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Introduction.

For two primitive cusp forms f(z):ﬁj)la(n)e(nz) and g(z)= Zlb(n)e(nz)

(e(z)=exp(2niz), z€9: the upper half complex plane), we define a zeta function
by

Des, f, g):néa(n)b(n)n“s (se0),

and denote by K the field generated over @ by a(n) and b(n) for all n. If the
weight k2 of f is greater than the weight [/ of g, Shimura proved that
n=*f, f>7'D(m, f, g) belongs to K for an integer m with (1/2)(k+[—2)<m<k,
where <, > denotes the normalized Petersson inner product as in [4]. When K
is a CM-jield, namely, a totally imaginary quadratic extension over a totally real
field F, we are going to show the divisibility of these special values by a certain
polynomial of the Fourier coefficients a(p) and b(p) at prime divisors p of the
level of these forms. Roughly speaking, a(p)—b(p)p¢ with a certain integer e
depending on %, m and p divides the numerator of z-*{f, f>~*D(m, f, g). More
precisely, we have

THEOREM 1. Let X be the character of f and N the conductor of f. Assume
that the character of g is the complex conjugate X of X and g has the same con-
ductor N as f. Write M for the conductor of X. Let A be the set of prime
divisors of N satisfying one of the following conditions:

(Ca) The p-primary part of N is equal to that of M; or,

(Cy) pIN, p2) N and p Y M.
Put

C=NX pIEIA[a(P)-" {a(p)—b(p)epr-2®@-m}7],

where

" { 1 if p satisfies Condition (C,),
< p .
2 if p satisfies Condition (Cy),
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and p denotes the complex conjugation. Then

(1) = f, f/>7*D(m, f, g)/C belongs to the maximal real subfield F of K,

(2) Let us write the principal ideal (x=*{f, f>=*D(m, f, g))=B/W with mutu-
ally prime integral ideals N and B of K. Then we have A)Br=(C)x. Here,
for any integral ideal M of K, we decompose M=MzMx with the smallest integral
ideal My of F dividing M and the remaining K-ideal My (for details of this
definition, see §1).

Let us give some remarks:

(1) All the prime divisors of % are “congruence divisors” of f except for
trivial factors. This fact is a direct consequence of Shimura’s proof of his
algebraicity theorem in and was indicated by Doi and Hida;

(2) When the conductor N is a prime, we can easily see that the prime
divisors of (C)r are the factors of N or N¢®—1 for the positive integer e=
2m+2—k—[. Thus in this case, the K-part (C)x is roughly equal to the whole
ideal (C)=(NX a(N)? X (a(N)—b(N)?N*-1-m)) ags mentioned above in [Theorem 1;

(3) The property similar to the second assertion of holds under
some restrictions even if g is an Eisenstein series (see § 1, [Proposition 3).

In §2, we discuss some numerical examples.

§1. Proof of Theorem 1.

We keep the notation and the assumptions in the introduction throughout
this section. We define complex numbers «a,, a5y, By, Bp&C for rational primes
b by

1—a(p)x+XP)pF xt=(1—apx)1—apx),
and

1=b(p)x+X(p)p**x*=(1— B x)(1—B3x),

where x is an indeterminate. Then we know (cf. [4, Lemma 17])
D, f, g)zl;)I[Xp(S>Yp(S)_1] )

where p runs over all rational primes,

Xp(s)=1—a,apBpBop™™,
and

Yo(s)=(1—apBpp~*Y1—aBpp~*Y1—apf,p Y 1—apfrp~*) .

Both the conductors of f and g being N, for every prime divisor p of N, we
may put

a,=a(p), ap=0,
and
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ﬁp:b(p): ‘B;):O:

therefore we have
Xp(s)=1,
and

Yp(s)=1—a(p)b(p)p~*.
Let us further put

DN(Ss f’ g):{z%yp(s)} XD(S,' f) g)-

Then we have

(1.1)  Dy(s, f, g)=( %))zla(mb(n)n",

and

(1.2) Dy(s, f°, g?)= 2 a(n)fb(n)fn-*
(n,N)=1

for fe(z)= i;la(n)Pe(nz) and g°(z)= i}lb(n)"e(nz). Since we know

a(n)P=%(n)a(n)
and
b(n)*=X(n)b(n)

for all integers n prime to N, (1.1) and imply that
(1.3) Dy(s, f, 8)=Dx(s, f*, g°).

