ki(x)Hp(f)d“ (%0, 2) . g.e.d.

3. Construction of semi-groups; special case.

In this section we shall prove in the case where the principal
part A® of L is close to the generator of a stable process. Throughout this
section [A,] and [A,] are assumed. Fix § and p so that 0<f<aAl and (a—
B)p>d. Let ky(x,) and kg(x,) be the constants in We shall con-
struct the Feller semi-group with the pre-generator L under the following condi-

tion.

CONDITION [C,].  kp(x0)V ks(x,) sup 4“(x,, z)§711—.
Define
B (=1 £+ 3~ 1) N @) 0<as1),
3.1

Bi“’f(X)zSIf(x+y)—f(x)—@1[y]-3f(x)Ika“)(dyHH b (|- 10/ (x)]
(1<as?2).

LeMMA 3.1 (Theorem 2 in [10]). There is a constant A,=2A,(x,) such that
IBEGE flir< N lr for all A22, and feo.

Define | fllocn=I71+2a"P/“Hp(f).
LEMMA 3.2. Assume that there is a constant Kz such that

[1917AL IN@ G, dy)=NOW, d9)|+ T 1590 —b= ()]
§Kﬁlx—x’]ﬁ.
Then there is a constant 2g=25(x0)>0 for which

1
IBOGI flosap=g|flcsap  for all 1225 and fe.

PrOOF. To simplify the proof, we suppose that d=1 and 1<a<2. Let fe9
and set g=G{*f. Then

|B@g(x)] éS|g(x+y)—é.’(x)——@l[ang’(ﬂIZ\L‘k‘”(dy)+ 16+ 1g"(x)]

N ()+21g' )| |3 INE ()

i-lciyiasgy

<2

1y1>1
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ralldl gl | 1N g L1
(by and [2.9)

e (14| 1y INE@)If)

A-lciyias

+63(S|y1a51-1 {y[a[\f;a)(dy))z-ﬁ/al_]ﬂ(f) (by |_2_|( T3] and ml )

e (e 11 7@y ADNE @)l et

In the proof, all ¢.’s denote certain constants independent of 2 and f. Let x and
y be points and set d=|x—z|. Then

lB(a)g(x)_B(a)g(Z)l

=[1gte+9)—g00—6.051g D IN® (5, dy) =Nz, dy)|

+§ [(g(x+3)—g(x)—O.[ylg’(x)—(glz+y)—g()—O.[y]g’(2)) N (dy)
H16(x)=b(2)| | g’ (x)|+1g’(x)—g’ @) | b

ég(legHIuwnHlHIal“'lg’ll-IyI“Iungn)lN‘“’(x, dy)—N*(z, dy)]

+8°(@H3 (@) 1y +2H(8) |7 T 1oscr1azn
+c:Hp(10]1°71gN [ 91 *L (yras2-1) N (@)
g’ I116 (x)—b(2)| +0P Hg(g")[[b || .
From the assumption, [2.6), [2.13) and [2.11), we have
Hy(Bg)=K;sQ2lgl+cillol* g’ +]g’ID

(et [ @2 Ly 0l 917 Y A D) NS @) ().

Set r=(a—1)AB. By [2.6), [2.13] and [2.15)] we have
H‘B(B(a)g)éc7l—l+1/a”f“

+CS(Z—T/a+S [ Y ] a((ll/alyl)l-a/\l)]\fsca)<dy))Hﬁ(f) .

Therefore, for any constant 4;>0,

3501 Hy(B g) e 257+ |1y 1“2 | y =  ADNE @)Y f et 2
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as long as 4=1;. Since
lim {131 (@] y - ADNE (d)=0,
there is a constant 4z such that
||B‘“>G§“’f|1cﬂ(;ﬁ>§-é—llf\lcﬁuﬂ, for all 2225 and f€9. q.e.d
Let A, be the constant in Lemma 3.1. By condition [C,],
A —AG)GI fli7< 41 fli.
Therefore, for all A=2, and fe9,
(3.2) (L= AE)GL flip= 5 1S a2

Let U; be the closed extension of the operator (L—A{?)G{* on the space L?=
{f ; Iflep<oo}. Since the operator norm ||[U;|.» is equal to or less than 1/2,
the operator

(3.3 [I-U;]': L?»—L? (A=2p)

is well defined. The operator G{® can be extended to the bounded operator on
L?, which is also denoted by G{*. For A=41,, we shall define the operator

(3.4) R,=G{®[I-U;]J "' : L?» — G{®(L?).
From the resolvent equation :
(3.5) G =GP =(p—ANG G on L?,

the space G{*(L?) is independent of 4. Note that if f€9, then 1—A®)feL?
and

3.6) A—A@W)GP f=G{PA—-AL) f=f.
Theréfore, for =2, and fe9,
(3.7) RiA—L)f=Riy((A—AL)—(L—ALNG{ A=A f

=R;(I-U)A—=AL) =G A=A f=f.
Let C*, k=0, denote the completion of the space @ by the norm

[ fler= 2 10°f].
WISk

For 0<d<1, set C*Y={fC* ; Hy0"f)<oo for any |v|=k}. From
we see that

3.8) G{®(LP)YCCPNLPCC'NLP.
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It follows easily from that
(3.9) Ri—R,=(u—NR;R, on L* (A, p=2,).
Hence the space

D(L)=R(C°"\L?)
is independent of 1=2,. Define an operator L on D(I) by
(3.10) L(R:f)=ARf—f, feC'NLP.

