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Some results on weakly normal ring extensions
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The purpose of this paper is to give some results on weakly normal ring
extensions which correspond to those on seminormal ring extensions obtained by
several authors in [4], [7], [10], [12] and [13]. In the paper [8] M. Manresi
gave a new characterization of weak normalization and discussed some questions
related closely to our results. But our method depends on a criterion for weak
normality which was given by S. Itoh in [6] and corresponds to Hamann’s
criterion for seminormality given in [5] and [7].

In \S 1 we shall give a simple proof of this criterion different from the proof
given in [6] for convenience’ sake and also give a new characterization of weak
normalization in the case where the characteristic of rings is a positive prime
number. In \S 2 we show first faithfully flat descent of weak normality which
is a special case of pull-back descent of the property. Then we discuss local
properties of weak normality. Furthermore we give some conditions for faith-
fully flat ring extensions to be weakly normal. These results are all given
without any noetherian hypothesis. In the last section we generalize the notions
of glueings of prime ideals or primary ideals which were defined in [12] and
[11], and we show some basic results on these generalized glueings. In partic-
ular we give the notion of a weak glueing of a ring which plays a role for
weakly normal ring extensions similar to the one played by ordinary glueings
of prime ideals for seminormal ring extensions and show a structure theorem
for weak normal ring extensions of noetherian rings corresponding to Theorem
2.1 in [12] for seminormal cases. Lastly we show results related to the going-
down of Serre’s property $(S_{2})$ under generalized glueings of rings corresponding
to Theorem 2 and its Corollary in [13].

All the rings in this paper are commutative with unit and we use freely the
terminology and results in [9].

This work was partially suPported by Grant-in-Aid for Scientific Research (No.
5740083) , Ministry of Education.
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\S 1. Weakly normal rings.

Let $B$ be a ring and $A$ a subring of $B$ such that $B$ is integral over $A$ .
We recall the seminormalization $B+A$ and the weak normalization $B*A$ of $A$ in $B$

are defined as follows:

$B+A=$ { $b\in B|b/1\in A_{\mathfrak{p}}+R(B_{\mathfrak{p}})$ for any $\mathfrak{p}\in Spec(A)$ }

$B*A=\{b\in B|$ for any $\mathfrak{p}\in Spec(A)$ , there is an integer
$n$ such that $(b/1)^{e^{n}}\in A_{\mathfrak{p}}+R(B_{\mathfrak{p}})$ }

where $R(B_{\mathfrak{p}})$ is the Jacobson radical of $B_{\mathfrak{p}}$ and $e$ is the characteristic exponent
of the quotient field $k(\mathfrak{p})$ of $A/\mathfrak{p}$ .

If $A=_{B}+A$ (resp. $B*A$), then we say that $A$ is seminormal (resp. weakly normal)

in $B$ .
Let $A$ and $B$ be as above, and let $e$ and $f$ be positive integers satisfying

$e>f>1$ . Then we say that $A$ is $(e, f)$-closed in $B$ , if the following is satisfied:
Any element $b$ in $B$ such that $b^{e}$ and $b^{f}$ are contained in $A$ belongs to $A$ . Simi-
larly $A$ is called n-closed in $B$ for a positive integer $n$ if any element $b$ in $B$

such that $b^{n}$ is in $A$ belongs to $A$ . Then the following result is originally due
to E. Hamann [5].

THEOREM. Let $A$ and $B$ be as above. Then the following are equivalent:
(i) $A$ is seminormal in $B$ .
(ii) For each $b$ in $B$ , the conductor of $A$ in $A[b]$ is a radical ideal of $A[b]$ .
(iii) $A$ is $(n, n+1)$-closed in $B$ for some $n$ .
(iv) $A$ is $(e, f)$ -closed in $B$ for a fixed pair of relatively prime integers $e$

and $f$.
For the proof, see Leahy and Vitulli [7].

Now we give a result for weakly normal rings corresponding to the above.
First the author obtained the result in the case where $A$ contains a field of
positive characteristic, and then S. Itoh proved it in a general case.

THEOREM 1. Let $A$ and $B$ be as above. Then the following are equivalent:
(i) $A$ is weakly normal in $B$ .
(ii) $A$ is seminormal in $B$ , and every element $b$ in $B$ which satisfies $b^{p}\in A$

and $pb\in A$ for some prime integer $p$ belongs to $A$ .
PROOF. Assume that $A$ is weakly normal in $B$ . Then it is clear that $A$ is

seminormal in $B$ by definition. Let $b$ be an element of $B$ such that $b^{p}\in A$ and
$pb\in A$ for some prime $p$ . Let $\mathfrak{p}$ be any prime ideal of $A$ . If char $(k(\mathfrak{p}))\neq p$ ,
then $b/1$ is contained in $A_{\mathfrak{p}}$ because $pb\in A$ . If char $(k(\mathfrak{p}))=p$ , then $b/1$ is con-
tained in $A_{\mathfrak{p}}$ by the fact $A=_{B}*A$ . This means that $b$ belongs to $A$ . Therefore
the assertion (ii) is satisfied. Conversely assume that the assertion (ii) is satisfied.
If $A$ is not weakly normal in $B$ , then there is an element $b$ of \S A not belonging
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to $A$ . Since $A$ is seminormal in $B$ , the conductor ideal $\mathfrak{c}=A:_{A}A[b]=\{x\in A|$

$xA[b]\subset A\}$ is a radical ideal of $C=A[b]$ by the above theorem. If $\mathfrak{p}$ is a
minimal prime divisor of $\mathfrak{c}$ in $A$ , then we have $\mathfrak{p}A_{S}=\mathfrak{c}_{S}$ , where $S=A-\mathfrak{p}$ . Since
$C$ is a finite A-module, we have $A_{S}:_{A_{S}}C_{S}=\mathfrak{c}_{S}$ . On the other hand $\mathfrak{p}A_{S}=\mathfrak{c}_{S}$