For every prime divisor p of N, we have a(p)a(p)?=p*°® if pe A and other-
wise, a(p)=0 (see Asai or Doi-Miyake [2]). Therefore we see that

{ {a(p)r—b(p)p*2 P2} Ja(p)* if peA,
if p&A,

1—a(p)o(p)p~*=

and
{ {a(p)—=b(p)ep*2 P} /a(p) if peA,

if pA.

1—a(p)*b(p)*p~—*=

It follows from the identity <{f, f>=<{f°, f*> that
(L4) 7 *f, f>Dim, f, g)/[NX pIEIA{a(P)”(a(p)~b(P)"Dk“a"’"m)}]
=7=Rf, f57Dim, [°, g°)/INX TI {a(p)a(p)P—b(p)p*-*P=m)} ]

for an integer m with (1/2)(k+!—2)<m< k. On the other hand, [4, Theorem 3]
shows

(1.5) (=*f, >7'D(m, f, g)f=n"*fe, f*>'Dim, f*, g°).
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Consequently =~ *{f, f>"'D(m, f, g)/[NXpIé{a(p)-”(a(p)—b(p)”pk‘a(?"m)}] is

real and therefore, belongs to F.

Now, for any integral ideal M of K, write M=TIR*® with prime ideals P
and non-negative integers a(P). For a prime ideal p of F, we define a non-
negative integer B(p) by

[“%B)} if p is ramified as p==° in K,
B(p) =1 a(P) if p remains prime as p=P in K,
Min {a(B), a(B*)} if p is split as p—=PP? in K,

where [»] indicates the largest integer not exceeding ». Then we put Mz=
IIpP® and Mx=M/Mz. In short, the ideal My is the smallest integral ideal of
F dividing M as mentioned in the introduction. Now we are going to prove the
second assertion of in a slightly general setting.

LEMMA 2. Let a be a nonzero element of K and ¢ an algebraic integer of
K. Write the principal ideal (a)=/N with mutually prime integral ideals A
and B of K. Assume that a/c belongs to F. Then we have W%V x=(¢)x.

PrROOF. From the assumption, B/{A(c)} =Br/{Wr(c)r})X B/ {WAx(C)x}) is
an ideal of F; therefore, B/ {Nx(c)x} must be an ideal of F. Now we suppose
that a positive power P°¢ of a prime ideal B of K divides Bx. First we con-
sider the case P=P°. Since Br/{Nx(c)x} is an ideal of F, we have A%V (c)%
=WxB%(c)x. From the definition of the K-part Vg, P is prime to B% and also
P is prime to Ax. Therefore P¢ divides (c)x. Next suppose L=Pe. Then
e=1. Assume B })(c)x. Then, P divides the F-ideal B/ {Ax(c)x} with ex-
ponent 1, a contradiction ; therefore, P divides (¢)x. Thus we know that Bz |(¢)x.
Put (¢)x=BxD with an integral ideal ® of K. Since AxD=Bx/{Wx(c)x})* is
still an ideal of F, we see that if ¢ divides g, then similarly as above, (B*)°
must divide ®, and therefore, A% |D. We may put (¢)x=U%VBxE with an inte-
gral ideal € of K. Since B/ {WAx(c)x} is an ideal of F, we know that € is an
ideal of F. On the other hand, since € divides the K-part (¢)x, € coincides
with €. Consequently we conclude €=1 and U%Bx=(c)x.

We take 7~ *{f, f>"'D(m, f, g) and C in as ¢ and ¢ in Lemma
2, respectively. Then the second assertion of follows from the first
assertion and Lemma 2.

