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Introduction.

The present study deals with the problem whether, given a function $f$ (or

a vector field v) on a closed subset $Y$ of a manifold $X$, there exists a function
$F$ (or a vector field V) on the manifold $X$ such that the restriction of $F$ (or $V$ )

to $Y$ coincides with $f$ (or v) itself. In general, the function $F$ (or the vector
field V) may not be unique, and hence this problem requires an additional condi-
tion in order that $F$ (or $V$ ) is unique.

An interesting example concerning this problem is the celebrated Chevalley
isomorphism with respect to the complex simple Lie algebras. This turns out
more clearly if we employ Kostant’s identification: When $X=\mathfrak{g}$ , a complex simple
Lie algebra and $Y=S_{Z}$ , a transversal slice at a given regular nilpotent element
$Z$ of the G-orbit of $Z$ ( $G$ denotes the adjoint group of g), there exists, for any
polynomial $f$ on $S_{Z}$ , a unique G-invariant polynomial $F$ on $\mathfrak{g}$ such that the restric-
tion of $F$ to $S_{Z}$ coincides with $f$ . Here, according to Kostant [7], $S_{Z}$ can be
identified with the quotient space $\mathfrak{h}/W$ of a Cartan subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ under the
action of the Weyl group $W$ . Hence the above statement is readily paraphrased
as the Chevalley isomorphism

$I[\mathfrak{g}]\cong C[\mathfrak{h}/W]$ .

Here $I[\mathfrak{g}]$ denotes the algebra of G-invariant polynomials on $\mathfrak{g}$ and $C[\mathfrak{h}/W]$

denotes the coordinate ring of $\mathfrak{h}/W\cong S_{Z}$ . It should be noted that $\mathfrak{h}/W$ is isomor-
phic to the affine space $C^{l}(l=rank\mathfrak{g})$ and therefore $C[\mathfrak{h}/W]$ becomes a polyno-
mial ring.

The above example suggests us to inquire to what extent the isomorphism
holds even if the functions are replaced by the vector fields.

In this paper, we shall show that it is possible to define the vector fields on
$\mathfrak{g}$ such that 1) they are invariant under the adjoint action and 2) the restrictions
of them to $\mathfrak{h}/W\cong S_{Z}$ form a system of generators for the Lie algebra of vector
fields on $\mathfrak{h}/W$ logarithmic along the discriminant set of $\mathfrak{h}/W$ . As for the loga-
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rithmic vector fields on $\mathfrak{h}/W$ , see for detail [13], where we were mainly con-
cerned with the microlocal structure of a complex power of the discriminant
polynomial on $\mathfrak{h}/W$ and examined such vector fields in greater detail. Such vector
fields are also considered by several authors from several points of view: for
example, Solomon [12], Arnol’d [1], Saito [10], Givental’ [4].

The organization of this paper is as follows. In \S 1, we give preliminaries
on the simple Lie algebras and introduce a transversal slice of a regular nilpotent
element along the line of Kostant [7]. In \S 2, we discuss on the centralizer of
any element of the transversal slice which is the main tool to obtain the main
results stated in \S 3. In \S 4, we end with supplementary results and concluding
remarks.

\S 1. A standard transversal slice of a regular nilpotent element.

(1.1) We begin with giving standard notations concerning the simple Lie
algebras. Let $\mathfrak{g}$ be a complex simple Lie algebra of rank $l$ and let $\mathfrak{g}_{0}$ be its
normal real form. If $\mathfrak{g}_{0}=f_{0}+\mathfrak{p}_{0}$ is a Cartan decomposition of $\mathfrak{g}_{0}$ , where $\mathfrak{k}_{0}$ is a
maximal compact subalgebra of $\mathfrak{g}_{0}$ , and $\mathfrak{k}=f_{0}\bigotimes_{R}C$ and $\mathfrak{p}=\mathfrak{p}_{0}\bigotimes_{R}C$ , then $g=f+p$ is a

direct sum decomposition of $\mathfrak{g}$ . The adjoint group of $\mathfrak{g}$ is denoted by $G$ and $B(\cdot, )$

denotes the Killing form of $\mathfrak{g}$ . For any $X\in \mathfrak{g}$ , let $Z_{\mathfrak{g}}(X)$ be the centralizer of $X$

in $\mathfrak{g}$ .
(1.2) Let $\mathfrak{h}$ denote a Cartan subalgebra of $\mathfrak{g}$ contained in $\mathfrak{p}$ (this is actually

possible because $\mathfrak{g}_{0}$ is a normal real form of g). Let $\Sigma$ and $W$ be the root system

and the Weyl group of $(\mathfrak{g}, \mathfrak{h})$ , respectively. We fix an order on $\Sigma$ .
(1.3) We denote by $C[\mathfrak{g}]$ (resp. $C[\mathfrak{h}]$ ) the algebra of polynomials on $\mathfrak{g}$ (resp.

$\mathfrak{h})$ and by $C[\mathfrak{g}]^{G}$ (resp. $C[\mathfrak{h}]^{W}$ ) the subalgebra of $C[\mathfrak{g}]$ (resp. $C[\mathfrak{h}]$ ) consisting of
G-invariant ones (resp. W-invariant ones). Then, as is known, $C[\mathfrak{g}]^{G}$ is generated
by $l$ algebraically independent homogeneous polynomials $P_{1},$ $\cdots$ , $P_{l}$ , and the
restrictions of these polynomials to $\mathfrak{h}$ are also algebraically independent and
generate $C[\mathfrak{h}]^{W}$ . If $d_{i}=\deg P_{i}(1\leqq i\leqq l)$ , it is always possible to assume that
$d_{1}=2<d_{2}\leqq\cdots\leqq d_{l-1}<d_{l}$ (cf. [3]). The maximal number $d_{l}$ is often called the
Coxeter number of $W$ .