coincides with the Jacobson radical $R(C_{S})$ of $C_{S}$ , because $c_{S}$ is a radical ideal of
$C_{S}$ . Moreover $(_{B}^{*}A_{S})$ is a quasi-local ring whose residue field with respect to the
maximal ideal is a purely inseparable extension of $k(\mathfrak{p})$ (cf. Bombieri [1]). This
means that $C_{S}$ is a quasi-local ring with maximal ideal $\mathfrak{p}A_{S}=c_{S}$ and that the
residue field $\kappa=C_{S}/\mathfrak{c}_{S}$ is purely inseparable over $k(\mathfrak{p})$ . Now if $\kappa\supsetneqq k(\mathfrak{p})$ , then
char $(k(\mathfrak{p}))=p$ is positive and there are an element $y$ in $C$ and an element $s$ in
$S$ such that $y/s\not\in A_{S}$ and $(y/s)^{p}\in A_{s}+\mathfrak{c}_{S}=A_{S}$ . Then $p\cdot 1$ is an element of $\mathfrak{p}$

and hence $p(y/s)$ is contained in $\mathfrak{c}_{S}$ . Therefore we see easily that $(iy)^{p}$ and
$p(ty)$ are contained in $A$ for some element $t$ in $S$ . Then $ty$ is an element of $A$

by our assumption, and hence $y/s$ is contained in $A_{S}$ . This is a contradiction.
Therefore we see $\kappa=k(\mathfrak{p})$ and so $A_{S}+\mathfrak{p}A_{S}=A_{S}+\mathfrak{c}_{S}=C_{S}$ . Then we have $A_{S}=C_{S}$

by Nakayama’s Lemma. But this contradicts the fact that $A_{S}:_{A_{S}}C_{S}=\mathfrak{p}A_{S}\neq A_{S}$ .
Therefore $B*A$ must be A. $q.e.d$ .

COROLLARY. Let $A$ and $B$ be as above and assume that $A$ contains a field
of positive characteristic $p$ . Then $A$ is weakly normal in $B$ if and only if $A$ is
$p$-closed in $B$ .

PROOF. The “only if” part is a direct consequence of Theorem 1. Con-
versely if $A$ is $p$-closed in $B$ , it is easy to see that $A$ is $(2, 3)$-closed in $B$ , and
hence $A$ is seminormal in $B$ . Since we have $px=0$ for any element $x$ in $B,$ $A$

is weakly normal in $B$ by Theorem 1. $q$ . $e$ . $d$ .
REMARK 1. Let $A$ and $B$ be as above. Then it is well known and easily

seen that the weak normalization $B*A$ of $A$ in $B$ is the largest subring $C$ of $B$

containing $A$ which satisfies the following condition:

For every prjme ideal $\mathfrak{p}$ of $A$ there exzsts only one prjme ideal
$(*)$ $\mathfrak{P}$ of $C$ lying over $\mathfrak{p}$ , and the natural field extension between the

quotient fields of $A/\mathfrak{p}$ and $C/\mathfrak{P}$ is purely inseparable.

Now, moreover, assume that $A$ contains a field of positive characteristic $p$ .
Then $B*A$ is equal to the set $D$ of the elements $x$ of $B$ such that there exists a
positive integer $e$ satisfying $x^{p^{e}}\in A$ . In fact $D$ is a $p$-closed subring of $B$ and
hence $D$ is weakly normal in $B$ by the above corollary to Theorem 1. On the
other hand it is easy to see that $D$ is contained in $B*A$ by definition. This means
from the above characterization of $B*A$ that $D$ must be $B*A$ .
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\S 2. Faithfully flat descent and local properties.

The purpose of this section is to give some basic properties for weak nor-
mality of ring extensions by using Theorem 1.

PROPOSITION 1. Let the following diagram be a pull-back diagram of com-
mutative rings:

$Aarrow B$

$f\downarrow$ $\downarrow g$

$A’arrow B’$

If $A’$ is weakly normal in $B’$ , then so is $A$ in $B$ .
PROOF. Let $x$ be an element of $B$ such that $x^{2}$ and $x^{3}$ are contained in $A$

and put $y=g(x)$ . Then we see that $y^{2}$ and $y^{3}$ belong to $A’$ , and hence $y$ is an
element of $A’$ by Hamann’s criterion (cf. Prop. 1.4 in [7]). This means that $x$

belongs to $A$ by the pull-back property of the given diagram. Therefore $A$ is
seminormal in $B$ . Similarly if $x$ is an element of $B$ such that $x^{p}$ and $px$ are
contained in $A$ for some prime integer $p$ , we see that $g(x)^{p}$ and $Pg(x)$ belong
to $A’$ and hence that $g(x)$ is contained in $A’$ by Theorem 1. This means that
$x$ is contained in $A$ . Therefore $A$ is weakly normal in $B$ by Theorem 1. $q.e.d$ .

COROLLARY. Let $B$ be a ring and $A$ a subring of $B$ over which $B$ is integral.
Let $f:Aarrow A’$ be a faithfully flat ring homomorphism. If $A’$ is weakly normal
in $B’=A’\otimes_{A}B$ , then so is $A$ in $B$ .

PROOF. It is enough to show the following diagram

$Aarrow B$

$f\downarrow$ $\downarrow g=1_{B}\otimes f$

$A’arrow B’=B\otimes_{A}A’$

is a pull-back diagram. By Proposition 8 in Chapter 1, \S 3 of [2], the following
composite $h$ of homomorphisms is injective:

$h$ : $B/Aarrow(B/A)\otimes_{A}A’arrow^{\sim}B\otimes_{A}A’/A\otimes_{A}A’=B’/A’$

From this fact we see easily that $A$ is equal to $g^{-1}(A’)$ and hence that the above
diagram is a pull-back diagram. $q$ . $e.d$ .

PROPOSITION 2. Let $B$ be a ring and $A$ a subring of $B$ over which $B$ is
integral. Let $S$ be a multipljcatjvely closed subset of A. If $A$ is weakly normal
in $B$ , then so is As in $B_{S}$ .

PROOF. If $x/s$ is an element of $B$ with $x\in B$ and $s\in S$ such that $(x/s)^{p}$

and $p(x/s)$ are contained in $A_{S}$ for some prime integer $p$ , then there are ele-
ments $t$ and $t’$ in $S$ satisfying $tx^{p}\in A$ and $pt’x\in A$ . Therefore $(tt’x)^{p}$ and $p(tt’x)$

are contained in $A$ , and hence $tt’x$ belongs to $A$ by Theorem 1. This means
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that $x/s$ is an element of $A_{S}$ . Similarly we can see easily that the $(2, 3)$-closed-
ness of $A_{S}$ in $B_{s}$ follows from the $(2, 3)$-closedness of $A$ in $B$ . Therefore $A_{S}$

is weakly normal in $B_{S}$ by Theorem 1 and Hamann’s criterion for seminormality
quoted as Theorem in the beginning of \S 1. $q.e.d$ .

