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Introduction.

A spherical t-design in $R^{d}$ is a finite nonempty subset $X$ in the unit sphere
$\Omega_{d}=\{(x_{1}, -- , x_{d})\in R^{d}|x_{1}^{2}+\cdots+x_{d}^{2}=1\}$ such that

(0.1) $\frac{1}{|\Omega_{d}|}\int_{\Omega_{d}}f(x)d\omega(x)=\frac{1}{|X|}\sum_{x\in X}f(x)$

for all polynomials $f(x)=f(x_{1}, x_{2}, \cdots , x_{d})$ of degree $\leqq r$ . The condition (0.1) is
equivalent to the following condition:

(0.2) $\sum_{x\in X}f(x)=0$

for all homogeneous harmonic polynomials $f(x)=f(x_{1}, \cdots , x_{d})$ of degrees 1, 2, $t$ .
The reader is referred to Delsarte-Goethals-Seidel [6] for the basic properties

of spherical t-designs. In this paper, we study spherical t-designs $X$ which are
obtained from finite subgroups $G$ of the real orthogonal group $O(d)$ in such a
way that

$X:=x^{G}$ $:=\{x^{g}|g\in G\}\subset\Omega_{d}$

for some $x\in\Omega_{d}$ . (Namely, $X$ is a spherical t-design which is obtained as an
orbit of a finite group $G$ in $0(d).)$

Let $G$ be a finite subgroup of the real orthogonal group $0(d)$ acting on $R^{d}$

and on $\Omega_{d}$ . Let $\rho_{i}(i=0,1, 2, )$ be the i-th spherical representation of $O(d)$,
$i.e.$ , the representation of $O(d)$ on the space of homogeneous harmonic poly-
nomials of degree $i$ . So

dim $\rho_{i}=(\begin{array}{l}d+i-1i\end{array})-(\begin{array}{l}d+i-3i-2\end{array})$ .

In [1] the following theorem was proved:

THEOREM A (Bannai [1, Theorem 1]). (i) Let $G$ be a finite subgroup of
$*)$ Supported in part by NSF grant: MCS $79-03128A01$ .
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$0(d)$ and let the restriction of $\rho_{i}$ ( $=the$ i-th spherjcal representation of $O(d)$ ) to
$G$ remain irreducible for $i=C,$ $1,$ $\cdots$ $s$ . Then for any $x\in\Omega_{d}$ , the subset

$X:=x^{G}$ $:=\{x^{g}|g\in G\}\subset\Omega_{d}$

is a spherical $2s$-design.
(ii) If $(\rho_{j}, \rho_{s+1})_{G}=0$ for $j=0,1,$ $\cdots$ , $s$ in addition to the hypothesis of (i),

then $X$ is a spherical $(2s+1)$-design.
In the above theorem, the term “irreducible” meant “absolutely irreducible”.

Goethals and Seidel [9, Theorems 6.7 and 6.8] generalized Theorem A for the
“real irreducible” case. In [9] they also proved that the converse of (i) in
Theorem A is true ([9, Theorem 6.7]) and asked whether the converse of (ii)

in Theorem A is true ([9, Remark 6.9]). However, their proof as well as the
result itself ( $i.e.$ , the converse of (i) in Theorem A) turned out to be incorrect.
Thus the converse of (ii) in Theorem A also does not hold. Explicit counter
examples to the converse of (i) in Theorem A will be given in \S 4 of the present
paper. These counter examples seem to be of independent interest.

Theorem A mentioned above was used to construct many spherical t-designs
$X$ which are obtained as orbits of finite groups $G$ of $O(d)$ . In [1], I claimed
that it is difficult (and unlikely) to find such spherical t-designs in $\Omega_{d}$ if $d\geqq 3$

and $t$ is large ([1, Concluding Remark $(i)]$ ). One of the purposes of the present
paper is to clarify this claim further.

First, I prove the following:

THEOREM 1. Let $G$ be a finite subgroup of $O(d)$ . Let $x_{1}$ and $x_{2}$ be elements
in the unit sphere $\Omega_{d}$ in $R^{d}$ , and let $t_{i}(i=1,2)$ be the numbers such that the set
$xf$ is a $\dagger_{i}$-design, but not $(t_{i}+1)$-design. Then we have:

(0.3) $t_{1}\leqq 2t_{2}+1$ and $t_{2}\leqq 2t_{1}+1$ .

Theorem 1 implies that if $x_{0}^{G}$ is a spherical t-design for some $x_{0}\in\Omega_{d}$ , then
$x^{G}$ are spherical $[t/2]$-designs for any $x\in\Omega_{d}$ . As is shown in Goethals-Seidel
[9], this last condition has many strong character theoretical implications (see

also \S 3 of the present paper), and it seems that it is quite possible (by having
recourse to the classification of finite simple groups) to show that if $d\geqq 3$ then
the number (strength) $t$ of such spherical t-designs is bounded by an absolute
constant $t_{0}$ (which does not depend on $d$ ). [Actually I announced that this result
was established by using the classification of finite simple groups at the meetings
of Oberwolfach (March, 1982) and Montreal (June, 1982). However, the converse
of (i) of Theorem A (which turned out to be incorrect) was used there. So my
original proof of the claim needs some major repair, which is now under way.]

