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0. Introduction.

Kac [5] exhibited with his caricature of a Maxwellian gas, that the spatially
homogeneous solution of Boltzmann problem is obtained as a limit of empirical
distributions induced from $n$ molecules Markov processes (as $narrow\infty$ ) which are
regulated by master equations associated with the collision operator in the Boltz-
mann equation. Kac [6] also considered a fluctuation problem: he gave a formal
derivation for a convergence of fluctuations of the empirical distributions about
the solution of Boltzmann problem and observed that a kind of Ornstein-Uhlen-
beck process appears in the limit. To this problem McKean [8] gave a rigorous
result for his model of a two speed Maxwellian gas and made also a heuristic
argument for the model of a gas of hard balls. Recently H. Tanaka [11] treated
the same problem for Kac’s caricature and obtained a convergence result in an
equilibrium case.

In this paper we shall study the fluctuation problem for Kac’s caricature and
prove, in nonequilibrium (as well as equilibrium) cases, that the family of dis-
tributions on $D[[0, \infty$), $S_{\delta}’$] induced by fluctuation processes converges weakly to
a distribution of a kind of time-inhomogeneous Ornstein-Uhlenbeck process on
$S_{\delta}’$ , where $S_{\delta}’$ is a Hilbert space of tempered distributions.

To get the convergence result we shall follow the martingale approach as
exposed in Stroock-Varadhan’s book [10] and as applied by Holley-Stroock [4]

to handle a convergence in law of tempered distribution valued Markov pro-
cesses. Guided by their schedule, we shall first prove the tightness of the fluc-
tuation processes as $S_{\delta}’$-valued processes (\S 4), then that any limiting law solves
an associated martingale problem (\S 5), and finally a uniqueness of a solution of
the martingale problem (\S 6). A similar approach to the present problem has
been already adopted by H. Tanaka [11].

In \S 1 we shall review the Kac’s model and his result. In \S 2 we shall in-
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troduce the fluctuation processes and derive an asymptotic form for their in-
finitesimal generator. In \S 3 we shall prepare several lemmas which provide
fundamental moment estimates for the fluctuation processes. Through \S \S 4 to 6
the convergence of fluctuation processes will be formulated and proved. In \S 7
we shall give an explicit form for transition densities of the limiting process,
which will incidentally show that the process is Gaussian if so is its initial dis-
tribution. In the last section we shall give several examples of initial distribu-
tions of the velocity processes which satisfy hypotheses of the main theorem
(Theorem 6.2) of this paper.

The author would like to thank Professor H. Tanaka for his valuable com-
ment which improves and simplifies the content of \S 3. He is also grateful to
the referee for providing kind and helpful advices.

1. Markov process for an $n$ molecules gas and propagation of chaos.

Here is given a review of Kac’s caricature and his result. A concise and
complete exposition for them is found in McKean [7].

Consider a fictitious gas of $n$ like molecules having one dimensional velocities
which collide in pair at random times: after a collision velocities of collided
pairs are transformed by the two dimensional rotation

$xarrow x^{*}=x$ cos $\theta-y$ sin $\theta$

$yarrow y^{*}=x$ sin $\theta+y$ cos $\theta$ ,

preserving the energy $(1/2)(x^{*2}+y^{*2})=(1/2)(x^{2}+y^{2})$ (but not the momentum). A
collision within a small arc $[\theta, \theta+d\theta$ ), $-\pi\leqq\theta<\pi$ , takes place during a time
interval $[t, t+dt$), $t\geqq 0$, with probability

$\frac{1}{n}d\theta dt$ , $[d \theta=\frac{d\theta}{2\pi}]$ .

If we further impose the Markovian nature on tbe velocity process, we obtain a
Markov process on $R^{n}$ (n-dimensional Euclidean space) which is regulated by
the infinitesimal generator $G_{n}$ :

(1.1) $G_{n}w(x_{1}, \cdots , x_{n})=\frac{1}{n}\sum_{1\leqq i<j\leqq n}J_{-\pi}r^{\pi}(w(x_{1}, \cdots , x_{i}^{*}, \cdots , x_{j}^{*}, \cdots , x_{n})-w(x_{1}, \cdots , x_{n}))d\theta$

for $w\in C_{b}(R^{n})$ (the totality of bounded continuous functions on $R^{n}$ ). We denote
a right continuous version of this Markov process by $X^{n}(t)=(X_{1}^{n}(t), \cdots , X_{n}^{n}(t))$

and its initial distribution by $\mu_{n}$ . We shall consider a system of Markov pro-
cesses $\{X^{n}\}_{n=1}^{\infty}$ and suppose that they are all defined on a common probability
space $(P, \Omega, \mathcal{M})$ . Let $u_{n}(t)=u_{n}(t, dx)$ denote the distribution on $R^{n}$ induced by
$X^{n}(t)$ :
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$u_{n}(t, )=P[X^{n}(t)\in\cdot]$ .
Since $G_{n}$ is a bounded operator on $C_{b}(R^{n})$ ,

(1.2) $\langle u_{n}(t), w\rangle=\sum_{p=0}^{\infty}\frac{t^{p}}{p!}\langle\mu_{n}, G_{n}^{p}w\rangle$ , $w\in C_{b}(R^{n})$

where $\langle u_{n}, w\rangle$ denotes an integral of $w$ by a measure $u_{n}$ (later we shall con-
tinue to use $\langle\eta, \phi\rangle$ to denote a value of a generalized function $\eta$ at a testing
function $\phi$). We shall assume throughout this paper that $\mu_{n}$ is symmetric in
the sense that

$\langle\mu_{n}, \phi_{1}\otimes\cdots\otimes\phi_{n}\rangle=\langle\mu_{n}, \phi_{\sigma(1)}\otimes\cdots\otimes\phi_{\sigma(n)}\rangle$

for any $\phi_{1},$ $\cdots$ , $\phi_{n}\in C_{b}(R^{n})$ and any permutation $\sigma$ of $n$ letters. Here $w\otimes v(x_{1}$ ,
, $x_{k}$ ) $=w(x_{1}, \cdots , x_{j})v(x_{j+1}, \cdots , x_{k})$ for $w$ a function of $j$ variables and $v$ of

$k-]$ variables. Since $G_{n}$ commutes with the permutation of coordinates, the
symmetry of $\mu_{n}$ is inherited by $u_{n}(t)$ . We denote by $u_{n1m}(t),$ $m\leqq n$ , the m-dimen-
sional marginal distribution of $u_{n}(t)$ :

$\langle u_{n1m}(t), w\rangle=\langle u_{n}(t), w\otimes 1_{\frac{\otimes\cdots\otimes}{n-m}}1\rangle$

$w\in C_{b}(R^{m})$

and call $\{\mu_{n}\}$ chaotic if there exists a probability measure $\mu$ on $R^{1}$ such that
$\mu_{n1m}$ converges weakly to $\mu^{m\otimes}=\mu\otimes\cdots\otimes\mu$ (m-fold direct product), $i.e$ .
(1.3) $\lim_{n\uparrow\infty}\langle\mu_{n1m}, w\rangle=\langle\mu^{m\otimes}, w\rangle$ for all $w\in C_{b}(R^{m})$ .

Now the so-called “propagation of chaos” discovered by Kac is stated as follows.
If $\{\mu_{n}\}$ is chaotic, then so is $\{u_{n}(t)\}$ for every $t>0$ and $u(t)= \lim u_{n11}(t)$ is a unique
solution of Boltzmann problem:

(1.4) $\frac{d}{dt}\langle u(t), \phi\rangle=\frac{1}{2}\int_{-\pi}^{\pi}\langle u(t)\otimes u(t), \epsilon^{\theta}\phi\rangle d\theta$

for $\phi\in C_{b}(R^{1})$ with $u(O)=\mu$ . Here $\epsilon^{\theta}$ maps $\phi\in C(R^{1})$ (a continuous function on
$R^{1})$ into $\epsilon^{\theta}\phi\in C(R^{2})$ so that

$\epsilon^{\theta}\phi(x, y)=\phi(x^{*})+\phi(y^{*})-\phi(x)-\phi(y)$ .
REMARK 1.1. If $u(t, )$ has a continuous density $f(t, x),$ $(1.4)$ implies

$\frac{\partial}{\partial t}f(t, x)=\int_{-\infty}^{\infty}\int_{-\pi}^{\pi}(f(t, x^{*})f(t, y^{*})-f(t, x)f(t, y))d\theta dy$ ,

which is a usual form of Boltzmann equation.

2. Fluctuation processes.

Let $\delta_{x}$ be a delta measure carrying a unit mass at $x$ . The empirical dis-
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tribution of velocities at time $t$ is

(2.1) $\alpha_{t}^{n}\equiv\frac{1}{n}\sum_{k=1}^{n}\delta_{X_{k}^{n}(t)}$ .

$\alpha_{t}^{n},$ $t\geqq 0$, is a Markov process taking values of probability measures on $R^{1}$ . It
is not hard to see that the propagation of chaos stated in \S 1 is equivalent to
the assertion that

(2.2) $\alpha_{t}^{n}$ converges weakly to $u(t)$ $(narrow\infty)$ in probablity,

where $u(t)$ is a solution of Boltzmann problem. This is the first order aPproxima-
tion and regarded as a law of large numbers. The second order approximation
is a convergence of the fluctuation of $\alpha_{t}^{n}$ about $u(t)$ which should be defined by

(2.3) $\eta_{t}^{n}\equiv\sqrt{n}(\alpha_{t}^{n}-u(t))$

on the analogy of the central limit theorem. The process $\eta_{t}^{n},$ $i\geqq 0$, is also a
Markov process (but temporarily inhomogeneous) whose values at time $t$ are signed
measures on $R^{n}$ of the form

(2.4) $\eta\equiv\sqrt{n}(\alpha-u(t))$ , $\alpha=\frac{1}{n}\sum_{k=1}^{n}\delta_{x_{k}}$ $((x_{1}, \cdots x_{n})\in R^{n})$ .
Our objective in this paper is to prove a convergence of the distribution induced
by $\eta^{n}$ . In the rest of this section we shall derive a form of the infinitesimal
generator of $\eta^{n}$ and its formal limit as $narrow\infty$ according to Tanaka [11].

