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Introduction.

Let $M$ be a connected, complete Riemannian manifold with (possibly empty)

boundary $\partial M$. Cheeger and Gromoll proved in [4] that if $\partial M$ is empty and the
Ricci curvature of $M$ is nonnegative, then the Busemann function with respect
to any ray is superharmonic on $M$. From this result, they showed that $M$ as
above is the isometric product $N\cross R^{k}(k\geqq 0)$ , where $N$ contains no lines and $R^{k}$

has its standard flat metric. They also proved in [5] that if $M$ is a convex
subset with boundary $\partial M$ in a positively curved manifold, then the distance
function to $\partial M$ is concave on $M$. Later, making use of this result, Burago and
Zalgaller obtained in [3] a theorem on such a manifold $M$ saying that

(1) the number of components of $\partial M$ is not greater than 2,
(2) if there are two components $\Gamma_{1}$ and $\Gamma_{2}$ of $\partial M$, then $M$ is isometric to

the direct product $[0, a]\cross\Gamma_{1}$ ,
(3) if $\partial M$ is connected and compact, but $M$ is noncompact, then $M$ is iso-

metric to the direct product $[0, \infty$ ) $\cross\partial M$.
Recently we have obtained in [9] a sharp and general Laplacian comparison

theorem, which tells us the behavior of the Laplacian of a distance function or
a Busemann function on $M$ in terms of the Ricci curvature of $M$. In this paper,
using our comparison theorem, we shall study Riemannian manifolds with bound-
ary and obtain, roughly speaking, a generalization of the above result by Burago
and Zalgaller from the viewpoint of Ricci curvature.

We shall now describe our main theorems. Let $M$ be a connected, complete
Riemannian manifold of dimension $m$ with smooth boundary $\partial M$. We call $M$

complete if it is complete as a metric space with the distance induced by the
Riemannian metric of $M$. Let $R$ and $\Lambda$ be two real numbers. We say $M$ is
of class $(R, \Lambda)$ if the Ricci curvature of $M\geqq(m-1)R$ and (the trace of $S_{\xi}$) $\leqq$

$(m-1)\Lambda$ for any unit inner normal vector field $\xi$ of $\partial M$, where $S_{\xi}$ is the second
fundamental form of $\partial M$ with respect to $\xi$ (i.e., $\langle S_{\xi}X,$ $Y\rangle=\langle\nabla_{X}\xi,$ $Y\rangle$). We write
$i(M)$ for the inradius of $M$ (i.e., $i(M)= \sup\{dis_{M}(x,$ $\partial M):x\in M\}\leqq+\infty$). Let $f$
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be the solutions of the equation:

$f’+Rf=0$ with $f(0)=0$ and $f’(O)=1$ .

Let $h$ be the solution of the equation:

$h’’+Rh=0$ with $h(O)=1$ and $h’(O)=A$ .

Set $C_{1}(R, \Lambda)=\inf$ {$t:t>0$ and $h(t)=0$} and $C_{2}(R, \Lambda)=\inf$ {$t:t>0$ and $h’(t)=0$}.
If $h>0$ (resp. $h’>0$ ) on $[0, \infty$ ), we understand $C_{1}(R, \Lambda)=+\infty$ (resp. $C_{2}(R, \Lambda)=$

$+\infty)$ .
THEOREM A. Let $M$ be a connected, complete Riemannian manifold of class

$(R, \Lambda)$ . Then:
(1) $i(M)\leqq C_{1}(R, \Lambda)$ .
(2) If $C_{1}(R, \Lambda)<+\infty$ and $dis_{M}(p, \partial M)=C_{1}(R, \Lambda)$ for some $p\in M$, then $M$ is

isometnc to the closed ball $B(C_{1}(R, \Lambda):R)$ in the simply connected space form
$M^{m}(R)$ of constant curvature $R$ .

(3) $C_{1}(R, \Lambda)<+\infty$ if and only if $R>0,$ $R=0$ and $\Lambda<0$ , or $R<0$ and $\Lambda<$

$-\sqrt{-R}$ .
THEOREM B. Let $M$ be a connected, complete Riemannian manifold of class

$(R, \Lambda)$ . SuppOse $\partial M$ is disconnected and it has a compact connected component
$\Gamma_{1}$ . Then:

(1) If $R=0$ and $\Lambda=0,$ $M$ is the isometnc product $[0, a]\cross\Gamma_{1}$ .
(2) If $R>0$ , then $\Lambda>0$ and min $dis_{M}(\Gamma_{1}, \Gamma_{j})\leqq 2C_{2}(R, \Lambda)$ , where $\{\Gamma_{j}\}_{j=1,2}\ldots$ .

2sj

are the connected components of $\partial M$. Moreover if min $dis_{M}(\Gamma_{1}, \Gamma_{j})=2C_{2}(R, \Lambda)$ ,
$2\leqq j$

then $M$ is isometnc to the warped product $[0,2C_{2}(R, \Lambda)]\cross_{h}\Gamma_{1}$ .
For the definition of warped products, see [1].