We note here that if m<k—1 or all primes p of A satisfy Condition (C,),
then C’=p1;];1[a(p)f’{a(p)—b(p)f’pk“"p"m}] is integral and therefore, we can

similarly prove the assertions of by replacing C by C'.
The second assertion of also holds with some modification even
when we take an Eisenstein series in place of the cusp form g in [Theorem 1l
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However, the analogue of the first assertion is not necessarily valid in this case
(see below Example 3). Let us explain this in detail. Let / be a positive integer
and let ¢, and ¢, Dirichlet characters defined modulo N, and N, respectively.
Put ¥=¢,¢, and N=N,;N,. Assume that X(—1)=(—1)" and that one of the fol-
lowing conditions is satisfied:

(i) If /=2 and both ¢, and ¢, are the identities, then N,=1 and N, (>1)
is square-free; or,

(ii) Both ¢, and ¢, are primitive.
Moreover we put

0 if [#1 and ¢, is not the identity, or
/=1 and neither ¢, nor ¢, is the identity,
by= —2%1"1[\,(1— p) if [=2 and both ¢, and ¢, are the identities,
v

1 .
—EB L E otherwise,

where B, ; is the [-th generalized Bernoulli number belonging to the character
X. Now we define the Eisenstein series with characters ¢; and ¢. by

E(z; ¢y, g0=bot 2 {3 guld)u(d)d " e(nz).
a>o

Then E(z; ¢, ¢s) is a holomorphic modular form of weight /, level N and the
character X (see Hecke [3, Satz 447, and also [2, Theorem 4.7.1]). Now we take
a primitive cusp form f of conductor N, character X and weight %2 as in Theo-
rem 1. Since for every positive integer n prime to N, we have

(2 $dIPDd e =Um) 3 di(d)pd)d ™,
a>0

a>o

the similar argument as in the proof of shows that
(1'3), DN(S; fy E(Z; Sbl) ¢'2)):DN(SJ fp7 E(Z; ¢2; ¢1)'0> »

and

(L.4) == Kf, f>'D(m, f, E(z; ¢y, sbz))XNng {a(p)a(p)>—b(p)p*-2® ™)}
:ﬂ_k<fp; fp>_1D(m) fp’ E(Z: ¢2’ ¢1)p)XNX pI;IA{a(p)p<a(p)—b,(p)ppk_a(p)_m)}r

where

b(p)=i(p)+ (D)1,
and

b (p)=du(p)+i(p)p*t .
Consequently we obtain
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PROPOSITION 3. Write the principal ideal (= *(f, f>"*D(m, f, E(z; ¢, ¢2)))=
B/U with mutually prime integral ideals N and B of K and also write the prin-
cipal  ideal (= *f, f>'D(m, f, E(z; ¢, ¢1)) =D/€  with mutually prime
integral ideals € and ® of K. If a prime divisor B of the principal ideal
(NX Z)I(;_IAEG(;D)" {a(p)—=b'(p)Pp*-2®-m}7) is prime to both €° and the principal ideal

(NX pIEIA[a(P){a(p)”—b(p)pk“"‘p)'m}]), then P divides B.

§2. Numerical examples.

Under the same notation and the assumptions as in the previous sections,
we define an element S(m)=S(m, f, g) of K by

Stm)y===*{f, f>*'D(m, f, &)1,
where

_ T@m+2—k—1) (=D} 1mghlN »
7= T+ 1) 3 AT,

the product being taken over all prime divisors p of N. This modification of
our number ©~*{f, f>"*D(m, f, g) is just for convenience of our numerical com-
putation of these numbers and does not affect the assertions of [Theorem 1.
Thus our theorem can be stated for our number S(m, f, g) instead of
x~ S, > *D(m, f, g) (see §1, Lemma 2). The number S(m) can be computed
by the method of Shimura ([4, Example p. 801]), and we write the principal
ideal (S(m))=/A with mutually prime integral ideals % and B of K as in
[Theorem 1. We give here some numerical examples. In the prime factorization
of our numerical data, we put * for large factors which we do not know whether

they are primes or not. For any modular form h(z)= f)oc(n)e(nz), we denote
n=

by Q(h) the field generated over Q by c¢(n) for all n. Now we take N=13 and

A== E)

EXAMPLE 1. Let =6 and /[=4. We take f = S;([4(13),X) and g=S,(I(13), X).
Then we have dim S¢(/(13), X)=6, dimS,([,(13), 1)=2, Q(g)=Q(+~/=1) and Q(f)
=Q(a) with a root a of the equation:

¢(x)=x°+161x*+5856x%+18864=0 .
Moreover we obtain the following numbers:
SG)=[11a’+2(14+124/=T)a*+(1423+18y/=1)a’+46(4+45v/ =1)a?
-+12(2831+126+/ —1)a+-24(64+603+/—=1)1/[2:7-¢'(a)],
Ng,q(Numerator of S(5))=25¢-3%.13'%.233.12281-18181,
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Ngie(a(13)—b(13)r)=21.3%-13".233-12281-18181,

Noay (@' (@))y=—22.31°.232.37%-113%-131- 1637,
where

§0=-2(x),

a(13)=0Ba’—42a*+ 721 a®*—5682a%+27276ac—93960)/144 ,
and
b(13)=132—3+/—1) .

