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Introduction.

The purpose of this paper is to study the invariant spherical distributions
on the reductive symmetric space M=GL(n, C)/GL(n, R), and prove the Fourier
inversion formula (the expansion of the dJ-function by invariant spherical dis-
tributions on M) by using the same method as in the case of semisimple Lie
groups, in particular by using the gap relations.

In more detail, the content of this paper is as follows. In the first place,
we give the Weyl integral formula for general semi-simple symmetric spaces in
§1 and §2. From §3, we restrict ourselves to the space GL(n, C)/GL(n, R).
We define Harish-Chandra transforms on gi(n, C)/gl(n, R) and on M=GL(n, C)/
GL(n, R) and prove the gap relations of these transforms in §3 and §4. Let A
be a global Cartan subspace of M. Put g=gl(n, C). Let U(g) be the universal
enveloping algebra of g and 3 be the center of U(g). The radial component of
any element De38 on A under the transformation of GL(n, R) is given in Prop-
osition 5.3. After establishing this proposition, we define invariant spherical
distributions on M.

The Fourier inversion formula for semi-simple Lie groups G can be regarded
as the expansion of d-function on G by characters of irreducible unitary repre-
sentations of G. These characters are invariant eigendistributions on G. Hence
the inversion formula is the expansion of d-function by invariant eigendistribu-
tions on G. We will discuss harmonic analysis on M from this point of view.

Let M’ be the set of all q-regular elements in M (cf. §1). The conditions
that an analytic function on M’ can be extended to an invariant spherical dis-
tribution on M are given in §6. And in § 7 we construct the tempered invariant
spherical distributions which contribute to the inversion formula for M. It is
remarkable that these invariant spherical distributions are fairly different from
the characters of representations of semi-simple Lie groups. In §8, we give the
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expansion of d-function on M by the invariant spherical distributions
8.7.
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§1. Cartan subspaces for semi-simple symmetric spaces.

Let G be a connected semi-simple Lie group, and ¢ be an involutive auto-
morphism of G. Put G,={x=G; o(x)=x}. Let ¢ be the mapping of G into
G defined by ¢(x)=xd(x)™* for x€G. Then G/G, and ¢(G) are diffeomorphic
by this mapping. Put M=¢(G), H=G,. The pair (G, H) is called a semi-
simple symmetric pair.

Let g and %) be the Lie algebras of G and H respectively. The automor-
phism of g induced by the automorphism ¢ of G is denoted by the same
letter 0. Put q={Xeg; 0(X)=—X}. Then g=%+q (direct sum). For a sub-
space a of g, its complexification is denoted by a.. For a subset a of g and a
subset A of G, let Ny{a) be the normalizer of a in A, and Z,(a) the centralizer
of a in A.

DEFINITION 1.1. A subspace aCq is called a Cartan subspace if the follow-
ing two conditions are satisfied :

(i) a is a maximal abelian subspace of q;

(i) For each Y=q, ad(Y) is a semi-simple endomorphism of g.

For a Cartan subspace a of g, define the Weyl group W(a; H)=Ny(a)/Z ().
And Zy(a) is called a global Cartan subspace of M.

For every X<q consider the characteristic polynomial

(L.1) det(t—ad(X))= 3 dy(X)t
of the endomorphism ad(X) of g where ¢t is an indeterminate, n=dimg and the

d;’s are polynomial functions on q. Let /[ be the least integer such that d,=0.

DEFINITION 1.2, An element Xeq is said to be q-regular if d,(X)#0. Let

b be any subspace of q. The set of all q-regular elements in b is denoted by
v,
For every x= M, put

1.2) det(t+1—Ad(x))= 2 Dy(x)tt,

Then D; are analytic functions on M and D,=0.

DEFINITION 1.3. An element x=M is said to be q-regular if D,(x)#0. Let
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B be any subspace of M. The set of all q-regular elements in B is denoted by B’.
The following proposition is due to Oshima and Matsuki [197].

PRrROPOSITION 1.1. Let (G, H) be a semi-simple symmetric pair and (g, B) be
the corresponding semi-simple Lie algebras. Let {a;;i€I} be a maximal set of
Cartan subspaces which are not conjugate to each other under H-conjugations.

(i) Then we get

= UAd»)a; (disjoint union).

i€1 yEH

And the mapping C;: H/ Z y(a:) X ai—q” defined by L(y*, X)=Ad(NX (y*=yZ u(ay),
yeH, X<aj) is an everywhere regular |W(a;; H)|-fold covering mapping.
(i) Put Ai=Zy(a;), W(A;; H)=Ng(A)/Zx(A;). Set Mi=\U yAiy~l. Then
YyEH
M’'=\J M; (disjoint union). And the mapping n,: H/Z yg(A;)) X Ai—=M’ defined by
i€rl
7:{y* a)=yay™' (yEH, ac A}) is an everywhere regular |W(A;; H)|-fold cover-
ing mapping.

§2. The Weyl integral formula for semi-simple symmetric spaces.
We regard an element X in g as a tangent vector of 7T.(G) (e identity ele-
ment of G) by the following formula :

2.1) Xf= 0f(exth) feC=(G).

d
s

Similarly, we regard Xe=q as a tangent vector X of T (M) as follows:
~ d tX X\t .
(2.2) Xf_-gz’tzof(exp—z—a(exp~»2—) ) feC=(M).

Define differentiable mappings [, (x=G) from G onto G by [ (y)=xy (y=G).
Define differentiable mappings B, (y€G) from M onto M by B,(x)=yxa(y)™*
(xeM).

Let a be a Cartan subspace of q. Put m=Zy(a). For A=(a)¥, define g.(a; 4)
={Xeg,;ad¥)X=AY)X for any Yea} and 2(a)={1=(a)¥—(0); g.la; )#(0)}.
Put n,= X g.(a; 2. Then we have g.=m.+a.,+n..

icX(m
Let X,, X,, ---, X, be elements of n, satisfying the following three conditions.
(i) For any j (1=j=n), there exists A(j)2(a) such that X,=g.(a; A()).
(ii) {Xito(Xy), Xo+o(Xy), -+, Xu+o(X,)} is a base of h.Nn..
(iii) {X;—o(Xy), X;—a(Xy), -, X,—o(X,)} is a base of q.MN1..
Let 7:b9.N\n.—q.N\n, be the bijective linear mapping determined by

(2.3) r(Xj+o(X))=X,—a(X;) (1=5=n).
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We fix a B,(y=G)-invariant measure dx on M. The corresponding B,-
invariant differential form is denoted by w. Let A,=Zy(a) and M,=\) yA.y~L
yEH

Let dy* be an H-invariant measure on H/Z y(A,). The corresponding differential
form is denoted by v. Let da be a Bexpx(X<a)-invariant measure on A, and
¢ the corresponding differential form.

Let {X,, ---, X,} be a base of §, (modm,). And take Y, :--, Y, (€a) such
that {}71, e Y’m} is a base of T.(A.). We assume that o, ¢ and v satisfy the
following conditions :

we(r(Xl); Ty T(XT); )71) Tty f;m) - ye‘(XT’ Tty X;F) ﬂe(?l, Ty ?m) 4
PROPOSITION 2.1. There exists p (=0, 1) satisfying the equality, for any
FeCM,)

@8 1WA DI, fdx=| f(yay ) =D?|Dya)ldady*.

