On some asymptotic properties of systems of entire functions of smooth growth

By Nobushige TODA

(Received Oct. 27, 1981)

1. Introduction.

Let $f=\left(f_{0}, f_{1}, \cdots, f_{n}\right)(n \geqq 1)$ be a transcendental system in $|z|<\infty$. That is to say, $f_{0}, f_{1}, \cdots, f_{n}$ are entire functions without common zero and the characteristic function of f defined by H. Cartan ([3]):

$$
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} U\left(r e^{i \theta}\right) d \theta-U(0),
$$

where

$$
U\left(r e^{i \theta}\right)=\max _{0 \leqq j \leqq n} \log \left|f_{j}\left(r e^{i \theta}\right)\right|,
$$

satisfies the condition

$$
\lim _{r \rightarrow \infty} \frac{T(r, f)}{\log r}=\infty .
$$

Let X be a set of linear combinations ($\not \equiv 0$) of $f_{0}, f_{1}, \cdots, f_{n}$ with coefficients in C in general position; that is, for any $n+1$ elements

$$
a_{0 j} f_{0}+a_{1 j} f_{1}+\cdots+a_{n j} f_{n} \quad(j=1, \cdots, n+1)
$$

in $X, n+1$ vectors ($a_{0 j}, a_{1 j}, \cdots, a_{n j}$) are linearly independent.
In this paper, we shall give some necessary or sufficient conditions for f to satisfy

$$
\begin{equation*}
T(r, f) \sim T(2 r, f), \tag{1}
\end{equation*}
$$

where " $A(r) \sim B(r)$ " means $\lim _{r \rightarrow \infty} A(r) / B(r)=1$, and discuss the relations between the Nevanlinna deficiency of F in X and the asymptotic behaviour of f satisfying (1).

We use the standard notation of the Nevanlinna theory (see [5]).

2. Cases of meromorphic functions; some lemmas and problems.

In this section, we shall pick up important results concerning transcendental meromorphic functions g in $|z|<\infty$ which satisfy

$$
\begin{equation*}
T(r, g) \sim T(2 r, g) \tag{2}
\end{equation*}
$$

give some lemmas used in this paper and state some problems which will be settled in this paper.
[I] If

$$
T(r, g)=O\left((\log r)^{2}\right) \quad(r \rightarrow \infty)
$$

then,

$$
T(r, g) \sim N(r, a, b)
$$

where $N(r, a, b)=\max \{N(r, a), N(r, b)\}(a \neq b \in \bar{C})$ ([11]).
We can prove this by using the following well-known
Lemma 1. Let $h(z)$ be an entire function of genus 0 , then

$$
\begin{aligned}
\log M(r, h) & \leqq r \int_{0}^{\infty} \frac{n(t)}{t(t+r)} d t+O(\log r)=r \int_{0}^{\infty} \frac{N(t)}{(t+r)^{2}} d t+O(\log r) \\
& <N(r)+r \int_{r}^{\infty} \frac{n(t)}{t^{2}} d t+O(\log r)=r \int_{r}^{\infty} \frac{N(t)}{t^{2}} d t+O(\log r)
\end{aligned}
$$

where $n(t)=n(t, 1 / h)-n(0,1 / h)$ and $N(r)=\int_{0}^{r} n(t) / t d t$ (see [3], p. 47-p. 48).
The essential part of the proof of [I] is the fact that, for any $a \in \bar{C}$,

$$
\begin{equation*}
r \int_{r}^{\infty} \frac{n(t, a)}{t^{2}} d t=o(T(r, g)) \quad(r \rightarrow \infty) \tag{3}
\end{equation*}
$$

This is because

$$
r \int_{r}^{\infty} \frac{n(t, a)}{t^{2}} d t=O(\log r) \quad(r \rightarrow \infty)
$$

From this point of view, G. Valiron ([11]) gave the following [II] When the order of g is zero, if $T(r, g)$ satisfies (3) for every $a \in \bar{C}$, then,

$$
T(r, g) \sim N(r, a, b)
$$

He generalized this result to algebroid functions and gave some interesting results in this direction (see [12]).

Problem 1. What functions satisfy (3) for every $a \in \bar{C}$?
On the other hand, Y. Kubota ([8]) showed that
[III] Suppose that g is of order zero and satisfies (2) and further that there exists a in \bar{C} such that $\delta(a, g)>0$. Then,

$$
T(r, g) \sim N(r, b) \quad(b \neq a)
$$

Recently, W. K. Hayman ([7], Theorem 6) has proved that [IV] Suppose that g is entire. If g satisfies (2), then g is of order and so genus zero and for every $a \in C$

$$
\begin{equation*}
n(r, a)=o(N(r, a)) \quad(r \rightarrow \infty) . \tag{4}
\end{equation*}
$$

Conversely, if g is of genus zero and there exists a value $a \in C$ satisfying (4), then g satisfies (2).

We note that $N(r, a)$ satisfying (4) is of order zero by the method used in the proof of Theorem 6 ([7]) and so g must be of order zero if g is of genus zero (see Remark 1 in §3).

In the proof of this theorem, we find the fact that a meromorphic function g satisfying (2) is of order zero. This shows that, in [III], the condition that g is of order zero is unnecessary. But some parts of the proof of [IV] are not applicable to meromorphic functions.