THEOREM C. Let $M$ be a connected, complete Riemannian manifold of class
$(R, \Lambda)$ . Suppose $\partial M$ is compact but $M$ is noncompact. Then:

(1) $R\leqq 0$ .
(2) If $R=0$ and $\Lambda=0$ , then $\partial M$ is connected and $M$ is the isometnc product

$[0, \infty)\cross\partial M$.
(3) If $\Lambda<0,$ $R<0$ and $\Lambda\geqq-\sqrt{-R}$ . Moreover if $\Lambda=-\sqrt{-R}$, then $M$ is

isometric to the warped product $[0, \infty$ ) $\cross_{h}\partial M$.
In the first assertion of Theorem $B$ , we cannot delete the assumption that

$\partial M$ has a compact component, in contrast to the theorem of Burago and Zalgal-
ler cited above. In fact, it is well known that there is a nonparametric minimal
hypersurface in $R^{m}(m\geqq 9)$ with the form: $x^{m}=k(x^{1}, \cdots , x^{m- 1})$ defined for all
$(x^{1}, \cdots , x^{m-1})$ , where $k$ is not linear (cf. [2]). Set $M=\{(x^{1}, \cdots , x^{m})\in R^{m}$ :
$k(x^{1}, \cdots , x^{m- 1})\leqq x^{m}\leqq k(x^{1}, \cdots , x^{m-1})+1\}$ . Then $M$ satisfies all the conditions of
(1) in Theorem $B$ except that $\partial M$ has a compact component, but $M$ is not the
isometric product $[0, a]\cross\Gamma$
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We shall illustrate the method to prove our main theorems briefly. For
example, let $M$ be a Riemannian manifold of class $(R, \Lambda)$ . We assume there is
a point $P$ in the interior $M_{0}$ of Msuch that $\rho_{1}(p)=i(M)(\rho_{1}=dis_{M}(\partial M, *))$ . Then
the Laplacian comparison theorem of [9] tells us that the Laplacians $\Delta\rho_{1}$ and
$\Delta\rho_{2}$ of $\ovalbox{\tt\small REJECT}_{1}$ and $\rho_{2}(\rho_{2}=dis_{M}(p, *))$ in the sense of distributions satisfy

$\Delta\rho_{1}\leqq(m-1)(h’/h)(\rho_{1})$

and
$\Delta\rho_{2}\leqq(m-1)(f’/f)(\rho_{2})$

on $\Omega=$ { $x\in M_{0}$ : $0<\rho_{1}(x)<i(M)$ and $0<\rho_{2}(x)<i(M)$ }. Therefore if $i(M)\geqq C_{1}(R$ ,
$\Lambda)$ , then

$\Delta(\rho_{1}+\rho_{2})\leqq(m-1)\{(h’/h)(\rho_{1})+(f’/f)(\rho_{2})\}\leqq Q$

as a distribution on $\Omega$ , that is, $\rho_{1}+\rho_{2}$ is superharmonic on $\Omega$ . Set $\omega=\{x\in M_{0}\backslash$

$\{p\}$ : $\rho_{1}(x)+\rho_{2}(x)=i(M)$ }. Then $\omega$ is a nonempty closed subset contained in $\Omega$ .
Since $\rho_{1}+\rho_{2}$ takes the minimum $i(M)$ on $\omega(\subset\Omega)$ , it is equal to $i(M)$ everywhere
on $M$. Therefore we see that the exponential map $\exp_{p}$ at $P$ restricted to the
closed ball $V$ with radius $i(M)$ in the tangent space $M_{p}$ at $P$ induces a dif-
feomorphism between $V$ and $M$. The equality discussion in the Laplacian com-
parison theorem shows that for every $v\in V$ , the sectional curvature of any plane
tangent to $\dot{\sigma}(\sigma(t)=\exp_{p}tv)$ is equal to $R$ . This shows that $i(M)=C_{1}(R, \Lambda)$ and
$M$ is isometric to $B(C_{1}(R, \Lambda);R)$ .

After the preparation of this paper, the author was informed that Ichida [8]

has also proved the assertion (1) of Theorem $B$ , independently.
Finally the author would like to express sincere thanks to Professor T.

Ochiai for his helpful advice and encouragement.

1. Preliminary.

Let $M$ be a connected, complete Riemannian manifold of dimmension $m$ . We
assume the boundary $\partial M$ of $M$ is nonempty and smooth, unless otherwise stated.
We write $M_{0}$ for the interior of $M$. For a connected open subset $A$ of $M$, we
denote by $dis_{A}(x, y)$ the distance between two points $x$ and $y$ in $A$ induced by
the Riemannian metric of $M$ restricted to $A$ . Then, in general, $dis_{A}(x, y)\geqq$

$dis_{M}(x, y)$ . Let $N$ be a closed subset of $M$. We write $\Omega_{N}$ for the subset of all
the points $x$ in $M_{0}\backslash N$ which can be joined to $N$ by a geodesic $\sigma;[0, l]arrow M$

such that $\sigma((0, l))\subset M_{0},$ $dis_{M}(N, \sigma(t))=t$ for $t\in[0, l]$ , and $\sigma(l_{x})=x$ for some $l_{x}\in$

$(0, l)$ . Then by the definition of $\Omega_{N}$ , we see that for $x\in\Omega_{N}$ , a geodesic $\sigma$ as
above is uniquely determined up to $l_{x}$ , so that we write $\sigma_{x}$ for the above geo-
desic $\sigma$ restricted to $[0, l_{x}]$ .