H/ZH(Aa)SAa
PROOF. M; is an open dense subset of M, and differs from M, up to a set
of measure (.
Let » be the mapping %: H/Zx(A)X Ai—M; defined by »(y* a)=yay™
(yeH, ac A;). Then for feC(M)

dv(y',a)(dlyX; O)f:(dlyX; O)(y‘,a)f”?
d

~dt

0f 'n(yexptX, a)

t=

:%L_Of(yx expt Ad(x ) Xo(yxexpt Ad(x~H)X)™)
(a=x0(x)'€A, xGCG, yeH),

Ad (x")X:-é— {Ad(x")+Ad(a(x) )} X

+% {Ad(x)—Ad(e(x)} X.

Since (1/2){Ad(x")4Ad(o(x)™)} X is in b, we can omit this term. Let | be a
Cartan subalgebra of g containing a and put /=Z4(j). Let a be a root of g with
respect to | satisfying a|,=2 and X, be a root vector in g.. Define &,(x) by

Ad(0)X.=6a(x)Xe  (x€])).

For any x=0(x)"'<], the value &,(x) does not depend on the choice of a and
X, and then it is denoted by £;(x). We take x=J satisfying a=xo(x)"}, x=
o(x) . For X=X,+0(X;)eh, (X;=g.a; 1), we have
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A ()=~ Ad (0 (x) )} (Xa+0(X2)

:% {Ad(x H)—Ad(e(x)™} X, —%——:12— {Ad(x ) —Ad (a(x)} 0(X2)

= (=60 5 (Xi—a(Xy)).

We put p=*{j; Ay)a)Cv—1a, 1I=<7=<n} (mod2).
On the other hand, we get

| Di(a)|*?= IEI1 1&ap(@)—=1[1"*|€ 4 p(a)—1]"7

=TT 1E20p(0)—E-20p(0)].
J=1 Q.E.D.
COROLLARY 2.2. Let {a;}icr be a maximal set of Cartan subspaces which are
not conjugate to each other under H-conjugations. Put A;=Zy(a;) GeI). Let
dia be @ Bexp x(X<ay)-invariant measure on A;. Let d,y* be an H-invariant
measure on H/Z y(A;). Then there exist positive constants y; and p; (=0, 1)
(tel) satisfying the equality

2.5) SMf(x)dx: %“S Fyay-)~=T)|Dy(a)|*dsa d,y*

H/ZH(Ai)SAi

for any feC.(M).
ProorF. M’=\J \UyAiy~!is an open dense subset of M and differs from

i€l yeH
M up to a set of measure 0. We can apply Proposition 2.1 to each M;=\J y A;y~!
YyEH
and get the corollary. Q.E.D.

REMARK. (1) Let G be a connected real semi-simple Lie group with finite
center. Let K be a maximal compact subgroup of G. If we take a Weyl base
of g for the base (2.3), then the Weyl integral formula (2.5) for the symmetric
pair (G, K) gives the integral formula for the Cartan decomposition KAK of G.

(2) Let G be a reductive Lie group and let ¢ be an involutive automorphism
of G. Proposition 2.1 and Corollary 2.2 can be applied to the reductive symmetric
pair (G, G,) without essential change.

§3. Harish-Chandra transforms on gi(n, C)/gl(n, R).

Put G=GL(n, C). And let ¢ be the involutive automorphism of G defined
by o(x)=conjx (x€G). Put H={x=G; o(x)=x}, then H=GL(n, R). Let g and



196 S. SanNo

h be the Lie algebras of G and H respectively. We also denote the real auto-
morphism of g induced by the automorphism ¢ of G by the same letter ¢. Put
g={Xeg; 6(X)=—X}, then g=%+q (direct sum). Let # be the Cartan involu-
tion of g defined by 6(X)=—'X (X=g) and g=*t-+p be the corresponding Cartan

decomposition of g, where f=0(n). The following Cartan subspaces a; (O§k
g[—;‘—b of q form a maximal set of Cartan subspaces which are not conjugate

to each other under adjoint actions of H. For each integer k< [O, [%H, let a, =

af+az (af=a.N¥f, az=a,Np) and af and a; be the subspaces of a, consisting of
all matrices of the following form respectively :

a;: D(ZSDI, T l.ﬁﬁn—zk, Z.ﬁk; Z.ﬁk; T :’;01y Zﬁl) (l:\/__l) )

On—zk
as(ts) .

) e D)
.a2<t1)

where ¢,, 0, t, are real numbers and the blank of the above matrix must be
filled up by 0, and D(a,, a,, -+, a,) denotes the diagonal matrix with diagonal
elements a,, a,, .-, a,. Let X=a, be the sum of the above two matrices, then
its eigenvalues are i, -, 1Qp-ss, 104+1ts, 10,—1s, -+, 10,+1, 16,—t. Let us
denote these eigenvalues by g, s, -+, ¢#» according to the above order. Let
ap (1=p, g=n, p#¢q) be the linear mapping from a, into C defined by a,, (X)
=p,—pe The set 2(ap)=2(ax, O)={ap q;1=p, ¢g<n, p+#q} is the root system
of (az, q). Take X*(az)={a, ,; 1=p<g=n} as a positive root system. Let B(, )
be the Killing form of g. For a=2(a,), there exists a unique element H,<
ar+ia, satisfying B(X, H,)=a(X) for all X<a,. If V is a real Euclidean space
of finite dimension, we denote by S(V) the Schwartz space of rapidly decreasing
functions on V. For an element X<a;, put
ﬂk(X):goa(X), eb(X)= TI sgn(p,—¢,).

1<sp<gsn-2k

Put B,=Zy(ax), then B, is a Cartan subgroup of H. Let d,vy* (y*=yB;) be
an H-invariant measure on H/B,. We define the Harish-Chandra transform for
any feS(q) by
(3.1 PHO=eb XX F*X)dayr.
k

We fix an element X, of a,:; which satisfies a(X,)#0 for all acX*(a..,)
eXCePt Ao=«n-sr-1,n-2x aNd ao(X,)=0. Put 37=Z,(X,) (the centralizer of X, in
q) and 3*=2Z4X,). Set [-=[37, 3*] and [,=[3%*, 3*]. Letio- be the center of 3%,
then 3-=I1_+o¢- (direct sum). {a, a4} iS @ maximal set of Cartan subspaces
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of 3~ which are not conjugate to each other under the adjoint actions of 3*.
Put a=q; and b=a;+,. Let X/, ', Y’ be a base of {, defined by

On—2(k—1) On-—z(k—l) On-—z(k—l)

' 01 y_ 1 0 r_ [00

x= ool }HA |5 )} v= 10
Ozk Ozk Ozk

Let CXrg be the tensor product of C and g. For a subspace Vg, put its
complexification V,=C®gV. Let v be the linear map of B, onto a, given by
VIR X' =Y "))=iQiH’ and v|.~s,~identity. Put ‘o.={X<€o.; a(X)+0 for all
acX(a;) except +a, and ao(X)=0}.

THEOREM 3.1. If D belongs to Diff(b,) (the algebra of differential operators
on b, with polynomial coefficients), then the limits

(3.2) (Dg+)*(C)= lim (Dg*)(C—ti(Y ' —X"))

exist for all f€8(), Ce’o- and (DP%™)* are continuous on each connected com-
ponent of ‘g_. And there exists a positive constant s such that for any D < Diff (a,),
fe8@) and Ce’o_

3.3) (DPFHH(C)—=(DP5)~(C)=s(D*¢5)(C)

where D” is the element of Diff(a,) that corresponds to D under the isomorphism
v of b, with a..