(1.4) We consider the characteristic polynomial of any element $X$ of $\mathfrak{g}$ :
$P(\lambda, X)=\det(\lambda I_{n}-ad_{g}(X))$ $(n=\dim \mathfrak{g})$ ,

which is always divisible by $\lambda^{l}$ , and hence $D(X)=[\lambda^{-l}P(\lambda, X)]_{\lambda=0}$ is a polynomial
on $\mathfrak{g}$ and has the following properties:

(1.4.1) $D(X)\in C[\mathfrak{g}]^{G}$ ,

(1.4.2) $D(H)= \prod_{\alpha\in\Sigma}\alpha(H)$ for any $H\in \mathfrak{h}$ .
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It follows from (1.4.1) that $D(X)$ is written as

$D(X)=F(P_{1}(X), \cdots , P_{l}(X))$

with a polynomial $F(P_{1}, \cdots , P_{l})$ of $P_{1},$ $\cdots$ , $P_{l}$ .
(1.5) Let $X_{0}$ be a regular nilpotent element of $\mathfrak{g}$ contained in $\mathfrak{p}$ . Such an

$X_{0}$ actually exists (cf. [8]). Then it follows from [8, Prop. 4] that there exist
$H_{0}\in f$ and $Y_{0}\in \mathfrak{p}$ such that

(1.5.1) $[H_{0}, X_{0}]=2X_{0}$ , $[H_{0}, Y_{0}]=-2Y_{0}$ , $[X_{0}, Y_{0}]=H_{0}$ .

The relation (1.5.1) implies that $\mathfrak{a}=CX_{0}+CH_{0}+CY_{0}$ is a subalgebra of $\mathfrak{g}$ isomor-
phic to $\mathfrak{s}I(2, C)$ . Note that $Y_{0}$ is also a regular nilpotent element of $\mathfrak{g}$ . The
following lemma is also known and useful (cf. [8, Prop. 8]).

LEMMA (1.5.2). (1) dim $Z_{\mathfrak{g}}(X_{0})=\dim Z_{\mathfrak{g}}(Y_{0})=l$ .
(2) $Z_{\mathfrak{g}}(X_{0})\subset \mathfrak{p},$ $Z_{\mathfrak{g}}(Y_{0})\subset \mathfrak{p}$ .
The adjoint action of $H_{0}$ leaves $Z_{\mathfrak{g}}(Y_{0})$ invariant and the eigenvalues of

ad $(H_{0})|Z_{\mathfrak{g}}(Y_{0})$ are given by $-n_{1},$ $\cdots$ , $-n_{l}$ , where $n_{1}+1,$ $\cdots$ , $n_{l}+1$ are the dimen-
sions of the irreducible components of $\mathfrak{g}$ as an $\mathfrak{a}$-module. If we assume $n_{1}\leqq n_{2}$

$\leqq\ldots\leqq n_{l}$ , then $d_{i}= \frac{1}{2}n_{i}+1(1\leqq i\leqq l)$ , where $d_{i}$ is the degree of $P_{i}$ (cf. (1.3)).

In particular, each $n_{i}$ is even. We choose a basis $u_{1},$
$\cdots$ , $u_{l}$ of $Z_{\mathfrak{g}}(Y_{0})$ in such a

way that each $u_{i}$ is an eigenvector of ad $(H_{0})$ with the eigenvalue $-n_{i}$ . Put
$v_{i}’=ad(X_{0})^{n_{i}}(u_{i})(1\leqq i\leqq l)$ . Then $v_{1}’,$ $\cdots$ , $v_{l}’$ span $Z_{\mathfrak{g}}(X_{0})$ . We can choose $u_{1},$

$\cdots$ , $u_{l}$

so that $B(u_{i}, v_{j}’)=0(i\neq])$ and $B(u_{i}, v_{i}’)\neq 0$ . Then $v_{i}= \frac{1}{B(u_{i},v_{i})}v_{i}’(1\leqq i\leqq l)$ also

form a basis of $Z_{\mathfrak{g}}(X_{0})$ and $B(u_{i}, v_{i})=\delta_{ij}$ (Kronecker’s delta). We may take

$u_{1}=Y_{0}$ and $v_{1}= \frac{1}{B(X_{0},Y_{0})}X_{0}$ .

For the results of this paragraph, see [7].
(1.6) Put $S_{X_{0}}=X_{0}+Z_{\mathfrak{g}}(Y_{0})$ . Then the following result is fundamental.

THEOREM ([7, Th. 0.10]). Let $\mathfrak{g}_{r}$ be the totality of the regular elements of $\mathfrak{g}$ .
Then $S_{X_{0}}$ is contained in $\mathfrak{g}_{r}$ . Moreover, for any element $X$ of $\mathfrak{g}_{r}$ , the G-orbit of
$X$ intersects with $S_{X_{0}}$ at one and only one point.

We note that for any $X\in S_{X_{0}},$ $Z_{\mathfrak{g}}(X)$ is abelian (cf. [6, Prop. 11]), and, in
addition, if $X$ is regular semisimple, $Z_{\mathfrak{g}}(X)$ is a Cartan subalgebra of $\mathfrak{g}$ .