COROLLARY. Let $A,$ $B$ and $S$ be as above. If $C$ is the weak normalization
of $A$ in $B$ , then $C_{S}$ is that of As in $B_{S}$ .

PROOF. Let $D$ be the weak normalization of $A_{S}$ in $B_{S}$ . Then $D$ and $C_{S}$

are subrings of $B_{S}$ containing $A_{S}$ which satisfy the condition $(*)$ in the remark
of \S 1. Moreover $D$ is the largest subring among such subrings by the remark.
Therefore $C_{S}$ is a subring of $D$ . On the other hand $C_{S}$ is weakly normal in $B_{S}$

by Proposition 2. This means that $C_{s}$ coincides with $D$ by the same remark.
$q.e.d$ .

THEOREM 2. Let $B$ be a ring and $A$ a subring of $B$ over which $B$ is inte-
gral. Then the following are equivalent:

(i) $A$ is weakly normal in $B$ .
(ii) $A_{\mathfrak{p}}$ is weakly normal in $B_{\mathfrak{p}}$ for any prjme ideal $\mathfrak{p}$ of $A$ .
(iii) $A_{\mathfrak{m}}$ is weakly normal in $B_{\mathfrak{m}}$ for any maximal ideal $\mathfrak{m}$ of $A$ .
(iv) $A_{\mathfrak{p}}$ is weakly normal in $B_{\mathfrak{p}}$ for any prime ideal $\mathfrak{p}$ in $Ass_{A}(B/A)$ .
PROOF. The assertion (ii) follows from (i) by Proposition 2, and the asser-

tions (iii) and (iv) are trivial consequences of (ii). Now let $C$ be the weak
normalization $B*A$ of $A$ in $B$ . Then $C_{\mathfrak{p}}$ is the weak normalization of $A_{\mathfrak{p}}$ in $B_{\mathfrak{p}}$

for any prime ideal $\mathfrak{p}$ of $A$ by Corollary to Proposition 2. Therefore if the
assertion (iii) is true, then $C_{\mathfrak{m}}$ is equal to $A_{\mathfrak{m}}$ for any maximal ideal $\mathfrak{m}$ of $A$ .
This means that $A$ is equal to $C$, and hence the assertion (i) is true. Similarly
assume that the assertion (iv) is true. If $C$ is not equal to $A$ , let $\mathfrak{p}$ be a prime
ideal in $Ass_{A}(C/A)$ . Then $\mathfrak{p}A_{\mathfrak{p}}$ is an element of $Ass_{A_{\mathfrak{p}}}(C_{\mathfrak{p}}/A_{\mathfrak{p}})$ . On the other
hand $\mathfrak{p}$ is contained in $Ass_{A}(B/A)$ and hence we have $C_{\mathfrak{p}}=A_{\mathfrak{p}}$ . This is a con-
tradiction. Therefore $A$ coincides with C. $q.e.d$ .

COROLLARY. Let $A$ and $B$ be as above. Then $A$ is weakly normal in $B$ , if
the following are satisfied;

(i) $A_{\mathfrak{p}}$ is seminormal in $B_{\mathfrak{p}}$ for any prime ideal $\mathfrak{p}$ of $A$ such that the charac-
teristic of $A/\mathfrak{p}$ is zero.

(ii) $A_{\mathfrak{p}}$ is p-clOsed in $B_{\mathfrak{p}}$ for any prime ideal $\mathfrak{p}$ of $A$ such that the charac-
teristic of $A/\mathfrak{p}$ is $p>0$ .

PROOF. Let $\mathfrak{p}$ be a prime ideal of $A$ such that the characteristic of $A/\mathfrak{p}$ is
zero. Then if $\mathfrak{p}’$ is a prime ideal of $A$ contained in $\mathfrak{p}$ , the characteristic of $A/\mathfrak{p}’$

is also zero. Therefore the weak normalization of $A_{\mathfrak{p}}$ in $B_{\mathfrak{p}}$ coincides with the
seminormalization of $A_{\mathfrak{p}}$ in $B_{\mathfrak{p}}$ by the definition. This means by our assumption
(i) that $A_{\mathfrak{p}}$ is weakly normal in $B_{\mathfrak{p}}$ for such a prime ideal of $A$ . On the other
hand let $\mathfrak{p}$ be a prime ideal of $A$ such that the characteristic of $A/\mathfrak{p}$ is $p>0$ .
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Since $A_{\mathfrak{p}}$ is $p$-closed in $B_{\mathfrak{p}},$ $A_{\mathfrak{p}}$ is $(2, 3)$-closed in $B_{\mathfrak{p}}$ and hence seminormal in $B_{\mathfrak{p}}$

by Hamann’s criterion (cf. Theorem in \S 1). Moreover the condition (ii) in
Theorem 1 is clearly satisfied. Therefore $A_{\mathfrak{p}}$ is weakly normal in $B_{\mathfrak{p}}$ by Theo-
rem 1. In conclusion $A$ and $B$ satisfy the assertion (ii) in Theorem 2 and hence
$A$ is weakly normal in B. $q$ . $e$ . $d$ .

REMARK 2. The converse of the above corollary to Theorem 2 is not true.
For example let $B$ be the polynomial ring $Z[X]$ of a variable $X$ over the ring
$Z$ of rational integers and $A$ the subring $Z[X^{p}]$ of $B$ where $p$ is a prime inte-
ger. Denoting the zero ideal of $A$ by $\mathfrak{p}_{0}$ , we see that $A_{\mathfrak{p}_{0}}$ is equal to the rational
function field $Q(X^{P})$ of $X^{P}$ over the field $Q$ of rational numbers. Therefore we
have $B*A\subset Q(X^{p})\cap B=Z[X^{p}]=A$ by the definition of $B*A$ . This means that $A$

is weakly normal in $B$ . On the other hand if $\mathfrak{p}$ is the prime ideal of $A$ generated
by the prime integer $p$ , then the characteristic of $A/\mathfrak{p}$ is $p$ and we see easily
that $A_{\mathfrak{p}}$ is not $p$-closed in $B_{\mathfrak{p}}$ . Therefore the condition (ii) of Corollary to Theo-
rem 2 is not satisfied.