To prove this theorem, we reduce the problem to the one for the space 3~
of rank one. We shall prove theorem 3.1 after preparing some lemmas which
are proved by the same method as for reductive Lie groups.

Set Z=Zyx(X,). We replace (H, q) by (Z, 3), and define Harish-Chandra
transforms ¢% z and ¢%% for any function geS(3™). We consider the mapping
¢- from H/Z X3 into q defined by ¢-(5, X)=yX (yeH, X<37). For >0, put
[_(r)={Xe<l.; any eigenvalue A of adX is |A|<z}. Let y be an open neighbor-
hood of X, in o_. Define for z and 7, V=V, .=r+1.(z). If we take sufficiently
small = and 7, there exists a regularly imbedded analytic submanifold N of H
including the unit element ¢ which has the following properties :

(i) Put B=H-X,. Then N-X, is an open neighborhood of X, in B.
(3.4) (ii) The mapping y—yX, is an analytic diffeomorphism of N onto N-X,.
(iii) The mapping N-X,XV—¢_(NXV) given by (vX, Y)—yY is an
analytic diffeomorphism.

For two functions gC2(V) and heC2(N-X,), put

3.5) fO-V=h(yX)gY) (yeN, YeV).
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Then f belongs to CP(¢-(NXV)). On the other hand CP(V)RCT(N-X,) is open
dense in CP(¢-(NxV)). Then it is sufficient to prove for such
functions f. Put N=N/Z and h(5)=h(yX,). For X*(a, 37)={a}, put 7ht=a,
and ek Z(X)=5gn(Qn-2k-1—@n-2x). For 27(b, 37)={Bo=aw}, put z%'=p, and
eitt=1. Put n%=nr?/n} (p=F or k+1).

LEMMA 3.2. Let d.z* (resp. dez*) be an invariant measure on Z/B, (resp.
Z/B+) and d¥ be an invariant measure on H/Z. The invariant measure d.y*
(resp. dpy*) on H/B, (resp. H/B.,) is defined by d,y*=dyd,z* (resp. dey*=
dydez*). For geC2(V) and heC?(N-X,), define fEC§°(¢-(NXV)) by (3.5).
Then we get for p=k or kE+1,

3.6) PHX)=a(p) cLh] nfedf.2(X)  (XSapNV)

where c[h]zgmzh(y)dy and a(p) is the constant 1 or —1.
We denote the adjoint group of 3* by Z,. Put L,=Zj;(a). We define an

invariant integral for any g=S(~) by

(37 G2 X)=eh 20RO, glurX)dur.

Zy

Put Ly=Z,(b). We define an invariant integral for any function g&S@7),

Zy

3.8) bh(X)=nFHX )S /Lﬁg(u*X Jdu*.

Let Z,=K,N,A, be the Iwasawa decomposition of Z, where K;=S0O(2),
Ny={expsX’';s=R} and A,={D(e, ¢)exptH ;e==+1,t=R}. Let dk be the

Haar measure of K, normalized by SK dk=1. For n=expsX'eN,, dn=ds is a
0

Euclidean measure on N. We define a Z,-invariant measure d.z§ on Z,/L., by
the equality

(3.9) [, o fendaas=| (" fkexpsxyideds

for any feC(Z,/ L.).
Let Z,=K,A{K, be the Cartan decomposition Z, where A}={exptH’; t=0}.

We define a Z,-invariant measure dyz§ on Z,/L; such that for any fe
Ce(Zy/ Ly),

(3.10) gzwb f(zi‘)‘)d;,zi‘,‘ngogo F((k exptH Y Y(e —e-*)d bdt.

Let » be the automorphism of 3~ such that 7|,_=identity and »GH)=iH, n(X)
=—iX, n(Y)=—iY. Because Z/B,=Z,/L. and Z/B.1=Z,/Le\U0(Z,)/ L5, we
can normalize invariant measures d,z* on Z/B, (p=Fk, k+41) in such a manner
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that for all gesG-)

(3.11) EyZ:Sb’;,Z()
and
(3‘ 12) ¢l§-&:lz k+l _((/)k+1

LEMMA 3.3. Let d.z%§ (resp. doz¥) be the invariant measure on Z,/L, (resp.
Zo/Ly) defined by (3.9) (resp. (3.10)). Put ¢% z, (resp. ¢%'%) as in (3.7) (resp.
(3.8)). And we define ¢% 7 (resp. ¢%'%) by (3.11) (resp. (3.12)). Then we obtain
the following properties.

Cal (i) For any geCyF™), ¢% z extends to an element of CZ(a).

(ii) ¢k z is invariant under the reflection S., in a corresponding to a.

(ili) For any EeDiff(a;) satisfying Sa(E)=—E, we get

E¢t =0 ono..
[61 (i) Put
bt={C+ti(Y'—X"); t>0, Ceo.}.
Then ¥ =b"Ub". For geC737), ¢4 % is in C(V).
(i) If D belongs to Diff (b,), then the restrictions of (D% %) on b* can be

extended to continuous functions (D¢%ty)* on CI(6*) respectively. And
we obtain

(3.13) (D) (O)—(Dgith) (C)y=—2i(D*¢%, 2)(C)  (C€’0.).

Especially, D&ty can be extended to a continuous function on b if
Sg,D=—D.

Now, we prove Theorem 3.1. Let 7, = be as in (3.4). We assume that 7 is
star-like at X,. Put V=V, . as before. From the definition of V, ., we see that
— i 2 (A% _T_ — (AX! V- _E_

o V=r+{oil; 101< 2}, s V=r+{ix-yn; 1t <3}

Recall that X*(a, 37)={ao}, 2*(, 37)={Bs}. If we take 7, r sufficiently small,
then there exist a(k+1), a(k)=-+1 such that &% z=a(k)ek on a;N\V, ebty=1=
a(k+1)ek** on a;.,\V and a(k+1)a(k)=1. Let N be as in (3.4) and f, . asin
(3.5). Then we have

G, (X)=a(k)c[h]mbaly 2(X) X=C+OiH ea,N\V,
P (XD=a(k+1Dec[R]als'¢hu(X)  Xi=CH+u(X'—Y") €NV

where c[h]=\ h(3)d5.
For DeDiff(8,), put D,=Dx%'. Then Di=D'z%" and
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(D*¢i ) X)=a(k)c[RN(Didh, 2)(X) X=C+0iH,
(DY XD)=alk+1)c[RID:PE (X))  Xi=C+Ht(X'—Y"), Cer.
If we normalize measures as in Lemma 3.3, then we get for any E<Diff(b,)
(Ede )" (C)—(Egith)(C)=—2i(E*dg, 2)(C) .
Hence we obtain the following equality

(DPEIHC)— (DY)~ (C)=—2i(D"P%)C) Ce’o-. Q.E.D.

§4. Harish-Chandra transforms on GL(n, C)/GL(n, R).