Details on this topic will be discussed in a subsequent paper. I was able to
prove a weaker version of this. Namely, if $d\geqq 3$ then $t\leqq t(d)$ where $t(d)$ is a
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certain function depending only on $d$ . The details will be discussed elsewhere.
Theorem 1 will be proved in two different ways. The first proof (given in

\S 1) uses some properties of harmonic polynomials. The second proof (given in
\S 2) is more group theoretical, and the argument there, in particular the follow-
ing Theorem 2, seems to have some independent interest.

THEOREM 2. Let $G$ be a finite subgroup of $O(d)$ and let $G$ act (not neces-
sarily transztively) on a finite set $X$ of $\Omega_{d}$ . Let $\rho_{i}(i=0, 1, )$ be the i-th spherical
representatjOn of $0(d)$ , and let $\pi$ be the permutatjOn representation of $G$ on $X$.
If $X$ is a spherical t-destgn in $R^{d}$ , then we have

(0.4) $(1+\rho_{1}+\cdots+\rho_{[t/2]})|_{G}\subseteqq\pi$ .

That is, the represmtafjOn of $G$ obtained by restricting the representatim $1+\rho_{1}+$

$+\rho_{[t/2]}$ of $O(d)$ to $G$ is contained in the permutatjOn reprexntatjOn $\pi$ of $G$ on $X$.
COROLLARY TO THEOREM 2. Let $X=x_{0}^{G}$ for a fnite grouP $G$ of $0(d)$ and

for some $x_{0}\in\Omega_{d}$ . If $X$ is a spherjcal t-design in $\Omega_{d}$ , then

(0.5) $(\rho_{0}, \rho_{i})_{G}=\delta_{i0}$

for $i=0,1,$ $\cdots$ $[t/2]$ .
We remark that Corollary to Theorem 2 implies Theorem 1 and conversely

Theorem 1 implies Corollary to Theorem 2. The reader will notice that Corol-
lary to Theorem 2 is modeled on a result of Noda on ordinary t-designs (see

Noda [18, Corollary 2]), and that the argument in Theorem 2 is similar to the
one used by Stanley [21, Lemma 9.1] (although the argument itself was familiar
to group theorists).

Our assumption that $X$ is an orbit of a group is a strong assumption. The
existence of spherical t-designs in $R^{d}$ for any $t$ and any $d$ was just proved by
Seymour and Zaslavsky [20]. Actually, such spherical t-designs are quite abun-
dant and have the property that they are deformable continuously (see Seymour-
Zaslavsky [20], see also Hong [12]). It seems interesting to explicitly construct
spherical t-designs for large $t$ , in particular to construct those which are rigid,
$i.e.$ , spherical t-designs which do not allow any nontrivial deformation. In spite
of the negative implication of Theorem 1 that there cannot be spherical t-designs
$X$ of the form $X=x^{G}$ for large $t$ and $d\geqq 3$, I suspect that those sets which are
orbits of finite groups $G\subset O(d)$ can still serve as important components when we
explicitly try to construct spherical t-designs.

Another purpose of the present paper is to study some interesting relations
between spherical t-designs and various group representation theories. In \S 3,

the concepts of t-transitivity and t-homogeneous transitivity are introduced for
(finite) subgroups $G$ of $O(d)$ , and they are compared with the corresponding
concepts for permutation groups. In particular, a finite subgroup $G$ of $0(d)$ is
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called a t-homogeneous linear group if the $x^{G}$ are spherical t-designs for any
$x\in\Omega_{d}$ . The content of \S 3 is mainly a discussion of various interesting obser-
vations, and of whether the proposed definitions are reasonable. We remark
that these concepts are also well defined for other compact symmetric spaces of
rank 1 and for any group case Q-polynomial association schemes.

Counter examples for the converse of (i) of Theorem A are given in \S 4.
The discussion there is closely related to the concepts (just introduced) of t-
transitivity and t-homogeneous transitivity for subgroups $G$ of $O(d)$ , and for sub-
groups $G$ of the unitary group $U(d)$ .

\S 1. The first proof of Theorem 1.

The following step (1) is due to Goethals-Seidel [10, Section 3].

Step(1) Let $x_{0}\in\Omega_{d}$ . Then $X=x_{0}^{G}$ is a spherical t-design if and only if

$f(x_{0})=0$

for all G-invariant homogeneous harmonic polynomials $f(x)$ of degree 1, 2, $\cdots,$
$t$ .

(Note that for $M\in G,$ $(Mf)(x)=f(M^{-1}x)$ and that $f$ is G-invariant if and only
if $Mf=f$ for all $M\in G.$ )

PROOF. Since $G$ is transitive on $X$, we have

$\frac{1}{|X|}\sum_{x\in X}f(x)=\frac{1}{|G|}(\sum_{M\in G}Mf)(x_{0})$ .