(1.7) Consider the invariant morphism $x:\mathfrak{g}arrow \mathfrak{h}/W$ defined through $\chi(X)=$

$(P_{1}(X), \cdots , P_{l}(X))$ (cf. (1.3)). It follows then from (1.6) that the restriction of $\chi$

to $S_{X_{0}}$ is a bijection between $S_{X_{0}}$ and $\mathfrak{h}/W$. This tells us that we may take
$P_{1},$ $\cdots$ , $P_{l}$ such that

(1.7.1) $P_{i}(X_{0}+ \sum_{j=1}^{l}\lambda_{J^{\mathcal{U}}J})=\lambda_{i}$ $(1\leqq i\leqq l)$
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for any $(\lambda_{1}, \cdots , \lambda_{l})\in C^{l}$ . Accordingly, $\lambda=(\lambda_{1}, \cdots , \lambda_{l})$ is regarded as a coordinate
system of both $S_{X_{0}}$ and $\mathfrak{h}/W$ . Hereafter we use the notation:

$X( \lambda)=X(\lambda_{1}, \cdots \lambda_{l})=X_{0}+\sum_{i=1}^{l}\lambda_{i}u_{i}$ .

Then, for instance, the discriminant polynomial $D(X)$ on $\mathfrak{g}$ is written on $S_{X_{0}}$ as
$D(X(\lambda))=F(\lambda)$ (cf. (1.4)).

\S 2. The centralizer of an element of $S_{X_{0}}$ .
In this section, by regarding $\lambda_{1},$ $\cdots$ , $\lambda_{l}$ as indeterminates commuting with any

element of $\mathfrak{g}$ , we look for the elements of $\mathfrak{g}\otimes C[\lambda]$ which commute with $X(\lambda)$ .
This kind of centralizers will play a basic role in the next section.

(2.1) Let us dePne an affine ring $\mathcal{R}$ by $\mathcal{R}=C[\lambda_{1}, \cdots , \lambda_{l}]$ and a vector field

$E$ by $E= \sum_{l=1}^{l}d_{i}\lambda_{i}\frac{\partial}{\partial\lambda_{i}}$ For any integer $d$ , let $\mathcal{R}_{d}=\{f\in \mathcal{R} ; Ef=df\}$ . Then $\mathcal{R}=$

$\sum_{a\geq 0}\mathcal{R}_{d}$ .
By assuming that each $\lambda_{i}$ commutes with $\mathfrak{g}$ , we extend $\mathfrak{g}$ to a Lie algebra

$\tilde{g}=\mathfrak{g}\bigotimes_{c}\mathcal{R}$ over the ring $\mathcal{R}$ . Since ad $(H_{0})$ is naturally extended to an endomorphism

of $\tilde{\mathfrak{g}}$ , we decompose $\tilde{\mathfrak{g}}$ into eigenspaces of ad $(H_{0})$ such that $\tilde{\mathfrak{g}}=\bigoplus_{k}\tilde{\mathfrak{g}}(k)$ with $\tilde{\mathfrak{g}}(k)=$

{ $Z(\lambda)\in\tilde{\mathfrak{g}}$ : ad $(H_{0})Z(\lambda)=kZ(\lambda)$}.
We now turn to a determination of $Z_{\mathfrak{g}}(X(\lambda))=\{Z(\lambda)\in\tilde{\mathfrak{g}}:[X(\lambda), Z(\lambda)]=0\}$ .
PROPOSITION (2.2). (1) For any $i(1\leqq i\leqq l)$ , there exists a unique element

$X_{i}(\lambda)$ of $Z_{\mathfrak{g}}(X(\lambda))$ satisfying the condition $B(X_{i}(\lambda), u_{j})=\delta_{ij}$ .
(2) The element $X_{i}(\lambda)$ has the following properties.

(2.2.1) $( \frac{1}{2}$ ad $(H_{0})+E)X_{i}(\lambda)=(d_{i}-1)X_{i}(\lambda)$ ,

(2.2.2) $B(X_{1}( \lambda), X_{i}(\lambda))=\frac{1}{B(X_{0},Y_{0})}d_{i}\lambda_{i}$ ,

(2.2.3) $X_{i}( \lambda)\in \mathfrak{p}\bigotimes_{c}\mathcal{R}$ .

(3) The Lie algebra $Z_{\mathfrak{g}}(X(\lambda))$ is abelian and is spanned by $X_{1}(\lambda),$ $\cdots$ , $X_{\iota}(\lambda)$

over $\mathcal{R}$ .
PROOF. (1) Let $T_{j}(\lambda)\in\tilde{g}(])$ for any $j$ , and consider an element $X_{i}(\lambda)$ of the

form
$X_{i}( \lambda)=v_{i}+\sum_{j<n_{i}}T_{j}(\lambda)$

with the proviso that

(2.2.4) $[X(\lambda), X_{i}(\lambda)]=0$ ,



Invariant vector fields 151

(2.2.5) $T_{j}(\lambda)\in[Y_{0},\tilde{\mathfrak{g}}]$ for any $j$ .
We first show that such an element $X_{\ell}(\lambda)$ actually exists. Since $[v_{1}, v_{i}]=0$, the
equation (2.2.4) is written as

$\sum_{j<n_{i}}[X_{0}, T_{j}(\lambda)]+\sum_{k=1}^{l}\lambda_{k}[u_{k}v_{i}]+\sum_{k=1}^{l}\sum_{j<n_{i}}\lambda_{k}[u_{k}, T_{j}(\lambda)]=0$ .

Inspecting the $\tilde{\mathfrak{g}}(j+2)$-components of the equation, we readily have

(2.2.6) $[X_{0}, T_{j}( \lambda)]=\sum_{n_{i}-n_{k}=j+2}\lambda_{k}[v_{j}, u_{i}]-\sum_{m-n_{k}=j+2}\lambda_{k}[u_{k}, T_{m}(\lambda)]$ .