We shall show that is well-posed. Let f and g be functions in L? such
that R;f=R,g. Then by

R;[AR:f—f)—(uR,.g—g)]1=0.

It suffices to prove that the operator R; is one to one on L?. We shall show
that the operator G{* is one to one on LP. Suppose that feL? and G{* f=0.
Choose a sequence {f,} C9 such that |f,—f|.»—0 as n—co. Then G{*f,—
Gio f=0,

12G§® fro—FmllLp=|1G{® A f n—RA— AL f )| LPE | fo— frmtATAL f L2

Taking limits n—o0 and A—oo, we have || follz?=|f—fml?. Let m—oco. Then
Ifllze=1f—fll.»=0, so f=0. This shows that the operator G{* is one to one,
and so is the operator R ;.

LEMMA 3.3. The space D(L) is dense in C".

PRrROOF. Let g be any function in 9 and set (A—L)g=/f. Choose a sequence
{f.}C D such that || f,— fll.»—0 as n-—»>c0. From we have g=R;f. Hence
by

IR fa—gl=Gi*I—=U 1" (fn—
<const.||f,—flzp— 0 as n-— oo,

Since {R;f JD(D), the space 9@ is contained in the closure of the space D(D).
Therefore the space D(L) is dense in C°. q.e.d.
Next we claim that the operator AR; is a positive contraction. This proof,
however, is more difficult than it looks so. Before proving, let us explain the
reason besides the outline of the proof.
From the principle of a positive maximum we have

ligl=lI(A—L)gll  for all g€9.

By this implies that
[AR:fli=lfIl  for all fel—L)9.
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In the case where the local characteristics of the operator L such as the diffu-
sion coefficients, drift coefficients and the Lévy measure are continuous, it can
be shown that the space (A—L)9 is dense in C° so the operator AR; is con-
tractive. However, the local characteristics of L are not always continuous in
our context. Generally the space (A—L)9 is not included in the space C° and
A—L)DNC" is not dense in C°. Therefore we cannot conclude easily that AR;
is contractive. To prove the contractive-ness and the positivity we approximate
the operator L by a sequence {L‘™} of operators with smooth local character-
istics. Let {R{®} be the resolvent associated with the operator L™ defined
similarly to [3.4). If, for each f=, the function R{™ f is sufficiently regular so
that L™ operates to the function R{™ f in the usual sense, then we have from
the principle of a positive maximum that

AR fli=lfll  for fe9.

For each function feC°"\L?, there is a sequence {f,} CD such that |f.I=|f]
and || fn—fll.2—0 as m—oo. Therefore if [R{¥¢—R;4|—0 as n—oco for all
¢ C°N\L? and if |R{™¢@|=const.|¢|.?, then we can conclude that AR, is con-
tractive on C°\L?. The positivity of the operator R; will be shown in a
Similar way.

Let p(x) be a non-negative smooth function such that

fode=1,  {x; s@=0=ix ;5 1x1<D).
Set p,(x)=n%p(nx) and
aAn=pn*a, br=pn*b, b =p,xb®
me(x, N=|oux—am @, 3)dz,  N©Gx, d)=pa(x—2N (e, dy)dz.
Then we have, for a.a. x,

an(x) = a(x),  ba(x)—=blx),  bi(x)—b*(x),

|Sup |my®(x, v)—m®(x, y)| >0 and
yl=1

[Iy1eAtINg (x, dy)— N, dy)l =0,

as n—oo, Moreover
a1 {m,‘f’(x, N yl=¢-%dy+ N2 (x, dy)=0 0<a<2),
a,(x)>>0 and N@(x, dy)=0 (a=2).

Similarly to that ¢, A{®, A® B@_ [ and 4‘° are defined using the elements
{a, b, b, m@, N}, we shall define ¢, A, An® Bmao [ apd @
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using the elements {an, b, b, m&{®, N{*}. Set
Uﬁn):(L(n)__AéU(l)))Gl(a) .
Since [[{br =016 ||| and [Nz (x, dy)| =N (dy), we have

WU flor gl flr forall 222, and <.