Suppose $N$ is a point $p$ of $M_{0}$ . Let $x$ be a point of $\Omega_{p}$ . Then it follows
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from the definition of $\Omega_{p}$ that, in the tangent space $M_{p}$ at $p$ , there is a con-
nected, open neighborhood $\hat{C}_{p.x}$ of a segment {ta $x(0):0\leqq t\leqq l_{x}(l_{x}=dis_{M}(x,$ $p)$ }
which has the following properties:

(1) For any $t\in[0,1],$ $tv\in\hat{C}_{p.x}$ if $v\in\hat{C}_{p.x}$ .
(2) The exponential map $\exp_{p}$ at $p$ restricted to $\hat{C}_{p.x}$ induces a diffeomor-

phism between $\hat{C}_{p.x}$ and its image. We write $C_{p.x}$ for the image $\exp_{p}(\hat{C}_{p,x})$

of such a $\hat{C}_{p.x}$ . Then for any $y=\exp_{p}v(v\in\hat{C}_{p.x}),$ $dis_{c_{p\cdot x}}(p, y)=\Vert v\Vert$ , so that
the distance function $\rho=dis_{c_{p\cdot x}}(p, *)$ is a smooth function on $C_{p.x}\backslash \{p\}$ . Fur-
thermore we have the following

(1.1) LEMMA (cf. [9: Lemma 2.5]). SuppOse $M$ is of class $(R, \Lambda)$ . Then
for any $x\in\Omega_{p}$ , the distance function $\rho=dis_{c_{p\cdot x}}(p, *)$ satisfies

(1.2) $\Delta\rho\leqq(m-1)(f’/f)(\rho)$

on $C_{p.x}\backslash \{p\}$ , where $f$ is the solution of the equation: $f’+Rf=0$ with $f(O)=0$ and
$f’(O)=1$ . Moreover the equality in (1.2) holds at $y=\exp_{p}v(v\in\hat{C}_{p.x})$ if and only

if the sectional curvature of any plane containing the tangent vector of exp$p(tv)$

$(0\leqq t\leqq 1)$ is equal to $R$ .
Next we consider the case $N$ is a connected component of $\partial M$ or $\partial M$ itself.

Let $\xi:\partial Marrow(\partial M)^{\perp}$ be the unit inner normal vector field on $\partial M$. Set $V_{N}=$

$\{t\xi(y);y\in N, 0\leqq t\}$ . Let $x$ be a point of $\Omega_{N}$ . Then it follows from the dePni-
tion of $\Omega_{N}$ that, in $V_{N}$ , there is an open neighborhood $\hat{C}_{N.x}$ of a segment
$\{ta_{x}(0):0\leqq t\leqq l_{x}(l_{x}=dis_{M}(x, N))\}$ which has the following properties:

(1) For any $t\in[0,1],$ $tv\in\hat{C}_{N.x}$ if $v\in\hat{C}_{N.x}$ .
(2) The exponential map $\exp_{N}$ of $N$ restricted to $\hat{C}_{N,x}$ induces a diffeomor-

phism between $\hat{C}_{N.g}$ and its image. We write $C_{N,x}$ for the image $\exp_{N}(\hat{C}_{N.x})$

of such a $\hat{C}_{N,x}$ . Then for any $y=\exp_{N}v(v\in\hat{C}_{N.x}),$ $dis_{C_{N.x}}(N\cap C_{N\cdot x}, y)=\Vert v\Vert$ ,

so that the distance function $\rho=dis_{C_{N\cdot x}}(N\cap C_{N.x}, *)$ is a smooth function on
$C_{N,x}\backslash N$. Furthermore we have the following

(1.3) LEMMA (cf. [9: Lemma 2.8]). Supp0se $M$ is of class $(R, \Lambda)$ . Then
for any $x\in\Omega_{N}$ , the distance function $\rho=dis_{c_{Nx}},(N\cap C_{N.x}, *)$ satisfies
(1.4) $\Delta\rho\leqq(m-1)(h’/h)(\rho)$

on $C_{N.x}\backslash N$, where $h$ is the solution of lhe equation: $h’+Rh=0$ with $h(O)=1$ and
$h’(O)=\Lambda$ . Moreover the equality in (1.4) holds at $y=\exp_{N}v(v\in\hat{C}_{N,x})$ if and only
if the sectional curvature of any plane containing the tangent vector of $\exp_{N}(tv)$

$(0\leqq t\leqq 1)$ is equal to $R$ and $N$ is umbilic at $z=\exp_{N}0\cdot v$ .
(1.5) LEMMA. Let $M$ be a connected, complete Riemanman manifold with

boundary $\partial M$. Then for any $x\in M_{0}$ , there is a geodestc $\sigma:[0, l]arrow M$ such that
$dis_{M}(\partial M, \sigma(t))=t$ for $t\in[0,1]$ and $a(l)=x$ . In partjcular, if $\partial M$ is compact but
$M$ is noncompact, then there is a geodestc $\sigma;[0, \infty$ ) $arrow M$ such that $dis_{M}(\partial M, \sigma(t))$
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$=t$ for $t\geqq 0$ .
PROOF. For the proof of the first assertion, see, e.g., the proof of Corollary