Let ¢ be the mapping from G/H into G defined by ¢(xH)=xo(x)"!. Put
M={xo(x)"*; x=G}. Then the mapping ¢ is an analytic diffeomorphism of G/H

onto M. Put A,=Zy(as) (ogkg[ﬂ). Then A,=A7A; and Af and A; are

the subsets of M consisting of all matrices of the following form, respectively :

A: . D(eiﬂpl, e ei§0n—-2k, eiak, eiek’ ey, eiel, eigl) )
ln—zk (t )
Volle cosht ¢sinht
. Az T < “\_jqi ))
4.1) k . vat) (—zslnht cosht

. va(t)

{Ak ; ngg[—g—]} is a maximal set of global Cartan subspaces of M which are

not conjugate to each other under adjoint actions of H. Let a= A, be the pro-
duct of the above two matrices, then its eigenvalues are ¢?1, .- | ¢?¢n-2k % g%k,
-, et e (z,=10,41,). We take (e”1, e”2, ---, e#n) as its coordinates with its

order. For each A4, (ngg[%]), we define the Weyl group W(A,; H) by

Nuy(Ap)/Zy(Ar). Then W(A,; H) contains the following transformations :
(i) all permutations of et%1, ..., gi¥n-2k ;
(ii) all permutations of k-pairs (e, e7%1), .-, (e%k, ¢~%%);
(iii) the permutations of z, and —Z,, i.e. f, and —f, for any fixed
p (I=p=k).

LEMMA 4.1. The Weyl group W(A,; H) is generated by the transformations
of Ay listed above. And its order is given by

[W(A,; H)|=(n—2k) 1 k12%.

PrOOF. Any transformation in the Weyl group keeps the set of eigenvalues
stable and is one of the above three kinds of permutations. Q.E.D.
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For a subset V of G, put V'={xV ; regular element}. Then VM) =
V'NM. For an element a of A; we put

4.2 Ak(a)zlépQSn {exp(pp—pte)/2—exp(pg—10)/2},

B(a)— : _
sF(a)—1§p<};[n_2ksgn{sm(gop ©g)/2}.
4:(a) and e%(a) are one-valued or two-valued functions on A, according as n is
odd or even. But ei(a)d.(a) is a one-valued function on A,. We define the
Harish-Chandra transform for a function feC?(M) by

“.3) Fia)=ekad@)| | f(yay™diy*  (a=Ap

where d,y* is an invariant measure on H/B,.

We fix an element a, in A,;; which satisfies &,(a,)#1 for all acX*(ars1)
except a, and &.(a,)=1, where each &, is the homomorphism from Af,,=
Zs(agsy) into C* defined by §,(a)=e*"°2®, Then we get 37=Z,(a,). For yCo-
and >0, we put 37(z) and 37, as in §3. Set Z, .= {exp(X/2)a,0(exp(X/2))7*;
Xegr b and Zy=Zy(a,). {Ar, A} is a maximal set of global Cartan sub-
spaces of Z, which are not conjugate to each other under the adjoint actions
of Z. Let u be the subspace of g defined by

4

-

9]

o O
o O

4.4) u= ;ap R

a, 1a,

O z'ak —ap

a; ia,
Z'al —a

Then y=u-+3~ is a direct sum and u is orthogonal to 3~ with respect to the posi-
tive Hermitian form (X, Y>=—B(X, 8(Y)) for X, Y=g. For x&Z,, we define

(4.5) va(x)=det(1—Ad(x)™)| .,

and put 'Zy={xE€Zy; ve,(x)#0}. If we take sufficiently small 7y and 7, then
the set Z, . has the following properties.
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(1) Z,.C'Zy is an open subset and the map 3;,,—Z,. given by
Y—exp(Y/2)a,o(exp (Y /2))~! is an analytic diffeomorphism ;
(4.6) (ii) Z,.is Z-invariant. If yZ, .yNZ,.#@ (y=H), then y=Z and
er,z-y—l:Zr,r;
(iiiy If a subset Z, of Z,. is Z-invariant and closed in Zj, then
{yxy';yeH, xZ,} is closed in M.

For X347, put

1/2

d¢

sinh(ad(X/2)) )

4.7 j(X):]det( ad(X2

LEMMA 4.2. If we take sufficiently small 7, t as in (4.6), then we obtain the
following equalities

ek(a)d(a)=ck(a) - 2(a)va(a)](X)au(X) (a=acexpX, XSaNg,)
and
51 (D)4 +1(0)=e51 (D) - 2(D)va, (D) J(Y)Bo(Y) (b=asexpY, Y €bNyr,:)

where 2 is the linear mapping from a, into C defined by A X)=pp-2r-1 (p=Ek,
k+1).
PrROOF. We get for ac A,

eh(a)d,(a) _ eifn-2k-1_pivn-ze

er(a),-a(@)ve (@)= etPn-2k-1—pt¥n-2k ’ 7X)= (Pn-2k-1—Pr-22)
and for be A,
e () d i (b g @UEFL—pbE+L
e.’z~+l<b>sp~z(b>»ao<b>=~e—fk—fli—e‘i}‘,;%, V)= =g
Then we obtain the assertion of the lemma. Q.E.D.

For the Z, . in (4.6), we can take a regularly imbedded analytic submanifold
R of H which contains the unit element ¢ as follows:

(i) {xaux'; xeR}C{xa,x™'; xH} open subset;
(ii) The map R—{xa,x™'; xR} defined by x—xa,x™! (x&R) is an
(4.8) analytic diffeomorphism ;
(iii) The mapping ¢ of RXZ, . into M defined by ¢x(x, a)=xax~! isan
analytic diffeomorphism.

Put R={y=yZ; yeR}. Using these notations, we define for heC3(R), g=
CGr, o

(4.9) fn e(yexp(X/2)aio(exp(X/2)y)=h($)g(X) (yER, X<i7,0).

LEMMA 4.3. Let d.z* (resp. dez*) be an invariant measure on Z/B, (resp.
Z/Bg+1) and dF be an invariant measure on H/Z. Define the invariant measure
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doy* (resp. doy*) on H/B, (resp. H/Bys1) by doy*=d¥ d.z* (resp. doy*=d5 dez*).

For heC3(R) and g=CsGyr.), define fn g as in (4.9). Let Y, be an element of

3r.eM\a with coordinates (61, 0y Ensken, 10, -—-iﬁ, En-2k+1> -+, &n). Put onleimyx
-0

€3r..NaNb.  Then we get

limFf, (a.expY)=ef(aoexp Xo),-i(arexp Xo)eLhllimdiy #(Y).

Let 'Y, be an element of 37,.M\b with coordinates (&, -+, &En_scheny, £, —t, En-srin,
-, &,). Then we get

(F7 9 @)=l Fl (arexpls)

=ef (a0 exp X0l p-1(asexp Xo)eLhIlim ¢! 2(Y)
where
hi=| s
and
u(X)=vq(exp(X/2)a,o(exp(X/2))™)j(X) (X<€3.).

PrROOF. The function u(x) is a Z-invariant function. From [emma 4.2 and
the normalization of measures, we obtain the assertion. Q.E.D.

THEOREM 4.4. Let d.z§ (resp. dez¥) be the invariant measure on Z,/ L, (resp.
Zy/Ly) as in (3.9) (resp. (3.10)). Let dnz* (resp. dez*) be the invariant measure on
Z /By (resp. Z /By given by (3.11) (resp. (3.12)). Take an invariant measure dy
on H/Z. Let d.y* (resp. dyy*) be the invariant measure on H/B, (resp. H/B 1)
defined by d.y*=dyd.z* (resp. dey*=dFdsz*). Using these measures, define
Harish-Chandra transforms Ff, Fj (O§k§[%]—l) for a function feCP(M) as
in (4.3). Then we get

0 (DFF*Y)*(agexpY)—(DF}*) (a,expY)

(4.10)
=—2i(D*F})a,expY) Yer)

for any feC(M) and DeU(b,) (the universal enveloping algebra of b.).
Proor. From Lemma 4.3 and (3.13), we obtain the assertion of the theorem.
Q.E.D.