Suppose that for a fixed $j,$ $T_{k}(\lambda)(k>j)$ have already been given. Then since
ad $(H_{0}):[X_{0},\tilde{\mathfrak{g}}]arrow[Y_{0},\tilde{\mathfrak{g}}]$ is bijective, it follows from (2.2.5) and (2.2.6) that $T_{j}(\lambda\rangle$

for the fixed $j$ is determined uniquely. Thus all of $T_{j}(\lambda)$ are determined uniquely
by induction. Accordingly, $X_{i}$ commutes with $X(\lambda)$ . By definition, we have
$T_{j}(\lambda)=0$ for any $j$ so that $X_{i}(0)=v_{i}$ . Then, because of the choice of $u_{1},$

$\cdots$ , $u_{l}$

and $v_{1},$
$\cdots$ , $v_{l}$ in (1.5), we have $B(X_{i}(\lambda), u_{j})=B(v_{i}, u_{j})=\delta_{ij}$ . The uniqueness of

$X_{i}(\lambda)$ is nearly obvious. We note that $X_{1}( \lambda)=\frac{1}{B(X_{0},Y_{0})}X(\lambda)$ .
(2) Let $\tilde{E}=\frac{1}{2}$ ad $(H_{0})+E-1$ . If we decompose $X_{i}(\lambda)$ into the sum of the

eigenvectors of $\tilde{E}$ :

$X_{i}( \lambda)=\sum_{k}X_{i}^{k}(\lambda)$ such that $\tilde{E}X_{i}^{k}(\lambda)=kX_{i}^{k}(\lambda)$ ,

then it follows from $\tilde{E}X(\lambda)=0$ (cf. (1.7.1)) that $\tilde{E}([X(\lambda), X_{i}^{k}(\lambda)])=k[X(\lambda), X_{i}^{k}(\lambda)]$

and therefore $[X(\lambda), X_{i}^{k}(\lambda)]=0$ for any $k$ . Since $\tilde{E}v_{i}=(d_{i}-2)v_{i}$ (cf. (1.5)), we
have $X_{i}^{d_{t^{-2}}}(\lambda)\neq 0$ . Then the uniqueness of $X_{i}(\lambda)$ implies that $X_{i}(\lambda)=X_{i}^{a_{i}-2}(\lambda)$ . By
the same token, we can justify (2.2.3) by noting that $\tilde{\mathfrak{g}}=f\bigotimes_{c}\mathcal{R}+\mathfrak{p}\bigotimes_{c}\mathcal{R}$ is a direct

sum decomposition.
Next we go to a calculation of $B(X_{1}(\lambda), X_{i}(\lambda))$ . We first write $X_{i}(\lambda)$ as

(2.2.7) $X_{i}( \lambda)=v_{i}+\sum_{k=1}^{l}f_{ik}(\lambda)u_{k}+X_{i}’(\lambda)$

with $f_{ik}(\lambda)\in \mathcal{R},$ $X_{i}’(\lambda)\in[X_{0},\tilde{\mathfrak{g}}]\cap[Y_{0},\tilde{\mathfrak{g}}]$ . Then the condition $[X_{1}(\lambda), X_{i}(\lambda)]=0$ is
paraphrased as

(2.2.8) $\sum_{k=1}^{l}f_{ik}[v_{1}u_{k}]+\sum_{j=1}^{l}f_{1j}(\lambda)[u_{j}v_{i}]+[v_{1}, X_{i}’(\lambda)]$

$+ \sum_{j=1}^{l}f_{1j}(\lambda)[u_{j}, X_{i}’(\lambda)]=0$ .

On the other hand, by direct calculation, it is easily seen that



152 J. SEKIGUCHI

$B([v_{l}, u_{j}], H_{0})=\delta_{ij}n_{i}$ ,

\langle 2.2.9) $B([v_{1}, X_{i}’(\lambda)], H_{0})=0$ ,

$B([u_{j}, X_{i}’(\lambda)], H_{0})=0$ ,

which, together with (2.2.8), shows that

(2.2.10) $n_{1}f_{i1}(\lambda)-n_{i}f_{1i}(\lambda)=0$ .
Using this and the expression (2.2.7), we can eventually obtain

$B(X_{1}( \lambda), X_{i}(\lambda))=\sum_{j=1}^{l}f_{ij}(\lambda)B(v_{1}, u_{j})+\sum_{k=1}^{l}f_{1k}(\lambda)B(u_{k}v_{i})$

$=f_{i1}(\lambda)+f_{1i}(\lambda)$

$= \frac{1}{B(X_{0},Y_{0})}d_{i}\lambda_{i}$ .

Here we have made use of the relations $f_{1i}( \lambda)=\frac{1}{B(X_{0},Y_{0})}\lambda_{i},$ $n_{1}=2$ and $d_{i}=$

$\frac{1}{2}n_{i}+1$ .
(3) For any given $Z(\lambda)\in Z_{\mathfrak{g}}(X(\lambda))$ , we consider

$Z’( \lambda)=Z(\lambda)-\sum_{i=1}^{l}B(Z(\lambda), u_{i})X_{i}(\lambda)$ .

Then $Z’(\lambda)$ is contained in $[Y_{0},\tilde{g}]$ which is the orthogonal complement of $Z_{\mathfrak{g}}(X_{0})$

with respect to the Killing form $B$ . On the other hand, it is possible to write
$Z’( \lambda)=\sum_{j}Z_{j}’(\lambda)$

with $Z_{j}’(\lambda)\in\tilde{\mathfrak{g}}(j)$ . It follows from the above dePnition that each $Z_{j}’(\lambda)$ is contained
in $[Y_{0},\tilde{\mathfrak{g}}]$ . Suppose now that $k$ is the number such that $Z_{j}’(\lambda)=0$ for $j>k$ and
$Z_{k}’(\lambda)\neq 0$ . Then from the condition $Z’(\lambda)\in Z_{\mathfrak{g}}(X(\lambda))$ , we must have $[Z_{k}(\lambda), X_{0}]=0$ .
This contradicts the assumption. Therefore $Z_{\mathfrak{g}}(X(\lambda))$ is spanned by $X_{1}(\lambda),$ $\cdots$ , $X_{l}(\lambda)$

over $\mathcal{R}$ . Lastly, $Z_{\mathfrak{g}}(X(\lambda))$ is obviously abelian (cf. (1.6)). Q. E. D.