Problem 2. Is it possible to generalize [IV] to meromorphic functions or further to systems?

Next, J. M. Anderson ([1]) stated that
[V] If g satisfies (2), then, for each distinct $a, b \in \bar{C}$

$$
T(r, g) \sim N(r, a, b) .
$$

And he says that for a proof, see [11], théorème II; that is, [II] in this section. But we cannot find any direct proof of [V] in [11]. It is necessary to clarify the relation between (2) and (3).

Problem 3. What relations are there between (2) and (3)?
Concerning the asymptotic values, J. M. Anderson and J. Clunie ([2]) proved that
[VI] If

$$
T(r, g)=O\left((\log r)^{2}\right) \quad(r \rightarrow \infty)
$$

and if $\delta(\infty, g)>0$, then

$$
\underset{\substack{r \rightarrow \infty \\ z \in \in-\text { set }}}{\lim \inf } \frac{\log |g(z)|}{T(|z|, g)} \geqq \delta(\infty, g) .
$$

In [9], we proved that
[VII] Suppose that g satisfies (2) and is of order zero. If $\delta(a, f)>0$, then a is an asymptotic value of g.

To this, Hayman ([7]) proved that, as is cited above, if g satisfies (2), then g is of order zero and improved [VII]. That is to say,
[VIII] Suppose that g satisfies (2). If $\delta(a, g)>0$, then a is an asymptotic value of g ([7], Corollary 2).
J. M. Anderson ([1]) improved this result as follows.
[IX] Suppose that g satisfies (2) and $\delta(\infty, g)>0$. Then, for a slim set S

$$
\underset{\substack{r \rightarrow \infty \\ z \in S}}{\lim \inf } \frac{\log |g(z)|}{T(|z|, g)} \geqq \delta(\infty, g),
$$

where a countable set of circles in the plane is said to form a slim set if the sum of radii of those circles intersecting the annulus $2^{k} \leqq|z| \leqq 2^{k+1}$ is $o\left(2^{k}\right)$ as $k \rightarrow \infty$.

It is known ([1]) that if S is a slim set, then there is a receding path Γ from O to ∞ lying eventually outside S such that

$$
\text { length of } \Gamma \text { in }|z| \leqq R=R(1+o(1)) \quad(R \rightarrow \infty) .
$$

To prove [IX], he prepared the following
Lemma 2. Let h be an entire function for which

$$
\log M(r, h) \sim \log M(2 r, h)
$$

Then,

$$
\log |h(z)| \sim \log M(r, h)
$$

as $z=r e^{i \theta} \rightarrow \infty$ outside a slim set.
Problem 4. Is it possible to generalize [IX] to systems?

3. Systems f satisfying (1).

Let f and X be as in $\S 1$. In this section, we discuss the systems f satisfying (1) and give solutions of Problems 1,2 and 3.

Theorem 1. If f satisfies (1), then the order of f is zero and so the integral

$$
\begin{equation*}
\int_{1}^{\infty} \frac{T(t, f)}{t^{2}} d t \tag{5}
\end{equation*}
$$

converges. Further it holds

$$
\begin{equation*}
T(r, f) \sim r \int_{r}^{\infty} \frac{T(t, f)}{t^{2}} d t \tag{6}
\end{equation*}
$$

Conversely, if the integral (5) converges and (6) holds, then f satisfies (1).
Proof. Suppose that f satisfies (1). Put

$$
\begin{equation*}
V(r)=\int_{1}^{r} \frac{T(t, f)}{t} d t \tag{7}
\end{equation*}
$$

then it is easily seen that

$$
\begin{equation*}
V(r) \sim V(2 r) . \tag{8}
\end{equation*}
$$

From (7),

$$
T(r, f) \log 2 \leqq \int_{r}^{2 r} \frac{T(t, f)}{t} d t=V(2 r)-V(r)
$$

and so by (8)

$$
\begin{equation*}
T(r, f)=o(V(r)) \quad(r \rightarrow \infty) . \tag{9}
\end{equation*}
$$

We apply the method used by Hayman ([7], p. 130) to our case. Let ε be any positive number. Then by (9)

$$
T(r, f)<\varepsilon V(r) \quad\left(r \geqq R_{0}(\varepsilon)\right),
$$

so that

$$
\log \frac{V\left(r_{2}\right)}{V\left(r_{1}\right)}=\int_{r_{1}}^{r_{2}} \frac{T(t, f)}{V(t)} \frac{d t}{t}<\varepsilon \log \frac{r_{2}}{r_{1}} \quad\left(r_{2}>r_{1} \geqq R_{0}\right) .
$$

That is, we have

$$
V\left(r_{2}\right)<V\left(r_{1}\right)\left(r_{2} / r_{1}\right)^{\varepsilon},
$$

which shows that the order of $V(r)$ is zero. As the order of $T(r, f)$ is equal to that of $V(r)$, we obtain that the order of f is zero. From this fact, we know that the integral (5) converges. Using that $T(r, f)$ is non-decreasing, we have

$$
\begin{align*}
T(r, f) & \leqq r \int_{r}^{\infty} \frac{T(t, f)}{t^{2}} d t=r \int_{r}^{2 r} \frac{T(t, f)}{t^{2}} d t+r \int_{2 r}^{\infty} \frac{T(t, f)}{t^{2}} d t \tag{10}\\
& \leqq T(2 r, f) / 2+r \int_{r}^{\infty} \frac{T(2 t, f)}{t^{2}} d t / 2
\end{align*}
$$