§5. Invariant spherical distributions.

For a subalgebra V of g, denote its complexification C®V by V. Let
T(V,) (resp. U(V,)) be the tensor algebra (resp. the universal enveloping alge-
bra) of V.. Denote the set of all left invariant differential operators on G (resp.
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G/H) by 9D,(G) (resp. D,(G/H)) and the set of all Bg-invariant differential
operators on M by Dx(M). U(g.) is naturally isomorphic with 9,(G) by the
mapping D—09,(D), where

d
6.1 [0:(c@X)]ef =

Put

Of(xexpz‘X) for x€G, (RKXesg,.

Ug)¥={DcU(g,) ; Ad(h)D=D for all he H}.

Then U(g)® /<U(g.)2NU(g.)Y.> is isomorphic with 9,(G/H) by the map (5.1) (cf.
Oshima and Sekiguchi [20]). For an element ¢®X in g. define the tangent
vector (@X in To(M) by

6.2 (@K = ;| _ SexptXolexptX).
And for an X in g, we define Bg-invariant vector field 0z(X) on M by
[05(X) 2o zy-1f =dB,X f. By this correspondence, any differential operator
DeU(g,) defines the Bg-invariant differential operator 0z(D) on M.

For any Xecg,, let Ly (resp. Ry) be the endomorphism in U(g,) given by
left (resp. right) multiplication by X. Let I” denote the linear mapping of U(g.)
into itself given by

F(Xle Xn):(LXl—Ra(Xl))(LXZ—Ra(XZ))
(LX,,_I_RU(Xn_l))(Xn”_O'(Xn»
for X,, X,, ---, X,€g, and I'1)=1.

LEMMA 5.1. For any DeU(g.), we obtain
[aB(D)]xu(z)—1:[at(Ad(U(x>)F(D)):]za(z)—l (x€G).

If DeU(gy)¥, 05(D) is in Dg(M).
PrROOF. Let X*g, denote the k-fold tensor product of g, Put
T p:kE &®*g.. Let » be the natural homomorphism of T'(g,) onto U(g.) and put
<p

p(T?)=U?. We shall prove the lemma by the induction on p. Clearly the as-
sertion is true for U’ Suppose that we have proved the result for p. For any
DeU? and any Xe=g,, we get

[05(XD) ]z 2 -1f =[08(X)]z0 2r-10(Ad a(x))[ (D) f)

= g_t t=0(al(Ad a(x)I'(D)f)- B(exptXao(exptX)™?)
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:.g_t _@(AdaI D))

“(xo(x)'exp(t Ad(o(x))X)exp(—t Ad(o(x))o X))
=[0uAdo(x DI (XD)]zq(ar-1f -

Hence the assertion is true for p-1. Q.E.D.

Let 4 be the subalgebra of U(g,) generated by {I®X—iRiX; X=g}. Then
U(g) is isomorphic with 4 under the linear mapping

g XXXy > SIQX—iQiX) 5 IQX—i®iX,

_%(1@)(”_2@{)(“) Xy Xs, -, Xn€9).

Let 3 be the center of U(g). 3 is isomorphic with U(g.)¥/<U(g.)2NU(8.)%.> by
the map D—[¢(D)] (D€3). If we regard DeU(g.) as the differential operator
on G, we can identify U(g,) with U(g) by the linear mapping {: ¢c®X—cX.

LEMMA 5.2. The linear mapping L-I>¢ is equal to the identity mapping of
U(g).
Proor. For any X, -+, Xn-1, XnEg, We get

C°F°¢(X1 Xn—an>

=0T 3 (DX, i@iX,) + 5 (@ Xy iRi X ) IR X —iRIX )}

:C{(Lmz) (1®X1-i®iX ) —R 2 (1®Xl+i®iX1)>

(L (1/2) (1R X -1 -1®1X 5 —1) _R(I/Z) (1®Xn_1+i®an..1))
1 o 1 o
(5 U@ X, —iQiXo)— 5 1D X, +iQiXn)}

:Xl Xn—an
and

Cologp(1)=1. Q.E.D.

Let a= A, be the product of the two elements as in (4.1). We take (i, -+,
{Qn-2k, 21, —Z1, "+, 21, —Z1) @S its coordinates where z,=i6,-+t,. Let aj be the
complexification of a, in g. Let I(af) be the set of invariants of U(af) with
respect to the Weyl group W of (g, af). Every element of U(af) may be con-
sidered as a differential operator on A, as in (5.1). I(af) is isomorphic to the
algebra &, of all symmetric polynomials of n indeterminates X, X,, ---, X, in
the following way. Take any element S(X,, X,, -, X,)€&, and replace X;, X,,
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-+, X, by the following operators respectively

P 0 1/ 0 0 1/ 0 0
(5.3) 00 i0gn-s’ 7<atk+z’aak>’ ?(atk_z‘aﬁk>’

1/ 0 0 1/ 0 0
7(37*75@7)» 7(%":@01)-

Then we obtain an element of I(af) and by this correspondence, every I(af)

<0§k__<_[—721]> is isomorphic to ©,. Put My=J yAsy-L.
YEH

PROPOSITION 5.3. There exists the linear mapping D—Sp( Xy, -+, X») of 3
onto &, satisfying

@x(DNN@)=4(a)Sp(Xy, Xs, -+, Xu)dw(@)f(a))  (a€Ap)

for any function feC(My) which is invariant under the mapping x—yxy~! (any
yeH) where X=(X,, X,, -+, X,) are the differential operators on A, defined as
in (5.3) and f is the restriction of f to A.

ProOOF. We first complexify M and discuss the proposition on G. af is a
Cartan subalgebra of g and A§ is the corresponding Cartan subgroup of G. If
we regard 05(¢(D)) as a differential operator on G, then from Lemmas 5.1 and
5.2 it is sufficient to consider 0,(D) (D€3). Let §(G) be the space of functions
spanned by the characters of finite dimensional representations of G. Let C be
a Weyl chamber. The map (w, a)—»wa of WXxC onto (A§)’ is a regular mapping.
The space of restrictions F(G)|c is dense in C~(C). Any W-invariant analytic
differential operator on A§ defines the unique analytic differential operator on C
and it is determined by the operation for {(A4%). The coordinates of the follow-
ing element,

a;

An-2r

X= by ick (ap, by c,=C)
——iCk bk.

by icy
—ic; by
in af, is given by (ai, -+, Gn-2z, bp+Ca, bp—Cs, -+~ bitcy, bi—c,) and denoted
simply by (g1, e, ==+, tta). Let 2, 1=p=n) be the linear form on a} defined by
Ap(X)=p,. For an element a=e”< A§, we put d(a)= TI (e#p-ra2—pre-rp/2),
1sp<gsn
Let Y be the root system of g with respect to the Cartan subalgebra af and
2r={2,—2;; 1=p<qg=n} be a set of positive roots. Put p:% > a De3
acX+

can be expressed by
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D=3 (X )(H)X.)
where (X.)= X1X2..X? (X! X2 .., XQE_ZNQ(GE; a)), (X,)=XiX}% - X}
(X1, X3, -, Xte Z>)0g(ag; a)) and (H)=H'H?*---H™ (H', H? .-, H"=aqj). Let

(w4, V 4) be the irreducible finite dimensional representation of G with a highest
weight A=m A, +mudy+ -+ +mpd, (my>my> - >my,) (it is corresponding to the
Young diagram with the partition (m,, m,, ---, m,)). Let v, be a highest weight
vector of V4. D operates on V 4 as a scalar multiplication. Then from X,v,=0,
the term actually including (X,) sends v, to 0. X_.v4 (X_.=g(a§; a), a>0) has
the weight 4—a and then the contribution of terms including (X.) is equal to 0.
It is sufficient to consider the contribution of (H) parts including no (X,), (X.).