PROPOSITION (2.3). For any $Z(\lambda)\in Z_{\mathfrak{g}}(X(\lambda))$ , we can assert that
(1) There is a unique element $U(\lambda)$ of $f\bigotimes_{c}\mathcal{R}$ such that

(2.3.1) $Z( \lambda)=\sum_{i=1}^{l}B(Z(\lambda), X_{i}(\lambda))u_{i}+[X(\lambda), U(\lambda)]$ .
(2) If $B(Z(\lambda), X_{i}(\lambda))=0$ for $i=1,$ $\cdots$ , 1, then $Z(\lambda)=0$ .
PROOF. (1) Due to Proposition (2.2), $X_{1}(\lambda),$ $\cdots$ , $X_{l}(\lambda)$ span $Z_{\mathfrak{g}}(X(\lambda))$ over $\mathcal{R}$ ,

and hence it suffices to show (2.3.1) for each $X_{i}(\lambda)(1\leqq i\leqq l)$ . Let us take an
element $U_{i}(\lambda)$ of $f\bigotimes_{c}\mathcal{R}$ of the form

$U_{i}( \lambda)=\frac{1}{n_{i}}[Y_{0}, v_{i}]+\sum_{J<n_{i^{-2}}}Q_{j}(\lambda)$
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with $Q_{j}( \lambda)\in\tilde{g}(j)\cap f\bigotimes_{c}\mathcal{R}$ , and consider the equation

$X_{i}( \lambda)=\sum_{j=1}^{l}h_{ij}(\lambda)u_{j}+[X(\lambda)U_{i}(\lambda)]$

with $h_{ij}(\lambda)\in \mathcal{R}$ . By an argument similar to the one used in the proof of Proposi-
tion (2.2) (1), we can determine $U_{i}(\lambda)$ and $h_{lj}(\lambda)$ uniquely. We shall next show
that $h_{ij}(\lambda)=B(X_{i}(\lambda), X_{j}(\lambda))$ . Since $B(u_{k}, X_{j}(\lambda))=\delta_{kj}$ (cf. Prop. (2.2)) and since

$B([X(\lambda), U_{i}(\lambda)], X_{j}(\lambda))=-B(U_{i}(\lambda), [X(\lambda), X_{j}(\lambda)])=0$ ,

we have

$B(X_{i}( \lambda), X_{j}(\lambda))=\sum_{k=1}^{l}h_{ik}(\lambda)B(u_{k}X_{j}(\lambda))+B([X(\lambda), U_{i}(\lambda)], X_{j}(\lambda))$

$=h_{ij}(\lambda)$ .
(2) It is sufficient to show that if $U(\lambda)$ is an eIement of $f\bigotimes_{c}\mathcal{R}$ such that

$[X(\lambda), U(\lambda)]\in Z_{\mathfrak{g}}(X(\lambda))$ , then $U(\lambda)=0$ . We write $U(\lambda)$ as $U( \lambda)=\sum_{j}U_{j}(\lambda)$ in terms

of $U_{j}( \lambda)\in\tilde{\mathfrak{g}}(j)\cap f\bigotimes_{c}\mathcal{R}$ for all $j$ . We now assume that for some $k,$ $U_{j}(\lambda)=0(j>k)$ ,

and $U_{k}(\lambda)\neq 0$ . Then the equation

$[X(\lambda), [X(\lambda), U(\lambda)]]=0$

implies that
$[X_{0}, [X_{0}, U_{k}(\lambda)]]=0$ .

Then $U_{k}(\lambda)$ is contained in $Z_{\mathfrak{g}}(X_{0})$ . Since ad $(X_{0}):[\tilde{\mathfrak{g}}, Y_{0}]arrow[\tilde{\mathfrak{g}}, X_{0}]$ is bijective
and $U_{k}(\lambda)\in[\tilde{\mathfrak{g}}, Y_{0}]$ , we have

$U_{k}( \lambda)=ad(Y_{0})( \sum_{n_{j^{-2=k}}} f_{j}(\lambda)X_{j}(\lambda))$

for some $f_{j}(\lambda)\in \mathcal{R}$ . Then

$U’( \lambda)=U(\lambda)-ad(Y_{0})( \sum_{n_{j}-2=k} f_{j}(\lambda)X_{j}(\lambda))$

is contained in $f\bigotimes_{c}\mathcal{R}$ , and if we write $U’( \lambda)=\sum_{j}U_{j}’(\lambda)$ with $U_{j}(\lambda)\in\tilde{\mathfrak{g}}\cap \mathfrak{k}_{\otimes \mathcal{R}}$ , the

assumption implies that $U_{j}’(\lambda)=0(j\geqq k)$ . Continuing this process, we finally ob-
tain that $U(\lambda)=ad(Y_{0})Z(\lambda)$ for some $Z(\lambda)\in Z_{\mathfrak{g}}(X(\lambda))$ , and hence

$[X(\lambda), U(\lambda)]=[[X(\lambda), Y_{0}], Z(\lambda)]$

$=[H_{0}, Z(\lambda)]$ .
Since for each $i(1\leqq i\leqq l)$ , $[H_{0}, X_{i}(\lambda)]-n_{i}X_{i}(\lambda)$ is not zero and is contained in
$[Y_{0},\tilde{\mathfrak{g}}]$ , Proposition (2.2) (3) implies that $[H_{0}, Z(\lambda)]$ is not contained in $Z_{\mathfrak{g}}(X(\lambda))$ .
This contradicts the assumption. Hence the claim. Q. E. D.
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\S 3. Main results.