The closed extension of the operator U{™ is also denoted by U{®. Define
RM™=G{[I-U™]*: L?— CPNL?.
LEMMA 3.4. For each 2=2, and fe<L?,
lim [ Ry™ f—R; f[|=0.
Proor. Let feL?. By

IR{™f—R;fl|=const. [[I-U™ 1 f—=[I-U:1"fll.?
Note that

[—UPI—[=U,17= 3 (U= U )

Ms
M

U UP =UIWU )

a,
I
o

7=0
Then we have
o k 1 k-j .
IL-UP f~U=U1"f rs £ 3(5) IUP=UdUD 2.
k=0 j=0
Since
n ; 1y o ko1 \k-Jr 1N
IUP=UdUflers(5) e, £ 2(5) () <=,
it suffices to prove that
Im (U™ —=U)U ;) fll.»=0  for each ;.
Considering that the space 9 is dense in L? and the operator norms U™ —U ;|| »
are bounded, it is sufficient to prove that
(3.12) NU™~U)flle»p—0 as n— oo for each f€9.

We shall prove (3.12) only for 0<a<1. Other cases are proved similarly. Let
f€9 and set g=G{*f. Note that ¢"g= L? for any v. Therefore

Mlg(xwLy)—g(x)l [y]-% dy

ILP
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<@lglzr+ 310,817 |1 9| AD Iy = edy<oo.
Since
(A0~ A g(x)] Sconst. || g(x+ 1) —g(x) | 7] =*-*dy,

and since

[(A™®—A@)g(x)|

églyl Almi@(x, y)—m(x, y)| Iyl‘d‘“dy'EsqypﬂylAl)‘llg(x+y)~g(x)|]
—0 a.a. x asn— oo,

we see that [[(A™*—A@)g|»—0. Similarly we have [[(B™*—B®)g|»—0.
Hence

(UM =Unflee=I(L™—L)gll.r—0 as n—oo. g.e.d.

LEMMA 3.5. If f€9 and A=2,, then [[—U™] ' feCSNLP.

PROOF. (Step 1) First we shall show that there is a constant p, such that,
for Az=zy, and f€9,

1
(3.13) HUE”)chﬁ(yn)é?llfllcﬂmn) :
Obviously the elements b, N{® satisfy the assumption of and so
1 '
”B(n’a)Ga(mecﬁ(p'n)§§Hf“C’Q(#'n) for ZZ/Jn

as long as the constant u; is sufficiently large. Considering inequality [(2.14) for
the function ¢=¢* (=", §)—¢i¥(z, &), we have

J(AF- 0 — AP )G F S k(x)2-P Hp (A (', 2).
There is a constant K, such that 45 (zy, z,) < K, | z2:—2,|? for all z;, z,& R%. Since
(A® 0 — ARG () —(A™ D — AG)GL f(2)]
<[(Af 0 — A ) GI® 1+ 2=z | H(AS 0 —AGIG f),

we have
Hg((A™ 2 — AL G IS k(x0)Kad™#/*Hg(f)+sup Hg((A{® —AL)GL™ f) .
Let u, be a certain positive constant. For any 1=y,

[A® @ = AL Fllos up =k (60 K 5% “H(f)
+5up (A0 — AL)GE f|+sup Ha((A2—AE)IGE™ Nyt
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=[h(x)KapsP'*+kg(xo)sup 4 (xo, 2)1psP/*Hg(f)  (by

1
<[ koKt |1 e o -

Let u7 be a constant such that k(xo)K.(¢s) #/2<1/8 and set p,=p,V 4. Then
inequality holds.
(Step 2) Let p=2,V pt,. From we see that

[I-UPITHCPNLP)CCENL? .
From [3.5) we have U —U» —(u— AU G{*=0 for A=41,. Therefore
I=UP)—I=U)—(p—=DG¥ +(pu— DI —-UP)G{*=0.

Multiplying this equality by [/—U$’]"* from the left side and by [[—U{™]"!
from the right side, we have

U=UPT'=U-UpP]T U+(p—ARM)—(p—AR™ .
Let fe®. Then f+(u—ARM™feCP’NL? and R fC?NL?. Hence
-UMP] ' feCiNL?. g.e.d.

Let B denote the space of bounded Borel measurable functions on R¢. [Lemm
3.4 and are used to prove the following lemma.

LEMMA 3.6. Let 1=2,.
(1) [RfI=2MSN for all feBNL?.
(i) If feBNL? and =0, then R;f=0.
(iii) There is a sequence {f,} CD such that 0=f, 11 and R;f, 11
PrOOF. (i) Let feBNLP?. Choose a sequence {f,} CD sothat |f.—fllL?
—0 and |f»I=<|f]l. From [2.11), and Lemma 3.5, we see that

R fu=G{@[[—UP]  fneCar¥  for any §'<B.