(2.44) in [9]. Now suppose $\partial M$ is compact but $M$ is noncompact. Then by the
first assertion, we see that $\{x\in M:dis_{M}(\partial M, x)\leqq a\}$ is compact for each $a\geqq 0$ .
Therefore there is a sequence $\{x_{n}\}$ of $M_{0}$ such that $dis_{M}(\partial M, x_{n})$ is divergent
as $narrow\infty$ . Let $\sigma_{n}$ ; $[0, l_{n}]arrow M$ be a geodesic such that $dis_{M}(\partial M, \sigma_{n}(t))=t$ for
$t\in[0,$ $l_{n}\overline{J}$ and $\sigma_{n}(l_{n})=x_{n}$ . Since $\partial M$ is compact, we can find a subfamily of
$\{a_{n}\}$ which converges to a geodesic $a;[0, \infty$ ) $arrow M$. Such a geodesic $a$ is a
required one. This completes the proof of Lemma (1.5).

(1.6) LEMMA. Let $M$ be a connected, complete Riemannian manifold with
boundary $\partial M$. SuppOse $\partial M$ is disconnected and has a compact compOnent, say $\Gamma_{1}$ ,
and suppose $dis_{M}(\Gamma_{1}, \Gamma_{2})=\min_{2\leq j\leq k}dis_{M}(\Gamma_{1}, \Gamma_{j})$ , where $\{\Gamma_{j}\}_{f=1,2\ldots..k}(k\in\{2,3, \cdots , \infty\})$

are the connected components of $\partial M$. Then the set $\omega=\{x\in M_{0}$ : $dis_{M}(\Gamma_{1}, x)+$

$dis_{M}(\Gamma_{2}, x)=dis_{M}(\Gamma_{1}, \Gamma_{2})\}$ is a nonempty closed subset of $M_{0}$ and for each $x\in\omega$,
there is a unique geodestc $\sigma;[0, l]arrow M(l=dis_{M}(\Gamma_{1}, \Gamma_{2}))$ through $x$ such that
$dis_{M}(\Gamma_{1}, \sigma(t))=t$ and $dis_{M}(\Gamma_{2}, a(i))=l-t$ for $t\in[0,1]$ .

PROOF. Since $\Gamma_{1}$ is compact, there is a point $x$ of $\Gamma_{1}$ such that $dis_{M}(x, \Gamma_{2})$

$=dis_{M}(\Gamma_{1}, \Gamma_{2})$ . Let $\{y_{n}\}_{n=1.2}\ldots$ . be a sequence of $\Gamma_{2}$ such that $\lim_{narrow\infty}dis_{M}(x, y_{n})=$

$dis_{M}(\Gamma_{1}, \Gamma_{2})$ . Then for each $y_{n}$ , (i) there is a geodesic $\sigma_{n}$ ; $[0, l_{n}]arrow M$ such
that $a_{n}(0)=x,$ $\sigma_{n}(l_{n})=y_{n}$ , and $dis_{M}(\Gamma_{1}, \sigma_{n}(t))=t$ for $t\in[0, l_{n}]$ or (ii) there is a
geodesic $\gamma_{n}$ : $[0, \delta_{n}]arrow M$ such that $\gamma_{n}(0)=x,$ $\gamma_{n}(\delta_{n})\in\partial M\backslash \{y_{n}\},$ $dis_{M}(\Gamma_{1}, \gamma_{n}(t))=t$

for $r\in[0, \delta_{n}]$ and further $dis_{M}(x, \gamma_{n}(t))+dis_{M}(\gamma_{n}(r), y_{n})=dis(x, y_{n})$ for $t\in[0, \delta_{n}]$

(cf. [10: Theorem 7.1]). Suppose the case (i) takes place for infinitely many
$y_{n}$ , say $\{y_{n_{j}}\}_{j=1.2}\ldots.$. Then we find a subfamily of $\{\sigma_{n_{j}}\}$ which converges to a
geodesic $\sigma;[0, l]arrow M$. Then $a(t)$ is clearly an element of to for $t\in(O, l)$ . Now
suppose the case (ii) takes place for infinitely many $y_{n}$ , $say\{y_{n_{k}}\}_{k=1,2},\ldots$ . Then
$\lim_{karrow\infty}dis_{M}(z_{n_{k}}, y_{n_{k}})=0(z_{n_{k}}=\gamma_{n_{k}}(\delta_{n_{k}}))$ , since $dis_{M}(x, z_{n_{k}})\geqq l$ and $\lim_{karrow\infty}dis_{M}(x, y_{n_{k}})=l$.
Therefore $\lim_{karrow\infty}dis_{M}(x, z_{n_{k}})=l$ . Hence we can find a subfamily of $\{\gamma_{n_{k}}\}$ which

converges to a geodesic $\gamma:[0, l]arrow M$ such that $\gamma(t)$ is contained in $\omega$ for each
$t\in(O, l)$ . Thus we see that $\omega$ is not empty. Now let $x$ be any point of $\omega$.
Then by Lemma (1.5) and the above argument, we see that there are two geo-
desics $\sigma_{1}$ ; $[0, l_{1}]arrow M$ and $\sigma_{2}$ ; $[0, l_{2}]arrow M$ such that $dis_{M}(\Gamma_{1}, a_{1}(t))=t$ for $t\in$

$[0, l_{1}],$ $o_{1}(l_{1})=x,$ $\sigma_{2}(0)=x$ , and $dis_{M}(\Gamma_{2}, a_{2}(t))=l_{2}-t$ for $t\in[0, l_{2}]$ . Define a curve
$\sigma:[0, l]arrow M$ by $\sigma(t)=\sigma_{1}(t)$ for $t\in[0, l_{1}]$ and $\sigma(t)=\sigma_{2}(t-l_{1})$ for $t\in[l_{1}, l]$ . Then
by the definition of $\omega$, we see that the above $a$ is the required geodesic. This
completes the proof of Lemma (1.6).