In this section, we shall show that there is a natural bijection between the
centralizer $Z_{\mathfrak{g}}(X(\lambda))$ of $X(\lambda)\in S_{X_{0}}$ and the Lie algebra of the vector fields on
$\mathfrak{h}/W$ logarithmic along the discriminant set of $\mathfrak{h}/W$ .

(3.1) As in \S 1, we regard $\lambda=(\lambda_{1}, \cdots , \lambda_{l})$ as a coordinate system on the
quotient space $S=\mathfrak{h}/W$ of $\mathfrak{h}$ by the Weyl group $W$ . If $f(X)$ is a G-invariant
polynomial on $\mathfrak{g}$ , we put $\tilde{f}(\lambda)=f(X(\lambda))$ for any $X(\lambda)\in S_{X_{0}}$ . Identifying $S_{X_{0}}$ with
$S$ (cf. (1.7)), we regard $\tilde{f}(\lambda)$ as a polynomial on $S$ . In particular $\tilde{D}(\lambda)=D(X(\lambda))$

$=F(\lambda)$ (cf. (1.7)).
(3.2) We denote by $\mathcal{G}_{F}$ the totality of the vector fields $L$ on $S$ with polyno-

mial coefficients such that $LF(\lambda)\in \mathcal{R}F(\lambda)$ . Then the following facts are available
(cf. [12, 11]):

(3.2.1) For each $i(1\leqq i\leqq l)$ , there exists a vector field $L_{i}’\in \mathcal{G}_{F}$ of the form

$L_{i}’=d_{i} \lambda_{i}\frac{\partial}{\partial\lambda_{i}}+\sum_{f=2}^{l}m_{ij}(\lambda)\frac{\partial}{\partial\lambda_{f}}$ ,

where $m_{ij}(\lambda)\in \mathcal{R}$ .
(3.2.2) The Lie algebra $\mathcal{G}_{F}$ is a free $\mathcal{R}$ -module of rank $l$ , spanned by $L_{1}’,$

$\cdots,$
$L_{l}’$

over $\mathcal{R}$ .
(3.3) Let $Z(\lambda)$ be an element of $Z_{\mathfrak{g}}(X(\lambda))$ . Then we associate with $Z(\lambda)$ a

vector field

$L_{Z}= \sum_{i=1}^{l}B(Z(\lambda)X_{i}(\lambda))\frac{\partial}{\partial\lambda_{i}}$

$onS$ . For the sake of simplicity, $weputL_{i}=L_{x_{i}}(1\leqq j\leqq l)$ . Note that B $(X_{0}, Y_{0})L_{1}$

$= \sum_{i=1}^{l}d_{i}\lambda_{i}\frac{\partial}{\partial\lambda_{i}}=E$ (cf. (2.1), (2.2)). One of our objectives is then to show that

$L_{1},$ $\cdots$ , $L_{l}$ span $\mathcal{G}_{F}$ over $\mathcal{R}$ .
THEOREM (3.4). Let $f(X)$ be a $G\triangleleft nvariant$ function on $\mathfrak{g}$ . Then for any

$Z(\lambda)\in Z_{\mathfrak{g}}(X(\lambda))$ , we have

(3.4.1) $\frac{d}{dt}f(X(\lambda)+fZ(\lambda))|_{t=0}=(L_{Z}f)(\lambda)$ .

PROOF. It is easy to show that if $f(X)$ is contained in $C[\mathfrak{g}]^{G}$ , we have

(3.4.2) $\frac{d}{dt}f(X+t[Y, X])|_{t=0}=0$

for any $X,$ $Y\in \mathfrak{g}$ . Then this together with Proposition (2.3) justifies the follow-
ing calculation:

$(L_{Z}f)( \lambda)=\frac{d}{dt}f(X(\lambda)+t\sum_{i=1}^{l}B(Z(\lambda), X_{i}(\lambda))u_{i})|_{t=0}$
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$= \frac{d}{dt}f(X(\grave{\lambda})+f(Z(\lambda)-[X(\lambda), U(\lambda)]))|_{t=0}$

$= \frac{d}{dt}f(X(\lambda)+tZ(\lambda))|_{t=0}$ . Q. E. D.

LEMMA (3.5). For any $Z(\lambda)\in Z_{\mathfrak{g}}(X(\lambda))$ , there exists a Polynomial $C_{Z}(\lambda)\in \mathcal{R}$

such that

(3.5.1) $D(Z(\lambda))=C_{Z}(\lambda)F(\lambda)$ .
PROOF. We recall that $X(\lambda)\in S_{X_{0}}$ is regular semisimple if and only if $F(\lambda)$

$\neq 0$ . Therefore, if $F(\lambda)=0$ , then $X(\lambda)$ is not semisimple and $Z_{\mathfrak{g}}(X(\lambda))$ is not a
Cartan subalgebra of $\mathfrak{g}$ . Since dim $Z_{\mathfrak{g}}(X(\lambda))=l$, this means that not every element
of $Z_{\mathfrak{g}}(X(\lambda))$ is semisimple. Let $Z(\lambda)=Z(\lambda)_{s}+Z(\lambda)_{n}$ be the Jordan decomposition
of $Z(\lambda)(\in Z_{\mathfrak{g}}(X(\lambda)))$ , that is, $Z(\lambda)_{s}$ (resp. $Z(\lambda)_{n}$ ) is the semisimple (resp. nilpotent)

part of $Z(\lambda)$ . Then in this case, $Z(\lambda)_{s}$ is not regular. Since $D(X)$ is G-invariant,
we have $D(Z(\lambda))=D(Z(\lambda)_{s})=0$ . Here we used the following fact: for any $X\in \mathfrak{g}$

and $f\in C[\mathfrak{g}]^{G}$ , $f(X)=f(X_{s})$ ( $X_{s}$ is the semisimple part of $X$ ). We have thus
proved that if $F(\lambda)=0$, then $D(Z(\lambda))=0$ . Since $F(\lambda)$ is a reduced polynomial and
$D(Z(\lambda))$ is also a polynomial, $D(Z(\lambda))$ is divisible by $F(\lambda)$ and the lemma is
established.