Next we give results on the weak normality of faithfully flat ring extensions.
For this purpose we need the following

PROPOSITION 3. Let $B$ be a ring and $A$ a subring of $B$ over which $B$ is
integral. Then the following are equivalent:

(i) $A$ is weakly normal in $B$ .
(ii) $A$ contains the nilra&cal nil $(B)$ of $B$ and $A_{red}$ is weakly normal in $B_{red}$ .
(iii) $A/\mathfrak{b}$ is weakly normal in $B/\mathfrak{b}$ for some ideal $\mathfrak{b}$ of $B$ contained in $A$ .
(iv) $A/\mathfrak{b}$ is weakly normal in $B/\mathfrak{b}$ for any ideal $\mathfrak{b}$ of $B$ contained in $A$ .
PROOF. First assume that $A$ is weakly normal in $B$ . Let $\mathfrak{b}$ be any ideal of

$B$ contained in $A$ . If $x$ is an element of $B$ such that the image $\overline{x}$ of $x$ in $B/\mathfrak{b}$

satisfies $\overline{x}^{2}\in A/\mathfrak{b}$ and $\overline{x}^{3}\in A/\mathfrak{b}$ . Then $x^{2}$ and $x^{3}$ are contained in $A+\mathfrak{b}=A$ and
hence $x$ is an element of $A$ by Theorem 1. Therefore $\overline{x}$ belongs to $A/\mathfrak{b}$ . Simi-
larly if $\overline{x}^{p}$ and $p\overline{x}$ are contained in $A/\mathfrak{b}$ for some prime integer $p$ , we can see
easily that $\overline{x}$ belongs to $A/\mathfrak{b}$ . Therefore $A/\mathfrak{b}$ is weakly normal in $B/\mathfrak{b}$ by Theo-
rem 1. Conversely assume that $A/\mathfrak{b}$ is weakly normal in $B/\mathfrak{b}$ for some ideal $\mathfrak{b}$

of $B$ contained in $A$ . Then we can see easily that the $(2, 3)$-closedness of $A$ in
$B$ follows from that of $A/\mathfrak{b}$ in $B/\mathfrak{b}$ and that the condition (ii) in Theorem 1 for
$A$ and $B$ follows from that for $A/\mathfrak{b}$ and $B/\mathfrak{b}$ . This means by Theorem 1 that
$A$ is weakly normal in $B$ . Therefore the assertions (i), (iii) and (iv) are equiv-
alent to each other, and (i) follows from (ii). Now assume that $A$ is weakly
normal in $B$ , and let $x$ be a nilpotent element of $B$ . Then $x/1$ is contained in
$A_{\mathfrak{p}}+R(B_{\mathfrak{p}})$ for any prime ideal $\mathfrak{p}$ of $A$ . Therefore $x$ belongs to $B*A=A$ . There-
fore nil $(B)$ is contained in $A$ and hence (ii) is true by the equivalence between
(i) and (iv). $q.e.d$ .

REMARK 3. It is clear that Proposition 3 holds if we replace “weakly normal”
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with “seminormal”.
PROPOSITION 4. Let $B$ be a ring and $A$ a subring of $B$ over which $B$ is

integral and flat. Assume that $A$ has a finite number of minimal prime ideals
and contains nil $(B)$ . Then $A$ is seminormal in B. Moreover $A$ is weakly normal
in $B$ if and only if $A_{\mathfrak{p}}$ is weakly normal in $B_{\mathfrak{p}}$ for any minimal prime ideal $\mathfrak{p}$

of $A$ .
PROOF. By our assumption, the ideal nil $(B)$ is an ideal of $A$ and hence

$B_{red}=B/ni1(B)=B\otimes_{A}(A/ni1(B))$ is flat and integral over $A_{red}=A\otimes_{A}(A/ni1(B))$ .
Therefore by Proposition 3 and Remark 3 we may assume that $B$ is reduced.
Let $K$ and $L$ be the total quotient rings of $A$ and $B$ , respectively. Since $B$ is
flat over $A$ , any element of $A$ which is not a zero divisor in $A$ is also not a
zero divisor in $B$ . Therefore we may consider $K$ as a subring of $L$ . Since $B$

is flat and integral over $A,$ $B$ is faithfully flat over $A$ by Chapter 1, \S 3, Prop-
osition 9 in [2], and hence we have $aB\cap A=aA$ for any element $a$ in $A$ by
Proposition 19, ibid. From this fact we see easily that the following commuta-
tive diagram of subrings of $L$ is a pull-back diagram:

$Aarrow B$

$K=A_{S}\downarrowarrow B_{S}\downarrow$

where $S$ is the set of non-zero divisors in $A$ . Since $K$ has only a finite number
of minimal prime ideals corresponding to those of $A,$ $K$ is a direct product of a
finite number of fields. In particular $K$ has Krull dimension $0$ . Moreover the
localization of $K$ with respect to any prime ideal of $K$ is equal to $A_{\mathfrak{p}}$ for some
minimal prime ideal $\mathfrak{p}$ of $A$ . Therefore if $A_{\mathfrak{p}}$ is weakly normal in $B_{\mathfrak{p}}$ for any
minimal prime ideal $\mathfrak{p}$ of $A$ , then $K=A_{S}$ is weakly normal in $B_{S}$ by Theorem 2.
This means that $A$ is weakly normal in $B$ by Proposition 1. The converse is a
direct consequence of Theorem 2. On the other hand $A_{\mathfrak{p}}$ is a field for any
minimal prime ideal $\mathfrak{p}$ of $A$ , because $A$ is reduced. Therefore $A_{\mathfrak{p}}$ is seminormal
in $B_{\mathfrak{p}}$ for such a prime ideal $\mathfrak{p}$ and hence $K=A_{S}$ is seminormal in $B_{S}$ by an
argument similar to the above and by using Proposition 1.7 in [7] instead of
Theorem 2. Therefore $A$ is seminormal in $B$ as is seen in the proof of Prop-
osition 1. $q.e.d$ .

COROLLARY. Let $B$ be a ring and $A$ a subring of $B$ over which $B$ is flat
and of finite Presentation as an A-module. Assume that $A$ has a finite number of
minimal Prime ideals and contains nil $(B)$ . If $A$ contains the ring $Z$ of rational
integers and any non-zero element of $Z$ is not a zero-&visor in $A$ , then $A$ is weakly
normal in $B$ .