Let $S$ be the Schwartz space of real valued $C^{\infty}$-functions on $R^{1}$ which to-
gether with all their derivatives are rapidly decreasing. For $\phi\in S,$ $f\in C_{0}^{\infty}(R^{1})$

(a $C^{\infty}$-function vanishing off a compact set) and $\eta$ in (2.4) we set

$\mathfrak{G}_{t}^{n}(\eta;\phi, f)\equiv\lim_{h\downarrow 0}\frac{1}{h}\{E[f(\langle\eta_{t+h}^{n}, \phi\rangle)|\eta_{t}^{n}=\eta]-f(\langle\eta, \phi\rangle)\}$ .

(This is regarded as the infinitesimal generator for the Markov process $\eta^{n}$ operat-
ing on the function $\eta’,ef(\langle\eta, \phi\rangle).)$ If $\eta^{i.j.\theta}$ denotes a signed measure obtained
from $\eta$ by replacing $x_{i},$ $x_{j}$ by $x_{t}^{*},$ $x_{j}^{*}$ in (2.4), then $\mathfrak{G}_{t}^{n}(\eta;\phi, f)$ is expressed as

(2.5) $\frac{1}{n}\sum_{i\triangleleft}\int_{-\pi}^{\pi}\{f(\langle\eta^{i,j.\theta}, \phi\rangle)-f(\langle\eta, \phi\rangle)\}\tilde{d}\theta-\sqrt{n}\frac{d}{dt}\langle u(t), \phi\rangle f’(\langle\eta, \phi\rangle)$ .
By noticing that $u(t)$ is a solution of Boltzmann problem,

$\langle\eta^{i,j,\theta}, \phi\rangle=\langle\eta, \phi\rangle+\frac{1}{\sqrt{n}}\epsilon^{\theta}\phi(x_{i}, x_{j})$ ,

and $\epsilon^{\theta}\phi(x, y)=\epsilon^{-\theta}\phi(y, x)$ , we can write (2.5) as

$\frac{n}{2}\int\langle\alpha\otimes\alpha, w^{\theta,n}\rangle\tilde{d}\theta-\frac{\sqrt{n}}{2}\int\langle u(t)\otimes u(t), \epsilon^{\theta}\phi\rangle\tilde{d}\theta f’(\langle\eta, \phi\rangle)$

where $w^{\theta,n}\in C_{b}(R^{2})$ , being defined by
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$w^{\theta,n}(x, y)=f( \langle\eta, \phi\rangle+\frac{1}{\sqrt{n}}\epsilon^{\theta}\phi(x, y))-f(\langle\eta, \phi\rangle)$

and

(2.6)
$\alpha\otimes\alpha=n^{-2}\sum_{i\neq j}\delta_{x_{i}}\otimes\delta_{x_{j}}$ .

By writing $\omega^{\theta}\phi(x)$ for $\epsilon^{\theta}\phi(x, x)$ we set

$\mathfrak{U}_{t}^{n}\eta(\phi)\equiv\int\langle\eta\otimes u(t), \epsilon^{\theta}\phi\rangle\tilde{d}\theta+\frac{1}{2\sqrt{n}}\int(\langle\eta\otimes\eta, \epsilon^{\theta}\phi\rangle-\langle\alpha, \omega^{\theta}\phi\rangle)\overline{d}\theta$

$Q_{t_{\sim}}^{n}( \phi;\eta)\equiv\frac{1}{2}\int\langle\alpha\otimes\alpha, (\epsilon^{\theta}\phi)^{2}\rangle\tilde{d}\theta$

$= \frac{1}{2}\int\langle u(t)\otimes u(t), (\epsilon^{\theta}\phi)^{2}\rangle d\theta+\frac{1}{\sqrt{n}}\int\langle\eta\otimes u(t), (\epsilon^{\theta}\phi)^{2}\rangle\tilde{d}\theta$

$+ \frac{1}{2n}\int(\langle\eta\otimes\eta, (\epsilon^{\theta}\phi)^{2}\rangle-\langle\alpha, (\omega^{\theta}\phi)^{2}\rangle)\tilde{d}\theta$ .

Then, by observing

$n\langle\alpha\otimes\alpha, \epsilon^{\theta}\phi\rangle=\langle(\eta+\sqrt{n}u(t))^{2\otimes}, \epsilon^{\theta}\phi\rangle-\langle\alpha, \omega^{\theta}\phi\rangle$ ,

we can easily deduce

(2.7) $\mathfrak{G}_{t}^{n}(\eta;\phi, f)=\mathfrak{U}_{t}^{n}\eta(\phi)f’(\langle\eta, \phi\rangle)+\frac{1}{2}Q_{t}^{n}(\phi;\eta)f’(\langle\eta, \phi\rangle)+R_{n}$

with

$|R_{n}| \leqq\frac{\Vert f’’’\Vert_{\infty}}{12_{\wedge}\Gamma n}\int\langle\alpha\otimes\alpha, |\epsilon^{\theta}\phi|^{8}\rangle\tilde{d}\theta$ .

If we set

(2.8) $Q_{t}( \phi)=\frac{1}{2}\int\langle u(t)\otimes u(t), (\epsilon^{\theta}\phi)^{2}\rangle\tilde{d}\theta$

and let $narrow\infty$ in (2.7), we get a formal limit of $\mathfrak{G}_{t}^{n}$ :

(2.9) $\int\langle\eta\otimes u(t), \epsilon^{\theta}\phi\rangle\tilde{d}\theta f’(\langle\eta, \phi\rangle)+\frac{1}{2}Q_{t}(\phi)f’(\langle\eta, \phi\rangle)$

which should regulate the limiting process. The limiting form (2.9) is consistent
with what McKean [8] derived formally for a model of a gas of hard balls.

3. Expectations of functionals of $\eta_{t}^{n}$ .
Let us write for $\lambda\in R^{1}$

$\chi_{\lambda}(x)=e^{i\lambda x}$ $x\in R^{1}$

and introduce a condition for $\{\mu_{n}\}$ :
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(A. 1) there exests a $\gamma\geqq 0$ such that

$\sup_{n}\sup_{\lambda\in R^{1}}\{E[|\langle\eta_{0}^{n}, \chi_{\lambda}\rangle|^{2}](1+|\lambda|)^{-2\gamma}\}<\infty$ .

The next lemma, which will play a crucial role in the whole story of this paper,
asserts that the finiteness of (A. 1) propagates.

LEMMA 3.1. If (A. 1) holds, then there exists a nondecreasing function $K_{t}$ such
that for all $t\geqq 0$

$\sup_{n}\sup_{\lambda\in R^{1}}\{E[|\langle\eta_{t}^{n}, \chi_{\lambda}\rangle|^{2}](1+|\lambda|)^{-2\gamma}\}<K_{t}$ .

PROOF. Let $\phi\in C_{b}(R^{1})$ and be real valued and define

(3.1) $M_{t}=M_{\iota.\phi}^{n}= \langle\eta_{t}^{n}, \phi\rangle-\int_{0}^{t}\mathfrak{A}_{s}^{n}\eta_{s}^{n}(\phi)ds$ ,

(3.2) $S_{t}=S_{t,\phi}^{n}=(M_{t.\phi}^{n})^{2}- \int_{0}^{t}Q_{s}^{n}(\phi;\eta_{s}^{n})ds$ .

Then both $M_{t}$ and $S_{t}$ are martingales, as easily deduced from general formulas
concerning Markov processes which read as follows: if $x_{t}$ is a (time-inhomo-

geneous) Markov process with an inPnitesimal generator $A_{t}$ , then, under some

general conditions, the process $m_{t} \equiv F(x_{t})-\int_{0}^{t}A_{s}F(x_{s})ds$ and the process

$(m_{t})^{2}- \int_{0}^{t}\{A_{s}F^{2}(x_{s})-2F(x_{s})A_{s}F(x_{s})\}ds$

are martingales for each $F$ which belongs to some reasonable class of functions
on the state space of $x_{t}$ .

It follows that

$E \langle\eta_{t}^{n}, \phi\rangle^{2}\leqq 2EM_{t}^{2}+2E(\int_{0}^{t}\mathfrak{U}_{s}^{n}\eta_{s}^{n}(\phi)ds)^{2}$

$\leqq 2EM_{0}^{2}+2\int_{0}^{t}EQ_{s}^{n}(\phi;\eta_{S}^{n})ds+2t\int_{0}^{t}E\{\mathfrak{A}_{s}^{n}\eta_{s}^{n}(\phi)\}^{2}ds$ .

Since

(3.3) $Q_{s}^{n}(\phi;\eta_{s}^{n})\leqq 8\Vert\phi\Vert_{\infty}^{2}$ ,

we have

$E \langle\eta_{t}^{n}, \phi\rangle^{2}\leqq 16\Vert\phi\Vert_{\infty}t+2E\langle\eta_{0}^{n}, \phi\rangle^{2}+2t\int_{0}^{t}E\{\mathfrak{A}_{s}^{n}\eta_{s}^{n}(\phi)\}^{2}ds$

and, by noticing that $\mathfrak{A}_{s}^{n}\eta(\phi)$ is linear in $\phi$ ,

$E| \langle\eta_{t}^{n}, \chi_{\lambda}\rangle|^{2}\leqq 32t+2E|\langle\eta_{0}^{n}, \chi_{\lambda}\rangle|^{2}+2t\int_{0}^{t}E|\mathfrak{U}_{s}^{n}\eta_{s}^{n}(\chi_{\lambda})|^{2}ds$ .
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To handle the last term on the right side above look at the definition of $\mathfrak{A}_{t}^{n}\eta(\phi)$ .
Since $|\langle\eta_{t}^{n}, x_{\lambda}\rangle|\leqq 2\sqrt{n}$ and

$\langle\eta\otimes\eta, \epsilon^{\theta}\chi_{\lambda}\rangle=\langle\eta\otimes\eta,$ $x_{\lambda\cos\theta}\otimes x_{-\lambda\sin\theta}+x_{\lambda\sin\theta}\otimes x_{\lambda\cos\theta\rangle}$ ,

we have for each $\theta$

$\sup_{\lambda}\{E|\langle\eta_{t}^{n}\otimes\eta_{t}^{n}, \epsilon^{\theta}\chi_{\lambda}\rangle|^{2}(1+|\lambda|)^{-2\gamma}\}\leqq 16n\cdot\sup_{\lambda}\{E|\langle\eta_{t}^{n}, \chi_{\lambda}\rangle|^{2}(1+|\lambda|)^{-2\gamma}\}$ .