(1.7) LEMMA. Let $M$ be a connected, complete Riemannian manifold with
boundary $\partial M$. Let $p$ be a point of $M_{0}$ . Then for any $x$ such that $dis_{M}(x, p)$

$<dis_{M}(\partial M, p)$ , there is a geodestc $a;[0, l]arrow M_{0}$ such that $dis_{M}(p, \sigma(i))=t$ for
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$t\in[0,1]$ and $\sigma(1)=x$ .
For the proof, see, e.g., that of Corollary (2.35) in [9].

Now we consider the case $\partial M$ is empty. Let $\tilde{N}$ be a Riemannian manifold
of dimension $n$ without boundary. We assume there is an isometric immersion
$\iota;\tilde{N}arrow M$ such that the image $N=\iota(\tilde{N})$ is closed. Then we have the following
two lemmas.

(1.8) LEMMA (cf. [9: Corollary 2.35 and Lemma 2.8]). Suppose the Ricci
curvature of $M\geqq(m-1)R(R\in R)$ and suppOse $n=m-1$ and $\iota:\tilde{N}arrow M$ is a minimal
immersion. Then the distance function $\rho=dis_{M}(N, *)$ satisfies $\rho\leqq C_{1}(R, 0)$ and

(1.9) $\Delta\rho\leqq(m-1)(h’/h)(\rho)$

as a distribution on $\{x\in M:0<\rho(x)<C_{1}(R, 0)\}$ , where $h$ is the sofution as in
Lemma (1.4) $(\Lambda=0)$ and $C_{1}(R, O)=\inf\{t:t\geqq 0, h(t)\leqq 0\}(\leqq+\infty)$ . Moreover when
$N$ is a (imbedded) submanifold, the equality in (1.9) holds at $x\in\Omega_{N}$ if and only if
the sectional curvature of any plane tangent to $\sigma_{x}$ is equal to $R$ and the second
fundamental form $S_{\delta_{x^{(0)}}}$ of $N$ with respect to $\delta_{x}(0)$ vanishes.

(1.10) LEMMA (cf. [9: Corollary 2.40 and Lemma 2.11]). Supp0se the sec-
tional curvature of $M\geqq R(R\in R)$ and supp0se $\iota:\tilde{N}arrow M$ is a minimal immerston.
$Thet\iota$ the distance function $\rho=dis_{M}(N, *)$ satisfies $\rho\leqq C_{1}(R, 0)$ and

(1.11) $\Delta\rho\leqq(m-n-1)(f’/f)(\rho)+n(h’/h)(\rho)$

as a distribution on $\{x\in M:0<\rho(x)<C_{1}(R, 0)\}$ , where $f$ and $h$ are respectively
the solutions as in Lemma (1.1) and as in Lemma (1.3) $(\Lambda=0)$ . Moreover when
$N$ is a (imbedded) submanifold, the equality in (1.11) holds at $x\in\Omega_{N}$ if and only

if the sectional curvature of any plane tangent to $\sigma_{x}$ is equal to $R$ and $S_{\dot{\sigma}_{x}(0)}=0$ .
For the rest of this section, we assume $M$ is noncompact. (The boundary

$\partial M$ may be nonempty.) A ray $\gamma:[0, \infty$ ) $arrow M(\gamma((0, \infty))\subset M_{0}$ if $\partial M\neq\emptyset$ ) is by

definition a geodesic such that $dis_{M}(\gamma(t), \gamma(s))=|t-s|$ for any $t\geqq 0$ and $s\geqq 0$ .
Let $\gamma:[0, \infty$ ) $arrow M$ be a ray. Define the open half-space $B_{\gamma}$ with respect to $\gamma$ by

$B_{\gamma}= \bigcup_{t>0}B_{t}(\gamma(t))$

where $B_{t}(\gamma(t))=\{x\in M:dis_{M}(\gamma(t), x)<t\}$ . A Busemann function $\eta_{\gamma}$ : $Marrow R$ with
respect to $\gamma$ is defined as follows: for every point $x\in M$, let

$\eta_{\gamma}(x)=\lim_{tarrow\infty}\{dis_{M}(\gamma(t), x)-t\}$ .

The right-hand side is bounded from below by $-dis_{M}(r(0), x)$ and is monotone
decreasing with $t$ . Hence it converges uniformly on each compact set of $M$ as
$tarrow\infty$ . Then we have the following two lemmas.