PROOF. If $\mathfrak{m}$ is any maximal ideal of $A$ , then $B_{\mathfrak{m}}$ is flat and of finite pres-
entation over $A_{\mathfrak{m}}$ . This means that $B_{\mathfrak{m}}$ is free over $A_{\mathfrak{m}}$ by Chapter II, \S 3,
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Corollary 2 to Proposition 5 in [2], because $A_{r\mathfrak{n}}$ is a quasi-local ring. Moreover
there is a free basis $\{b_{1}=1, b_{2}, \cdots b_{n}\}$ of $B_{\mathfrak{m}}$ over $A_{\mathfrak{m}}$ by Proposition 5, ibid. If
$x=a_{1}b_{1}+\cdots+a_{n}b_{n}$ is an element of $B_{\mathfrak{m}}$ with $a_{i}\in A_{\mathfrak{m}}$ for $i=1,$ $\cdots$ , $n$ such that
$x^{p}$ and $px$ are contained in $A_{\mathfrak{m}}$ for some prime number $p$ , then we see $pa_{i}=0$

for $i\geqq 2$ . This means that we have $a_{i}=0$ for $i\geqq 2$ and have $x=a_{1}b_{1}=a_{1}$ is an
element of $A_{\mathfrak{m}}$ . On the other hand $A$ is seminormal in $B$ by Proposition 4, and
hence $A_{\mathfrak{m}}$ is seminormal in $B_{\mathfrak{m}}$ as is seen in the proof of Proposition 2. There-
fore $A_{\mathfrak{m}}$ is weakly normal in $B_{\mathfrak{m}}$ by Theorem 1, and so $A$ is weakly normal in
$B$ by Theorem 2. $q$ . $e$ . $d$ .

\S 3. Generalized glueings of rings.

Let $B$ be a ring and $A$ a subring of $B$ such that $B$ is a Pnite A-module.
Let $\mathfrak{p}$ be a prime ideal of $A$ and let $\mathfrak{p}_{1},$

$\cdots$ , $\mathfrak{p}_{n}$ be the prime ideals of $B$ lying
over $\mathfrak{p}$ . Moreover let $q_{i}$ be a $\mathfrak{p}_{i}$-primary ideal of $B$ containing $\mathfrak{p}B$ for $i=1,$ $\cdots,$

$n$ .
Then we see easily $q_{i}\cap A=\mathfrak{p}$ for each $i$ . We denote by $k(\mathfrak{p})$ the quotient field
$Q(A/\mathfrak{p})$ of $A/\mathfrak{p}$ and by $Q_{i}$ the total quotient ring $Q(B/q_{i})$ of $B/q_{i}$ for each $i$ .

LEMMA 1. If $S=A/\mathfrak{p}-\{0\}$ , then the canonical image in $B/q_{i}$ of any element
of $S$ is not a zero-divisor of $B/q_{i}$ .

PROOF. If $s$ is a representative in $A$ of an element $\overline{s}$ of $S$ , then $s$ is not
contained in $\mathfrak{p}$ and hence not in $\mathfrak{p}_{i}$ . If $b$ is an element of $B$ such that the class
$\overline{b}$ of $b$ in $B/q_{i}$ satisfies $\overline{bs}=0$ , then we see that $bs$ is contained in $q_{i}$ . This means
that $b$ is an element of $q_{i}$ since $s$ is not contained in $\mathfrak{p}_{i}$ . Therefore $\overline{s}$ is not a
zero-divisor of $B/\mathfrak{q}_{i}$ . $q.e.d$ .

By Lemma 1 we have a canonical injection $j_{i}$ of $k(\mathfrak{p})$ into $Q_{i}$ for each $i=$

$1,$ $\cdots$ , $n$ and hence a ring homomorphism $f$ of $k(\mathfrak{p})$ into $Q= \prod_{i=1}^{n}Q_{i}$ such that the

composition of $f$ and the canonical projection $\rho_{i}$ of $Q$ to $Q_{i}$ is $j_{i}$ for each $i$ .
Since $f$ is injective, we may assume that $k(\mathfrak{p})$ is a subPeld of $Q$ . Let $K$ be a
subfield of $Q$ containing $k(\mathfrak{p})$ and define a ring $D$ by the following pull-back
diagram of commutative rings:

$i$

$Darrow B$

$j\downarrow$ $\downarrow g$

$Karrow Qh$

where $g$ is the composite of canonical homomorphisms $B arrow\prod_{i=1}^{n}B/q_{i}arrow Q=\prod_{i=1}^{n}Q_{i}$

and $h$ is the inclusion. Then $i$ is an injection and $i(D)$ is the set of elements $b$

of $B$ satisfying $g(b)\in K$. In particular $i(D)$ contains $A$ , since $A/\mathfrak{p}$ is a subring
of $K$. We call $D$ the ring obtained from $(B;q_{1}, \cdots , q_{n})$ by glueing over $K$ or
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simply the glueing of $q_{1},$
$\cdots$

$q_{n}$ over $K$. In the following we identify $D$ with
$i(D)$ .

PROPOSITION 5. If the notations are as above, then we have the following:

(i) $\mathfrak{p}’=\bigcap_{s=1}^{n}q_{s}$ is a prime ideal of $D$ .
(ii) $q_{t}\cap D=\mathfrak{p}’$ for any $t=1,$ $\cdots$ , $n$ .
(iii) $\mathfrak{p}’$ is the unique prime ideal of $D$ lying over $\mathfrak{p}$ .
(iv) The quotient field $k(\mathfrak{p}’)$ of $D/\mathfrak{p}’$ is naturally isomorphic to $K,$ $i.e.$ , the

quotient field of the image $gi(D)$ of $D$ in $Q$ is equal to $K=h(K)$ .
PROOF. Since $h$ is an injection, we see that $\mathfrak{p}’=\bigcap_{s=1}^{n}q_{s}$ is equal to ker $g=$

ker $g\cap D=kergi=kerhj=kerj$ . This shows that $\mathfrak{p}’$ is a prime ideal of $D$ , be-
cause $K$ is a field. Therefore the assertion (i) is true. Now if $b$ is an element
of $q_{t}\cap D$ , then we have $\pi_{t}(b)=0$ , where $\pi_{t}$ ; $Barrow B/q_{t}$ is the canonical homomor-

phism. Since $gi(b)$ is contained in the subfield $K=h(K)$ of $Q= \prod_{s=1}^{n}Q_{s}$ , we see
easily that $gi(b)=0$ if and only if any component of $gi(b)$ in the direct product