This and a similar bound for $\langle\eta_{t}^{n}\otimes u(t), \epsilon^{\theta}\chi_{\lambda}\rangle$ yield

(3.4) $\sup_{\lambda}\{E|\mathfrak{U}_{s}^{n}\eta_{s}^{n}(\chi_{\lambda})|^{2}(1+|\lambda|)^{-2\gamma}\}$

$\leqq(2\cdot 3^{2}+16)\sup_{\lambda}\{E|\langle\eta_{s}^{n}, \chi_{\lambda}\rangle|^{2}(1+|\lambda|)^{-2\gamma}\}+\frac{16}{n}$ .

Therefore if we set

$y^{n}(t)= \sup_{\lambda}\{E|\langle\eta_{t}^{n}, \chi_{\lambda}\rangle|^{2}(1+|\lambda|)^{-2\gamma}\}$ ,

then

$y^{n}(t) \leqq 2y^{n}(0)+32t+32r^{2}+68t\int_{0}^{t}y^{n}(s)ds$

$\leqq(2y^{n}(0)+32t+32t^{2})$ exp $(68t^{2})$ ,

which proves the lemma.
In the rest of this section we shall assume that (A. 1) holds and that $\phi$ can be

expressed as a Fourier-Stieltjes transform:

(3.5) $\phi(x)=\int_{-\infty}^{\infty}\chi_{\lambda}(x)\phi(d\lambda)$ ,

where $\phi$ is some complex measure on $R^{1}$ . Let us introduce a norm

$| \phi|_{\gamma}=\int_{-\infty}^{\infty}(1+|\lambda|)^{\gamma}|\phi|(d\lambda)$ ,

where $|\hat{\phi}|(d\lambda)$ denotes the total variation measure of $\hat{\phi}$ . $|\hat{\phi}|_{\gamma}$ will be assumed to
be finite. Fixing a finite time $T$ arbitrarily we shall denote by $C_{T}$ any bounding
constant which is independent of $0\leqq t<T,$ $\phi$ and $n$ .

LEMMA 3.2. $\sup_{n}E[|\langle\eta_{t}^{n}, \phi\rangle|^{2}]\leqq C_{T}|\hat{\phi}|_{\gamma}^{2}$ for $0\leqq t<T$ .
PROOF. Since $\langle\eta, \phi\rangle=\int\langle\eta, \chi_{\lambda}\rangle\hat{\phi}(d\lambda)$ , we have, by applying Schwartz inequal-

ity,

$E| \langle\eta_{t}^{n}, \phi\rangle|^{2}\leqq\{\int(E|\langle\eta_{t}^{n}, x_{\lambda}\rangle|^{2})^{1/2}|\hat{\phi}|(d\lambda)\}^{2}$

$\leqq\sup_{\lambda}\{E|\langle\eta, \chi_{\lambda}\rangle|^{2}(1+|\lambda|)^{-2\gamma}\}\cdot|\phi|_{\gamma}^{2}$ .

Thus the lemma follows from Lemma 3.1.
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Noticing the inequality (3.4) and the relation

$\mathfrak{A}_{t}^{n}\eta(\phi)=\int \mathfrak{A}_{t}^{n}\eta(\chi_{\lambda})\phi(d\lambda)$ ,

we get, in the same way as in the proof of Lemma 3.2, that for $0\leqq t<T$

\langle 3.6) $\sup_{n}E[|\mathfrak{A}_{t}^{n}\eta_{t}^{n}(\phi)|^{2}]\leqq C_{T}|\hat{\phi}|_{\gamma}^{2}$ .
LEMMA 3.3. $\sup_{n}E[\sup_{0\leqq t\leqq T}|\langle\eta_{t}^{n}, \phi\rangle|^{2}]\leqq C_{T}|\hat{\phi}|_{\gamma}^{2}$ .

PROOF. Let $M_{t.\phi}^{n}$ be as in (3.1). Since by a martingale inequality
$E \sup_{t\leqq T}|M_{t,\phi}^{n}|^{2}\leqq 4E|M_{T.\phi}^{n}|^{2}$, we have

$E \sup_{t\leqq T}|\langle\eta_{t}^{n}, \phi\rangle|^{2}\leqq 2E\sup_{t\leqq T}|M_{t.\phi}^{n}|^{2}+2E(\int_{0}^{T}|\mathfrak{A}_{s}^{n}\eta_{s}^{n}(\phi)|ds)^{2}$

$\leqq 16E|\langle\eta_{T}^{n}, \phi\rangle|^{2}+18T\int_{0}^{T}E|\mathfrak{A}_{s}^{n}\eta_{S}^{n}(\phi)|^{2}ds$ ,

which combined with Lemma 3.2 and the bound (3.6) proves the lemma.
By the same calculations as above we can easily obtain also the following

inequalities:

\langle 3.7) $\sup_{n}E[\sup_{0\leqq t\leqq T}|\int\langle\eta_{t}^{n}\otimes\eta_{t}^{n}, \epsilon^{\theta}\phi\rangle\tilde{d}\theta|]\leqq C_{T}|\phi|_{2\gamma}$ ;

\langle 3.8) $\sup_{n}E[\sup_{0\leqq t\leqq T}|\int\langle\eta_{t}^{n}\otimes u(t), \epsilon^{\theta}\phi\rangle d\theta|]\leqq C_{T}|\hat{\phi}|_{\gamma}$ ;

(3.9) $\sup_{n}\frac{1}{\sqrt{n}}E|\int\langle\eta_{t}^{n}\otimes\eta_{t}^{n}, (\epsilon^{\theta}\phi)^{2}\rangle d\theta|\leqq C_{T}|\phi|_{\gamma}^{2}$ , $0\leqq t<T$ ;

\langle 3.10) $\sup_{n}E|\int\langle\eta_{t}^{n}\otimes u(t), (\epsilon^{\theta}\phi)^{2}\rangle\tilde{d}\theta|\leqq C_{T}|\phi|_{\gamma}^{2}$ , $0\leqq t<T$ .

4. Tightness of fluctuation processes.

To discuss the problem of the convergence of fluctuation processes $\eta^{n}$ we
shall consider them as S’-valued processes, for in the limit the state space of the
process is not confined in the space of signed measures, but extends to a larger
subspace of $S’$ as has been revealed by Tanaka [11]. To set up the framework
we introduce the following notations.

$e_{k}(x)=(-1)^{k}(\sqrt{2\pi}k!)^{-1/2}\exp(x^{2}/4)(d^{k}/dx^{k})$ exp $(-x^{2}/2)$ $x\in R^{1}$ .
$\mathcal{P}=$ { $\phi=\sum$ $a$ $kek$ (finite sum): a $k\in R^{1}$}.

$\Vert|\phi\Vert|_{\delta}=(\sum a_{k}^{2}(k+\frac{1}{2})^{2\delta})^{1/2}$ for $\phi\in \mathcal{P}$ ( $\delta$ is any real number).

$S_{\delta}$ ; the completion of the pre-Hilbert space $(\mathcal{P}, \Vert|\cdot\Vert|_{\delta})$ .
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$S_{\delta}’$ : the dual space of $s_{\delta}$ ; this space will be identified with $s_{-\delta}$ ; the dual
norm of $S_{\delta}’$ can be expressed as

$\Vert|\eta\Vert|^{(\delta)}=(\sum_{k=0}^{\infty}\langle\eta, e_{k}\rangle^{2}(k+\frac{1}{2})^{-2\delta})^{1/2}$
$(\eta\in S_{\delta}’)$ .

$S= \bigcap_{m=0}^{\infty}S_{m}$ ; $S’= \bigcup_{m=0}^{\infty}S_{m}’$ .

$R_{+}=[0, \infty)$ .
$D[R_{+}, S’]$ : the space of right continuous functions of $R_{+}$ into $S’$ with left

limits.
$D[R_{+}, S_{\delta}’]$ : the space similarly defined, but equiPped with the Skorohod

topology associated with the Hilbert norm $\Vert|\cdot\Vert|^{(\delta)}$ .
$C[R_{+}, S_{\delta}’]$ : the space of continuous functions of $R_{+}$ into $S_{\delta}’$ .
$\mathcal{F}_{t}$ ; the smallest $\sigma- field$ in $D[R_{+}, S’]$ with respect to that the mappings

$\eta\in D[R_{+}, s’]\ovalbox{\tt\small REJECT}\langle\eta_{s}, \phi\rangle\in R^{1}$ are measurable for all $0\leqq s\leqq t$ and $\phi\in S$ .
$\mathcal{F}$ : the smallest $\sigma$-field containing all $\mathcal{F}_{t},$ $t\geqq 0$ .

(We shall use the same symbols to denote the restrictions of $\mathcal{F}_{t}$ or $\mathcal{F}$ to the
spaces $D[R_{+}, S_{\delta}’]$ or $C[R_{+}, S_{\delta}’].$ )

$P^{n}$ ; $E^{n}$ : the probability measure on $(D[R_{+}, S’], \mathcal{F})$ induced by $(\eta^{n}, P)$ ; and
the associated expectation.

THEOREM 4.1. Let $\{\mu_{n}\}$ satisfy (A. 1) in \S 3 and let $\delta>\frac{3+2\gamma}{4}$ . Then $P^{n},$ $n$

$=1,2,$ $\cdots$ are all concentrated on $D[R_{+}, S_{\delta}’]$ and their restrictions to the space
$D[R_{+}, S_{\delta}’]$ form a tight family of probability measures on it. Any limit measure
of the family is concentrated on $C[R_{+}, S_{\delta}’]$ .