Here $\frac{1}{|G|}\sum_{M\in G}(Mf)$ is clearly a G-invariant homogeneous harmonic polynomial if

$f$ is a homogeneous harmonic polynomial. So we have $(\Leftarrow)$ . If $f$ is G-invariant,

then clearly $\frac{1}{|G|}\sum_{M\in G}(Mf)=f$ . So we have $(\ni)$ .
Step(2) Completion of the proof of Theorem $L$

PROOF. Let $x_{i}(i=1,2)$ and $t_{t}(i=1,2)$ be as in the hypothesis of Theorem
1. Without loss of generality we may assume that $t_{1}\leqq t_{2}$ , and we will prove
that $t_{2}\leqq 2t_{1}+1$ . Since $x^{G}$ is not always a $(t_{1}+1)$-design for every $x\in\Omega_{d}$ , there
exists a G-invariant harmonic polynomial $f_{1}$ of degree $t_{1}+1$ . We want to show
that there exists some G-invariant (non constant) homogeneous harmonic poly-
nomial $g$ of degree $\leqq 2(t_{1}+1)$ such that $g(x_{2})\neq 0$ . It is known that any homo-
geneous polynomial $f(x)$ of degree $i$ is uniquely decomposed as

$f=p_{i}+\Vert x\Vert^{2}p_{i- 2}+\Vert x\Vert^{4}p_{i-4}+\cdots+\Vert x\Vert^{2[i/2]}p_{i-2[i/2]}$ ,

where |x||2 $=x_{1}^{2}+\cdots+x_{d}^{2}$ and the $p_{j}$ are homogeneous harmonic polynomials of
degree $j$ (see, $e.g.,$ $[8$, p. 366]). It is also known that
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$\int_{\Omega_{d}}f(x)d\omega(x)=0$

for any homogeneous harmonic polynomial $f(x)$ of degree $\geqq 1$ , ( $i.e.$ , the mean
value property of harmonic polynomials). Now, let us consider the above men-
tioned decomposition of $f_{1}^{2}$ :

$f_{1}^{2}=p_{2(t_{1}+1)}+\Vert x\Vert^{2}p_{2t_{1}}+\Vert x\Vert^{4}p_{2t_{1}- 2}+\cdots+\Vert x\Vert^{2t_{1}}p_{2}+\Vert x\Vert^{2(t_{1}+1)}p_{0}$ ,

where the $p_{j}$ are homogeneous harmonic polynomials of degree $j$ . Then, since
$f_{1}$ and $\Vert x\Vert^{2}$ are G-invariant, we have

$f_{1}^{2}=q_{2(t_{1}+1)}+\Vert x\Vert^{2}q_{2t_{1}}+\Vert x\Vert^{4}q_{2t_{1}-2}+\cdots+\Vert x\Vert^{2t_{1}}q_{2}+\Vert x\Vert^{2(t_{1}+1)}q_{0}$ ,

where

$q_{j}= \frac{1}{|G|}\sum_{M\in G}(Mp_{j})$ for $j=2,4,$ $\cdots$ , $2(t_{1}+1)$ .

So the $q_{j}$ are homogeneous harmonic G-invariant polynomials for $j=0,2,4,$ $\cdots$ ,
$2(t_{1}+1)$ . Since $f_{1}\not\equiv 0$ (because $f_{1}(x_{1})\neq 0$), we have

$\int_{\Omega_{d}}f_{1}^{2}d\omega=q_{0}\int_{\Omega_{d}}d\omega>0$ , and so we have $q_{0}=p_{0}>0$ .

Now we assume that $f(x_{2})=0$ for all (non constant) homogeneous harmonic G-
invariant polynomials $f$ of degree $\leqq 2(t_{1}+1)$ , and we will get a contradiction.
Since the degree of $f_{1}\leqq t_{1}+1$ , we have $f_{1}(x_{2})=0$ by our assumption. This im-
plies that, since $\Vert x_{2}\Vert^{2}=1$ and $q_{0}>0$, we have $q_{j}(x_{2})\neq 0$ for some $j=2,4,$ $\cdots$ , $2(t_{1}+1)$ .
But this is a contradiction. So we proved $t_{2}\leqq 2t_{1}+1$ . Hence the proof of Theo-
rem 1 is completed.

\S 2. Proof of Theorem 2 and the second proof of Theorem 1.

We first prove Theorem 2.
Let $\{S_{ij}|0\leqq j\leqq Q_{i}(1)\}$ be an orthonormal basis of the space Harm(i) of the

homogeneous harmonic polynomials of degree $i$ in $R^{d}$ , (see [8, \S 11.4], or [6,

Theorem 3.3]). So

$Q_{i}(1)=degree$ of $\rho_{i}=(\begin{array}{l}d+i-1i\end{array})-(\begin{array}{l}d+i-3i-2\end{array})$ .