(1.12) LEMMA. SuppOse $\partial M$ is empty and the Ricci curvature of $M\geqq$

$(m-1)R(R\leqq 0)$ . Then for every ray $\gamma:[0, \infty$ ) $arrow M$, the Busemann function $\eta_{\gamma}$
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satisfies
$\Delta\eta_{\gamma}\leqq(m-1)\sqrt{-R}$

as a distnbution on $M$.
PROOF. Set $\rho_{t}=dis_{M}(\gamma(t), *)$ . Then Corollary (2.42) in [9] tells us that $\rho_{t}$

satisfies
$\Delta(\rho_{t}-t)\leqq(m-1)(f’/f)(\rho_{t})$

as a distribution on $M\backslash \{\gamma(t)\}$ , where $f$ is the solution as in Lemma $(1, 1)$ . Since
$\rho_{t}-t$ converges uniformly on each compact set of $M$ as $tarrow\infty$ , we see that

A $\eta_{\gamma}=\lim_{tarrow\infty}\Delta\rho_{t}\leqq(m-1)\lim_{tarrow\infty}(f’/f)(\rho_{t})=(m-1)\sqrt{-R}$

as a distribution on $M$. This completes the proof of Lemma (1.12).

(1.13) LEMMA. Supp0se $\partial M$ is nonempty and the Ricct curvature of $M\geqq$

$(m-1)R(R\leqq 0)$ and supp0se there is a ray $r:[0, \infty$ ) $arrow M$ such that $dis_{M}(\partial M, \gamma(t))$

$=t$ for $t\geqq 0$ . Then the Busemann function $\eta_{\gamma}$ with respect to $\gamma$ satisfies
$\Delta\eta_{\gamma}\leqq(m-1)\sqrt{-R}$

as a distnbution on $B_{\gamma}$ .
PROOF. Set $\rho_{t}=dis_{M}(\gamma(t), *)$ . Then Corollary (2.45) in [9] tells us that $\rho_{t}$

satisfies
$\Delta(\rho_{t}-t)\leqq(m-1)(f’/f)(\rho_{t})$

as a distribution on $B_{t}(\gamma(t))\backslash \{\gamma(t)\}$ , where $f$ is the solution as in Lemma (1.1).

Since $B_{t}(\gamma(t))\subset B_{s}(\gamma(s))(s>t)$ and $\rho_{t}-t$ converges uniformly on each compact
set of $M$ as $tarrow\infty$ , we see that

$\Delta\eta_{\gamma}=\lim_{tarrow\infty}\Delta\rho_{t}\leqq(m-1)\lim_{tarrow\infty}(f’/f)(\rho_{t})=(m-1)\sqrt{-R}$

as a distribution on $B_{\gamma}= \bigcup_{t>0}B_{t}(\gamma(t))$ . This completes the proof of Lemma (1.13).

Finally we shall give the following
(1.14) LEMMA. Let $f$ and $h$ be, respectively, the solutions as in Lemma (1.1)

and as in Lemma (1.3). Set $C_{1}(R, \Lambda)=\inf\{t:t\geqq 0, h(t)\leqq 0\}(\leqq+\infty),$ $C_{2}(R, \Lambda)=$

$inf\{t;t\geqq 0, h’(t)\leqq 0\}(\leqq+\infty),$ $C_{3}(R, \Lambda)=\inf\{t:t>0, f(t)\leqq 0\}(\leqq+\infty)$ . Supp0se
$C_{1}(R, \Lambda)<+\infty$ . Then we have

(1.15) $(h’/h)(t)+(f’/f)(s)\leqq 0$

for $t\in[O,$ $C_{1}(R, \Lambda))$ and $s\in[C_{1}(R, \Lambda)-t,$ $C_{3}(R, \Lambda))$ . Equality in (1.15) holds if
and only if $s=C_{1}(R, \Lambda)-t$ . Moreover supp0se $R>0$ and $\Lambda>0$ , then we have

(1.16) $(h’/h)(t)+(h’/h)(s)\leqq 0$

for $t\in[0,2C_{2}(R, \Lambda))$ and $s\in[2C_{2}(R, \Lambda)-t,$ $C_{1}(R, \Lambda))$ . Equality in (1.16) holds if
and only if $s=2C_{1}(R, \Lambda)-t$ .
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PROOF. Both (1.15) and (1.16) follow from simple computations.
REMARKS. (1) In Lemma (1.8), inequality (1.9) implies that $\rho$ is superhar-

monic on $M\backslash N$ when $R=0$ . This fact was proved by Wu [11]. (2) Lemma
(1.12) tells us that if $M$ is a complete Riemannian manifold of nonnegative Ricci
curvature without boundary, then the Busemann function with respect to any
geodesic ray $\gamma$ is superharmonic on $M$. This fact was proved by Cheeger and
Gromoll [4].

2. Proofs of Theorems A, B and C.

Throughout this section, we use the same notations as in the previous sec-
tions.