LEMMA 4.1. $\sup_{n}E[\sup_{0\leqq t\leqq T}|\langle\eta_{t}^{n}, e_{k}\rangle|^{2}]\leqq C_{T}(k+\frac{1}{2})^{\gamma+1/2}$ .
PROOF. The inequality of the lemma is immediate from Lemma 3.3 if we

prove

(4.1) $|\text{\^{e}}_{k}|_{\gamma}\leqq C_{\gamma}\sqrt{k+1/2}^{\gamma+1/2}$ $k=0,1,2,$ $\cdots$ ,

where $C_{\gamma}$ is a constant depending on $\gamma$ only.
Since

$e_{k}(x)=(i \sqrt{\pi})^{-1}\int e_{k}(2\lambda)\chi_{\lambda}(x)d\lambda$ ,

our task for the proof of (4.1) is to compute an upper bound for

$J_{k,\gamma} \equiv\int|\lambda|^{\gamma}|e_{k}(\lambda)|d\lambda$

for each $\gamma\geqq 0$ . Let $m$ be an integer such that $2(\gamma-m)<-1$ . Then
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$J_{k.\gamma} \leqq\int_{|\lambda|\leqq\epsilon}|\lambda|^{\gamma}|e_{k}|d\lambda+\int_{|\lambda_{|>\epsilon}}|\lambda|^{\gamma- m}|\lambda^{m}e_{k}|d\lambda$

$\leqq\{\frac{2}{2\gamma+1}\epsilon^{2\gamma+1}\}^{1/2}\Vert e_{k}\Vert+\{\frac{2}{2(m-\gamma)-1}\epsilon^{2(\gamma- m)+1}\}^{1/2}\Vert\lambda^{m}e_{k}\Vert$ ,

where $\Vert\cdot\Vert$ denotes the usual $L^{2}$-norm. Now applying the recurrence formula

$\lambda e_{k}(\lambda)=\sqrt{k+1}\cdot e_{k+1}(\lambda)+L\overline{k}e_{k- 1}(\lambda)$

and the norming condition $\Vert e_{k}\Vert=1$ , and then substituting $\sqrt{k+1}/2$ for $\epsilon$ , we
obtain

$J_{k,\gamma}\leqq const.\sqrt{k+1/}2^{\gamma+1/2}$

as desired. The proof of Lemma 4.1 is complete.
Lemma 4.1 proves the first assertion of Theorem 4.1. For the proof of the

other two of Theorem 4.1 we shall follow Holley and Stroock [4] (pp. 767-768).

To carry out this we need the following fact

(4.2) $P^{n}[ \sup_{t\geq 0}|\langle\eta_{t}, \phi\rangle-\lim_{s\uparrow t}\langle\eta_{s}, \phi\rangle|\leqq\frac{4}{\sqrt{n}}\Vert\phi\Vert_{\infty}]=1$ for all $n$ ,

in addition to (3.3), (3.7), (3.8) and Lemma 4.1. (4.2) follows from the fact that
the probability that more than two molecules change their velocities at the same
time is zero.

PROOF OF THEOREM 4.1. In view of Lemma 4.1 it suffices to show that for
each $T<\infty,$ $\phi\in S$ and $\epsilon>0$

(4.3) $\sup_{n\geqq m}E[\sup_{|t-s|<b}*|\langle\eta_{t}^{n}, \phi\rangle-\langle\eta_{s}^{n}, \phi\rangle|>\epsilon]arrow 0$ as $b\downarrow 0$ and $marrow\infty$ ,

where the star means that the variables under the supremum are taken from
the interval $[0, T]$ : because the tightness of $\{P^{n}\}$ is implied by that of the
family of $R^{m}$-valued processes $((\langle\eta, e_{k}\rangle)_{k=1}^{m} ; P^{n})$ (for each $m=1,$ 2, ) coupled
with the condition that

$\lim_{N\dagger\infty}\sup_{n}P^{n}[\sup_{0\leq t\leqq T}\sum_{k=N}^{\infty}\langle\eta_{t}, e_{k}\rangle^{2}(k+\frac{1}{2})^{-2\delta}>\epsilon]=0$

(for $\delta>(3+2\gamma)/4$), and because it follows from (4.3) that the family {( $(\langle\eta\cdot, e_{k}\rangle)_{k=1}^{m}$ ;
$P^{n})\}_{n=1}^{\infty}$ is tight and any limiting process of it is a continuous process (cf. Billing-
sley [1] Theorem 15.5). From (4.2) and from the fact that the inequality

$\sup_{|t-s|<b}*|x_{t}-x_{s}|\leqq 2w_{b}’’(x.)+\sup_{t}*|x_{t}-x_{t-}|$

holds for each right continuous function $x_{t}$ having left limits and each $b>0$,
where

$w_{b}’’(x.)= \sup^{*}\{|x_{t}-x_{r}|\wedge|x_{r}-x_{s}| : s\leqq r\leqq t, |t-s|\leqq b\}$
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(cf. Lemma 6.4 and its proof in Parthasarathy [9]), the relation (4.3) follows if
we prove

(4.4) $\sup_{n}P(w_{b}’’(\langle\eta^{n}, \phi\rangle)>\epsilon)arrow 0$ as $b\downarrow 0$ .

Let
$\tau=\tau_{N}^{n}=\inf\{t\geqq 0:|\mathfrak{A}_{t}^{n}\eta_{l}^{n}(\phi)|>N\}$

and
$x_{t}^{n}=\langle\eta_{t\Lambda\tau}^{n}, \phi\rangle$ .

Since by (3.7) and (3.8) $\sup_{n}P(\tau_{N}^{n}>T)arrow 0$ as $Narrow\infty,$ $(4.4)$ follows if we prove

(4.5) $\sup_{n}P(w_{b}’’(x^{n})>\epsilon)arrow 0$ as $b\downarrow 0$ .

Since $\tau$ is a stopping time, $M_{tA\tau.\phi}^{n}$ and $S_{t\Lambda\tau,\phi}^{n}$ are martingales. Noticing (3.3) and
recalling the definitions of $M_{c.\phi}^{n}$ and $S_{t.\phi}^{n}$ (see (3.1) and (3.2) for definitions), it
is routine to see that

$\sup_{n}E[(x_{t}^{n}-x_{r}^{n})^{2}(x_{r}^{n}-x_{s}^{n})^{2}]\leqq const.(t-s)^{2}$

for $0\leqq s\leqq r\leqq t\leqq T$ , which implies (4.5) in view of Censov’s criterion (cf. [1]

Theorem 15.6). Thus the proof of Theorem 4.1 is complete.

5. Limiting processes and a martingale problem.

The process on $S_{\delta}’$ under a limit measure of $\{P^{n}\}$ should be a Markov pro-
cess being regulated by a generator as expressed in (2.9). Since the integrand
$\langle\eta\otimes u(t), \epsilon^{\theta}\phi\rangle$ appearing in (2.9) does not necessarily make sense for all $\eta\in S_{\delta}’$ ,
$\phi\in S$ , by noticing $\langle\eta_{t}, 1\rangle=0a.s$ . $P^{n}$ we shall replace the integral in the first
term of (2.9) by

(5.1) $\mathfrak{A}_{t}\eta(\phi)\equiv 2\int_{-\infty}^{\infty}\int_{-\pi}^{\pi}\langle\eta, \phi^{\theta,y}\rangle d\theta u(t, dy)-\langle\eta, \phi\rangle$

where $\phi^{\theta,y}$ is a function of $x\in R^{1}$ and defined by

$\phi^{\theta,y}(x)=\phi$ ( $x$ cos $\theta-y$ sin $\theta$ ).

The meaning of the integral on the right-hand side of (5.1) is still indefinite.
Its precise meaning will be given in Remark 5.2 below. We shall assert that a
limit measure $P$ of $\{P^{n}\}$ solves the following martingale problem:

(5.2) for every $f\in C_{0}^{\infty}(R^{1})$ and $\phi\in S$

$f( \langle\eta_{t}, \phi\rangle)-\int_{0}^{t}\{\mathfrak{U}_{s}\eta_{s}(\phi)f’(\langle\eta_{s}, (b\rangle)+\frac{1}{2}Q_{s}(\phi)f’(\langle\eta_{s}, \phi\rangle)\}ds$

is a $(P,\overline{\mathcal{F}}_{t})$-martingale,
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where $Q_{t}(\phi)$ is defined in (2.8), and $\overline{\mathcal{F}}_{t}$ is the completion of $\mathcal{F}_{t}$ by $P$.
THEOREM 5.1. Let $\{\mu_{n}\}$ satisfy (A. 1). Then a limit pojnt $P$ of $\{P^{n}\}$ solves

the martingale pr0blem (5.2) and satisfies
(5.3) $\sup_{0\leqq t\leqq T}E|\langle\eta_{t}, \phi\rangle|\leqq C_{T}|\phi|_{\gamma}$ for all $\phi\in S$ .

(Here $E$ denotes the integration with $dP.$ )

REMARK 5.1. From (5.3) it follows that for $\phi\in s$

(5.4) $E|\langle\eta_{t}, \phi^{\theta,y}\rangle|\leqq C_{T}|\phi|_{\gamma}$ for $0\leqq t\leqq T$ , $\theta\neq\pm\frac{\pi}{2}$ , $y\in R^{1}$

in view of

(5.5) $|( \phi^{\theta,y})^{\wedge}|_{\gamma}=\frac{1}{2\pi}\int|\int\chi_{\lambda}(-x)\phi$ ( $x$ cos $\theta-y$ sin $\theta$ ) $dx|(1+|\lambda|)^{\gamma}d\lambda$

$= \frac{1}{2\pi}\int|\int\chi_{\lambda/\cos\theta}(-x)\chi_{\lambda\tan\theta}(y)\phi(x)\frac{dx}{\omega s\theta}|(1+|\lambda|)^{\gamma}d\lambda$

$\leqq\frac{1}{2\pi}\int|\int\chi_{\lambda}(-x)\phi(x)dx|(1+|\lambda|)^{\gamma}d\lambda$