Then any $g\in O(d)$ acts on the space Harm(i) by

\langle 2.1) $\rho_{i}(g)f(x)=f(\rho_{1}(g^{-1})x)$ ,

where $\rho_{i}$ denotes the i-th spherical representation of $0(d)$ . Then $\rho_{i}(g)\in O(Q_{i}(1))$

for any $g\in O(d)$ (see [8, \S 11.4, Lemma 5]).
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Let $H_{i}$ be the characteristic matrix of a subset $X$ of $\Omega_{d},$ $i.e.,$ $H_{i}$ is the
$|X|\cross Q_{i}(1)$ matrix whose rows are parametrized by the elements of $X$ and
columns are parametrized by $j\in\{1,2, \cdots , Q_{i}(1)\}$ and whose $(x, j)$-entry is given
by $S_{ij}(x)$ . Now, let

$R_{s}(1)=Q_{0}(1)+Q_{1}(1)+\cdots+Q_{s}(1)=(\begin{array}{l}d+s-1s\end{array})+(\begin{array}{l}d+s-2s-1\end{array})$ ,

and let $H$ be the $|X|\cross R_{s}(1)$ matrix obtained by arranging as follows:

$H=[H_{0}, H_{1}, \cdots H_{s}]$ .
LEMMA 2.1. If $X$ is a spherical $2s$-design in $\Omega_{d}\subset R^{d}$ , then

det $({}^{t}H\cdot H)\neq 0$ .
So, $H$ has the maximum possible rank $R_{s}(1)$ .

PROOF. By [6, Theorem 5.3]. (Note that the orthonormal basis $\{S_{ij}\}$ is a
fixed scalar multiple of the orthogonal (but not normal) basis $\{W_{ij}\}$ used in $[6].\rangle$

LEMMA 2.2. Let $G$ be a finite subgroup of $0(d)$ , and let $G$ fix a subset $X$

of $\Omega_{d}$ as a set. Let $\rho_{i}(i=0, 1, )$ be the i-th spherjcal representati0n of $G$ , and
let $\pi$ be the permutati0n representati0n of $G$ on X. Then we have

$\pi(g)\cdot H_{l}\cdot{}^{t}\rho_{i}(g)=H_{i}$ for all $g\in G$

for $i=0,1,2,$ $\cdots$ . Furthermore, if we set

$\tilde{\rho}=\rho_{0}\dotplus\rho_{1}\dotplus\cdots\dotplus\rho_{s}$ (direct sum),

then we have
$\pi(g)\cdot H=H\cdot\tilde{\rho}(g)$ , for all $g\in G$ .

PROOF. Since $\rho_{i}(g)S_{ij}(x)=S_{ij}(\rho_{1}(g^{-1})x)$ , we have the first assertion. The
second assertion is obtained from the fact that the $\rho_{i}(g)$ are elements in $O(Q_{i}(1))$

and from the definitions of $H$ and $\tilde{\rho}$ .
PROOF OF THEOREM 2. Since the matrix $H$ intertwines the two representa-

tions $\pi$ and $\tilde{\rho}=\rho_{0}+\rho_{1}+\cdots+\rho_{s}$, and since $H$ has the maximum possible rank
$R_{s}(1)$ by Lemma 2.1, we get the desired result by Schur’s lemma.

PROOF OF COROLLARY TO THEOREM 2. $(1_{G}, \pi)_{G}$ is the number of orbitS of
$G$ on $X$. Since $\pi\supseteqq\rho_{0}+\rho_{1}+\cdots+\rho_{s}$ and since $(1_{G}, \pi)_{G}=1$ in our case, we have
$(\rho_{0}, \rho_{i})_{G}=\delta_{0i}$ for $i=0,1,$ $\cdots$ , $s$ , where $\rho_{0}=1_{G}$ .

Next we prove:

Theorem 1 {$\Rightarrow Corollary$ to Theorem 2.
PROOF. $(\Rightarrow)$ By Theorem 1, $x^{G}$ must be a spherical $[t/2]$-design for any

$x\in\Omega_{d}$ . So we have the desired result by [9, Theorem 6.10, $(i)\Rightarrow(iii)$]. $(\models)$ Let
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$x_{1}^{G}$ be a spherical $i_{1}$ design but not $(t_{1}+1)$-design. If $x_{2}^{G}$ is a spherical $2(t_{1}+1)$

design, then by Corollary to Theorem 2, $(\rho_{0}, \rho_{i})_{G}=\delta_{i0}$ for $i=0,1,$ $\cdots$ , $(t_{1}+1)$ . So
$x_{2}^{G}$ is a spherical $(t_{1}+1)$-design by [9, Theorem 6.10, $(iii)\Rightarrow(i)$]. But this is a
contradiction.

REMARKS. (i) The argument given here works for the compact symmetric
spaces of rank 1. (Proofs work exactly the same way word for word.)

(ii) Let $\mathfrak{X}=(X, \{R_{i}\}_{0\leq i\leqq d})$ be a symmetric association scheme of class $d$

which comes from a generously transitive permutation group $G$ of rank $d$ . If ee
is a Q-polynomial scheme, then the concept of t-design is well defined for any
positive integer $t$ , and the representation $\rho_{i}$ corresponds to the irreducible rep-
resentation of $G$ (appearing in the permutation representation) which corresponds
to the primitive idempotent $E_{i}$ . Using this definition of t-design and the rep-
resentations $\rho_{i}$ (and by replacing $0(d)$ by the group $G$ and $\Omega_{d}$ by $X$ ), a result
similar to Theorem 2 is obtained. (Again the proof is exactly the same.)