P
Let H, be the element of af with the coordinate (0, ---, 0, I, 0, ---, 0). There
exists a polynomial Pp(xi, Xs -+, Xa), such that Dv,=Pp(m,, ms, -, ma)v=
P,(H,, H,, ---, H,)vys. And for the character X, of the representation (w4 V),
we have DX,=Pp(m,, m,, ---, m,)X4. The character X, is given explicitly by

Z sgnw ew(A+p)X
wWEW

(a=e*<(45)).

For any P( )=&,, we have 4-'P(H,, H,, -, Hn)AXAzP(ml-I—n—j, m2+n—g§,

n—1 n—1 n—3

c MW Put Sy, E, e, k) =Po( 11—, x5S, e, 2+ ),

then Sp( ) is determined independently on the choice of a, (Ie=0, 1 -, [—’214])

Since 4Sp(Hy, H, -+, Ha) Ay=Sp(mi+" 5L, met 53, oo m, =27 Lyt for any

A, Sp( ) is in &,. For any function feC=(G) which is invariant under inner

automorphisms of G, we get A 'Sp(H,, H,, ---, H,)Af)=Df, where 7 is the

restriction of f to A§. Hence from the restrictions of both sides of the above

equality to M,, we obtain the assertion of the proposition. Q.E.D.
Now we define invariant spherical distributions on M.

DEFINITION 5.1. A distribution @ on M is called an invariant spherical dis-
tribution if it has the following properties:
(i) O(yxyH)=0(x) for all xeM, yeH;
(i) There exists a homomorphism A: 3—C such that 0,(D)@=A(D)D
for all De3.

§6. The construction of invariant spherical distributions.

We define for any feC7(M) a function K} on A <O§k§[—2n—:|) by
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6.1 Ki@=eka)coni(du(@)|, = f(yayidsy*  (a=4p

where conj(4,(a)) is the complex conjugate of 4,(a) and y*=yB,. From a
direct calculation, conj(d.(a))=(—1)""-v/2-k4,(a). Then we get KKa)=

(—=r-vi2=kFiq). Put AT)={acA;:; ﬁ(l—e“ﬂ)#O}. Define e(w) for any
p=1
weW(Ay; H), (ehd)(wa)=e(w)(ekdr)(a). Set AF)={acAs; Il (e*?r—e*0)+0}.
2

LEMMA 6.1. Every K} (fEC‘?(M), Oéké[%]) has the following properties.

(i) The function K} can be extended to a C>-function on the closure of
every connected component of AT).

(i) Let ac€Ayand X€U(af). If Si(X)=—X for any a=an+sp-1)-1, n+2p-1
(1=p=k) for which §,(a)=1, then XK} can be extended to a continuous
function on some neighborhood of a.

(iii) KHwa)=e(w)KH a) weW(A,; H).

(iv) For any De3,

(6.2) Kgl(n)f(wzsb(Xl, Xy, -+, X2)Kf(a) (as Ap)

where X, X,, -+, Xn are differential operators defined in (5.3).

PROOF. From Theorem 4.4, we obtain the assertions (i) and (ii). The de-
finition of e(w) implies (iii). Applying Proposition 5.3 to K} we obtain the
assertion (iv). Q.E.D.

Let dx be a fixed H-invariant measure on M. Let d,a be a Haar measure
on A, defined by

6.3) dya=TI de, TI dt,d0,
p=1 g=1

where ¢, t,, 0, are the coordinates of a€ A, as defined in §4. These dx and
d.a define the normalized H-invariant measure d,y* (y¥*=vyB,) on H/B, as in
§2. Then by [Proposition 2.1, we get for any feCP(M,)

(6.4 o f@dz=ri | Arayidia)idiad,y*
where “:TWZEl-T)z' And by we obtain
k>
6.5) [ fed=5n | fooditdad.y
. ” —k=07’k A8y Y, yay &\ radry

for any feC3(M).
Let A, be the linear mapping from a, into C defined by A,(X)=
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n—

21 (g1t prot - +pn) (XEag). And define a function &£4,(a) on A, by

Enf@=exp(" 5 (bt )

&4, is a one-valued or two-valued function according to n is odd or even. But
ek(a)64,(a) is a one-valued function on A,.

Let £:(a) (0§k§[—721~]> be analytic functions on Aj; satisfying the following

conditions :
(a-1) £x{a@) can be extended to an analytic function on Ay(F) and satisfies

(e é&a (wa)=c(w)(ek &g £e)(@)  for all weW (A, H);

(a-2) There exist complex numbers a,, a,, -, @, such that for any symmetric
polynomial S(x;, x,, -+, x,) in n-indeterminates

S<le X27 Ty Xn)lek(a):S(aly a2; Tty an)ﬁk<a)
where X;, X,, ---, X, are differential operators on A, defined in (5.3);

0 0 . 0
(@-3) [(l.a@n—(Zk-H) —ia§0n~zk>I£k(a)]Sﬁn—(zk+1>=€9n—zk+0— al’k+1 £rei(a)
(ae{ac AN Ary; E(a)#1 for all a2 (a;) except a,})

where the both sides denote the limit values at ¢ which exist under the
conditions (a-1) and (a-2).
Put k(@)=ch(@ (@) ia@) (as4f 0=k=[5]).

Let S, be the symmetric group of = letters. Let S(xi, x,, -+, x,) and
T(xy, x4, =+, X4) be two polynomials in n-indeterminates such that there exists a
homomorphism {: S,— {+1}

S(xw(l)) Xwe), "y xw(n)):C<w)S(xl) Xoy o0y xn)

(6.6)

T(xwa, Xwe, 5 Xwm)=C)T(x1, X, -+, x,) for all weS,.

LEMMA 6.2. Let &, <O§k§[g]) be the analytic functions on Aj satisfying

the conditions (a-1), (a-2) and (a-3). And let S(xy, -+, x,) and T(x,, -+, x,) be
two polynomials with the property (6.6). Then for any feCP(M), we have the
equality

0= kZ_)zrkSAk{S(X)K}?-T(X)/ck—Kf-S(—X)T(X)fck}dka

where kp(a)=cek(a)sii(a)ki(a) (e Ay and X=(X,, X, -, X,) are differential
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operators on Ay defined by (5.3).
PrROOF. S(X) is the sum of the following forms
> L)Xy Xy, XY (=11 Jo 5 JriS0)

weW (ap)

where w(ij) is denoted by X7, (1=p=r). So we assume that S(X) has the
above form. And put

1,(S(X), T(X))ZSAk{S(X)ka'T(X)xk——ka‘S(—X)T(X)fck} dra.