$=|\hat{\phi}|_{\gamma}$ . $(\theta\neq\pm\pi/2, y\in R^{1}.)$

REMARK 5.2. Since $\phi\in S$ implies $\phi^{\theta,y}\in S$ (for $\theta\neq\pm\pi/2$), $\langle\eta, \phi^{\theta.y}\rangle$ makes
sense. Though $\langle\eta, \phi^{\theta,y}\rangle$ is not necessarily integrable with respect to $\tilde{d}\theta u(t, dy)$

for all $\eta\in S_{\delta}’,$ $\langle\eta_{t}, \phi^{\theta,y}\rangle$ is integrable for P-a. $a$ . $\eta\cdot$ , provided (5.3) is valid, in
view of Remark 5.1. If $\langle\eta_{t}, \phi^{\theta.y}\rangle$ is not integrable we assign the value zero to
$\mathfrak{A}_{t}\eta_{t}(\phi)$ so that $\mathfrak{A}_{t}\eta_{t}(\phi)$ becomes $\overline{\mathcal{F}}_{t^{-}}progressively$-measurable. Similarly let

$\int_{0}^{t}\mathfrak{U}_{s}\eta_{s}(\phi)f’(\langle\eta_{s}, \phi\rangle)ds$ be zero, if $\mathfrak{A}_{s}\eta_{s}(\phi)$ is not integrable on $[0, t]$ .
PROOF OF THEOREM 5.1. By (5.5) and Lemma 3.2

(5.6) $\sup_{n}E^{n}[|\langle\eta_{t}, \phi^{\theta.y}\rangle|^{2}]\leqq C_{T}|\phi|_{\gamma}^{2}$ $( \theta\neq\pm\frac{\pi}{2})$ ,

which implies (5.4) and hence (5.3). Since

$\mathfrak{A}_{s}\eta_{s}(\phi)=\int\langle\eta_{s}\otimes u(s), \epsilon^{\theta}\phi\rangle\tilde{d}\theta$ $a.s$ . $P^{n}$

and for $f\in C_{0}^{\infty}(R^{1})$

$f( \langle\eta_{t}, \phi\rangle)-\int_{0}^{t}\mathfrak{G}_{s}^{n}(\eta_{s} ; \phi, f)ds$

is a $(P^{n},\overline{\mathcal{F}}_{t}^{n})$-martingale, we see by (2.7), (3.7), (3.9) and (3.10) that

$f( \langle\eta_{t}, \phi\rangle)-\int_{0}^{t}\{\mathfrak{A}_{s}\eta_{s}(\phi)f’(\langle\eta_{s}, \phi\rangle)+\frac{1}{2}Q_{s}((b)f’(\langle\eta_{s}, \phi\rangle)\}ds$

$=a(P^{n},\overline{\mathcal{F}}_{t}^{n})$-martingale+o(l),
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(where $\overline{\mathcal{F}}_{t}^{n}$ denotes the completion of $\mathcal{F}_{t}$ by $P^{n}$ ) with $\lim_{narrow\infty}E^{n}|o(1)|=0$ . Therefore

it suffices to show that if $s<t,$ $\Phi$ is a $\mathcal{F}_{s}$-measurable bounded continuous function
of $\eta\in D[R_{+}, S_{\delta}’]$ and $P^{n}$

‘ converges weakly to $P$, then

(5.7) $\lim_{n’}E^{n^{l}}[\int_{0}^{t}\mathfrak{A}_{r}\eta_{r}(\phi)f’(\langle\eta_{r}, \phi\rangle)dr\cdot\Phi]$

$=E[ \int_{0}^{t}\mathfrak{A}_{r}\eta_{r}(\phi)f’(\langle\eta_{r}, \phi\rangle)dr\cdot\Phi]$ .

The expectation on the left-hand side equals

$\int_{0}^{t}dr\int\int ff\theta u(r, dy)E^{n’}[(2\langle\eta_{r}, \phi^{\theta,y}\rangle-\langle\eta_{r}, \phi\rangle)f’(\langle\eta_{r}, \phi\rangle)\cdot\Phi]$ ,

and by (5.6) the expectation in the triple integral above converges to the cor-
responding one with respect to $P$, because the mapping $\eta\langle\eta_{r}, \phi\rangle$ is continuous
$a.s$ . $P$. Thus an application of the bounded convergence theorem with the help
of (5.6) concludes (5.7).

6. A uniqueness result for the martingale problem and convergence of
fluctuation processes.

THEOREM 6.1. A probability measure $P$ on $(C[R_{+}, S’], \mathcal{F})$ satisfying (5.2) and
(5.3) is uniquely determined by $P|_{\mathcal{F}_{0}}$ (the restnction of $P$ on $\mathcal{F}_{0}$).

We prepare a lemma which is concerned with functionals $\xi_{t},$ $t\geqq 0$ defined by

(6.1) $\xi_{t}(\phi)\equiv\xi_{t}(\phi;\eta)\equiv\langle\eta_{t}-\eta_{0}, \phi\rangle-\int_{0}^{t}\mathfrak{A}_{s}\eta_{s}(\phi)ds$ , $\phi\in S$

where $\eta\cdot\in C[R_{+}, S’]$ ; we also define

$\mathcal{F}_{t}^{*}\equiv\sigma\{\xi_{s}(\phi) : 0\leqq s\leqq t, \phi\in S\}$ , $\mathcal{F}^{*}=\sigma\{\mathcal{F}_{t}^{*} ; t\geqq 0\}$ .
( $\sigma\{\cdot\}$ denotes the $\sigma- field$ generated by $\{\cdot\}.$ )

LEMMA 6.1. If $P$ satisfies (5.2) and (5.3), then the family of random variables
$\xi_{t}(\phi):t\geqq 0,$ $\phi\in S$ on $(C[R_{+}, S’], \mathcal{F}, P)$ satisfies the following $con\iota htions$ :

i) For each $\phi\in S,$ $\xi_{t}(\phi)$ is a continuous function of $t\geqq 0a.s$ . $P$ and $\xi.(\phi)$ is
$\overline{\mathcal{F}}_{t}$ -adapted;

ii) For each $\phi\in S,$ $\xi_{0}(\phi)=0$ and

$E[ \exp\{i\xi_{t}(\phi)\}|\mathcal{F}_{s}]=\exp\{i\xi_{s}(\phi)-\frac{1}{2}\int_{s}^{t}Q_{r}(\phi)dr\}$ $a.s$ . $P$ ;

iii) For each $\phi,$ $\psi\in S$ and each $a,$ $b\in R^{1}$

$\xi_{t}(a\phi+b\psi)=a\xi_{t}(\phi)+b\xi_{t}(\psi)$ for all $t\geqq 0$ , $a$ . $s$ . $P$ .
PROOF. i) and iii) are clear from the definition of $\mathfrak{A}_{t}\eta(\phi)$ and (5.3). For
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the proof of ii) we follow Stroock-Varadhan [10].

Let

$\tau_{N}=\sup\{t\geqq 0:\int_{0}^{t}|\mathfrak{A}_{s}\eta_{s}(\phi)|ds\leqq N\}$

By (5.3) (or rather by (5.4))

$P( \tau_{N}<T)\leqq 3TC_{T}|\phi|_{\gamma}\frac{1}{N}$ ,

and hence
$P( \lim_{N\uparrow\infty}\tau_{N}=\infty)=1$ .

If we set

$F(t)= \exp\{-\int_{0}^{t\wedge\tau_{N}}(i\mathfrak{U}_{s}\eta_{s}(\phi)-\frac{Q_{s}(\phi)}{2})d_{S}\}$

$M_{t}= \exp\{i\langle\eta_{t\Lambda\tau_{N}}, \phi\rangle\}-\int_{0}^{tA\tau_{N}}(i\mathfrak{A}_{s}\eta_{s}(\phi)-\frac{Q_{s}(\phi)}{2})\exp\{i\langle\eta_{s}, \phi\rangle\}ds$ ,

then $M_{t}$ is a $(P,\overline{\mathcal{F}}_{t})$-martingale and

(6.2) $M_{t}F(t)- \int_{0}^{t}M_{s}dF(s)=\exp\{i\langle\eta_{t\wedge\tau_{N}}, \phi\rangle\}F(t)$ .

Since

$( \sup_{0\leqq t\leq T}|M_{t}|)(\int_{0}^{T}|F’(t)|dt+|F(T)|)$

$\leqq(1+N+\frac{1}{2}\int_{0}^{T}Q_{s}(\phi)d_{S})^{2}\exp\{\frac{1}{2}\int_{0}^{T}Q_{\theta}(\phi)d_{S}\}$ ,

the left-hand side of (6.2) is a $(P,\overline{\mathcal{F}}_{t})$-martingale (cf. Theorem 1.2.8 of [10]). By
letting $Narrow\infty$ , it follows that

exp $\{i(\langle\eta_{t}, \phi\rangle-\int_{0}^{t}\mathfrak{U}_{s}\eta_{s}(\phi)d_{S})+\frac{1}{2}\int_{0}^{t}Q_{s}(\phi)d_{S}\}$

is an $\mathcal{F}_{t}$-martingale, proving ii).

PROOF OF THEOREM 6.1. Let $\Omega=C[R_{+}, S’]$ and $P^{(1)}$ and $P^{(2)}$ be two probability
measures on $(\Omega, \mathcal{F})$ which satisfy (5.2) and (5.3) and coincide on $\mathcal{F}_{0}$ . Since the
relation in ii) of Lemma 6.1 determines $P^{(j)}$ on $\mathcal{F}^{*}$ when conditioned on $\mathcal{F}_{0}$, the
coincidence of $P^{(1)}$ and $P^{(2)}$ on $\mathcal{F}_{0}$ implies that on $\mathcal{F}^{*}\vee \mathcal{F}_{0}(=\sigma\{\mathcal{F}^{*}, \mathcal{F}_{0}\})$ :

$P^{(1)}|_{\mathcal{F}\cdot\vee \mathcal{F}_{0}}=P^{(2)}|_{g\cdot\vee \mathcal{F}_{0}}i$ .
Denote this common distribution on $(\Omega, \mathcal{F}^{*}\vee \mathcal{F}_{0})$ by $P^{*}$ . By applying assump-
tions (5.2) and (5.3) and the inequality in (5.5) it can be easily verified that $P^{(1)}$

and $P^{(2)}$ are concentrated on $C[R_{+}, S_{\delta}’]$ for some $\delta>0$ (we can take $\delta=(3+2\gamma)/4$

$+1)$ . Since the space $C[R_{+}, S_{\delta}’]$ equipped with the topology of uniform con-
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vergence on finite intervals is Polish and $\mathcal{F}$ restricted on it coincides with its
topological Borel field, there exist regular conditional probability measures $Q_{\eta}^{(i)}(\cdot)$

of $P^{(t)}(i=1,2)$ given $\mathcal{F}^{*}\vee \mathcal{F}_{0}$ . Now we let $\tilde{\Omega}=\Omega\cross\Omega$ and $\tilde{\mathcal{F}}=\mathcal{F}\cross \mathcal{F}$ and define
a probability measure $\tilde{P}$ on (S), $\overline{\mathcal{F}}$ ) via the relation

$\tilde{P}(A\cross B)=\int Q_{\eta}^{(1)}(A)Q_{\eta}^{(2)}(B)P^{*}(d\eta)$

for $A,$ $B\in \mathcal{F}$ . Clearly marginals of $\tilde{P}$ agree with $P^{(1)}$ and $P^{(2)},$ $i.e$ . if $\Phi$ is an

$\mathcal{F}$ -measurable bounded function, then $\int\Phi(\eta^{(j)})d\tilde{P}=E^{(j)}\Phi(j=1,2)$ . This implies

$|E^{(1)} \Phi-E^{(2)}\Phi|\leqq\int|\Phi(\eta^{(1)})-\Phi(\eta^{(2)})|d\tilde{P}$ .