Hence L™ operates to R{™ f, in the usual sense. Note that, for any function
g in CANL?, (LW —A@) G g)=U{g. Therefore

(A=L™M)R{® frn=(A—AL)— (LW —ANGPI—UM] [
=(I—=UM[I—=U®] fn="Ffm-
From the maximum principle and it can be easily proved that

IR fnll < fml =S £1 -

Since |R{™(fm—f)|<const.|fn—f[r2—0 as m—co, we have |R{™fI=2'[f].
By we have |R{™f—R,f|—0 as n—oo, so that [|R,f[|=27"]f].
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(ii) Let feBNL? and f=0. Choose a sequence {f,}C9 so that f,=0
and ||fmn— fll.»—0. From the maximum principle we have R{® f,=0. Let m—oo
and n—co. Then we have R,f=0.

(ili) Let p(¥) be a smooth decreasing function on R, such that p(t)=1 for

t=<1 and p@t)=0 for t=2. Set f,(x)=p(|x|/n). Then f,171and R,;f.T. It
is easy to show that Lf,=BNL? and |Lf,|—0 as n—oco. From (i) we have

IRA(LfI=ALfA|—0.
By we see that f,=R;A—L)fn=AR,fn—R:(Lf,). Hence
lim AR fn=lim (fn+R(Lfz))=1. g.e.d

Using the semi-group theory (cf. Gihman and Skorohod [5]), the following
theorem can be proved immediately from Lemma 3.3 and Lemma 3.6.

THEOREM 3.1. Assume [A,] and [A.]. Under condition [C,] there exists a
Feller semi-group (T,)iso on the space C° whose generator is the closed extension
of (L, D(L)).

Let (W, 9%, 9,, P, ; X,} be the Markov process on R? associated with the

Feller semi-group (T;):;s. Let E.[-] denote the expectation by P,. Then, for
any f in C°\L? and A=4,,

(3.14) R, f(x):Ex[Sje‘“ f(Xt)dt] .

THEOREM 3.2. Under [A.], [A.] and [C,], there is a solution P, of the
martingale problem associated with the operator L for any starting point x.

Proor. Let {X,, P,} be the above process. Clearly equality [(3.14) holds for
any feBNL? and 1=1,. Let g be an arbitrary function in 9 and set f=

A—L)ge BNL?. Then g=R;f by [3.7). Set
Mp#=e-2g(X)—g(X)+| "0~ Lg(Xds .
From the Markov property, for s<t,
E [M}e—Mi£|9W,]

:Ex[_e-“le(Xg—Sfe—’-ff(X,)df[cws}

—Ex[e-“R;f(xs>~gje—“f(xr)df1%]

=]

:e—“Ex[R,ﬂXt)—EX,[S e‘“f(X,)dz']“Ws:I

0

%0

—e(Rif(X)—Ex,[ | e f(Xdz ) =0.

0



Pseudo-di fferential operators 407

Therefore M} # is a P,-martingale for any =1, and g9. Hence the prob-

ability P, solves the martingale problem associated with the operator L starting
from =x. g.e.d.

4. Uniqueness of solution; special case.

In this section the constant p is chosen so that p>d/a in case 0<a=1, and
that p>d/(a—1) in case 1<a=2. We shall prove the uniqueness of solution of
the martingale problem for L under [A,], [A.], [As] and the following condition.

CONDITION [Cs].  kp(xo)sup 4@ (x,, 2)= 1

Zy
where k, and 4 are the same objects as in And
“4.1) inf 1m“”(x, »>0 (0<a<k?), igflé‘a(x)$>0 (a=2).
Z,\yi= x, =

The proof of the uniqueness theorem is an improvement of that in
where the principal part A‘® was the generator of a stable process. The proof
is based on the following lemma, which is slightly different from the one in
Stroock and Varadhan [16], Section 6.2.

LEMMA 4.1 (Lemma 3.1 in [10]). Let P! and P? be probability measures on
(W, W) such that P[X,=dx]=P*X,=dx]. If, for any s=0, A=4, and f&
C°\L?, there is a function g=C° such that

Ei[S:e‘“ f(XsH)dt]cws]z gX) Piae G=1,2),

then we have P'=P? on W, where A, is a certain constant and E*[-|W,] denotes
the conditional expectation by P:.

Let {X., P.} be a process solving the martingale problem associated with L
starting from x. For a moment let ¢=9. Though the support of the function
Gi¥¢ is not always compact, it is clear that the process

GIPP(X)— G 9(x)— || LG $(X)d
is a P,-martingale. Hence the process
e HGIPGX) =GO P(x)+| e~ DG (X dx
is a P,-martingale with mean 0 for any A=4,. Therefore

G ﬁ“’q&(Xs):EzUje"*("s’(l—L)Gﬁ“’qS(X,)drt‘Ws]

:Ez[S:e““I:]—U;]¢(Xs+t)dtl%/‘?] ,
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where E.[-|9%,] denotes the conditional expectation by P,. Recall that U,=
(L—=AL)G™ and G{¥=R;[I-U;]. Therefore the equality

4.2) EEU:e‘“ f(Xm)dthWs}:Rl F(X) P.ae.

holds for any function f in [J—U,;]9. Note that [/—U ;]9 is dense in L? and

|R:f|<const.||fll.». Hence equality holds for any function f in C°"\L?
if there is a constant ¢; such that

(4.3) B[ e rxndt| ]| scilfle Peace

for all feC°N\L?, where (s, x) is fixed. By [Lemma 4.1, it suffices for the
uniqueness theorem to prove that holds for each function f in C°\L?.