Therefore, B coincides with the ideal (a(13)?{a(13)—b(13)°})x up to the prime
divisors of 2, 3 and 13. In this case, no prime divisors outside the ideal
(a(13)? {a(13)—b(13)*} )k appear in B.

ExAMPLE 2. Next we take #=8 and /=4, and g is as in Example 1. We
take feSy(I,(13), X). Then we have dim Sg(/,(13), X)=6, and Q(f)=Q(a) with a
root « of the equation:

&(x)=x°+449x*4-37224x*4-205776=0 .
We obtain that
(i) S6)=—[32a°—(5—1744/—1)a*+5(2015—18+/—1)a’—5(227—6669+/ —1)a*
+3(132196 —25204/—=1)a+12(24954-37683+/ —1)1/[3:5:7-¢' ()] ,
Nk ,o(Numerator of S(6))=2%.3%4.5%.13'6.457.5441%-9202421,
Ni1oa(13)—b(13)7-13)=2%.3¢.5%.13%¢. 4579202421 ,

No(ay (@’ () =—226.38.5¢.4]12. 1429251042812,
where

a(13)=(65a°—78a*+268450° — 159902 +1696500c +-511368) /480,
and

b(13)=13(2—3+4/—1).

In this case, By is non-trivial and has a factor prime to the principal ideal
(a(13)—b(13)?-13); namely, a prime factor of 5441 divides By. Note that the
degree of this factor in F over Q is 1. The similar assertion holds for the
prime factors of B, except for some small primes. These phenomena occur
persistently in the limit of our calculation we have already done.

(i) S(7)=[119a°—(1—357+/—=D)a*-+(38053—27+/—1)a*—2(169—35469+/—1)a*
+12(120419—129+/ —1)a+24(3314-311854/—1)1/[7-17- ¢' ()] ,
Ng o(Numerator of S(7))=2°"-3'8.5.13%.139%.20535045284748713%,
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Nio{a(13)—b(13)P)=2"°-3*-5-13"8-20535045284748713* .

In this case, B has a prime factor of 139 which is prime to the principal ideal
(a(13)—b(13)?) and has the degree 1 in F over Q.

ExaMPLE 3. Now we take Eisenstein series E; and E, of weight 2; namely

we put E1:E<z; (§) id.) and E2:E(z; id., (-13’)) We take feSy(IH(13), %)

Then we have Q(E,)=Q(E,)=@ and Q(f)=Q(a) with a as in Example 2. We
obtain that

S, f. E)=—[238a’+475a*+792440°-+ 100817 *+- 2407488
+-215881/[3-7-17- ¢ ()],
S, f, E.)=—[237a*—495a*--78667a®—108677a*-+2392716
+381721/[3-7-17-¢'(a)],
Ng(ay,e(Numerator of S(6, f, E,))
=—2%2.38.56.13'1.103-109-2411-2593-16786 13,
Nocay(a(13)—b’(13)#-13)=2%-3%-5°-13°-109-2593- 16786 1 3,
Ng(ayq(Numerator of S(6, f, E;))
=—2%2.37.5%.131.103- 186 1-2087 - 2411,
No(ayg(a(13)—b"(13)¢-13)=2%-3%-5°-13"1- 186 1- 2087 ,

where
a(13)=(65a°—78a*+26845a*—15990a 2+ 1696500 +511368) /480,
b’'(13)=1,

and
b”(13)=13.