PROOF OF THEOREM A. The first assertion is well known. But for the
completeness, we shall show it from our version. Suppose $i(M)>C_{1}(R, \Lambda)$ . Then
by Lemma (1.5), we can find a point $p$ in $\Omega_{\partial M}$ such that $dis_{M}(p, \partial M)=C_{1}(R, \Lambda)$ .
On some neighborhood $C_{\partial M.p}\backslash \partial M$ of $p$ , the distance function $\rho=dis_{c_{\partial M.p}}(C_{\partial M.p}$

$\cap\partial M,$ $*$ ) is smooth and satisPes: $\Delta\rho(p)\leqq(m-1)(h’/h)(\rho(p))=-\infty$ by (1.4). This
is a contradiction. Therefore we see that $i(M)\leqq C_{1}(R, \Lambda)$ . Now suppose
$dis_{M}(p, \partial M)=C_{1}(R, \Lambda)$ for some $p\in M_{0}$ . Put $\omega=\{x\in M_{0}\backslash \{p\}$ : $dis_{M}(\partial M, x)+$

$dis_{M}(p, x)=C_{1}(R, \Lambda)\}$ . Then by Lemma (1.5) and Lemma (1.7), we see that $\omega$

consists of all the points in $M_{0}\backslash \{p\}$ which lie on geodesics $\sigma;[0, C_{1}(R, \Lambda)]arrow M$

such that $dis_{M}(\partial M, \sigma(t))=t$ for $t\in[0, C_{1}(R, \Lambda)]$ and $dis_{M}(p, \sigma(t))=C_{1}(R, \Lambda)-t$ ,

so that $\omega$ is a nonempty closed subset of $M_{0}\backslash \{p\}$ contained in $\Omega_{\partial M}\cap\Omega_{p}$ . Now
we claim that $\omega$ is an open subset, so that $\omega=M_{0}\backslash \{p\}$ . In fact, for any $x\in$

$\omega(\subset\Omega_{\partial M}\cap\Omega_{p})$ , we see by (1.2) that, on some neighborhood $C_{p,x}\backslash \{p\}$ of $x$ , the
distance function $\rho_{1}=dis_{c_{px}}.(p, *)$ is smooth and satisPes

(2.2) $\Delta\rho_{1}\leqq(m-1)(f’/f)(\rho_{1})$ ,

and by (1.4) that, on some neighborhood $C_{\partial M.x}\backslash \partial M$ of $x$ , the distance function
$\rho_{2}=dis_{c_{\partial M.x}}(C_{\partial M,x\cap}\partial M, *)$ is smooth and satisfies

(2.3) $\Delta\rho_{2}\leqq(m-1)(h’/h)(\rho_{2})$ .
By (2.2) and (2.3), we have

(2.4) $\Delta(\rho_{1}+\rho_{2})\leqq(m-1)\{(f’/f)(\rho_{1})+(h’/h)(\rho_{2})\}$

on some neighborhood $U$ of $x(U=(C_{p,x}\backslash \{p\})\cap(C_{\partial M.x}\backslash \partial M))$ . On the other hand,
it follows from the definitions of $\rho_{1}$ and $\rho_{2}$ that $\rho_{1}+\rho_{2}\geqq C_{1}(R, \Lambda)$ and $\rho_{1}(x)+$

$\rho_{2}(x)=C_{1}(R, \Lambda)$ . Moreover (1.15) implies that the right-hand side of (2.4) is
nonpositive on $U$ , that is, $\rho_{1}+\rho_{2}$ is superharmonic on $U$ . Hence by the minimum
principle for superharmonic functions, we see that, on a neighborhood $U’$ of
$x(U’\subset U)$ ,
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(2.5) $\rho_{1}+\rho_{2}=C_{1}(R, \Lambda)$

and hence

(2.6) $\Delta\rho_{1}=(m-1)(f’/f)(\rho_{1})$ .
Then (2.5) shows that $x$ is an interior point of $\omega$, since $\rho_{1}+\rho_{2}\geqq dis_{M}(p, *)+$

$dis_{M}(\partial M,|*)\geqq C_{1}(R, \Lambda)$ . Thus $\omega$ is an open and closed subset of $M_{0}\backslash \{p\}$ , so
that $\omega=M_{0}\backslash \{p\}=\{x\in M:0<dis_{M}(p, x)<C_{1}(R, \Lambda)\}$ . This implies that the ex-
ponential map exp $p$ at $p$ restricted to the closed ball $V=\{v\in M_{p} : \Vert v\Vert\leqq C_{1}(R, \Lambda)\}$

induces a diffeomorphism between $V$ and $M$. Moreover (2.6) and the equality
discussion in Lemma (1.1) tell us that for any $x\in M_{0}\backslash \{p\}$ , the sectional curvature
of any plane tangent to $\delta_{x}$ is equal to $R$ , where $\sigma_{x}$ ; $[0, l]arrow M$ is the unique
geodesic joining $p$ to $x$ . Therefore we can conclude that $M$ is isometric to
$\overline{B}(C_{1}(R, \Lambda);R)$ . The assertion (3) of the theorem follows from the definition
of $h$ . This completes the proof of Theorem A.

PROOF OF THEOREM B. Let $\{\Gamma_{f}\}_{f=1\ldots.,k}$ be the connected components of $\partial M$

$(2\leqq k\leqq+\infty)$ . We assume $\Gamma_{1}$ is compact and $dis_{M}(\Gamma_{1}, \Gamma_{2})=\min_{2\xi j\leq k}$ dis $M(\Gamma_{1}, \Gamma_{j})$ .