We shall explain the outline of the proof, for it is rather long and com-
plicated. A process is said to be a piecewise a-stable process if there exists a
partition : 0=¢,<t,< --- <t, T oo of the time space R, and, on each time interval
[ts, trs1), the process is an a-stable process with respect to the conditional prob-
ability P.[-|9%:,]. Now suppose that 1<a=2. If a process Z; is a piecewise
a-stable process with perturbations of drift and infrequent jumps, then the L?-
estimate similar to for the process Z, can be easily proved. Hence, if there
is a sequence {Z7} of such processes which approximates the process X, and if
the L?-estimates for the processes Z? are uniform in 7, then the LP-estimate
for the process X, holds also. In case a=2, it is easy to construct such a
sequence {Z7} (cf. Theorem 4.2 in [9]. However, in case a+2, it is generally
impossible to construct such a sequence {Z?} of processes on the space (W, 9, Py).
By the change of sizes of jumps:

AX; - m (X, [AX|TIAX) VAKX,

it can be essentially reduced to the case where m‘®(x, y)=1, so we shall con-
sider here this simple case. This case was considered in [10]. The sequence
{Z?} of processes can be constructed in the following way. Let Y, be an a-stable
process with the generator A‘® which is independent of the process X;. To
realize such a situation, it is necessary to take X, for the process defined on a
direct product space (WXW, WXW, P, xQ). Cut off the jumps {AX, ; |AX|=
1/n, s=t} from the process X;, and add the jumps {AY, ; |AY|=1/n, s=<t} to it.
Then the obtained process Z} is an isotropic a-stable process with perturbations
of drift and infrequent jumps. Obviously the sequence {Z?} approximates the
process X;. In the general case, processes Z! are constructed similarly, but the
usual Calderén-Zygmund inequality is useless for the proof of the uniform L?-
estimates for the processes Z7?. In the proof, (i) of plays an es-
sential role.
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Hereafter we assume that 0<a <2 unless otherwise stated. Define
Jx(dt, dy)=#{sedt ; AX;=X,—X,-dy\{0}},
*Jx(dt, dy)=]x(dt, dy)—(M®(X,, dy)+N'*(X,, dy))dt.

By [Theorem 2.1 in (see also Grigelionis [6]), ¢/x(dt, dy) is a P,-martingale
measure, i.e. for each non-negative measurable function Ai(¢, x, y) and each stop-
ping time T,

E[[ {ne, Xo ) Jxat, )

=E.|{. [, X, pM(X,, dy)+NO(X,, dyt].

The process {X;, P,} is expressed as follows:

t
X=x+| | xlds, ay) (0<a<1),
¢ t
Xi=x+| [sLIxtds, ) —Tayao MO (X, d)dsI+{ b(X0ds  (a=D),
4.4) .
Xo=x+| {9 1Uxtds, d9)=MO(X,, dy)ds—Iagian N (X,, dy)ds)
+S:b‘“)(Xs)dS (1<a<2).
Define

aim, t ; T)=t+k2™™ if k2 m<z—itZ(k+1)27™.

Using the same argument as in §7 of Tsuchiya [17], we have the following
lemma.

LEMMA 4.2. There exist a point t,<[0, 1) and a subsequence {m,} such that,
for each T <co,

T
So S1w|—1 |m(a)(‘X”(mn"o;f)’ o) —m(X,, w)'*|o(dw)dr

T
+I(a=1)50 Ib(Xx(mn,tO;r)_b(Xr)]dT -0

in probability as n—co.
Set ti" =(t,+k2 ™n)V0 and

4.5) z(n, H=t{™ if #r<tsHn.

Let {W, %, W,, Q ; X;} be a stable process such that

[retat, an@uam=1y1-e-<dy at.
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Set W=WxXW, W=WXW, W,=W,XW, and P,=P,xQ. For w=(w,, w)cW,
let X,(@)=w,@) and Y ,(W)=w,(t). It is convenient for the arguments in this
section to use the same symbol X, for the mappings on W and W. Let Jx(dt, dy),
¢Jx(dt, dy) be the same random measure as before, and set

Jr(dt, dy)=4{sdt ; AY ;=Y ,—Y, €dy\{0}},

Jy(dt, dy)=Jv(dt, dy)—|y|~¢"*dy dt.
Define

4.6)  F(z, y)=m@(, ||y, L x; y)=m y)/m'(x, y)'*y.