(iii) A special case of (ii), $i.e.$ , a result similar to Corollary to Theorem 2
(which is a special case of Theorem 2) was previously obtained by Noda [18,

Theorem 1 and Corollary 2] for ordinary t-designs, $i.e.$ , for Johnson association
schemes. (See also Dowling [7], where he formulated a result similar to Noda’s
in a slightly more general setting.) A generalization of it, $i.e.$ , a representation
theoretical result similar to Theorem 2 was formulated by Stanley [21, Lemma
9.1] in terms of bipartite graphs, although th\’e argument itself was a kind of
folklore in group theory. Our proof of Theorem 2 is based on the same argument.
Although there is no graph available in our case, the characteristic matrix $H$ plays
a role similar to that of the incidence matrix of bipartite graph.

\S 3. t-homogeneity and t-transitivity for (finite) subgroups $G$ of $0(d)$ .
A finite permutation group $G$ on a finite set $X$ (with $|X|=n$)( $i.e.$ , a finite

subgroup $G$ of $S_{n}$ , the symmetric group of degree n) is said to be t-transitive
(resp. t-homogeneous) if $G$ acts transitively on the set of ordered t-tuples (resp.

unordered t-tuples). So a t-transitive group is t-homogeneous by the definition.
In what follows (unless otherwise stated) we always assume that $t\leqq n/2$ when
we discuss t-homogeneity. The reader is referred to Neumann [17] for further
references on these concepts.

Let $x^{(n_{1}.n_{2},\cdots.n_{l})}$ , with $n_{1}+\cdots+n_{l}=n$ and $n_{1}\geqq n_{2}\geqq\ldots\geqq n_{l}>0$, be the irre-
ducible representation of the symmetric group $S_{n}$ corresponding to the Young
diagram of type $(n_{1}, n_{2}, \cdots , n_{l})$ . The level of $x=x^{(n_{1},n_{2}.\cdots,n_{l})}$ is dePned to be
the number $n_{2}+n_{3}+\cdots+n_{l}$ $(=n-n_{1})$ . The following characterization of t-
transitivity and t-homogeneity for a subgroup $G$ of $S_{n}$ is well known (and easily
verified) (cf. [17]).

(i) A subgroup $G$ of $S_{n}$ is t-transitive if and only if
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\langle 3.1) $(x^{(n_{1}.\cdots,n_{l})}, \chi 12l’)=\delta_{(n_{1},n_{2},\cdots,\prime}$

$(=(x^{(n_{1},n_{2\cdot\prime}n_{l})}, \chi^{(n’.n’\cdots.n’)}12l’)_{S_{n}})$

for all irreducible characters $x=x^{(n_{1}.n_{8},\cdots.n_{l})}$ and $x’=x^{(n}i,$ $n_{2}’,\cdots,$ $n_{l’}$ ) such that
1eve1 $(\chi)+1eve1(\chi^{J})\leqq t$ .

(ii) A subgroup $G$ of $S_{n}$ is t-homogeneous if and only if

\langle 3.2) $(\chi^{(n)}x^{(n-l.l)})=\delta_{0.l}$

$(=(x^{(n)}, x^{(n-l,l)})_{S_{n}})$ for $1=0,1,$ $\cdots$ , $t$ .

In this section, 1 would like to propose the definitions of t-transitivity and
t-homogeneity for subgroups $G$ of $0(d)$ . To begin with, let us recall the repre-
sentation theory of $O(d)$ .

It is well known (cf. [23, 16]) that there is a one to one correspondence
between the set of irreducible representations of $0(d)$ and the set of Young
diagrams $(n_{1}, n_{2}, \cdots , n_{l})$ of any size such that $l_{1}+l_{2}\leqq d$ , where the number $l_{i}$

$(i=0,1, \cdots , n_{1})$ denotes the size of the i-th column of the Young diagram $(n_{1},$ $n_{2}$ ,
... , $n_{l}$ ). In what follows we will call a Young diagram $(n_{1}, n_{2}, \cdots , n_{l})$ admissible
if $l_{1}+l_{2}\leqq d$ . It is also well known that the i-th spherical representation $\rho_{l}(i=0$,
1, ) corresponds to the Young diagram of type (i).

We propose the following definitions.

DEFINITION 3.1. (i) A (finite) subgroup $G$ of $O(d)$ is called t-transitive (or

linearly t-transitive) if and only if

\langle 3.3) $(\chi^{(n_{1}.n_{2}.\cdots.n_{l})}\chi 1\cdot 8l’)_{G}=\delta_{(n_{1}\ldots.,n_{l}).(n_{1}’,\cdots,n_{l’}’)}$

$(=(x^{\langle n_{1}.n_{2},\cdots,n_{l})}, \chi^{(n}i^{n’\cdots.n’)}t\cdot l’)_{o(d)})$

for all admissible diagrams $(n_{1}, \cdots , n_{l})$ and $(n_{1}’, \cdots , n_{l’}’)$ such that

size$(n_{1}, \cdots , n_{l})+size(n_{1}’, \cdots , n_{l’}’)\leqq t$ .
(ii) A (Pnite) subgroup $G$ of $0(d)$ is called t-homogeneous (or t-linearly

homogeneous) if and only if

\langle 3.4) $(\chi\emptyset\chi^{(l)})_{G}=\delta_{0.i}$

$(=(\chi\emptyset x^{(i)})_{o(d)})$ for $i=0,1,$ $\cdots$ , $t$ .
By the definition, if a subgroup $G$ of $0(d)$ is t-transitive, then it is t-homo-

geneous. A combinatorial characterization of t-homogeneous finite subgroups $G$

of $O(d)$ is given by Theorem 6.10 of Goethals-Seidel [9]. That is, a finite sub-
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group $G$ of $O(d)$ is t-homogeneous if and only if the set $X=x^{G}$ is a spherical t-
design in $R^{d}$ for any $x\in\Omega_{d}$ . (Right now we do not know any similar combinatorial
characterization of t-transitive subgroups $G$ of $O(d).)$

Now, let us recall some important results on t-transitive and t-homogeneous
permutatjOn groups.