Set Ap=Qp_sk-1.n-2k Ar=0n_sp n-2rs1<2(az). For any element a of X(a.), put
W(Ay; H: a)={weW(A:; H); w{ta) ={ta}}, Ni=|W(A,; H)|/|W(Ar; H: a)|
and [Tt={asA,;.(a)=1}. Let dra (resp. dra) be the Haar measure on I1%,
(resp. IT%,) satisfying dra dgn-22=dra (resp. dradt,=d,a). Using these nota-
tions, define

Nig
D — @ w
IF,k ila;ﬂ wEW(ak)C(w)aF(X]p
XS” (XJp+1 ]Z)+n . XﬁKf [:X]p IX}UP R e XJWT(X)Kk]f§=+OdFa
ap
and
NE
[? = T 2 C(w)aT(X]w)
lar| welay D
| xR X XK YT K X XET(X)E)d
H“T
where

[P(X)ke 28" =[P (X)krdp g -s=pn a0~ LP (X MExJppn s pmym=opspmo

[QEOKFINE T =[QX)K ] o= [QXK s =0 -

‘Then, we get

in/2] T n/2]
S 7S, TXO)= 35 (=1 2 74IR4+1R.0)
T [n/2]-1
:p‘él(—l)p kZ=0 TrlB e t7 kel B 2e1)

Let v be the linear map from (az:,). onto (a;). defined in §3. Put a=ap
and B=a-v. Then IIi=II"=A,NAp, |Bl=lal and 7 Ni=7, N From
we get

[qupﬂy%pﬂ Xw Kb+1:|8 W a)=2/(X ]pﬂ me X]u;Kf)(Cl) (as(IT%))
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where w'=vt-w-y and ([I%Y={acll% ; &;(a)+0 for any A€3(ay), A#+a}.
Hence we have

TelP e +7 241?11

Ng
=% 5 X
zlal wEW (ag)
YSH ( ]p+1 Jp+2 o }e){[ ip-1 Jp g XV T\/l)’fk___lxaoﬂ]
XY XY XUT(X ks dra.

Among the terms of the right-hand side, we consider the sum of the two
terms corresponding to w and S,w. From the condition (a-3) of %,

LP(X)—P(SeX k1554 (a)=2(P (X’ )= P((So X)) Nirrsala)  (acUIE))

where P(X)=Xp_X» - X*T(X). And from (i), we get
QIX)Kfa)=Q(Sa(X)K(a) (asUlt))

where Q(X)= ]p+1Xpr+2 - X, Then the sum is equal to 0 and 7,17, p+7 ks 7, 241
/2]
=(0. Hence we obtain k;)) 7 (S(X), T(X))=0. Q.E.D.
Let £.(a) (Oék §[-721—D be analytic functions on A;. Define an analytic

function @(x) on M’ by

6.7) D(x)=E4,(a) " dr(a) K r(a) for x=yayeM (yvH, acAy).

THEOREM 6.3. Let &, (O§k§[g—]) be analytic functions on A} satisfying con-
ditions (a-1), (a-2) and (a-3). Let D(x) be an analytic function on M given by (6.7).
Then @(x) defines an invariant spherical distribution on M as follows: for feC3(M)

tn/2l )
fo | iwewde="81| Kiarade.
= 4

ProoF. The H-invariance of @ is derived from the definition (6.7). Then
we consider the property (ii) of Definition 5.1. From Lemma 6.1, for any De3,
there exists a symmetric polynomial Sp(x;, -+, x,) in n-indeterminates satisfying

K}aelw)f(a):SD(X)Kf(a) (asA)).

Let E—E (E<U(a) be the anti-automorphism of U(ag) induced by X——X (X< as).
Then Sp(X)=S,(—X). From the condition (a-3) of #,, there exists a row of
complex constants [=({y, [, -+, [,) such that for any D3

Sp(X)kr(a)=Sp(Dk(a).
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Define the homomorphism 1: 3—C by A(D)=S,(l) (D=3). Using these properties
and we get for any feC(M)

(@, 3D))=E 1], SHOKH)-m@)dsa

=57, S-X)K}e) ria)da

=7 KR Ss el
[, KH@)Subrs(@dsa

— D) rkgAkK}’(a)-fck(a)dka

=ADXD, f).
Hence we obtain 8,(D)@=A(D)®. Q.E.D.

§7. Tempered invariant spherical distributions of height ».

Let @ be any invariant spherical distribution on M, then @ coincides with

an analytic function on M’. Define analytic functions #,(a) (ogkg[%]) on A
by

(7.1) f£u(a@)=44(a) 1,(a)P(a) (asAy).

Define an order on {Ak ; 0§k§[—g—}} as A,<A, if p<qg. We call an invariant

spherical distribution @ is of height » if #,=0 for any £>7 and £.+#0. If @ is
of height r, then #/(a) is expressed as

(7.2) £la)= > plx: A0 (x=loga, ac A})
oeSy
for some c=(cy, --+, c,)=C, where p(x: A) is a polynomial function on a con-

nected component A of A/(F) and S, is the symmetric group of n letters. We
call @ exponential if all p(x: A) are constants. We define exponential tempered
invariant spherical distributions of height » which will contribute to the Fourier
inversion formula on M as follows.

For [=(m—iA)/2 (nsZ, 2>0), define a function on C*=C—(0) by

(7.3) E(l; e%)=gimO(gidt —g-it) z=t+i0 (& 0=R).

Set T={¢"?; op=R}. We define a function D(/: ) on TxT according to the
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following two cases. For [=(m—id)/2 (me2Z, 2>0), put

2¢'™% cosh A(| )| —1/2)
sinh #4/2

(7.4) D(l: g*1, gt92)=

where ¢, p.€R, 0=(p:+¢.)/2 and ¢=(¢p,—¢,)/2 (modrw, —7/2<¢p<x/2). For
[=(m—iA)/2 (me2Z+1, 2>0), put
2¢'™0sinh 2|} — = /2)

(7.5) D(]: e'1, ¢'P2)=— cosh /2

where ¢i, 0,€R, 0=(¢:4¢,)/2 and ¢=(p:—¢,)/2 (mod2z, 0< || <x).

Fix an integer » (Ogrg[%b. Let ¢c=(cy, oy -+, Cn-2r) be a row of integers
satisfying ¢;>¢,> -+ >c¢poer.  Let (my, ms, -+, m,) be a row of any integers.
And let (A, A5, -+, A,) be a row of real numbers satisfying 4,>2,> -+ >4,. Put

lp=(mp—idp)/2 (1=p=r) and set [=(l, l,, -, ). We call such a (c, /) is of
type . For (¢,]) of type r, define analytic functions £.(c,/:a) on A}

T

n
0 ce A (r<k§[-2—:|),
k
> > er(a)éy(a)
0ESp-ok TESE vESy
g (n—2r+1)<co(n—27r+2) Y (1)< <y (r—k)

v (r—k+ 1)< <y (r)
g (n—2k—1)<o(n—2k)

(7.6) Erle, :a)=
Xexp (Z.(01§00<1)+ ’WLCn—erDa(n—zr)))

-k . )
X ;ILD(ZMP) tetPoln-2ri2p-1), el¢d(n-27+2p))

k
X H15<Zy<r—k+p> Deftm) a= A, OZkRZy).
p=

These functions £.(c, [: a) satisfy conditions (a-1), (a-2) and (a-3). Then from
we get an invariant spherical distribution @7(c, [) on M. Put
kx(c, 1 a)=(ekEqk(c, 12 ))a).

§8. The expansion formula on M.

Let L( ) be the elementary alternating function in n-indeterminates defined

by L(xi, x4, *-+, xn):1 l<'_[s (xp—x4). Denote a differential operator L(X;, X,,
sp<lgsn

-, Xa) on A, simply by L where X, X,, -+, X, are given by (5.3} For any
feC?(M), define

8.1) “(a)=7:LKXa) ac Al
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From Lemma 6.1, each G% (ngg[%]) has the following properties.