Now, f satisfying (1), we have

$$
r \int_{r}^{\infty} \frac{T(2 t, f)}{t^{2}} d t \sim r \int_{r}^{\infty} \frac{T(t, f)}{t^{2}} d t
$$

so that we obtain (6) from (10).
Conversely, suppose that the integral (5) converges and that (6) is satisfied. As $T(r, f)$ is non-decreasing, we have

$$
\begin{align*}
r \int_{r}^{\infty} \frac{T(t, f)}{t^{2}} d t & =r \int_{r}^{2 r} \frac{T(t, f)}{t^{2}} d t+r \int_{2 r}^{\infty} \frac{T(t, f)}{t^{2}} d t \tag{11}\\
& \geqq T(r, f) / 2+r \int_{r}^{\infty} \frac{T(2 t, f)}{t^{2}} d t / 2
\end{align*}
$$

so that we obtain (1), since we have

$$
T(2 r, f) \sim r \int_{r}^{\infty} \frac{T(2 t, f)}{t^{2}} d t
$$

from (6).
Theorem 2. If f satisfies (1), then the order of f is zero and so the integral (5) converges and for any F_{1}, \cdots, F_{n+1} in X,

$$
T(r, f) \sim N\left(r, F_{1}, \cdots, F_{n+1}\right) \sim r \int_{r}^{\infty} \frac{N\left(t, F_{1}, \cdots, F_{n+1}\right)}{t^{2}} d t
$$

Conversely, if the integral (5) converges and if there exist F_{1}, \cdots, F_{n+1} in X such that

$$
\begin{equation*}
N\left(r, F_{1}, \cdots, F_{n+1}\right) \sim r \int_{r}^{\infty} \frac{N\left(t, F_{1}, \cdots, F_{n+1}\right)}{t^{2}} d t \tag{12}
\end{equation*}
$$

then f satisfies (1). Here,

$$
N\left(r, F_{1}, \cdots, F_{n+1}\right)=\max _{1 \leq j \leq n+1} N\left(r, 0, F_{j}\right) .
$$

Proof. Suppose first that f satisfies (1). Then, by Theorem 1, the order of f is zero, so that we may suppose without loss of generality that f_{0}, f_{1}, \cdots, f_{n} are all of order zero. From this, we obtain that any F in X is of order zero. Now, for any $n+1$ elements F_{1}, \cdots, F_{n+1} in X,

$$
\begin{equation*}
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \max _{1 \leq j \leq n+1} \log \left|F_{j}\left(r e^{i \theta}\right)\right| d \theta+O(1) \tag{13}
\end{equation*}
$$

(see [4], p. 8). Applying Lemma 1 to F_{j} in place of h and using $n_{j}(r)$ and $N_{j}(r)$ instead of $n(r)$ and $N(r)$ respectively, we have

$$
\begin{aligned}
\log M\left(r, F_{j}\right) & \leqq N_{j}(r)+r \int_{r}^{\infty} \frac{n_{j}(t)}{t^{2}} d t+O(\log r) \\
& =r \int_{r}^{\infty} \frac{N_{j}(t)}{t^{2}} d t+O(\log r),
\end{aligned}
$$

so that, by (13), we obtain

$$
\begin{align*}
T(r, f) & \leqq \max _{1 \leq j \leq n+1} \log M\left(r, F_{j}\right)+O(1) \tag{14}\\
& \leqq r \int_{r}^{\infty} \frac{N\left(t, F_{1}, \cdots, F_{n+1}\right)}{t^{2}} d t+O(\log r) \\
& <r \int_{r}^{\infty} \frac{T(t, f)}{t^{2}} d t+O(\log r)
\end{align*}
$$

since for any F in X

$$
\begin{equation*}
N(r, 0, F)<T(r, f)+O(1) . \tag{15}
\end{equation*}
$$

Therefore, by Theorem 1, we obtain

$$
T(r, f) \sim r \int_{r}^{\infty} \frac{N\left(t, F_{1}, \cdots, F_{n+1}\right)}{t^{2}} d t \sim r \int_{r}^{\infty} \frac{T(t, f)}{t^{2}} d t
$$

Further, using the following inequalities obtained from (14) as in (10)

$$
\begin{aligned}
T(r, f) & \leqq N\left(2 r, F_{1}, \cdots, F_{n+1}\right) / 2+r \int_{r}^{\infty} \frac{N\left(2 t, F_{1}, \cdots, F_{n+1}\right)}{t^{2}} d t / 2+O(\log r) \\
& \leqq T(2 r, f) / 2+r \int_{r}^{\infty} \frac{T(2 t, f)}{t^{2}} d t / 2+O(\log r),
\end{aligned}
$$

we have

$$
T(r, f) \sim N\left(r, F_{1}, \cdots, F_{n+1}\right) .
$$

Conversely, we suppose that the integral (5) converges and that there exist F_{1}, \cdots, F_{n+1} in X which satisfy (12). Then, for any F in X,

$$
\int_{1}^{\infty} \frac{N(t, 0, F)}{t^{2}} d t<\infty
$$

by (15), so that for F_{1}, \cdots, F_{n+1}, the integral

$$
\int_{1}^{\infty} \frac{N\left(t, F_{1}, \cdots, F_{n+1}\right)}{t^{2}} d t
$$