Note that, for any non-negative function ¢ on R?,
[o0, x5 M, dn={pre Miyi-+dy=|pMG dy.

Set O,[y]=1qyisymy and O4[y]1=I,>1ny. We shall consider a sequence {Z7}
of processes on the product space {W, 9, 9,, P,} defined by

Zr:x+g S@%EQ(XM,,), X. 3 91/ xldz, dy)

+{ [0l F Xnca. o, 9111z, ) (0<a<).

t
0
4 t
X+S S@%[Q(Xz(n,r), Xr 5 y)]]X(dTy dy)+Sob(Xz(n,r))dT

0

@D +{ (O F Ka0s 291Seld7, ) (a=1),

0

Zp=
Zr=x+{ (05020 c0, Xe 5 )]

X {Jx(dz, dy)—M“(X;, dy)dv—1 1y N(Xs, dy)dr}

t
0

+[ b xde 4] [0uLF Koo, 301 Jutdr, d) (1<),

LEMMA 4.3. Z?—X, in probability (P.) for any t=0.
PROOF. Since the proofs in these cases are similar to each other, we shall
give the proof only for the case 0<a<1. From (4.4) and (4.7) we see that

21=X={ [ 10X a0, Xo 5 9= 31 aldr, dy)
— [ 10aL0Xacn0 X 5 91Uxtdz, A9+ [ (OULF (Xeco, 0, 11t ).

It is easy to show that the second and the third terms of the right hand tend to
0 in probability as n—oo, Note that
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B J19Kea0, X5 )=y I AN xldz, d9)]
=Bl [ [P Xea0 )= F X, 9)I AN} |y1-4-dydz]|
=B[lac{ar| _(mOXeo, 0

—m®(X,, w)l/“erN}r-l-wdw)} .

Therefore we have

t
[ 120, Xe 5 =3I ANV 2, dv) = 0
in probability, for fixed N. On the other hand

Sgpg | (X (a0, Xe 3 ¥)—y1Jx(dT, dy)

1yI>N
éconst.g _,171Jx(dz, dy) > 0 in probability as N—eo.
1yl

This completes the proof. q.e.d.
From the above lemma we see that, for any f<C°,

~

4.8) B[ et r (ot a0, | =tim B[ (e f(ze )|,
in L\W, 9, P,). Fix (s, x)€R,xR%, and define
(4.9) vis@=E| et 2z oat| .|

LEMMA 4.4. There exists a constant ¢} such that

(4.10) Vi@ <=cifler  Prae

for all feBNL?.
PrROOF. We shall prove the lemma only for the case 0<a<1. Other cases
are proved similarly. Let f=9 and set

8z, x)=F (A= “(z, )T f(§)I(x).

By and condition [C,], there exists a constant ¢(1) independent of z
and f such that
gz, N=cDIfler.

Set t,=t{™ and f,,,=t{*;. Using the formula of change of variables of semi-
martingales (cf. Kunita and Watanabe [11], Meyer [13]), as long as ¢, <t<t+,,
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we have

e Mg(X,,, ZD—ethg(Xey, Z8)+| et r(zndr

¢
te
¢
=, e*lieXe,, Z21OL0X,, X. ; 9)D—g(Xyy ZDIN(X., dy)ds

+ {a martingale with mean 0 on the time interval (fy, ts+:]}.

Therefore

]EI[S”“‘WWT f(Z;’)dflCWs]

tpVs

<2g(Xep, et (1427]  Npiay),

lyI>1/np

where p=sup{|2(z, x ; ¥)|; 2, x,|y|=1} and N®(dy) is the measure in assump-
tion [A,]. Hence we have

IEIUje—“f<Z;Z)dTWS]

<2 flar(, & e (1427

ttp 4128 1yI>1/np

This implies that there is a constant ¢} for which holds for any fe9.
Since V7 is a positive bounded operator on B, by the Egorov theorem, it is easily
proved that holds for any f<BNL>. g.e.d.

For a moment, let f€9 and g=G{* f=F[A—¢(x,, §)*F f(§)]. Using
the formula of change of variables of semi-martingales, we see that

Ni(dy))

t t
NGz =gt~ NS EDH] AR, A2

+| Je-azr+09—gZmN(X,, dy)ds
+ {a P,-martingale with mean 0} 0<axl),

@1D) ¢ o 2g(zp=g(x)—| e p(Znde+| AL, ,—AD)g(Z)dz
t
+ o (22 + 05— g(Z1) L1012 0508 (ZDY N (X, dy)dx

+§:e-hb<a>(x,)-ag(zmdr

+ {a P,-martingale with mean 0} (I<a<?),
where 04=04[2(Xzn,», X: ; y)]. Set p=sup{|L2(z, x ; y)|; 2, x,|y|=1}. Since
@%[‘Q(Xx(nr)’ Xz‘ ’ J’>:|E {O}U{ﬁy ’ ﬂ_1§0§fl} ’
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it fellows from [A,], [As] and (4.11) that