Therefore it suffices to prove $\tilde{P}[\eta^{(1)}=\eta^{(2)}]=1$ or equivalently

(6.3) $\tilde{E}[|\langle\eta_{t}^{(1)}, \phi\rangle-\langle\eta_{t}^{(2)}, \phi\rangle|]=0$

for all $t\geqq 0$ and $\phi\in S$ . Let $\zeta_{t}=\eta_{t}^{(1)}-\eta_{t}^{(2)}$ for $(\eta^{(1)}, \eta 1^{2)})\in\tilde{\Omega}$ . Then by dePnition
of $\tilde{P}$

$\tilde{P}[\langle\zeta_{t}, \phi\rangle=\int_{0}^{t}\mathfrak{A}_{s}\zeta_{s}(\phi)ds]=1$ for $\phi\in S$

where $\mathfrak{U}_{s}\zeta_{s}(\phi)=\mathfrak{U}_{s\eta_{s}^{(1)}}(\phi)-\mathfrak{U}_{s}\eta_{s}^{(2)}(\phi)$ . If we define the iteration $\mathfrak{U}_{t}\mathfrak{A}_{s}$ by

$\mathfrak{A}_{t}\mathfrak{A}_{s}\eta(\phi)=2\int\int \mathfrak{A}_{s}\eta(\phi^{\theta,y})d\theta u(t, dy)-\mathfrak{A}_{s}\eta(\phi)$

$=4 \int\int d\theta u(t, dy)\int\int\langle\eta, (\phi^{\theta.y})^{\theta^{l}.y’}\rangle\tilde{d}\theta’u(s, dy’)$

$-2 \int\int\langle\eta, \phi^{\theta.y}\rangle d\theta u(t, dy)-\mathfrak{A}_{s}\eta(\phi)$ ,

and dePne $\mathfrak{A}_{t_{1}}\mathfrak{A}_{t_{2}}\cdots \mathfrak{A}_{t_{m}}$ analogously, then

$\tilde{E}|\langle\zeta_{t}, \phi\rangle|\leqq\int_{0}^{t}\tilde{E}|\mathfrak{A}_{s}\zeta_{s}(\phi)|ds\leqq\ldots$

$\leqq\int_{0}^{t}dt_{1}\int_{0}^{\iota_{1}}dt_{2}\cdots\int_{0}^{\iota_{m-1}}\tilde{E}|\mathfrak{A}_{\iota_{1}}\cdots \mathfrak{A}_{t_{m}}\zeta_{t_{m}}(\phi)|dt_{m}$ .
Since (5.4) implies

$\tilde{E}|\mathfrak{A}_{t_{1}}\cdots \mathfrak{A}_{t_{m}}\zeta_{t_{m}}(\phi)|\leqq 2\cdot 3^{m}C_{T}|\phi|_{\gamma}$ ,

we conclude $\tilde{E}|\langle\zeta_{t}, \phi\rangle|=0$, proving (6.3). Thus Theorem 6.1 has been proved.
REMARK 6.1. Let $P$ be as in Theorem 6.1. Then by Lemma 6.1 $\xi_{t}(\phi)$ defined

in (6.1) is a $(P, \mathcal{F}_{t})$-martingale with
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$E[ \xi_{t}(\phi)^{2}]=\int_{0}^{t}Q_{s}(\phi)ds$ , $\phi\in S$ .
By (3.3), (4.1), the inequality $\Vert\phi\Vert_{\infty}\leqq|\hat{\phi}|_{0}$ and a martingale inequality, we have

$E[ \sup_{0\leqq t\leqq}|\xi_{t}(e_{k})|^{2}]\leqq C_{T}\sqrt{k+1/2}$ .

Therefore for P-a. $e$ . $\eta,$
$(\xi.(e_{k}))_{k=0}^{\infty}$ can be identified with an element of $C$[$R_{+}$ , S\’i],

say $\xi.$ , via the equality

$\langle\xi_{t}, \phi\rangle=\infty\sum_{k=0}\xi_{t}(e_{k})\int e_{k}\phi dx$ , $\phi\in S_{1}$

consistently in the sense that $\langle\xi., \phi\rangle=\xi.(\phi)a.s$ . $P$ for $\phi\in S$ . We can take an $\mathcal{F}_{t^{-}}$

adapted version for $\xi$ . ; then in view of the property ii) in Lemma 6.1 $\xi_{t}$ may be
called a $Q_{t}$-Wiener process on S\’i. Now (6.1) becomes

(6.5) $\langle\eta_{t}-\eta_{0}, \phi\rangle=\langle\xi_{t}, \phi\rangle+\int_{0}^{t}\mathfrak{A}_{s}\eta_{s}(\phi)ds$ for all $t\geqq 0$ $a.s$ . $P$ .

In the proof of Theorem 6.1 we have proved, by showing (6.3), the pathwise
uniqueness for the stochastic integral equation (6.5) where $\xi_{t}$ is understood as a
given $Q_{t}$-Wiener process.

A combination of Theorems 4.1, 5.1 and 6.1 yields the next theorem, in which
we shall assume the following condition:

(A. 2) for each $\phi\in S$, the distnbution on $R^{1}$ induced by $(\langle\eta_{0}^{n}, \phi\rangle, P)$ converges
weakly to $a$ &stnbution, say $F_{\phi}$ , as $narrow\infty$ .

This condition coupled with (A. 1) implies the weak convergence of the family of
distributions on $S_{\delta}’$ induced by $(\eta_{0}^{n}, P)$ if $\delta>(3+2\gamma)/4$ .

THEOREM 6.2. If (A. 2) as well as (A. 1) holds and $\delta>(3+2\gamma)/4$, then $P^{n}$

converges weakly to $P$ where $P$ is concentrated on $C[R_{+}, S_{\delta}’]$ and is a unique
solution of the martingale Problem (5.2) with the collateral condition (5.3) and the
initial condition

$P(\langle\eta_{0}, \phi\rangle\in\cdot)=F_{\phi}$ for $\phi\in S$ .

7. Distribution of the limiting process.

In this section we shall assume the condition (A. 1) and find an expression
of a limit measure of $\{P^{n}\}$ , guided by Theorem (1.4) of Holley-Stroock [4]. To
handle the operator $\mathfrak{A}_{t}$ appearing in the drift term of the limiting process we
introduce a Banach space $\mathcal{E}$ ; $\mathcal{E}$ consists of all real functions $\phi$ of the form (3.5)

with absolutely continuous $\hat{\phi}$ and is normed by $\Vert\phi\Vert\equiv|\hat{\phi}|_{\gamma}$ with a constant $\gamma$ ap-
pearing in (A. 1); hence, if $\phi\in \mathcal{E},$ $\phi$ is a Fourier transform of a (at least sum-
mable) complex function on $R^{1}$ .
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For each $t\geqq 0$ , we define a linear operator $\mathfrak{U}_{t}$ on $\mathcal{E}$ by

$\mathfrak{U}_{t}\phi(x)=2\int\int\phi^{\theta,y}(x)u(t, dy)d\theta-\phi(x)$

( $\phi^{\theta,y}$ is defined in \S 5). Then

(7.1) $\Vert \mathfrak{U}_{t}\phi\Vert\leqq 3\Vert\phi\Vert$

(7.2) $\Vert \mathfrak{A}_{t}\phi-\mathfrak{U}_{s}\phi\Vert\leqq 4(t-s)\Vert\phi\Vert$ for $s\leqq t$ .
The first bound follows from (5.5) and the second also from (5.5) with the help of

$\frac{1}{2}\frac{\partial}{\partial t}\mathfrak{A}_{t}\phi(x)=\int\int\int\int\phi^{\theta.y}(x)u(t, dy)u(t, dz)d\theta d_{\sigma}$

$- \int\int\phi^{\theta.y}(x)u(t, dy)d\theta$

where
$y^{*}=y$ cos $\sigma-z$ sin $\sigma$ .