Let S, f, E,)=%3B/A with mutually prime integral ideals % and B of Q(a) and
let S(6, f, E;)=%/€ with mutually prime integral ideals € and ® of Q(«).
Then we observe that B and the principal ideal (a(13)—5’(13)?-13) have prime
divisors of 109, 2593 and 1678613 in common and that ©® and the principal
ideal (a(13)—5”(13)°-13) have prime divisors of 1861 and 2087 in common.
The prime factors of 103 and 2411 in %8B are prime to the principal ideal
(a(13)—b’(13)#-13), but they are not real. Thus the analogue of the first asser-
tion of fails to hold in this case.

We list some other examples below in the case N=5, X:Z:(E), 8 k<16

and /=6. We write
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T=T(m)=Ng,o(Numerator of S(m)),

L:L(m>:NK/Q((l(5)——b<5)P .5k—1—m> .

We give the table of dimS.([3(5), X):

Table (I): The defining polynomial ¢(x) for @(f) and the discriminant of ¢(x).

: |
amS(LE, D |

645

k| (x) | Discriminant of ¢(x)
6 | x*+44 | —2e11
8 | x*+116 —94.29
10 | x*+1708x2-1216 918.31.5¢.19.8092
12| xt-+4132x+2496256 9%0.34.54.72.112.1792.199
_05%.320.512.9602.501 .7541®
14 | x°-+41052x'+440779968x2 +617678127104 | {omn s
| _2m.312.512.11.90¢.3] . 863
16 | x*117588x" + 2455515648 4160982695936 Ygie. 3407537

|
|
|

|
z

Table (II):

The denominators of S(m).

20.3:31-¢'(a)

| —2.713-313-¢'(a)

k m k ‘ m
8 | 7 3¢ : 12 |
SR S N S 14
8 | 20.7-¢(a) 13 | —13-313-¢/(a)
0y ke L n ) 5T
9 22.32.5.¢/(a) 12 3—22-7-132-¢’(a)
12 10 7__2.5.13.45'(“) 16 13 ‘ 7-13-31-¢' ()
11| Slge@ 14
10 | 2:.32.5.11-¢/(a) {—15-@”71:‘5*21-515’(0:)
S TR BT
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Here « is a root of ¢(x) and ¢’(x):~j—f(x).

Table (III):

T(m) and L(m).

L=2%%.3°-5%.1684054484233184692772687*

k m
T=3%.511
8 | 7
L=2°.3%.55.11
T=240.34.55.75.6011
L=214.3¢.522.6011
10 _
T ==224.34.5%1.379 39979
9 _ _ S
L=214.34.517.379. 39979
| T=01.31.51.70.114.31 .47
9 -
L=0214.35.5%.3] .47
T =995.35.5.76.31 . 109%- 153877
12 10 | —-- -
| L=0.3%5%-31153877
| T=2:2.95.5%.74.317.380- 6433391
11 -
L—214.37.5%.72.389.643-3391
I T =2uis.371.55.11%.93%. 2604 . 6835791
10 . . _ _ _
L =2%5.311.55. 6835791
T =2108.340.550.114.172. 19%- 23%- 269* - 50032 - 18802789043
11
L —2%.35.54.23.18802789043
VR — - ~
T —=2114.34.5%6.74. 4725122694+ 619 - 28332 - 4874017157
12
[ —2%5.39.5%.72.47.619- 4874017157
| T=295.3%0.55.7°. 112269+ 353747 - 1684054484233184692772687*
13
]
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k m
T —=2106.32¢.558.1111.134.298.792.4092-863+-991 -5701%-28549
11 |
L =2%2.3%.5%.11-991-28549
T =2134.318.574.112.134.298.372-163- 257 - 7392863 - 39292 - 38669
12 % 107603
L =222-3%.5%.163-257-38669 -107603
T =2108.322.5%8.714.112.13¢.208.863¢-920193557>
6 13 % 18409196539129609*
1
L =222.310.5%8.72.18409196539129609*
| T=2126.322.58.75.11%.20%. 163223 - 863 - 77628664507
14 X 72393747224211975379*
| 1=222.35.5%.11-.163-223-72393747224211975379*
| T=2'2°.326.582.7¢.11%.29%.863*-1259-5009 - 14831 - 24379 - 98299 ,
15 % 185111049792 261306370933
L=2%.3%.5%8.112.1259-5009-14831-24379-98299 - 261306370933
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