4.12)

VEf I Slgl+Visupl (AP — A%)g )
+V1([18C+ 9= 1N @) (0<a<1),

Vifi=lgl(1+22|,  NO@)+Vieupl (49— A )
+vi((iae],  1v-0aC-+0nINP @) (a=1),

VifI=hgl(1+22]  Ne)+ViGupl (A0 —A%)g))

i

+vi([la| _1y-@at-+05)—2g(-NINE @)

+1611-19g()) (1<a<?).
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LEMMA 4.5. As long as A, is sufficiently large, for A=A, there is a constant
¢ such that

(4.13)

VEf@)=calflee Poace

for all fe BNL?,
PROOF. (Step 1) From the constant

c*=inf{c ; P.[|1VIf>clfll»2]=0 for all f=BNL?}

is finite. Let f€9 and g=G{®f. By

Set

4.14)

1
V?(SngAéa’—Aé‘;’)g | >_S.CE!ISgpI(A§“’—Aé‘;’)gI L= —c2l fller.

S5 f)={ | g+ 3)—g(x) N (dy) (0<a<),
seiw=|"a8] 1v-dgx+onINE@y) (a=1),

S50 f(0)=|"d8)  _|3-@g(r+05)—0g0x) N ()

1y!

+10 (] -1oglx)] (1<a<2).

From (4.12) and Lemma 2.4, we see that there is a constant c¢; independent of
n and f such that

VEF1= 5 eall flurtes( 17 1o HISE f122)
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Suppose that there is a constant 4, independent of f satisfying

4.15) IS flrS LSl for 224,
Then we have
1 |
[Vifl _g_?(cx—i‘cff)”fﬂﬂ-

Since V7 is a positive bounded operator on B, using the Egorov theorem, it can
be proved that the above inequality holds for all f in BN\L?. Therefore we have

1
C?é—z—(cﬁc}‘)

as long as A=4,, which implies that ¢}=<¢;.

(Step 2) It suffices to prove (4.15). Let 1<a<2. From [2.8), (2.9) and [2.10]
we have

10,G® F (- +63)—0,G5* f()llnr
=const.|fy|**|[|9]*719,G3® fllLp=const.| y| *7| fll.>.

Since [9,G{® flly»=const. 27**/¢| f||.», we have

[raof 150G 7 +05)-065 FNINE @)
<(26],,__ . 19 INE@)10GE 111
-{—const.(gmag_1 | yl“Ni“’(dy))HfHLP

<const.({ 191 (@ y - ADNE @) a2

Hence we have inequality (4.15) for sufficiently large 2,. In the case 0<a<l,
the proof of (4.15) is much easier. g.e.d.

THEOREM 4.1. Let 0<a=2, and assume [A,]}, [A;], [A:] and [Cs]. Then,
for any x&R®, there is at most one solution P, of the martingale problem as-
sociated with L starting from x.

PrOOF. Let 0<a<2. By [4.8) and [4.13)] we have

~

=cillfllee Psa.e

[E“z[gje-“ f(Xm)dt‘CWs]

for any feC°"\L? as long as A=4,. This implies that

Ex[gje-it f(Xm)dtl‘Ws]

=callfller P;-a.e.,
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because P, is the direct product of P, and Q. This completes the proof for the
case 0<a<2. As for the case a=2, the theorem was proved in Komatsu
assuming the continuity of the coefficient a(x) (cf. Theorem 5.2 in [9])). This
additional assumption can be removed considering a suitable step function z(n, t)

similar to (4.5). The detailed proof is omitted. g.e.d.

5. Connection of solutions; proof of main theorems.

Throughout this section [A,], [A.] and [C,] are assumed. Fix p and j so
that 0<fB<a and p>d/(a—p) in case 0<a=1, and that 0<S<1 and p>d/(a—1)
in case 1<a=<2. Let k,(x,) and kg(x,) be the functions in Here-
after we write z for x,, because x, must be taken for a variable in this section.

From condition [C,] there exists a positive measurable function »(z) such that

(6.1 kp(z)V ks(z) sup )A“”(z’, z)g—i— for all z=R“.

1z =221 ¢(

Moreover we can assume that 1/7(z) is locally bounded, for k,(z) and kz(z) are
continuous under condition [C,] by the remark precedent to[Lemma 2.2 Let p(¢)
be a smooth function on R, such that 0=p(t)<1, p(t)=1 for t=1 and p(t)=0
for t=2. Set p.(x)=p(r(z)"'|x—=z]|) and

(5.2) LH¥=A+p,(L—A).