converges. Applying Theorem 1 to $N\left(r, F_{1}, \cdots, F_{n+1}\right)$ instead of $T(r, f)$, we have

$$
N\left(r, F_{1}, \cdots, F_{n+1}\right) \sim N\left(2 r, F_{1}, \cdots, F_{n+1}\right)
$$

by (12), so that $N\left(r, F_{1}, \cdots, F_{n+1}\right)$ and so $N\left(r, 0, F_{1}\right), \cdots, N\left(r, 0, F_{n+1}\right)$ are of order zero. Let Π_{j} be the canonical product of the zeros $(\neq 0)$ of F_{j}, then Π_{j} has order and so genus zero ($j=1, \cdots, n+1$). Put

$$
F_{j}=\Pi_{j} \cdot A_{j} \cdot z^{d_{j}} \quad(j=1, \cdots, n+1)
$$

where d_{j} is the multiplicity of zero of F_{j} at the origin, then A_{j} is entire without zero. Let

$$
g_{j}=F_{j} / A_{1} \quad(j=1, \cdots, n+1),
$$

then g_{1}, \cdots, g_{n+1} are entire functions and have no common zero, and put

$$
g=\left(g_{1}, \cdots, g_{n+1}\right),
$$

then g is a system and

$$
T(r, \tilde{f})=T(r, g),
$$

where $\tilde{f}=\left(F_{1}, \cdots, F_{n+1}\right)$ (see [4], p. 8). Further, as

$$
|T(r, f)-T(r, \tilde{f})|<O(1)
$$

([4], p. 9), the integral

$$
\int_{1}^{\infty} \frac{T(r, g)}{t^{2}} d t
$$

converges. As

$$
T\left(r, g_{j} / g_{1}\right)<T(r, g)+O(1) \quad(j=2, \cdots, n+1)
$$

([4], p. 10), the integral

$$
\int_{1}^{\infty} \frac{T\left(t, g_{j} / g_{1}\right)}{t^{2}} d t
$$

converges. This shows that A_{j} / A_{1} is constant because it is entire without zero and Π_{j} / Π_{1} is of order zero. Therefore, the order of g is zero, and so that of f is zero. Supposing that $f_{0}, f_{1}, \cdots, f_{n}$ are of order zero as in the former half of this proof, we can obtain (14) and using (15), we have

$$
N\left(r, F_{1}, \cdots, F_{n+1}\right)-O(1)<T(r, f)<r \int_{r}^{\infty} \frac{N\left(t, F_{1}, \cdots, F_{n+1}\right)}{t^{2}} d t+O(\log r)
$$

so that by (12)

$$
T(r, f) \sim N\left(r, F_{1}, \cdots, F_{n+1}\right) \sim r \int_{r}^{\infty} \frac{N\left(t, F_{1}, \cdots, F_{n+1}\right)}{t^{2}} d t
$$

Therefore, we obtain

$$
T(r, f) \sim r \int_{r}^{\infty} \frac{T(t, f)}{t^{2}} d t
$$

and by Theorem 1,

$$
T(r, f) \sim T(2 r, f)
$$

Corollary 1. Suppose that g is transcendental meromorphic in $|z|<\infty$. If g satisfies (2), then the order of g is zero (and so the integral

$$
\begin{equation*}
\int_{1}^{\infty} \frac{T(t, g)}{t^{2}} d t \tag{16}
\end{equation*}
$$

converges) and for any two values $a, b \in \bar{C}$,

$$
T(r, g) \sim N(r, a, b) \sim r \int_{r}^{\infty} \frac{N(t, a, b)}{t^{2}} d t
$$

Conversely, if the integral (16) converges and if, for some two values $a, b \in \bar{C}$,

$$
\begin{equation*}
N(r, a, b) \sim r \int_{r}^{\infty} \frac{N(t, a, b)}{t^{2}} d t \tag{17}
\end{equation*}
$$

then g satisfies (2).
Proof. Let f_{0} and f_{1} be two entire functions without common zero for which

$$
g=f_{0} / f_{1}, \quad \text { order of } f_{j} \leqq \text { order of } g \quad(j=0,1)
$$

and put $f=\left(f_{0}, f_{1}\right)$, then

$$
T(r, g)=T(r, f)
$$

([4], p. 9). Further, let

$$
X=\left\{f_{0}-\alpha f_{1} ; \alpha \in C\right\} \cup\left\{f_{1} \equiv 0 \cdot f_{0}+1 \cdot f_{1}\right\},
$$

then the elements in X are $\not \equiv 0$ and in general position. And, it holds

$$
\begin{aligned}
& N(r, \alpha, g)=N\left(r, 0, f_{0}-\alpha f_{1}\right) \quad(\alpha \in C) \\
& N(r, g)=N\left(r, 0, f_{1}\right)
\end{aligned}
$$

By these facts we have this corollary directly by Theorem 2.
Remark 1. 1) In the proof of the sufficiency of Theorem 6 ([7]), Hayman uses that $f(z)$ and $f(z)-a$ have the same genus ([7], p. 131). However, let

$$
f(z)=\prod_{n=2}^{\infty}\left(1+\frac{z}{n(\log n)^{2}}\right),
$$

then the genus of $f(z)$ is zero but for $a \neq 0$, the genus of $f(z)-a$ is one (see [3], p. 34). In addition, his proof is very complicated. Here, we shall give another proof of [IV] applying Corollary 1.