$\prod_{S=1}^{n}Q_{s}$ is zero. This means that $\rho_{s}gi(b)=0$ follows from $\rho_{t}gi(b)=\pi_{t}(b)=0$ for

each $s=1,$ $\cdots$ $n$ . Therefore $\mathfrak{p}’=kerg\cap D$ is equal to $D\cap q_{t}$ . Next if $\mathfrak{p}^{n}$ is a
prime ideal of $D$ lying over $\mathfrak{p}$ , then we see $\mathfrak{p}_{s}\cap D=\mathfrak{p}’’$ for some $s$ and hence
$\mathfrak{p}’’\supset \mathfrak{q}_{s}\cap D=\mathfrak{p}’$ . Since $\mathfrak{p}’$ is clearly lying over $\mathfrak{p}$ and $D$ is integral over $A$ , we
see $\mathfrak{p}’=\mathfrak{p}’’$ . Therefore $\mathfrak{p}’$ is the unique prime ideal of $D$ lying over $\mathfrak{p}$ . To show

the assertion (iv) we remark that $Q$ is obtained from $B/ \bigcap_{1arrow 1}^{n}q_{s}$ by the localization

with respect to $S=A/\mathfrak{p}-\{0\}$ , where we identify $S$ with a subset of $B/ \bigcap_{s=1}^{n}q_{s}$ .

Therefore if $x$ is an element of $K$, then there are elements $b$ in $B$ and $s$ in
$A-\mathfrak{p}$ such that $x=\overline{b}/\overline{s}$ where $\overline{b}$ and $\overline{s}$ are the classes of $b$ and $s$ in $B/ \bigcap_{s=1}^{n}q_{s}$ and
$A/\mathfrak{p}$ , respectively. Then it is easy to see that $b$ is an element of $D$ by the
definition of $D$ and hence that $K=h(K)$ is contained in the quotient field of
$gi(D)$ . The inverse inclusion is obvious. $q.e.d$ .

COROLLARY. Let the notations be as above, and let $D’$ be a subring of $B$

containing A. If the image $g(D’)$ of $D’$ in $Q$ is contained in $K$, then $D’$ is a

subring of $D$ and $D’ \cap(\bigcap_{s=1}^{n}q_{s})$ is the unique Prime ideal of $D’$ lying over $\mathfrak{p}$ . In

particular $D$ is the largest ring among subrings $D’$ of $B$ satisfying $g(D’)\subset K$.
PROOF. Since $g(D)$ is a subring of $K$, the kernel $D’ \cap(\bigcap_{s=1}^{n}q_{s})$ of the com-

posite of $g$ and the inclusion $D’c_{arrow}B$ is a prime ideal of $D’$ and $D’$ is a subring
of $D$ by the definition of $D$ . If $\mathfrak{P}$ is a prime ideal of $D’$ lying over $\mathfrak{p}$ , then
there is a prime ideal $\mathfrak{p}’’$ of $D$ lying over $\mathfrak{P}$ . This means that $\mathfrak{p}’’$ is lying over
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$P$ and hence that $\mathfrak{p}^{\chi}$ coincides with $\mathfrak{p}’=\bigcap_{s=1}^{n}q_{s}$ . Therefore we see that $D’ \cap(\bigcap_{s=1}^{n}q_{s})$

is the unique prime ideal of $D’$ lying over $\mathfrak{p}$ . $q.e.d$ .
Next we shall show a structure theorem for weakly normal ring extensions,

which corresponds to Theorem 2.1 in [11] for seminormal ring extensions. For
this purpose it is necessary to show some lemmas.

LEMMA 2. Let $k$ be a field of posrtive characteristic $p$ , and let $R$ be a com-
mutative k-algebra of finite k-rank. Then we have the following:

(i) There exists a subalgebra $R_{0}$ of $R$ such that $R$ is the &rect sum of $R_{0}$

and the nilradical nil $(R)$ of $R$ .
(ii) If $q$ is the canonical homomorPhism of $R$ to $R_{0}\cong R/ni1(R)$ , then there

exists the largest subfield $K$ among subfields of $R_{0}$ purely inseparable over $q(k)$ ,

and the weak normalization of $k$ in $R$ coincides with $K+ni1(R)$ .
PROOF. Since $R$ is an artinian semilocal ring, $R$ is a direct product II $A_{i}$

$i=1$

of artinian local rings $A_{i}$ . By Cohen’s theorem $A_{i}$ has a coeffcient field $L_{i}$ for
$i=1,$ $\cdots$ , $n$ , because $A_{i}$ is an equicharacteristic complete local ring. Moreover
we see that $A_{l}$ is the direct sum of $L_{i}$ and nil $(A_{i})$ for each $i$ . Therefore if we

denote by $R_{0}$ the direct product $\prod_{i=1}^{n}L_{i}$ , then we see $R=R_{0}+ni1(R)$ . If $p_{i}$ is the

canonical projection of $R_{0}$ to $L_{i}$ for each $i=1,$ $\cdots$ , $n$ , and if $F_{1}$ and $F_{2}$ are sub-
fields of $R_{0}$ purely inseparable over $q(k)$ , the $F_{1}$ and $F_{2}$ are isomorphic to $p_{i}(F_{1})$

and $p_{i}(F_{2})$ , respectively, for each $i$ and hence there are isomorphisms $g_{ij}$ : $p_{i}(F_{1})$

$arrow p_{j}(F_{1})$ and $h_{ij}$ : $p_{i}(F_{2})arrow p_{j}(F_{2})$ for each $i$ and $j$ . Since $p_{i}(R_{0})=L_{t}$ is a field
algebraic over $p_{i}q(k)$ , the composite ring $M_{i}$ of $p_{i}(F_{1})$ and $p_{i}(F_{2})$ is a subfield of
$L_{i}$ for each $i$ . Moreover $g_{ij}$ and $h_{ij}$ give an isomorphism of $M_{i}$ and $M_{j}$ for
any $i$ and $j$, because $p_{i}(F_{1})$ and $p_{i}(F_{2})$ are purely inseparable over $p_{i}q(k)$ for each
$i$ (cf. Chapter 6, \S 10, Example (4) in [3]). Therefore the composite ring $M$ of
$F_{1}$ and $F_{2}$ in $R_{0}$ is also a field isomorphic to $M_{i}$ for each $i=1,$ $\cdots$ , $n$ . This
means that there exists the largest subfield $K$ among subfields of $R_{0}$ purely
inseparable over $q(k)$ . To show that $K+ni1(R)$ is the weak normalization of $k$

in $R$ , it is enough by Proposition 3 and Remark 1 to see that $K$ is equal to the
weak normalization of $q(k)$ in $R_{0}=R_{red}$ . Since $K$ is the largest purely insepara-
ble extension of $q(k)$ in $R_{0}$ , the characterization of the weak normalization given
in Remark 1 shows that our assertion is true. $q$ . $e$ . $d$ .