Let {X,, P71} denote the Markov process associated with the operator L™ con-
structed in [Theorem 3.1. Set

Q=P

Since P% is measurable in (x, z), Q, is also measurable in x. Define

(5.3) S=inf{t>0; | X,—X,| >r(X,)} .

Let {S(n)} be a sequence of stopping times defined by S(0)=0 and
S(n+1)=Sn)+S-0s ,

where 6, is the shift operator: X,-0,=X;,,. It is possible to construct a sequence
{P%} of probabilities such that

P3H=P% on Wsm ,
P05ty () Wsmy1=Qxs,,LI]  for I'ew  (n=0).

LEMMA 5.1. The probability P?% solves the martingale problem for the operator
L starting from x on the time interval [0, S(n)].

Proor. For the sake of simplicity, we shall prove only for n=2. Let f€9
and T be any bounded stopping time. Then
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B3| fXepsod— )=, Li(Xdr]
TAS(2)
=E3| fXrpso)—fKrns) =\, " LF(Xdz |
TAS(1)
+E fXrnsa)—f0= | Lf(Xde]
(TAS(2))VS (D)

:E%[f(Xm/\S(z))vs(1))‘—f(Xs<1))“S L[XS(”Jf(Xr)dT]

S

TAS(1)

—‘.—E%[f(XT/\su))”f(x)_S L[x]f(Xf>dz':l

0

=E;H{f(XT'(w')*f(Xsm(W))

-
_SO LiXsw (W)]f(XT('LU’))dT}QXS(l) (w)(dw,)]

TASQ
0

+ {1 rnsa) == Lo (X de}Qutdw)

=0,

where T/(w’) is a certain bounded stopping time. This implies that P2 solves

the martingale problem associated with L on the time interval [0, S(2)].
g.e.d.

LEMMA 5.2. lim P?[S(n)<t]=0 for any t<co,
PrRoOOF. For any ¢>0, there is a constant R such that
sup P2 sup |X.|>R]<e.
n TS (MINL
Let ro=inf{r(z) ; |z|=R} and f(x)=p(|x|/ro). Since
(Sm=t, _sup 1X|=RIC{ S fKson—Xsw-vr)Zn},
T<S(n)AL k=1
we have

1 =
Pg[s(n)§t]§€+“~kglEg[f(Xak)/\z“Xsw-n/\z)]

b

1 n S t
:€+72 EQ[S oA L(f(- —Xs<k—1)/\t))<Xr)dT:|

k=1 S(k-1NL

<et—sup [ L(C =)

This completes the proof. g.e.d.
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PROOF OF THEOREM 1. Let P, denote the probability on the space (W, \/ Ws )
such that P,=P? on %¥s,. From [Lemma 51 we see that P, solves the mar-
tingale problem for L on the time interval [0, limS(n)). From Lemma 5.2 we have

lim S(n)=c0 P.-a.e.

Hence P, solves the martingale problem for L. g.e.d.

PROOF OF THEOREM 2. (Step 1) Hereafter assume [A;], [A.], [As] and
[C.]. Then the operator L™ satisfies the assumption of [Theorem 4.1 for each
zeR?. Let P2 be the same probability as before. Let P, be any solution of
the martingale problem for L starting from x. Obviously P, solves the martingale
problem for L on the time interval [0, S, where S is the stopping time given
by (5.3} There is a probability Q. on the space (W, %) such that

Q.=P, on Ws=Wsa, Q05| Ws]=P¥l") for I'ew,

where 6, is the shift operator. It can be proved in the same way as[Lemma 51
that O, is a solution of the martingale problem for L*? starting from x. From
MTheorem 4.1 we know that (. is uniquely determined. Therefore P, is uniquely
determined on the o-field Wg(y,.

(Step 2) Let Q¥ be the regular conditional probability of P, with respect to
the o-field Wysy,. It is easy to show that, for almost all w (P,), Q% solves the
martingale problem for L starting from Xg(, at time S(1) (cf. Theorem 6.1.3 in
Stroock and Varadhan [16]). That is, for any w except elements of a P,-null
set N, processes M{-0s54, (fED) are Q*-martingales, where

M{zf(xo—f(Xo)—S:L F(X,)ds .
Set
Nf :f<X,>—f<Xo>—j:LrXoJ F(X,)ds .

Then, for wé& N, processes M{ sy (fED) are Q*-martingale on the time in-
terval [0, S7. Namely Q%-683%, solves the martingale problem for Lt¥¢! on the
time interval [0, S] for all w&N. By the same argument as in step 1, the prob-
ability Q%"-03%, is uniquely determined on s, so that Q% is uniquely deter-
mined on the o-field 83%,(%s). Since

Wsy=WsayV Osty,(Ws),

the probability P, is uniquely determined on 9%s,,. Using such arguments re-
peatedly, we know that P, is uniquely determined on the o-field \/ Ws (). From
we have lim S(n)=c0, s0 \/Wsn =W. g.e.d.
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