(1) k is zero outside some relatively compact subset of A7) and can
be extended to a continuous function on the whole A,.
(8.2) (ii) G% can be extended to a C>-function on the closure of every connected
component of Ai(T).
(ili)y For weW(A,; H)

Hwa)=¢'(w)G%(a) acs A}

where ¢’(w) is defined by (eié 4 ) (wa)=¢e"(w)(ek 4,)(a).

LEMMA 8.1. There exists a non zero constant y* such that for any f=C7(M)
(8.3) GP'B(e)=7*f(e)

where e is the unit element of G.

Proor. This property depends on the local structure around e. Let heCY(H)
and @52 be the Harish-Chandra transform relative to the fundamental Cartan
subgroup B,/ of H (Warner [30], §8.5). K/ and @4? have the same local
properties around ¢. From Theorem 8.5.1.6 in Warner [30], we obtain the as-
sertion. Q.E.D.

For I=(m—iA)/2 (imeZ, 2>0), define a function &(/: ) on C* by

(8.4) &'l e¥)=—e'ml(etAt 4o t11) z=t+10 (t, 0=R).
And we define a function D’(/: ) on T X T according to the following two cases.

For [=(m—iA)/2 (ns2Z, 2>0)

2¢t™0 sinh A(| | — 7 /2)

(] e i —
(8.5) D'([: et%1 gi%2) sinh 71/ sgn¢

where ¢, p,€R, 0=(0:+¢.)/2 and ¢=(p;—¢,;)/2 (mod x, 0< || <x/2). For
[=(m—id)/2 (me2Z+1, 2>0), set

, . . —2¢"™ % cosh A(|¢p| —x/2)
. (X Q9 —
(8.6) D’([: e'%1, ¢'%2) coshz2/2 sgn¢
where ¢, ;€R, 0=(0:+¢,)/2 and ¢=(p;—¢,)/2 (mod 2z, 0< || <x).
Fix an integer r (Oéré[-g—}) and take (¢, /) as in §7. Using the above

notations, define functions «(c, /: a) on A by
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n
> 2. sgno
0ESp—9k €8y veSy
g(n— 2'r+1)<a(n 2r+2) (1)< < (r~k)

r=rE D2 Eon
o (n—2k—1)<c (n—2k) v ISy

8.7) ke, [ a)=
XexXp ({(c19sy+ =+ T Crn-2rPon-2m))

T~k
X TItD (L py : gi¥on-ert2p-1  plPao(n-2r+ap))
p=1

X L& Cucrmrap 5 ) g Al 0Zk=r).
=

Then we obtain Lki(c, {: a)=L(c, Drilc, | : a) (ngé[gb where L{c, )=

L<c17 oty Cp-ory lly ily Tty l‘r; l-r)-
LeMMA 8.2, For 0<|¢|<z/2, we get

.. (= sinh A(x/2—|¢)) _
(1) So sinh #1/2 sgng dA=cotg,

(ii) cotg[):z'f_) (e2ind —g2ind) (as a periodic distribution).
n=1

PrROOF. The assertion (i) is given by [18] To prove (ii), we take a C>-
function U(f) on (-0, co) satisfying

> Ut+n)=1.

n=-o0o

We have
T

_Z_S:cott U(%) cosmt dt=0 (m=0, 1, 2, ),

. 0 (n=L,3 5 )
35 cot? U(—t—) sin nt dt:{
7)o r 2 (n=2 4,6, -

Then the Fourier series

~

cott= ZZ)SmZpt 22(9‘21175 otinty

is convergent as a distribution. Q.E.D.

LEMMA 8.3. For 0<|¢|<m (|¢|+#m/2), we obtain

_ » cosh —1/2)A
@ % ci)isgl[)llnl/TrZ/  sengdi=sgng sec(|g|—/2).
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(i) sgn¢sec(|p|—n/2)=: 5‘; (e-t@ntDd__piCnD¢) (g5 g periodic distribution).
n=0

ProOF. The formula (i) is also given by [18]. Put f(¢)=sgnssec(|s|—n/2)
(t=smod2r, 0<|s|<=x). And from

_};gif(t) U(g)cosmtdt=0  (m=0,1,2, ),

1 ¢ t . 0 (n:2; 4} 6’ )
—{S—oof(t) U<_2—T[,'_) sin nt df#{ 9 (n:l, 3’ 5, )’

we get the assertion (ii). Q.E.D.

LEMMA 8.4. For any integer m and any positive number 2, put [=(m—il)/2.
Let G(e*%1, ¢*¢2) be a C>-function on TX T satisfying G(e?1, ¢'¢2)=—(G(e!%2, ¢'%1),
Then we obtain

ES“S Gle'#1, #9)D/(1: %1, 0'2)d g, d0yd 2
m @1, p2El-7, 7]

0

=4; 2 G(e*1, ei(pz)eXp(Z.(ml@f{"mz(ﬁz))d@ld@z-

m1>m2S<p1, Yo&[-7, ]

Proor. Applying Lemma 8.2 (resp. Lemma 8.3) to even integers m (resp.
odd integers m), we get the assertion of the lemma. Q.E.D.
For (c, [) of type », put

(e, DI="35 c3+ 3 (me+22)/4.
p=1 ¢=1
LEMMA 8.5. Let feC(M). For any positive integer N, there exists a posi-
tive constant My ; such that for any (c, [) of type r the following equality holds:
(8.8) [141Cc, DIV @ (e, D), HI=My. ;.
PROOF. For any De3, we get
Sple, IND7(c, ), /)=0@UD)D"(c, 1), f)
=(0"(c, 1), 0(D)f).
n/2]
For any heCo(M), put Mh:[Z/) sup |K¥(a)]. Then there exists a positive con-
k=0 acdp

stant s such that for any (c, [)

[(@7(c, 1), h)| =sM,,.
‘Then, by the relation

|Snle, D@, ), I =1(D(c, 1), 3:,(D)f)]

=sMs, 55
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and in [10], we obtain the assertion. Q.E.D.

COROLLARY 8.6. The series

) =) =)

D@D H=% - B B e B (0D, )

1= Cp—2r==—9% Mij=- My==0

is absolutely covergent and the convergence is uniform with respect to (Ay, As, ==+, Ar)

=R,
n
Let (¢, I) be of type » (ogr§[—

2]) Pu;c for feC(M)

(8.9) I.= (@7(c, 1), HL(c, DAA, - dA,.

Cl>...>cn_ 21Sll>'">lr>0
My, My

The Fourier transform of G%(a) is given by

©10 L=, 2 [ GHeeplept o bornpantmbs

Cla -2k

T + om0y At 2t ))drad2y - d 2.
Using above lemmas and we get

A

5]

@.11) L=37.0r  (0=r

(n—2k)1 (1)
where 7, .= =27 —F)1 O=k=r).

Define an upper triangular matrix A by

Yinieltnie) = Ttased, 1 Ttniel 0

8.12) A= L :
0

Then by the relation A=A"!, we have

(8.13) ftn/ﬂ:iz/?hn/zj,r[r .

THEOREM 8.7. For any feC2(M), we obtain

[n/2]

B14)  cf(©=3 Ttwmr 2 S “
=0 €13 Depmgpd 41> > A0
My, My

(P7(c, D), fIL(c, DdAy -+ dar

where ¢co=2x)"r* and 7* is a constant in Lemma 8.1 which is independent on f.
PROOF. From Lemma 8.1 and (8.13), we get the assertion of the theorem.
Q.E.D.
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