(3.6) We are now in a position to state and prove the main theorem.

THEOREM (3.6.1). For any $Z(\lambda)\in Z_{\mathfrak{g}}(X(\lambda))$ , the corresponding vector field $L_{Z}$

is contained in $\mathcal{G}_{F}$ and the map $Z(\lambda)arrow L_{Z}$ is a bijection between $Z_{\mathfrak{g}}(X(\lambda))$ and $\mathcal{G}_{F}$.
In particular, $L_{1},$ $\cdots$ , $L_{l}$ span $\mathcal{G}_{F}$ over $\mathcal{R}$ .

PROOF. For any $Z(\lambda)\in Z_{\mathfrak{g}}(X(\lambda)),$ $X(\lambda)+tZ(\lambda)$ also belongs to $Z_{\mathfrak{g}}(X(\lambda))$ . Then
by use of the notation in Lemma 3.5, $C_{X+tZ}(\lambda)$ is contained in $\mathcal{R}$ and is also a
polynomial of $t$ . Define

$c_{Z}( \lambda)=\frac{d}{dt}C_{X+tZ}(\lambda)|_{t=0}$ .

Then it follows from Lemma (3.5) and Theorem (3.4) that

$(L_{Z}F)( \lambda)=\frac{d}{dt}D(X(\lambda)+tZ(\lambda))|_{\iota=0}$

$= \frac{d}{dt}(C_{X+tZ}(\lambda)F(\lambda))|_{t=0}$

$=c_{Z}(\lambda)F(\lambda)$ .

This readily implies that for any $Z(\lambda)\in Z_{\beta}(X(\lambda)),$ $L_{Z}$ is contained in $\mathcal{G}_{F}$ .
Proposition (2.3) proves that the map $Z(\lambda)arrow L_{Z}$ is bijective. On the other

hand, $L_{i}$ defined in (3.3) can be written in the form
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$L_{i}= \frac{1}{B(X_{0},Y_{0})}d_{i}\lambda_{i}\frac{\partial}{\partial\lambda_{i}}+\sum_{j\Leftarrow 2}^{l}B(X_{i}(\lambda), X_{j}(\lambda))\frac{\partial}{\partial\lambda_{i}}$ $(1\leqq i\leqq l)$

in view of Proposition (2.2), so that $L_{1},$ $\cdots$ , $L_{l}$ span $\mathcal{G}_{F}$ over $\mathcal{R}$ as justified from
(3.2). The theorem is thus proved.

REMARK (3.7). The Lie algebra $\mathcal{G}_{F}$ of vector fields does not depend on the
type of the corresponding simple Lie algebra but only on the associated Weyl
group. Since the Weyl group of type $C_{l}$ is isomorphic to that of type $B_{l}$ , this
remark implies that the Lie algebra of the logarithmic vector fields for the simple
Lie algebra of type $C_{l}$ is isomorphic to one for the simple Lie algebra of type $B_{l}$ .

(3.8) We finally show a connection between the invariant vector fields on $\mathfrak{g}$

under the adjoint action and the logarithmic vector fields $L_{1},$ $\cdots$ , $L_{l}$ defined
above.

Since the map $\phi:G\cross S_{X_{0}}arrow \mathfrak{g}$ defined by $\phi(g, X(\lambda))=Ad(g)(X(\lambda))$ is regular
and its image coincides with $\mathfrak{g}_{r}$ (cf. (1.6)), we can dePne the basis {$M_{1}(X),$ $\cdots$ ,
$M_{l}(X)\}$ of $Z_{\mathfrak{g}}(X)$ for any $X\in \mathfrak{g}_{r}$ in such a way that $M_{i}(Ad(g)(X(\lambda)))=Ad(g)(X_{i}(\lambda))$

$(1\leqq i\leqq l)$ . Noting that $co\dim_{\mathfrak{g}}(\mathfrak{g}-\mathfrak{g}_{r})\geqq 2$ , we conclude that $M_{1}(X),$ $\cdots$ , $M_{l}(X)$ are
uniquely extended to the whole space $\mathfrak{g}$ as holomorphic functions of $X$. In terms
of $M_{i}(X)$ , we introduce the vector Peld $M_{i}$ on $\mathfrak{g}$ by taking the tangent vector
of $M_{i}$ at $X$ as $M_{i}(X)$ . Then the following theorem is a direct consequence of
the definition of $M_{\iota}$ as well as Theorem (3.6.1).

THEOREM (3.8.1). (1) The vector fields $M_{1},$ $\cdots$ , $M_{l}$ are invariant under the
adjoint action and are linearly independent over $C[\mathfrak{g}]$ . Here $C[\mathfrak{g}]$ denotes the
algebra of Polynomials on $\mathfrak{g}$ .

(2) Defining $c_{i}(X)=c_{x_{i}}(P_{1}(X), \cdots , P_{l}(X))$ (cf. the proof of Theorem (3.6.1)),

we have
$M_{i}D(X)=c_{i}(X)D(X)$ $(1\leqq i\leqq l)$ .

\S 4. Supplementary results and concluding remarks.

We here collect miscellaneous remarks, some of which are related with the
results in the main text and some with further outlook.