Proof of [IV]. As g is entire now, we take $b=\infty$ in Corollary 1. First, we note that under the condition

$$
\int_{1}^{\infty} \frac{T(t, g)}{t^{2}} d t<\infty,
$$

(4) is equivalent to

$$
\begin{equation*}
N(r, a) \sim r \int_{r}^{\infty} \frac{N(t, a)}{t^{2}} d t \tag{18}
\end{equation*}
$$

This is because, (18) is equivalent to

$$
\begin{equation*}
N(r, a) \sim N(2 r, a) \tag{19}
\end{equation*}
$$

as in Theorem 1, and (19) is equivalent to (4) from the following inequalities:

$$
n(r, a) \log 2 \leqq \int_{r}^{2 r} \frac{n(t, a)}{t} d t=N(2 r, a)-N(r, a) \leqq n(2 r, a) \log 2 .
$$

Now, suppose that g satisfies (2). Then, g has order and so genus zero and for any $a \in C$, (4) is satisfied by Corollary 1 and the above note. Conversely, suppose that g is of genus zero and for some $a \in C$, (4) is satisfied. As g has genus zero, it is of order 1 of minimal type at most ([6], p. 29) and as $N(r, a)$ is of order zero since (4) is equivalent to (19), putting

$$
g(z)-a=z^{d} \Pi(z) A(z),
$$

where $I I(z)$ is the canonical product of the zeros $(\neq 0)$ of $g(z)-a$ and d is the multiplicity of zero of $g(z)-a$ at the origin, then $A(z)$ is entire without zero and so $A(z)$ must be a constant. This shows that $g(z)-a$ and so $g(z)$ has order zero, so that the integral

$$
\int_{1}^{\infty} \frac{T(t, g)}{t^{2}} d t
$$

converges. Therefore, (4) deduces (18) and so we have (2) by Corollary 1 .
2) This shows that Theorem 2 and Corollary 1 are solutions to Problem 2.

According to Valiron ([11], [12]), we give the following
Definition 1. When the integral (5) converges, we say that f has V regular growth if and only if for any F in X

$$
\begin{equation*}
r \int_{r}^{\infty} \frac{n(t, 0, F)}{t^{2}} d t=o(T(r, f)) \quad(r \rightarrow \infty) \tag{20}
\end{equation*}
$$

Theorem 3. If f satisfies (1), then f has V-regular growth. Conversely, if there exist F_{1}, \cdots, F_{n+1} in X for which (20) holds under the condition that the integral (5) converges, then f satisfies (1).

Proof. Suppose first that f satisfies (1). To begin with, we prove that for any F in X

$$
n(r, 0, F)=o(T(r, f)) \quad(r \rightarrow \infty)
$$

Indeed, for any positive k,

$$
n(r, 0, F) k(\log 2) \leqq \int_{r}^{2 k_{r}} \frac{n(t, 0, F)}{t} d t \leqq N\left(2^{k} r, 0, F\right) \leqq T\left(2^{k} r, f\right)+O(1)
$$

so that we have

$$
\lim _{r \rightarrow \infty} \sup \frac{n(r, 0, F)}{T(r, f)} \leqq \lim _{r \rightarrow \infty} \sup \frac{T\left(2^{k} r, f\right)}{T(r, f)} \frac{1}{k(\log 2)}=\frac{1}{k(\log 2)}
$$

which tends to zero as $k \rightarrow \infty$. Therefore, we obtain

$$
r \int_{r}^{\infty} \frac{n(t, 0, F)}{t^{2}} d t=o\left(r \int_{r}^{\infty} \frac{T(t, f)}{t^{2}} d t\right)=o(T(r, f)) \quad(r \rightarrow \infty)
$$

by Theorem 1.
Conversely, suppose that the integral (5) converges and for F_{1}, \cdots, F_{n+1} in X

$$
r \int_{r}^{\infty} \frac{n\left(t, 0, F_{j}\right)}{t^{2}} d t=o(T(r, f)) \quad(r \rightarrow \infty, j=1, \cdots, n+1)
$$

As

$$
\begin{aligned}
& r \int_{r}^{\infty} \frac{N\left(t, F_{1}, \cdots, F_{n+1}\right)-N\left(r, F_{1}, \cdots, F_{n+1}\right)}{t^{2}} d t \\
& \leqq r \int_{r}^{\infty} \frac{\max _{1 \leq j \leq n+1}\left\{N\left(t, 0, F_{j}\right)-N\left(r, 0, F_{j}\right)\right\}}{t^{2}} d t \\
& \leqq \sum_{j=1}^{n+1} r \int_{r}^{\infty} \frac{N\left(t, 0, F_{j}\right)-N\left(r, 0, F_{j}\right)}{t^{2}} d t=\sum_{j=1}^{n+1} r \int_{r}^{\infty} \frac{n\left(t, 0, F_{j}\right)}{t^{2}} d t \\
&=o(T(r, f)) \quad(r \rightarrow \infty),
\end{aligned}
$$

we have by using (12)

$$
\begin{aligned}
T(r, f) \leqq & \leq \int_{r}^{\infty} \frac{N\left(t, F_{1}, \cdots, F_{n+1}\right)}{t^{2}} d t+O(\log r) \\
= & N\left(r, F_{1}, \cdots, F_{n+1}\right)+r \int_{r}^{\infty} \frac{N\left(t, F_{1}, \cdots, F_{n+1}\right)-N\left(r, F_{1}, \cdots, F_{n+1}\right)}{t^{2}} d t \\
& +O(\log r)=N\left(r, F_{1}, \cdots, F_{n+1}\right)+o(T(r, f)) \quad(r \rightarrow \infty),
\end{aligned}
$$

so that we obtain

$$
T(r, f) \sim N\left(r, F_{1}, \cdots, F_{n+1}\right) \sim r \int_{r}^{\infty} \frac{N\left(t, F_{1}, \cdots, F_{n+1}\right)}{t^{2}} d t
$$