In view of (7.1) and (7.2) we can construct without difficulty a strongly con-
tinuous semigroup of bounded operators $U(s, t):0\leqq s\leqq t$, on $\mathcal{E}$ such that

$U(s, r)U(r, t)=U(s, t)$ for $0\leqq s\leqq r\leqq t$ ;

$U(s, s)=the$ identity operator;

$\frac{\partial}{\partial s}U(s, t)=-\mathfrak{A}_{s}U(s, t)$ ; $\frac{\partial}{\partial t}U(s, t)=U(s, t)\mathfrak{A}_{t}$ ,

where the partial derivatives are taken in the uniform norm of bounded operators.
Let $P$ be a limit measure of $\{P^{n}\}$ . We want to give a meaning to $\langle\eta_{s}, U(s, t)\phi\rangle$

for each $\phi\in S$, each $0\leqq s\leqq t$ and P-a. $a$ . $\eta\in D[R_{+}, S’]$ . Since $U(s, t)\phi$ belongs
in general not to $S$ , but to $\mathcal{E}$, we introduce for each $t>0$ and $\phi\in \mathcal{E}$ a real valued
functional $z_{t}(\phi)=z_{t}(\phi;\eta)$ of $\eta\in D[R_{+}, S’]$ which has the following properties:

$z_{t}(\phi)$ is $\mathcal{F}_{t}$-measurable;
if $\phi_{k}\in s$ and $\lim_{k\{\infty}\Vert\phi_{k}-\phi\Vert=0$, then $\lim_{k\dagger\infty}E|\langle\eta_{t}, \phi_{k}\rangle-z_{t}(\phi)|=0$ ;

$P^{n}[\langle\eta_{t}, \phi\rangle=z_{t}(\phi)]=1$ for $n=1,2,$ $\cdots$

If $\phi\in S$ let $z_{t}(\phi)=\langle\eta_{t}, \phi\rangle$ . For $a$ general $\phi\in \mathcal{E}$, by taking $\rho_{k}\in S$ such that

$\lim_{m\uparrow\infty}\Vert\sum_{k=1}^{m}\rho_{k}-\phi\Vert=0$ and $\Vert\rho_{k}\Vert\leqq 2^{-k}$ ,

set

$z_{t}(\phi)=\{\begin{array}{ll}\delta_{=1}^{\langle\eta_{t}}\infty, \rho_{k}\rangle if \sum_{k=1}^{\infty}|\langle\eta_{t}, \rho_{k}\rangle|<\infty 0 otherwise.\end{array}$
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By virtue of Lemma 3.2 $z_{t}(\phi)$ then satisfies the requirements above. Because of
the second condition $z_{t}(\phi)$ is independent of the choice of $\{\rho_{k}\}$ up to P-null sets.

In the next theorem we write
$\phi_{t}^{s}=U(s, t)$

and

$p(t, x)= \frac{1}{\sqrt{2\pi t}}\exp(-\frac{x^{2}}{2t})$ $x\in R^{1}$ .

THEOREM 7.1. Assume (A. 1) to hold and let $P$ be a limit measure of $\{P^{n}\}$

and $z_{t}(\cdot)$ be as above. Then for each $\phi\in \mathcal{E},$ $0\leqq s\leqq t$ and $x\in R^{1}$

(7.3) $E[z_{t}( \phi)\leqq x|\mathcal{F}_{s}]=\int_{-\infty}^{x}p(\int_{s}^{t}Q_{r}(\phi_{t}^{r})dr,$ $z_{s}(\phi_{t}^{\theta})-y)dy$ , $a.s$ . $P$ .

PROOF. Fixing a positive time $T$ arbitrarily, set $\Omega=D[[0, T],$ $R^{1}$] which is
endowed with the usual Skorohod topology. By approximation argument, it
suffices to show (7.3) for elements of $S$ . Given a $\phi\in S$ , we consider the real
valued process

$y_{t}^{n}\equiv\langle\eta_{t}^{n}, \phi b\rangle$ : $0\leqq t\leqq T$

where $\eta^{n}$ is a process on $(P, \Omega, \mathcal{M})$ defined in \S 2. Clearly $y^{n}\in\Omega a.s$ . $P$. By
using the identity $\partial\phi_{T}^{t}/\partial t=-\mathfrak{A}_{t}\phi_{T}^{t}$ and noticing that $\eta^{n}$ has no fixed discontinuity
and its total variations are at most $2\sqrt{n}$, it can be easily verified that for any
$f\in C_{0}^{\infty}(R^{1})$

(7.4) $f(y_{t}^{n})- \int_{0}^{t}\{\mathfrak{G}_{r}^{n}(\eta_{r}^{n} ; \phi_{T}^{r}, f)-\langle\eta_{r}^{n}, \mathfrak{A}_{r}\phi_{t}^{r}\rangle f’(y_{r}^{n})\}dr$

is a martingale. By the same reasoning as in \S 4 and \S 5, we have that

(7.5) $\mathfrak{G}_{r}^{n}(\eta_{r}^{n} ; \phi b, f)-\langle\eta_{r}^{n}, \mathfrak{A}_{r}\phi\Psi\rangle f’(y_{r}^{n})=\frac{1}{2}Q_{r}(\phi\})f’(y_{r}^{n})+o(1)$

with $\lim_{narrow\infty}E[|o(1)|]=0$ (note that $\phi\in S$ implies $|(\phi_{t}^{s})^{\wedge}|_{2\gamma}<\infty$ when applying the

estimate (3.7)), and that a family of $\Omega$-valued random variables $\{y^{n}\}$ is tight.
Take $\delta>(3+2\gamma)/4$ and let $\tilde{P}^{n}$ be the measure on $D[[0, T],$ $S_{\delta}’$] $\cross\Omega$ induced by
$(\eta^{n}, y^{n})$ . Then $\{\tilde{P}^{n}\}$ is tight in view of Theorem 4.1. Let $\tilde{P}$ be a weak limit
of $\{\tilde{P}^{n}\}$ along $\{n’\}$ . We note that $P^{n’}$ converges weakly to the $\eta$ -marginal of
$\tilde{P}$ . By (7.4) and (7.5)

$f(y_{t})- \frac{1}{2}\int_{0}^{t}Q_{r}(\phi_{T}^{r})f’(y_{r})dr$

is a $(\tilde{P}, \mathcal{F}_{t}\cross \mathcal{R}_{t})$-martingale, where $\{\mathcal{R}_{t}\}_{t=0}^{T}$ is a usual increasing family of $\sigma-$

fields attached to $\Omega$ . Therefore for each $0\leqq s\leqq t\leqq T$ we have (for $\tilde{P}- a.a$ . $(\eta\cdot,$ $y.)$ )

$\tilde{E}[f(y_{t})|\mathcal{F}_{s}\cross \mathcal{R}_{s}]=\int f(y)p(\int_{s}^{t}Q_{r}(\phi_{T}^{r})dr,$ $y_{s}-y)dy$ .
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We shall soon observe that for $0\leqq s\leqq T$

(7.6) $\tilde{P}$ [ $y_{T}=z_{T}(\phi;\eta)$ and $y_{s}=z_{s}(\phi_{T}^{s}$ ; $\eta)$] $=1$ .
If this is admitted,

$\tilde{E}[f(z_{T}(\phi))|\mathcal{F}_{s}\cross \mathcal{R}_{s}]=\int f(y)p(\int_{s}^{T}Q_{r}(\phi_{T}^{r})dr,$ $z_{s}(\phi_{T}^{s})-y)dy$ .

Since the right-hand side above is independent of $y.$ , this equation yields (7.3)

with $t=T$ and with $P$ the $\eta$ -marginal of $\tilde{P}$ .
The proof of (7.6) is carried out as follows. Let $\psi=\phi_{T}^{S}=\sum_{k=1}^{\infty}\rho_{k}$ and $\psi_{m}=$

$\sum_{k\Leftarrow 1}^{m}\rho_{k}$ then by using Lemma 3.2

$\tilde{E}|z_{s}(\psi)-y_{s}|\leqq\tilde{E}|z_{s}(\psi)-\langle\eta_{s}, \psi_{m}\rangle|+\tilde{E}|\langle\eta_{\theta}, \psi_{m}\rangle-y_{s}|$

$\leqq C_{T}\sum_{k>m}\Vert\rho_{k}\Vert+\lim\tilde{E}^{n’}|\langle\eta_{s}, \psi_{m}\rangle-\langle\eta_{s}, \psi\rangle|$

$\leqq 2C_{T}\sum_{k>m}\Vert\rho_{k}\Vert$ ,

which vanishes as $marrow\infty$ . This proves (7.6), because $\phi_{T}^{T}=\phi$ .

8. Examples of $\{\mu_{n}\}$ satisfying (A. 1) and (A. 2).

i) Let $\mu_{n}=\mu^{n\otimes}$ . Then (A. 1) is trivial and (A. 2) follows from the central
limit theorem $fori$ . $i$ . $d$ . random variables.

ii) Consider $n$ ] linear arrangements of $n$ distinct objects and attribute the
equal probabilities to all arrangements. Let $\epsilon_{k}=1$ or $-1$ according as the k-th
object is arranged in the first $[n/2]$ places or in the rest ( $[x]$ is the largest
integer which does not exceed $x$ ). Let $\{a_{j}\}_{j=1}^{\infty}$ and $\{b_{j}\}_{j=1}^{\infty}$ be two sequences of
$i.i.d$ . random variables which are independent of each other and of $\{\epsilon_{k}\}$ . Now
we set

$X_{j}=a_{j}$ or $b_{j}$ according as $\epsilon_{j}=1$ or $-1$

for $j=1,2,$ $\cdots$ , $n$ , and define $\mu_{n}$ as the distribution of $(X_{1}, \cdots , X_{n})\in R^{n}$ . Clearly
$\mu_{n}$ is symmetric and since the probabilities of $\{\epsilon_{1}=\epsilon_{2}=1\}$ , $\{\epsilon_{1}=1, \epsilon_{2}=-1\}$ , etc.
are $1/4+0(1/n)$ , (A. 1) is satisfied with $\mu=\mu_{2n11}(n=1, 2, )$ and $\gamma=0$ . For $\phi\in$

$C_{b}(R^{1}),$ $\langle\eta_{0}^{n}, \phi\rangle$ has the same distribution as

$\frac{1}{\sqrt{n}}\sum_{j=1}^{[n/2]}(\phi(a_{j})-A)+\frac{1}{\sqrt{n}}\sum_{j=1}^{n-[n/2]}(\phi(b_{j})-B)$

$+ \frac{1}{\sqrt{n}}([n/2]A+(n-[n/2])B-\frac{n}{2}(A+B))$ ,

where $A=E\phi(a_{1})$ and $B=E\phi(b_{1})$ . Therefore its distribution converges to a
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Gaussian distribution with mean zero and variance

$V_{\phi} \equiv\frac{1}{2}E[(\phi(a_{1})-A)^{2}+(\phi(b_{1})-B)^{2}]$ .