(4.1) First we note how $M_{1},$ $\cdots$ , $M_{l}$ given by (3.8) are realized in the case
of g=@I(n, $C$). Let us denote by $M_{1}(X),$ $\cdots$ , $M_{l}(X)$ the centralizers of $X\in \mathfrak{g}$

($l=n-1$ in this case). We also define $N_{i}(X)=X^{i}- \frac{1}{n}(trX^{i})I_{n}(1\leqq i\leqq l)$ . If $X$ is

regular, then tbe set $\{N_{1}(X), \cdots , N_{l}(X)\}$ is a basis of $Z_{\mathfrak{g}}(X)$ . It easily follows
from this and (3.8) that there are G-invariant polynomials $p_{ij}(X)$ and $q_{ij}(X)$ such
that

$M_{i}(X)= \sum_{j=1}^{n- 1}p_{ij}(X)N_{j}(X)$ ,
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$N_{i}(X)= \sum_{j=1}^{n- 1}q_{ij}(X)M_{j}(X)$ .

It seems to be interesting to determine the polynomials $p_{ij}(X)$ and $q_{ij}(X)$ , but
this remains unsolved.

(4.2) We here give a remark concerning the system of generators for $C[\mathfrak{h}]^{W}$ .
The subject of [11] was to define uniquely a system of generators for $C[\mathfrak{h}]^{W}$

satisfying an appropriate condition. The condition adopted there is connected
with the theory of the primitive integrals developed by K. Saito (cf. [10]). On
the other hand, if $\lambda_{1},$ $\cdots$ , $\lambda_{l}$ are as in (1.7), then under the identification $S_{X_{0}}\cong \mathfrak{h}/W$ ,
they also form a system of generators for $C[\mathfrak{h}]^{W}$ . We must note here that the
system of generators for $C[\mathfrak{h}]^{W}$ in [10] and the system $\{\lambda_{1}, \cdots , \lambda_{l}\}$ in this paper
are essentially different. But it is interesting to ask whether there is a significant
relation between these two systems of generators. In addition, what kind of the
structure on $\mathfrak{g}$ corresponds to the linear structure on the quotient space $\mathfrak{h}/W$ ?
We should mention that to look for a breakthrough of these problems has been
one of motivations of this study.

(4.3) We give here a comment on the discriminant polynomial $F(\lambda)$ defined
at (1.4). If $F(\lambda)$ is regarded as a polynomial of $\lambda$ , we have

(4.3.1) $F(\lambda)=a_{0}\lambda_{l}^{l}+a_{1}(\lambda’)\lambda_{l}^{l- 1}+\cdots+a_{l}(\lambda’)$ ,

where $\dot{\Lambda}’=(\lambda_{1}, \cdots , \lambda_{l-1})$ and $a_{0}$ is a constant. It was shown in [10] and [11]
(also in [2]) that $a_{0}\neq 0$ . This fact is inevitable in introducing the linear structure
on $\mathfrak{h}/W$ mentioned in (4.2). The proof in [10] and [11] employed an important
property of the eigenvalues of a Coxeter transformation of the Weyl group. We
remark however that the fact $a_{0}\neq 0$ can alternatively be proved in the case of
the Weyl group by use of a result of Kostant [7]:

PROPOSITION (4.3.2). If $\lambda_{l}\neq 0$ , then $F(0, \cdots , 0, \lambda_{l})\neq 0$ .
PROOF. It is shown in [7], by introducing the notion of a cyclic element of

$\mathfrak{g}$ , that an element $X$ of $\mathfrak{g}$ is cyclic if and only if $P_{i}(X)=0(1\leqq i\leqq l-1)$ and
$P_{l}(X)\neq 0$ . Here $P_{1},$ $\cdots$ , $P_{l}$ are the fundamental invariant polynomials on $\mathfrak{g}$ (cf.

(1.3)). Then, by dePnition, $X(O, -- , 0, \lambda_{l})$ is cyclic. On the other hand, if $X$

is cyclic, then $X$ is regular semisimple and in particular $D(X)\neq 0$ (cf. [7]).

Therefore $F(0, \cdots , 0, \lambda_{l})=D(X(0, \cdots , 0, \lambda_{l}))\neq 0$ . Q. E. D.
(4.4) Finally a possible interpretation of Theorems (3.6.1) and (3.8.1) is added.

In his famous study on invariant eigendistributions, Harish-Chandra [5] established
a method of separation of variables on differential operators on an open subset
of $\mathfrak{g}$ . To explain briefly the idea in [5], let $X$ be a general nilpotent element of

$\mathfrak{g}$ and let $S_{X}$ be a transversal slice at $X$ of the G-orbit of $X$. Then for any
differential operator $P(X, \partial_{X})$ on an open subset $\Omega$ of $\mathfrak{g}$ containing $X$, we obtain
a certain differential operator on $s_{X}\cap\Omega$ , which is called the radial component of
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$P(X, \partial_{X})$ . In particular, Harish-Chandra obtained an explicit expression of the
radial component of the Euler operator on $\mathfrak{g}$ . One thing we should like to stress

here is that since $X_{1}( \lambda)=\frac{1}{B(X_{0},Y_{0})}X(\lambda),$ $B(X_{0}, Y_{0})M_{1}$ is nothing but the Euler

operator. Then using the notion of the radial component, we are led to restate
Theorem (3.6.1) (and (3.8.1)) as follows.

(4.4.1) Let $X_{0}$ be regular nilpotent with $S_{X_{0}}$ the transversal slice defined in
(1.6). Then the logarithmic vector fields $L_{1},$ $\cdots$ , $L_{l}$ in (3.3) are the radial com-
ponents on $S_{X_{0}}$ of the G-invariant vector Pelds $M_{1},$ $\cdots$ , $M_{l}$ in (3.8).

It should be noted that the radial components $L_{1},$ $\cdots$ , $L_{l}$ here are just the
one we termed the restriction of the vector fields at the beginning of the In-
troduction.
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