(a) If $G$ is a t-homogeneous permutation group, then it is $(t-1)$-transitive.
(b) Let $t\geqq 5$ . If $G$ is a t-homogeneous permutation group, then it is t-

transitive, (Livingston-Wagner [15]).
(c) For $t\leqq 4$ , t-homogeneous but not t-transitive permutation groups are clas-

sified, (Kantor [13]).
(d) By assuming the classification of finite simple groups, t-transitive groups

are classified for $t\geqq 2$ . (Curtis-Kantor-Seitz [4], Hering [11], O’Nan
(unpublished), etc.)

PROBLEMS AND CONJECTURES. As in the permutation group case, I expect
that for large $t$ there is no finite subgroup $G$ of $0(d)$ (with $d\geqq 3$) which is either
t-transitive or t-homogeneous. (I believe that I have succeeded in proving the
non-existence of any t-transitive finite subgroup $G$ of $O(d)$ (with $d\geqq 3$) for large
$t$ by having recourse to the classification of finite simple groups. I am now
working on the t-homogeneous case.) However, contrary to the permutation
group case, the corresponding assertion to (a) is not true for finite subgroups of
$0(d)$ (at least for some $t$). So, this makes it difficult to obtain results corre-
sponding to (b), (c), (d) above for finite subgroups $G$ of $O(d)$ , although I do
believe that it is not absolutely impossible to obtain such results (by using the
classiPcation of finite simple groups).

In the above definition 3.1 (i) and (ii), we did not use the finiteness of the
group $G$ . If $G$ is a compact subgroup of $O(d)$ , then the definitions (i) and (ii)

still make sense. If we allow compact (non finite) subgroups $G$ of $0(d)$ , then
we do have examples which are (linearly) t-homogeneous for any $t$ , but not 4-
transitive. Namely, take a unitary group $U(d’)$ of degree $d’$ . Then $U(d’)$ is
naturally imbedded in $0(2d’)$ as a subgroup. This subgroup is shown to be t-
homogeneous for any $t$ , but not 4-transitive (see \S 4 for the details).

The above mentioned definitions of t-transitivity and t-homogeneity are gen-
eralized for other situations, in particular for compact symmetric spaces of rank
1 and for Q-polynomial association schemes which come from generously transi-
tive permutation groups.

DEFINITION 3.2. Let $M=\tilde{G}/\tilde{H}$ be a compact symmetric space of rank 1 $(i.e.$ ,
$M$ is a compact 2-point homogeneous space: Such spaces together with the
compact Lie group $\tilde{G}$ and subgroup $\tilde{H}$ are classified, see [24], [26]). Then the
i-th spherical representations $\rho_{i}$ of $\tilde{G}$ are well defined for $i=0,1,$ $\cdots$
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(i) A (finite) subgroup $G$ of $\tilde{G}$ is t-transitive if and only if

$\langle 3.3’)$ $(\rho^{m}, \rho^{n})_{G}=(\rho^{m}, \rho^{n})_{\tilde{G}}$

for any $m$ and $n$ with $m+n\leqq t$ , where $\rho^{i}=\rho\otimes\cdots\otimes\rho(i\rho’ s)$ denotes the i-th
tensor product of $\rho$ . (If $\tilde{G}=O(d)$ and $M=\Omega_{d}$ , then the definition (3.3) is shown
to be equivalent to (3.3).)

(ii) A (finite) subgroup $G$ of $\tilde{G}$ is t-homogeneous if and only if

$\langle 3.4’)$ $(\rho_{0}, \rho_{i})_{G}=(\rho_{0}, \rho_{i})_{\tilde{G}}$

for all $i=0,1,$ $\cdots,$
$t$ . (If $\tilde{G}=O(d)$ and $M=\Omega_{d}$ , then the definition (3.4) is exactly

the same as (3.4).) (There may be room of debate whether the definition (i) of
t-transitivity is the best one or not.)

DEFINITION 3.3. Let $\mathfrak{X}=(X, \{R_{i}\}_{0\leqq i\leqq d})$ be a Q-polynomial association scheme
of class $d$ which comes from a generously transitive permutation group $\tilde{G}$ of
rank $d+1$ on a finite set $X$.