It should be noted that if $A\neq B$ this value is smaller than

$V_{\mu,\phi} \equiv\langle\mu, (\phi-\langle\mu, \phi\rangle)^{2}\rangle=V_{\phi}+\frac{1}{4}(A-B)^{2}$ .

iii) Let $s$ be a positive number and $c$ a positive integer. Let us consider a
Polya’s um scheme. An urn initially contains the equal number $[ns]$ of black
and red balls. At each trial $a$ ball is drawn at random, it being replaced and $c$

balls of the color drawn added. Suppose one makes $n$ successive trials and let
$\epsilon_{k}=1$ or $-1$ according as the k-th trial turns black or red. Given a set of $m$

distinct indices $k_{1},$ $\cdots$ , $k_{m}$ , the probability that the $k_{j^{-}}th$ trial turns black for
$j=1,$ $\cdots$ , $m$ and the rest $(n-m)$ trials turn red equals

$p_{n.m} \equiv(\frac{[ns]}{c}+m-1)_{m}(\frac{[ns]}{c}+n-m-1)_{n-m}/(2\frac{[ns]}{c}+n-1)_{n}$

(cf. Feller [3] p. 110). Since this probability is independent of a combination of
$m$ indices, the distribution of $(\epsilon_{1}, \cdots , \epsilon_{n})$ is symmetric. Let $\{a_{j}\}$ and $\{b_{j}\}$ be the
same as in the previous example and define $\mu_{n}$ in the same way too, but by the
present $\{\epsilon_{k}\}$ . Then $\mu_{n}$ is symmetric and (A. 1) is satisfied with $\mu=\mu_{n11}(n=$

$1,$ 2, ) and $\gamma=0$ . By using Stirling’s formula and an elementary relation that
as $karrow\infty$ and $x-karrow\infty$

log $(x)_{k}= \int_{x- k}^{x}(\log y)dy+\frac{1}{2}\log\frac{x}{x-k}+o(\frac{1}{x-k})$ ,

it can be verified that if $k=[(n+x\sqrt{n})/2]$ and $\nu_{n}=\sum_{j=1}^{n}(1+\epsilon_{j})/2$,

$P[ \nu_{n}=k]=p_{n.k}\cdot(\begin{array}{l}nk\end{array})=\frac{2}{\sqrt n}\frac{1}{\sqrt 2\pi}\overline{v}$ exp $(- \frac{x^{2}}{2v})(1+o(\frac{1}{\sqrt{n}}))$

as $narrow\infty$ , where $v=1+c/2s$ . From this relation it is ready to see that the dis-
tribution of $\langle\eta_{0}^{n}, \phi\rangle$ converges to a Gaussian distribution with mean zero and
variance $V_{\phi}+(A-B)^{2}v/4=V_{\mu,\phi}+(A-B)^{2}c/8s$ (where V $\phi$ and $V_{\mu,\phi}$ are the same
as in ii)).

iv) Let $J$ be a countable subset of $R^{1}$ and let $(\xi_{k} ; k=1,2, \cdots ; P)$ be a
Markov chain on $J$ starting with any initial distribution. Let $\tau_{j}$ be the first
passage time of $\xi_{k}$ through $j\in J$. We assume

$E[|\tau_{j}|^{2}|\xi_{1}=l]<\infty$

for any pair $($], $l)\in J\cross J$. Then it is known that there exists a unique invariant
probability measure, say $\mu$ , of the Markov chain and that there exist a constant
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$C$ and a functional $V(\phi)$ such that for any $\phi\in C_{b}(R^{1})$

(8.1) $E[( \sum_{k=1}^{n}(\phi(\xi_{k})-\langle\mu, \phi\rangle))^{2}]\leqq Cn\Vert\phi\Vert_{\infty}^{2}$ .

(8.2) $\lim_{n\uparrow\infty}P[-\sqrt{nV(\phi)}\underline{1}\sum_{k=1}^{n}(\phi(\xi_{k})-\langle\mu, \phi\rangle)\leqq x]=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}\exp(-\frac{y^{2}}{2})dy$

(cf. Chung [2], pp. 94, 97 and 98). Now we define $\mu_{n}$ via the relation that

$\langle\mu_{n}, w\rangle=\frac{1}{n!}\sum_{\sigma}E[w(\xi_{\sigma(1)} , \xi_{\sigma(n)})]$

for $w\in C_{b}(R^{n})$ , where $\sigma$ runs over all permutations of $n$ objects. Clearly $\mu_{n}$ is

symmetric. Since $\langle\alpha^{n}, \phi\rangle$ is identical in law to $n^{-1} \{\sum_{k=1}^{n}\phi(\xi_{k})\}$ as being clear from

$\int f(\sum_{k=1}^{n}\phi(x_{k}))\mu_{n}=\frac{1}{n!}\sum_{\sigma}Ef(\sum_{k=1}^{n}\phi(\xi_{\sigma(k)}))=Ef(\sum_{k=1}^{n}\phi(\xi_{k}))$ ,

(A. 1) and (A. 2) follow from (8.1) and (8.2), respectively.
v) In Kac’s paper [5] the initial distribution $\mu_{n}$ (and hence $u_{n}(t)$ ) is sup-

posed to be confined in the $(n-1)$-dimensional sphere of radius $\sqrt{n}$, which is
natural from a physical point of view that the average frequency of collision
should depend the total energy of $n$ molecules. The proposition given here
demonstrates that there are many $\{\mu_{n}\}s$ which are confined in these spheres
and satisfy the conditions (A. 1) (with $\gamma=1$ ) and (A. 2).

Let $\mu$ be a probability measure with

$0< \sigma\equiv(\int x^{2}\mu(dx))^{1/2}<\infty$

and $Z^{n}=(Z_{1}^{n}, \cdots , Z_{n}^{n}),$ $n=1,2,$ $\cdots$ be $R^{n}$-valued $ra$ndom variables such that $Z^{n}\neq 0$

$a.s$ . and set

$\zeta^{n}=\sqrt{n}\{\frac{1}{n}\sum_{k=1}^{n}\delta_{z_{k}^{n}}-\mu\}$ .

Let $\mu_{n}$ be the distribution of the $R^{n}$-valued random variable $X^{n}$ which is defined
by

$X^{n}= \frac{\sigma\sqrt{n}}{|Z^{n}|}Z^{n}$ , $|Z^{n}|= \{\sum_{k=1}^{n}(Z_{k}^{n})^{2}\}^{1/2}$

Note that $\mu_{n}$ is concentrated on the $(n-1)$-sphere of radius $\sigma\sqrt{n}$ . Now we
claim that: If the following conditions are satisfied
(8.3) $\sup_{n}\sup_{\lambda\in R^{1}}\{E[|\langle\zeta^{n}, \chi_{\lambda}\rangle|^{2}](1+|\lambda|)^{-2}\}<\infty$ ;

(8.4) for each $\phi\in S$ the distribution of $\langle\zeta^{n}, \phi+x^{2}\rangle$ weakly converges as $narrow\infty$ ;
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(8.5) $\sup_{n}E[|\langle\zeta^{n}, x^{2}\rangle|^{2}]<\infty$ ,

then $\lim_{n\uparrow\infty}\mu_{n11}=\mu,$
$\{\mu_{n}\}$ satisfies (A. 1) $(\gamma=1)$ and (A. 2) and $F_{\phi}$ in (A. 2) agrees with

the limiting distnbution of $\langle\zeta^{n},\hat{\phi}\rangle$ where

$\hat{\phi}(x)=\phi(x)-(2\sigma^{2})^{-1}(\int\phi’(y)y\mu(dy))\cdot x^{2}$ .

PROOF. From the identity

(8.6) $Z_{k}^{n}-X_{k}^{n}= \frac{|Z^{n}|^{2}/n-\sigma^{2}}{(|Z^{n}|/\sqrt{}\overline{n}+\sigma)|Z^{n}|/\sqrt{n}}Z_{k}^{n}=\frac{1}{\sqrt n}(L_{n}/K_{n})Z_{k}^{n}$

where

$L_{n}=\langle\zeta^{n}, x^{2}\rangle$ and $K_{n}=( \frac{|Z^{n}|}{\sqrt n}+\sigma)\frac{|Z^{n}|}{\sqrt n}$ ,

it follows that

(8.7) $\phi(Z_{k}^{n})-\phi(X_{k}^{n})=\frac{1}{\sqrt{n}}(L_{n}/K_{n})Z_{k}^{n}\phi’(Z_{k}^{n})+R_{n,k}$

with

$|R_{n.k}| \leqq\frac{1}{2n}\{(L_{n}/K_{n})Z_{k}^{n}\}^{2}\Vert\phi’’\Vert_{\infty}$ .

Therefore

(8.8) $\langle\zeta^{n}-\eta_{0}^{n}, \phi\rangle=\frac{1}{\sqrt{n}}\sum_{k\Rightarrow 1}^{n}(\phi(Z_{k}^{n})-\phi(X_{k}^{n}))$

$=(L_{n}/K_{n}) \frac{1}{n}\{\sum_{k=1}^{n}Z_{k}^{n}\phi’(Z_{k}^{n})\}+R_{n}$

with

$|R_{n}| \leqq\frac{1}{2\sqrt{n}}(L_{n}/\sigma)^{2}\Vert\phi\Vert_{\infty}$ .

Now the assumptions (8.3) and (8.4) is applied to ensure

$\langle\eta_{0}^{n}, \phi\rangle=\langle\zeta^{n}, \phi\rangle-\frac{1}{K_{n}}\langle\zeta^{n}, x^{2}\rangle\langle\mu, x\phi’\rangle+o(1)$ ,

where $0(1)arrow 0$ in probability, which proves the assertion for (A. 2), because (8.4)
$impli_{\vee}^{\circ}s$

$K_{n}arrow 2\sigma^{2}$ in Probability.

From the inequality

$\frac{1}{n}\sum_{k=1}^{n}|Z_{k}^{n}|\leqq\frac{|Z^{n}|}{\sqrt{n}}\leqq K_{n}/\sigma$

and from (8.6) and the first line of (8.8) it follows that
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$| \langle\zeta^{n}-\eta_{0}^{n}, \chi_{\lambda}\rangle|\leqq(K_{n}/L_{n})\{\frac{1}{n}\sum_{k=1}^{n}|Z_{k}^{n}|\}\Vert\chi_{\lambda}’\Vert_{\infty}\leqq(L_{n}/\sigma)|\lambda|$ .

Therefore (8.3) and (8.5) implies (A. 1) with $\gamma=1$ . The proof is complete.
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