This shows that f satisfies (1) by Theorem 2.
Remark 2. Applying this result to the case of meromorphic functions as in Corollary 1, we obtain solutions of Problems 1 and 3.

4. Asymptotic points of f satisfying (1).

Let f and X be as in $\S 1$. We recall the following definition of asymptotic points of f at ∞.

Definition 2. We say that $\alpha=\alpha_{0}: \alpha_{1}: \cdots: \alpha_{n}$ belongs to $A(f, \infty)$ if and only if there exists a curve $\Gamma: z=z(t)(0 \leqq t<1)$ in $|z|<\infty$ satisfying the following conditions:
i) $\lim _{t \rightarrow 1} z(t)=\infty$,
ii) $\lim _{t \rightarrow 1}\|\alpha f(z(t))\|=0$,
where

$$
\begin{aligned}
& \|\alpha f(z)\|=|(\alpha, f(z))| /|\alpha||f(z)|,(\alpha, f(z))=\sum_{j=0}^{n} \alpha_{j} f_{j}(z), \\
& |\alpha|=\left(\sum_{j=0}^{n}\left|\alpha_{j}\right|^{2}\right)^{1 / 2},|f(z)|=\left(\sum_{j=0}^{n}\left|f_{j}(z)\right|^{2}\right)^{1 / 2} \quad([\mathbf{1 0}]) .
\end{aligned}
$$

It is easily seen that the concept of asymptotic points for systems in this definition is a natural generalization of "asymptotic values" for meromorphic functions.

Suppose that f satisfies (1). Then, the order of f is zero by Theorem 1 and we may suppose without loss of generality that f_{0}, \cdots, f_{n} are all of order zero. In this situation, as a generalization of [IX], we have

Theorem 4. If there exist n elements

$$
F_{j}=\alpha_{0 j} f_{0}+\cdots+\alpha_{n j} f_{n}
$$

in X such that

$$
\delta\left(\alpha_{j}\right)>0 \quad(j=1, \cdots, n),
$$

where $\alpha_{j}=\alpha_{0 j}: \cdots: \alpha_{n j}$ and

$$
\delta\left(\alpha_{j}\right)=1-\lim _{r \rightarrow \infty} \sup \frac{N\left(r, 0, F_{j} ;\right.}{T(r, f)},
$$

then it holds that
(i) for any F_{0} in $X-\left\{F_{1}, \cdots, F_{n}\right\}$,

$$
T(r, f) \sim N\left(r, 0, F_{0}\right) \sim \log M\left(r, F_{0}\right)
$$

(ii)

$$
\liminf _{\substack{z \rightarrow \infty \\ z \neq S}} \frac{-\log \left\|\alpha_{j} f(z)\right\|}{T(|z|, f)} \geqq \delta\left(\alpha_{j}\right) \quad(j=1, \cdots, n),
$$

where S is a slim set.
Proof. (i) As the order of any element of X is zero, by Lemma 1 and Theorem 1 we have for $j=1, \cdots, n$

$$
\begin{aligned}
\log M\left(r, F_{j}\right) & \leqq r \int_{r}^{\infty} \frac{N\left(t, 0, F_{j}\right)}{t^{2}} d t+O(\log r) \\
& =\left(1-\delta\left(\alpha_{j}\right)+o(1)\right) T(r, f)<T(r, f) \quad\left(r \geqq r_{0}\right)
\end{aligned}
$$

For $F_{0} \in X-\left\{F_{1}, \cdots, F_{n}\right\}$,

$$
\begin{aligned}
& N\left(r, 0, F_{0}\right)-O(1) \leqq T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \max _{0 \leq j \leq n} \log \left|F_{j}\left(r e^{i \theta}\right)\right| d \theta+O(1) \\
& \leqq \max _{0 \leq j \leq n} \log M\left(r, F_{j}\right)+O(1) \\
&=\log M\left(r, F_{0}\right)+O(1) \quad\left(r \geqq r_{0}\right) \\
& \leqq N\left(r, 0, F_{0}\right)+r \int_{r}^{\infty} \frac{n\left(t, 0, F_{0}\right)}{t^{2}} d t+O(\log r) \quad\left(r \geqq r_{0}\right) \\
&=N\left(r, 0, F_{0}\right)+o(T(r, f)) \quad(r \rightarrow \infty) \quad(\text { by Lemma } 1) \\
& \text { Theorem 3) },
\end{aligned}
$$