Let $A,$ $B,$ $\mathfrak{p}$ and $\mathfrak{p}_{i}$ ($i=1,$ $\cdots$ , n) be as in the beginning of this section. More-

over let $Q_{i}$ be the quotient field of $B/\mathfrak{p}_{i}$ and let $Q$ be the direct product $\prod_{i=1}^{n}Q_{i}$ ,

which contains the quotient field $k(\mathfrak{p})$ of $A/\mathfrak{p}$ as before. Then there exists the
largest purely inseparable field extension $K$ of $k(\mathfrak{p})$ in $Q$ by Lemma 2. If $D$ is
the ring obtained from $(B;\mathfrak{p}_{1}, \cdots , \mathfrak{p}_{n})$ by glueing over $K$, we call $D$ the weak
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glueing of $B$ over $\mathfrak{p}$ . It is easy to see from the dePnition of weak normalization
and Corollary to Proposition 5 that $D$ is weakly normal in $B$ .

LEMMA 3. Let $A$ and $B$ be as above, and let $\mathfrak{p}$ be a prime divisor of the
conductor $\mathfrak{c}=A:_{A}B$ of $A$ in B. Assume that $A$ is weakly normal in B. If there
is only one prjme ideal $\mathfrak{p}’$ of $B$ lying over $\mathfrak{p}$ , then the quotient field of $B/\mathfrak{p}’$ is
not purely inseparable over $k(\mathfrak{p})$ .

PROOF. If $S$ is the multiplicatively closed subset $A-\mathfrak{p}$ of $A$ , then $A_{S}$ is
weakly normal in $B_{S}$ by Proposition 2. Since $A$ is seminormal in $B$ by Theorem
1 and hence $\mathfrak{c}$ is equal to its radical in $B$ by Lemma 1.3 in [12], $\mathfrak{p}_{S}$ is equal to
$c_{s}$ , which is the conductor of $A_{S}$ in $B_{S}$ and coincides with its radical in $B_{S}$ .
This means that $B_{S}$ is not equal to $A_{S}$ and that $B_{S}$ is a local ring with maximal
ideal $p_{s}=c_{S}$ . Therefore we see $B_{S}=B_{\mathfrak{p}\prime}$ and $\mathfrak{c}_{S}=\mathfrak{p}_{\mathfrak{p}\prime}’$ . On the other hand if $q$

is the prime ideal of $A_{S}$ different from $\mathfrak{p}_{S}$ , then we have $(B_{S})_{q}=(A_{S})_{q}$ because
$q\neq \mathfrak{p}_{s}=\mathfrak{c}_{S}$ . Therefore if the quotient field of $B/\mathfrak{p}’$ is purely inseparable over
$k(\mathfrak{p}),$ $B_{S}$ is the weak normalization of $A_{S}$ in $B_{S}$ by the characterization of the
weak normalization given in Remark 1. But $B_{S}$ is not equal to $A_{S}$ and $A_{S}$ is
weakly normal in $B_{S}$ as seen in the above. This is a contradiction. $q.e.d$ .

THEOREM 3. Let $A$ be a noetherian ring and let $B$ be a ring containing $A$

which is a finite A-module. If $A$ is weakly normal in $B$ , then there is a
sequence

$B=B_{0}\supset B_{1}\supset$ $\supset B_{n- 1}\supset B_{n}=A$

of subrings of $B$ such that $B_{i+1}$ is the weak glueing of $B_{i}$ over a prjme ideal
of $A$ .

PROOF. Suppose that $B_{i}$ has already been obtained. If $B_{i}=A$ , all is done.
Otherwise let $\mathfrak{c}_{i}$ be the conductor of $A$ in $B_{i}$ . Since $A$ is weakly normal in $B_{ir}$

$\mathfrak{c}_{l}$ is equal to its radical in $B_{i}$ as is seen in the proof of Lemma 3. Let $\mathfrak{p}$ be a
prime divisor of $\mathfrak{c}_{i}$ in $A$ of the smallest height and define $B_{i+1}$ as the weak
glueing of $B_{i}$ over $\mathfrak{p}$ . If $\mathfrak{c}_{i+1}$ is the conductor of $A$ in $B_{i+1}$ , we see $\mathfrak{c}_{i+1}\supset \mathfrak{c}_{i}$ .
Assume that $\mathfrak{p}$ is a prime divisor of $\mathfrak{c}_{i+1}$ . Then since $A$ is weakly normal in
$B_{i+1}$ , there are at least two prime ideals of $B_{i+1}$ lying over $\mathfrak{p}$ or there is a
unique prime ideal $\mathfrak{p}’$ of $B_{i+1}$ lying over $\mathfrak{p}$ such that the quotient field of $B_{i+1}/\mathfrak{p}’$ is
not purely inseparable over $k(\mathfrak{p})$ by Lemma 3. But this contradicts the fact that
$B_{i+1}$ is the weak glueing of $B_{i}$ over $\mathfrak{p}$ . Therefore $\mathfrak{p}$ is not a prime divisor of
$\mathfrak{c}_{i+1}$ and hence we have $\mathfrak{c}_{i+1}\neq c_{i}$ . By noetherian hypothesis we cannot have an
infinitely increasing chain of $\mathfrak{c}_{i}$ , and hence there is $n$ such that $B_{n}=A$ . $q.e.d$ .