(i) A subgroup $G$ of $\tilde{G}$ is t-transitive if and only if

$\langle 3.1)’$ $(\rho_{1}^{m}, \rho_{1}^{n})_{G}=(\rho_{1}^{m}, \rho_{1}^{n})_{\tilde{G}}$

for any $m$ and $n$ with $m+n\leqq t$ , where $\rho_{1}$ is the representation of $\tilde{G}$ which cor-
respond to the primitive idempotent $E_{1}$ of the Q-polynomial structure, and $\rho_{1}^{i}=$

$\rho_{1}\otimes\cdots\otimes\rho_{1}(j\rho_{1}’ s)$ .
(ii) A subgroup $G$ of $\tilde{G}$ is t-homogeneous if and only if

(3.2) $(\rho_{0}, \rho_{i})_{G}=\delta_{0i}(=(\rho_{0}, \rho_{i})_{\tilde{G}})$

for $i=0,1,$ $\cdots$ , $t$ . ( $\rho_{t}$ is the representation of $\tilde{G}$ corresponding to the primitive
idempotents $E_{i}$ of the Q-polynomial structure.) (If X is the Johnson association
scheme $J(v, k)$ and $\tilde{G}=S_{v}$, then the definitions (3.1) and (3.2) are equivalent to
(3.1) and (3.2) respectively. There may be room of debate whether the defini-
tion (i) is the best one or not.)

REMARKS. (i) We point out that Theorem 2 (in \S 2) is also true for finite
subgroup $G$ of $\tilde{G}$ of a compact symmetric space $M$ of rank 1 and t-designs there.
(Note that the concept of t-design is well defined there.) Theorem 2 is also true
for subgroup $G$ of $\tilde{G}$ of a Q-polynomial association scheme which comes from a
generously transitive permutation group G. (Note that in the above two cases,
the non-singularity of the matrix corresponding to $H$ in Theorem 2 is proved,
exactly the same way as for spherical t-designs and for ordinary t-designs, for
compact symmetric spaces of rank 1 and for Q-polynomial schemes.) Also, note
that the combinatorial characterization of t-homogeneous groups $G$ of $\tilde{G}$ works
for these two cases.



Spherical t-designs 351

(ii) In the Johnson scheme case, $i.e.$ , in the permutation group case, there
is no nontrivial subgroup $G$ which is t-homogeneous for large $t$ . Also t-homo-
geneity implies $(t-1)$-transitivity. However, in some other Q-polynomial asso-
ciation schemes (which come from generously transitive permutation groups),

the situation is quite different. For example, in the Hamming scheme $H(n, q)$

(the group $\tilde{G}=S_{q}JS_{n}$), a regular subgroup $G$ of order $q^{n}$ is t-homogeneous for
$t=0,1,$ $\cdots$ , $n$ , but not 2-transitive. It would be interesting to know which Q-
polynomial schemes (coming from generously transitive permutation groups) are
like Johnson schemes and which are not.

\S 4. Counter examples.

In this section we will construct some counter examples to the converse of
\langle $i$ ) of Theorem A ( $i.e.$ , to Theorem 6.7 of [9]). Namely, we will show the
following:

PROPOSITION 4.1. The fact that a finite subgroup $G$ of $O(d)$ is t-homogeneous
does not always imply

$(\rho_{i}, \rho_{i})_{G}=1$ for all $i=0,1,$ $\cdots$ , $[ \frac{t}{2}]$ , and for all $t$ .

[In the proof of Theorem 6.7 in Goethals and Seidel [9], page 267 line 4 up, it
is claimed that “This polynomial cannot be a constant on $\Omega_{d}’$ . But this seems
to be not always true.]

Our counter examples given below are based on the fact that $U(d’)$ , naturally
imbedded in $0(2d’)$ , is t-homogeneous for all $t$ , but is not 4-transitive. (That is,
$\rho_{2}$ of $0(2d’)$ is not (real) irreducible when restricted to $U(d’).)$

Suppose that $d=2d’$ ( $d$ even). Then the unitary group $U(d’)$ (of matrix size
$d’)$ is embedded in $O(d)$ naturally by the map

$U=A+\sqrt{-1}B$ – $(\begin{array}{ll}A -BB A\end{array})$

(with $A$ , $B$ real matrices). Let $z_{1},$ $\cdots,$ $z_{d’}$ be the complex variables $z_{i}=$

$x_{i}+\sqrt{-1}y_{i}$ . Hom $(i, j)$ denotes the space of all C-coefficient homogeneous poly-
nomials in $z_{1},$

$\cdots$ , $z_{d’},\overline{z}_{1},$ $\cdots$ , $\overline{z}_{d’}$ of degree $i$ in $z_{1},$
$\cdots$ , $z_{d’}$ and of degree $j$ in

$\overline{z}_{1},$ $\cdots$ , $\overline{Z}_{(:}’$ . Then the Laplacian

$\Delta=\frac{\partial^{2}}{\partial z_{1}\partial\overline{z}_{1}}+\cdots+\frac{\partial^{2}}{\partial z_{d’}\partial\overline{z}_{d’}}$

where

$\frac{\partial}{\partial\overline{z}_{i}}=\frac{1}{2}(\frac{\partial}{\partial x_{i}}+\sqrt{-1}\frac{\partial}{\partial y_{i}})$
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and

$\frac{\partial}{\partial z_{i}}=\frac{1}{2}(\frac{\partial}{\partial x_{i}}-\sqrt{-1}\frac{\partial}{\partial y_{i}})$

induces an onto homomorphism from Hom $(i, j)$ to Hom $(i-1, j-1)$ . The kernel
Ker $\Delta\cap Hom(i, j)$ is denoted by Harm $(i, j)$ . We have

dim Harm $(i, j)=\dim$ Hom $(i, j)-\dim$ Hom $(i-1, j-1)$

$=(\begin{array}{l}d’+i-1i\end{array})(\begin{array}{l}d’+j-1j\end{array})-(\begin{array}{l}d’+i-2i-1\end{array})(\begin{array}{l}d’+j-2j-1\end{array})$ .