which shows that (i) holds.
(ii) Since f satisfies (1), we have

$$
\log M\left(r, F_{0}\right) \sim \log M\left(2 r, F_{0}\right)
$$

for $F_{0} \in X-\left\{F_{1}, \cdots, F_{n}\right\}$ from (i), so that by Lemma 2

$$
\log \left|F_{0}(z)\right| \sim \log M\left(r, F_{0}\right) \sim T(r, f)
$$

as $z=r e^{i \theta} \rightarrow \infty$ outside a slim set S. Now,

$$
-\log \left\|\alpha_{j} f(z)\right\|=\log \frac{\left|\alpha_{j}\right||f(z)|}{\left|F_{j}(z)\right|}=\log |f(z)|-\log \left|F_{j}(z)\right|-O(1)
$$

$$
\begin{aligned}
& \geqq \log \left|F_{0}(z)\right|-r \int_{r}^{\infty} \frac{N\left(t, 0, F_{j}\right)}{t^{2}} d t-O(\log r) \\
& \geqq(1-o(1)) T(r, f)-\left(1-\delta\left(\alpha_{j}\right)+o(1)\right) T(r, f) \\
& =\left(\delta\left(\alpha_{j}\right)-o(1)\right) T(r, f)
\end{aligned}
$$

outside S and $r=|z| \geqq r_{0}$, so that we have

$$
\underset{\substack{z \rightarrow \infty \\ z \notin S}}{\liminf } \frac{-\log \left\|\alpha_{j} f(z)\right\|}{T(|z|, f)} \geqq \delta\left(\alpha_{j}\right) .
$$

Remark 3. $\alpha_{j} \in A(f, \infty)(j=1, \cdots, n)$.
Definition 3. A countable set of circles in the plane is said to form an E-set if the sum of radii of those circles in

$$
r(1-\beta(r))<|z|<r(1+\beta(r))
$$

is at most $\operatorname{Kr} \beta(r)^{2}, K$ being constant, where $\beta(r)$ is any function decreasing to zero as $r \rightarrow \infty$ with $r \beta(r)>1$ (see [13], p. 64).

We note that if E is an E-set, there is a receding path Γ from zero to ∞ lying eventually outside E and an increasing sequence $\left\{r_{n}\right\}$ to ∞ such that $\left\{|z|=r_{n}\right\} \subset E^{c}(n=1,2, \cdots)$ and that if E_{1}, \cdots, E_{m} are E-sets, then $E_{1} \cup \cdots \cup E_{m}$ is also an E-set.

Lemma 3. Let h be an entire function of order zero, then

$$
\log \left|h\left(r e^{i \theta}\right)\right|=N(r)+\eta r \int_{r}^{\infty} \frac{n(t)}{t^{2}} d t+O(\log r)
$$

outside an E-set, where $n(r), N(r)$ are as in Lemma 1 and

$$
-K^{\prime} \beta(r)^{-1}<\eta<1 \quad\left(K^{\prime}: \text { positive constant }\right)
$$

(see [13], p. 64).
Theorem 5. Suppose that f satisfies (1). If there exists an element

$$
F_{0}=\alpha_{0} f_{0}+\alpha_{1} f_{1}+\cdots+\alpha_{n} f_{n}
$$

in X such that

$$
\delta(\alpha)>0 \quad\left(\alpha=\alpha_{0}: \alpha_{1}: \cdots: \alpha_{n}\right),
$$

then

$$
\liminf _{\substack{z \rightarrow \infty \\ z \in E \cdot \text { set }}} \frac{-\log \|\alpha f(z)\|}{T(|z|, f)} \geqq \delta(\alpha) .
$$

Proof. We may suppose without loss of generality that $f_{0}, f_{1}, \cdots, f_{n}$ are all of order zero since the order of f is zero by Theorem 1. Now, using the relation

$$
\begin{equation*}
|\log | f(z)\left|-\max _{0 \leqq j \leqq n} \log \right| f_{j}(z)| | \leqq n / 2, \tag{21}
\end{equation*}
$$

we have from Lemma 1
(22) $\quad-\log \|\alpha f(z)\|=\log \frac{|\alpha||f(z)|}{\left|F_{0}(z)\right|}$

$$
\geqq \max _{0 \leq j \leq n} \log \left|f_{j}\left(r e^{i \theta}\right)\right|-r \int_{\tau}^{\infty} \frac{N\left(t, 0, F_{0}\right)}{t^{2}} d t-O(\log r) \quad\left(z=r e^{i \theta}\right) .
$$

Further, let

$$
\beta(r)=\left(\max _{[r, \infty)} \frac{\sum_{j=0}^{n} s \int_{s}^{\infty} \frac{n\left(t, 0, f_{j}\right)}{t^{2}} d t}{T(s, f)}\right)^{1 / 2},
$$

then $\beta(r)$ tends to zero as $r \rightarrow \infty$ by Theorem 3 and $r \beta(r)>1$ for sufficiently large every r since f is of order zero and at least one of f_{j} has infinitely many zeros. (For example, apply Theorem 2 to $f_{0}, f_{1}, \cdots, f_{n}$.) By making use of this $\beta(r)$, we apply Lemma 3 to $f_{j}(j=0,1, \cdots, n)$. Then, we have for a positive constant $K^{\prime \prime}$

$$
\begin{equation*}
\log \left|f_{j}\left(r e^{i \theta}\right)\right| \geqq N_{j}(r)-\frac{K^{\prime \prime}}{\beta(r)} r \int_{r}^{\infty} \frac{n_{j}(t)}{t^{2}} d t-O(\log r) \tag{23}
\end{equation*}
$$