Lastly we terminate this section by giving a result on the going-down of
the $(S_{2})$-prOperty of Serre from a ring to a glueing of it. For this purpose we
need the following

LEMMA 4. Let $A$ be a noetherian ring whose prjme ideals of $h\alpha ght\geqq 1$

contain regular elements. Let $A^{(1)}$ be the set of elements $z$ in the total quotient
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ring $Q(A)$ of $A$ such that any Prime ideal of $A$ containing $A:_{A}z$ has height $\geqq 2$ .
Then $A$ has $(S_{2})$ if and only if $A=A^{(1)}$ .

For the proof and the definition of $(S_{2})$ , see \S 3 in [13].

THEOREM 4. Let $A,$ $B,$ $\mathfrak{p},$ $\mathfrak{p}_{i},$ $q_{i},$
$Q_{i}$ and $Q= \prod_{i=1}^{n}Q_{i}$ be as in the beginning of

this section, and let $K$ be a subfield of $Q$ containing $k(\mathfrak{p})$ . Assume that $A$ is
noetherian and let $D$ be the ring obtained from $(B;q_{1}, \cdots , q_{n})$ by glueing over $K$.
Then we have the following:

(i) If any $\mathfrak{p}_{i}$ has height 1 for $i=1,$ $\cdots$ , $n$ and if $B$ has $(S_{2})$ , then $D$ has
also $(S_{2})$ .

(ii) Assume that $D$ is not equal to B. If any $\mathfrak{p}_{t}$ contains a regular element

of $B$ for each $i$, then $D_{\mathfrak{p}\prime}$ has depth 1, where $\mathfrak{p}’$ is the unique prime ideal $\bigcap_{i=1}^{n}q_{i}$

of $D$ lying over $\mathfrak{p}$ . Furthermore if some $\mathfrak{p}_{i}$ has height $>1$ , then $D$ does not
have $(S_{2})$ .

PROOF. We give only an outline of our proof, because the idea is very
similar to the proof of Theorem 2 in [13].

(i) First the ideal $\mathfrak{p}’=\bigcap_{=1}^{n}q_{i}$ is the unique prime ideal of $D$ lying over $\mathfrak{p}$ and

we can see easily that $ht(\mathfrak{p}’)=1$ from the hypothesis ht $(\mathfrak{p}_{i})=1$ for any $i=1,$ $\cdots,$
$n$ .

Next if $\mathfrak{Q}$ is a prime ideal of $B$ and if $q=\mathfrak{Q}\cap D$ , then we can see in the same
way as in the proof of Theorem 2, ibid. that ht $(\mathfrak{Q})\geqq 2$ if and only if ht $(q)\geqq 2$ .
Since $B$ has no embedded prime divisor of zero and $\mathfrak{p}’$ is contained in the con-
ductor of $D$ in $B$ , we see easily that the total quotient ring of $D$ may be con-
sidered to coincide with that of $B$ . Denote by $D^{(1)}$ and $B^{(1)}$ the rings for $D$

and $B$ , respectively, like $A^{(1)}$ for $A$ given in Lemma 4. Then we can see that
any prime ideal $\mathfrak{P}$ of $B$ containing $B;_{B}z$ has height $\geqq 2$ for any element $z$ in
$D^{(1)}$ , because we have $B;_{B}z\supset(D;_{D}z)B$ and $ht(\mathfrak{P}\cap D)\geqq 2$ . Therefore we see
$D^{(1)}\subset B^{(1)}=B$ by Lemma 4 and the assumption that $B$ has $(S_{2})$ . If $x$ is an ele-
ment of $D^{(1)}$ , then $x$ is an element in $B$ and $\mathfrak{p}’$ does not contain $D:_{D}x$ . So
there is an element $s$ of $D;_{D}x$ not belonging to $\mathfrak{p}’$ . Let $a$ be the element $xs$ in

$D$ . Then we see that the image of $x$ in the total quotient ring $Q$ of $B/ \bigcap_{i=1}^{n}\mathfrak{q}_{i}$

belongs to the quotient field $K$ of $D/\mathfrak{p}’$ . Therefore $x$ must be an element of $D$

by the definition of $D$ . This means that $D$ coincides with $D^{(1)}$ and hence we
see easily from Lemma 4 that $D$ has $(S_{2})$ .

(ii) Let $S$ be the multiplicatively closed subset $D-\mathfrak{p}’$ of $D$ . Then we see
that $D_{S}$ is the ring obtained from $(B_{S} ; (q_{1})_{S}, \cdots , (q_{n})_{S})$ by glueing over $K$. In
fact $D$ is obtained as the pull-back with respect to ring homomorphisms $Barrow Q$

and $Karrow Q$ . Therefore if we tensor this pull-back diagram with the flat ring
extension $D_{S}$ over $D$ , we have also a pull-back diagram by Lemma 4.2 in [4].



Weakly normal ring extensions 661

This means that our assertion is true. Therefore we may assume that $B$ is a
semilocal ring with maximal ideals $\mathfrak{p}_{1},$ $\cdots$ , $\mathfrak{p}_{n}$ and that $D$ is a local ring with
maximal ideal $\mathfrak{p}’$ . Moreover we see, in the same way as in the proof of Theo-
rem 2 in [13], that the total quotient ring $Q(A)$ of $A$ is equal to the total quo-
tient ring $Q(B)$ of $B$ and that if $z=a/b$ in $Q(A)=Q(B)$ with an element $a$ of $D$

and a regular element $b$ of $D$ is an element of $B$ not contained in $D,$ $L\iota hen\mathfrak{p}’$ is
contained in $Ass_{D}(D/bD)$ . Therefore we have depth $D=1$ . Consequently if
some of $\mathfrak{p}_{i}$ has height $>1$ , then $\mathfrak{p}’$ has also height $>1$ and hence $D$ does not
have $(S_{2})$ . $q.e.d$ .

COROLLARY. Let $B$ be a noetherian ring, and let $A$ be a subring of $B$ which
is weakly normal in B. Assume that $B$ is a finite A-module. If a prime&visor
in $A$ of the conductor $A:_{A}B$ of $A$ in $B$ has height $>1$ and if $A:_{A}B$ contains a
regular element of $B$ , then $A$ does not have $(S_{2})$ .

The proof is exactly the same as that of Corollary to Theorem 2 in [13], if
we use our Theorem 3 instead of Theorem 2.1 in [12]. Therefore we omit the
detail.
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