$U(d’)$ acts on Harm $(i, j)$ naturally, and this representation, here we denote it by

$(_{(j)}^{(i)}$ , is irreducible for any $i$ and $j$ . It is well known that $\rho_{i}(=the$ i-th spherical

representation of $0(d))$ is decomposed as follows when restricted to the subgroup
$U(d’)$ :

$\rho_{i}=\bigoplus_{k=0}^{i}((i-k)(k)$

In particular,

(as $U(d’)$-spaces).

$\rho_{1}=((\emptyset 1)+((1)\emptyset$

and

$\rho_{2}=(+(+(\cdot$

Now, $(_{\emptyset}^{(2)}+((2)\emptyset$ is a real irreducible representation of $U(d’)$ . So $U(d’)\subset O(2d’\rangle$

cannot be 4-transitive, because

$(\rho_{2}, \rho_{2})_{U(d’)}\neq 1$ (when $U(d’)\subset O(2d’)$ )

Also, we can see that
$(\rho_{0}, \rho_{i})_{U(d’)}=\delta_{0i}$ for $i=0,1,$ $\cdots$

This fact suggests that if we can find an (absolutely) irreducible finite subgroup
$G$ of $U(d’)$ such that $(\rho_{1}),$

$\rho_{2},$ $\rho_{3},$ $\rho_{4}$ of $O(2d’)$ restricted to $G$ do not contain the
identity character $(=\rho_{0})$ of $G$ , then such $G$ is 4-homogeneous, but $\rho_{2}$ is not irre-
ducible, and so $G$ is a desired example.

An explicit such example $G$ is given by the 6-fold covering of the $PSU_{4}(3)$

in $U(6)$ (in $O(12)$ ). The above mentioned properties are easily checked by using
the character table of the 6-fold covering group of $PSU_{4}(3)$ obtained by Lindsey
[14]. First, this was checked by computations. The following argument will
replace the computations. Actually what we need is only the character table of



Spherical t-designs 353

$PSU_{4}(3)$ . The fact that $(_{\emptyset}^{(2)},$ $(_{(2)}^{\emptyset},$ $(_{\emptyset}^{(3)},$ $(_{(1)}^{(2)},$ $(_{(2)}^{(1)},$ $(_{(3)}^{\emptyset},$ $(_{\emptyset}^{(4)},$ $(_{(1)}^{(3)},$ $(_{(3)}^{(1)}$ and $(_{(4)}^{\emptyset}$

do not contain $\rho_{0}$ ( $=the$ identity representation) when restricted to $G$ is clear by
considering the restrictions of the representations to the center $Z$ (of order 6)

of $G$ . So we need only to prove that $(_{(1)}^{(1)}$ and $(_{(2)}^{(2)}$ do not contain $\rho_{0}$ when re-

stricted to G. $(_{(1)}^{(1)}$ and $(_{(2)}^{(2)}$ must be representations of $PSU_{4}(3)(=G/Z)$ . and

it is easily seen from the character table (Lindsey [14]) that $(_{(1)}^{(1)}$ (of degree 35)

remain irreducible. We know that as the representations of $L^{v}’(d’)$ the tensor

product of two $(_{(1)}^{(1)}’ s$ does contain $(_{(2)}^{(2)}$ and that (since $(_{(1)}^{(1)}$ has a real character)

the tensor product of two $(_{(1)}^{(1)}s$ contains $\rho_{0}$ multiplicity one. Therefore $(_{(2)}^{(2)}$ does

not contain $\rho_{0}$ when restricted to $G$ . The same argument shows that the 6-fold
covering of the sporadic Suzuki simple group $S$ in $U(12)$ is another example (see

Wright [25] for the character table of $S$). In this case, $(\{1$

)
$1$ )

is of degree 343.

(I believe that there are some other examples. But I believe that for large $t$

there is no t-homogeneous finite subgroup $G$ of $O(d)$ , and so there are no counter
examples for large $t.$ )

It would be very interesting to know to what extent the converse of (i) of
Tbeorem A is true.

REMARKS. (i) The result corresponding to the converse of (i) of Theorem
A is also not true for the Johnson scheme, $i.e.$ , for subgroups of $S_{n}$ . An explicit
counter example is $P\Gamma L(2,32)$ acting on 33 letters. This permutation group is
4-homogeneous, but the representation $\rho_{2}=x^{(\prime 1.2)}$ of $S_{33}$ restricted to $P\Gamma L(2,32)$

is not irreducible. (Since t-homogeneous but not t-transitive groups are classified,
it would be possible to list all such counter examples.)

(ii) As the converse of (i) of Theorem A is not correct, the answer to the
question, Remark 6.9 in [9], is also negative.
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