($z=r e^{i \theta} \oplus E_{j}$, an E-set), so that from (22) we have for $z=r e^{i \theta} \in E_{0} \cup E_{1} \cup \ldots \cup E_{n}$ $\equiv E$

$$
\begin{gathered}
-\log \|\alpha f(z)\| \geqq N\left(r, f_{0}, \cdots, f_{n}\right)-\frac{K^{\prime \prime}}{\beta(r)} \sum_{j=0}^{n} r \int_{r}^{\infty} \frac{n\left(t, 0, f_{j}\right)}{t^{2}} d t \\
-r \int_{r}^{\infty} \frac{N\left(t, 0, F_{0}\right)}{t^{2}} d t-O(\log r)
\end{gathered}
$$

and by Theorems 2 and 1

$$
\geqq(1-o(1)) T(r, f)-K^{\prime \prime} \beta(r) T(r, f)-(1-\delta(\alpha)+o(1)) T(r, f)
$$

$(r \rightarrow \infty)$. This shows that

$$
\liminf _{\substack{z \rightarrow \infty \\ z \notin E}} \frac{-\log \|\alpha f(z)\|}{T(|z|, f)} \geqq \delta(\alpha),
$$

where E is an E-set. This completes the proof.
Remark 4. $\alpha \in A(f, \infty)$.
Corollary 2. Suppose that f satisfies (1) and that $f_{0}, f_{1}, \cdots, f_{n}$ are all of order zero. Then for any F_{1}, \cdots, F_{n+1} in X

$$
\log \left(\sum_{j=1}^{n+1}\left|F_{j}(z)\right|^{2}\right)^{1 / 2} \sim T(r, f) \quad(z \rightarrow \infty, z \notin E \text {-set })
$$

Proof. To begin with, we prove

$$
\begin{equation*}
\log \left(\sum_{j=0}^{n}\left|f_{j}(z)\right|^{2}\right)^{1 / 2} \sim T(r, f) \quad(z \notin E \text {-set, } z \rightarrow \infty) \tag{24}
\end{equation*}
$$

In fact, from (23) and from the inequality

$$
\log \left|f_{j}\left(r e^{i \theta}\right)\right| \leqq N_{j}(r)+r \int_{r}^{\infty} \frac{n_{j}(t)}{t^{2}} d t+O(\log r),
$$

we have for $z \notin E$-set and a positive constant \tilde{K}^{\prime}

$$
\begin{aligned}
N\left(r, f_{0}, \cdots, f_{n}\right) & -\tilde{K}^{\prime} \beta(r) T(r, f)-O(\log r) \leqq \max _{0 \leq j \leq n} \log \left|f_{j}\left(r e^{i \theta}\right)\right| \\
& \leqq N\left(r, f_{0}, \cdots, f_{n}\right)+\sum_{j=0}^{n} r \int_{r}^{\infty} \frac{n\left(t, 0, f_{j}\right)}{t^{2}} d t+O(\log r),
\end{aligned}
$$

so that by Theorems 2 and 3 , we obtain (24) by using (21). Here, using the inequality

$$
\left|\log \left(\sum_{j=1}^{n+1}\left|F_{j}(z)\right|^{2}\right)^{1 / 2}-\log \left(\sum_{j=0}^{n}\left|f_{j}(z)\right|^{2}\right)^{1 / 2}\right|<O(1)
$$

for all z, we have the result.

References

[1] J. M. Anderson, Asymptotic values of meromorphic functions of smooth growth, Glasgow Math. J., 20 (1979), 155-162.
[2] J. M. Anderson and J. Clunie, Slowly growing meromorphic functions, Comment. Math. Helv., 40 (1966), 267-280.
[3] R.P. Boas, Entire functions, Academic Press, New York, 1954.
[4] H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica, 7 (1933), 5-33.
[5] W.K. Hayman, Slowly growing integral and subharmonic functions, Comment. Math. Helv., 34 (1960), 75-84.
[6] W.K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[7] W.K. Hayman, On Iversen's theorem for meromorphic functions with few poles, Acta Math., 141 (1978), 115-145.
[8] Y. Kubota, On meromorphic functions of order zero, Kōdai Math. Sem. Rep., 21 (1965), 405-412.
[9] N. Toda, Sur quelques fonctions méromorphes d'ordre nul dans $|z|<\infty$, Tôhoku Math. J., 20 (1968), 384-393.
[10] N, Toda, Boundary behaviour of systems of entire functions (in Japanese), Res. Bull. College Gen. Ed. Nagoya Univ. Ser. B, 25 (1980), 1-9.
[11] G. Valiron, Sur les valeurs déficientes des fonctions méromorphes d'ordre nul, C. R. Acad. Sci. Paris, 230 (1950), 40-42.
[12] G. Valiron, Sur les valeurs déficientes des fonctions algébroïdes méromorphes d'ordre nul, J. Analyse Math., 1 (1951), 28-42.
[13] G. Valiron, Fonctions entières d'ordres fini et fonctions méromorphes, Genève, 1950.

Nobushige TODA
Department of Mathematics
Nagoya Institute of Technology
Gokiso, Showa-ku
Nagoya 466
Japan