Set $\omega=\{x\in M_{0} : dis_{M}(\Gamma_{1}, x)+dis_{M}(\Gamma_{2}, x)=dis_{M}(\Gamma_{1}, \Gamma_{2})\}$ . Then by Lemma (1.6),

we see that $\omega$ is a nonempty closed subset of $M_{0}$ contained in $\Omega_{\Gamma_{1}}\cap\Omega_{\Gamma_{2}}$ . Now
we shall prove the assertion (1) of the theorem. Let $x$ be any point of $\omega$. Then
we see by (1.4) that, on some neighborhoods $C_{\Gamma.x}\backslash \Gamma_{i}$ of $x(i=1,2)$ , the distance
functions $\rho_{i}=disc_{\Gamma_{i}.x}(C_{\Gamma_{i}.x}\cap\Gamma_{i}, *)$ are smooth and satisfy

(2.7) $\Delta\rho_{i}\leqq(m-1)(h’/h)(\rho_{i})$ .

Since $R=0$ and $\Lambda=0$ , the right-hand side of (2.7) is equal to $0$, so that both $\rho_{1}$

and $\rho_{2}$ are superharmonic on some neighborhood $U$ of $x$ $(U=(C_{\Gamma_{1}.x}\backslash \Gamma_{1})\cap$

$(C_{\Gamma_{2}.x}\backslash \Gamma_{2}))$ . In particular, $p_{1}+\rho_{2}$ is superharmonic on $U$ . Since $\rho_{1}+\rho_{2}$ takes
the minimum $dis_{M}(\Gamma_{1}, \Gamma_{2})$ at $x$ , we see that, on a neighborhood $U’$ of $x(U’\subset U)$ ,

(2.8) $\rho_{1}+\rho_{2}=dis_{M}(\Gamma_{1}, \Gamma_{2})$

and hence

(2.9) $\Delta\rho_{1}=0$ .
Then (2.8) implies that $x$ is an interior point of $\omega$, since $\rho_{1}+\rho_{2}\geqq dis_{M}(\Gamma_{1}, *)+$

$dis_{M}(\Gamma_{2}, *)\geqq dis_{M}(\Gamma_{1}, \Gamma_{2})$ . Thus $\omega$ is an open and closed subset of $M_{0}$ , so that
$\omega=M_{0}=\{x\in M:0<dis_{M}(\Gamma_{1}, x)<dis_{M}(\Gamma_{1}, \Gamma_{2})\}$ . Moreover (2.9) and the equality
discussion in Lemma (1.3) tell us that for any $x\in M_{0}$ , the sectional curvature of
any plane tangent to $\dot{\sigma}_{x}$ vanishes, where $\sigma_{x}$ : $[0, l]arrow M$ is the unique geodesic
joining $\Gamma_{1}$ to $x$ such that $dis_{M}(\Gamma_{1}, \sigma_{x}(t))=t$ for $t\in[0,1]$ , and $\Gamma_{1}$ is totally geodesic.
Define a map $\Psi:[0, dis_{M}(\Gamma_{1}, \Gamma_{2})]\cross fiarrow M$ by $\Psi(t, y)=\exp_{\Gamma_{1}}(t\xi(y))$ , where $\xi$ :
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$\Gamma_{1}arrow\Gamma_{1}^{\perp}$ is the unit inner normal vector field on $\Gamma_{1}$ . Then $\Psi$ induces an iso-
metry from the Riemannian product manifold $[0, dis_{M}(\Gamma_{1}, \Gamma_{2})]\cross\Gamma_{1}$ onto $M$.
Next we shall show the assertion (2) of Theorem B. It follows from (1) of
Theorem $B$ that $\Lambda>0$ . Suppose $dis_{M}(\Gamma_{1}, \Gamma_{2})\geqq 2C_{2}(R, \Lambda)$ . Let $x$ be a point of
$\omega$ ; let $\rho_{1},$ $\rho_{2}$ and $U$ be as in the preceding proof. Then by (1.4), we see that

(2.10) $\Delta(\rho_{1}+\rho_{2})\leqq(m-1)\{(h’/h)(\rho_{1})+(h’/h)(p_{2})\}$

on $U$ . Since $\rho_{1}+\rho_{2}\geqq dis_{M}(\Gamma_{1}, \Gamma_{2})\geqq 2C_{2}(R, \Lambda)$ , we see by (1.16) that the right-
hand side of (2.10) is nonpositive, that is, $p_{1}+\rho_{2}$ is superharmonic on $U$ , and
further it takes the minimum $dis_{M}(\Gamma_{1}, \Gamma_{2})$ at $x$ . Therefore taking account of
the equality discussion after (1.14), we see that, on a neighborhood $U’$ of $x$

$(U’\subset U)$ ,

(2.11) $\rho_{1}+\rho_{2}=dis_{M}(\Gamma_{1}, \Gamma_{2})=2C_{2}(R, \Lambda)$

and hence

(2.12) A $\rho_{1}=(m-1)(h’/h)(\rho_{1})$ .
Then (2.11) implies that $x$ is an interior point of $\omega$, since $\rho_{1}+p_{2}\geqq dis_{M}(\Gamma_{1}, *)+$

$dis_{M}(\Gamma_{2}, *)\geqq dis_{M}(\Gamma_{1}, \Gamma_{2})$ . Thus $\omega$ is an open and closed subset of $M_{0}$ , so that
$\omega=M_{0}=\{x\in M:0<dis_{M}(\Gamma_{1}, x)<2C_{2}(R, \Lambda)\}$ . Moreover (2.12) and the equality
discussion in Lemma (1.3) tell us that for any $x\in M_{0}$ , the sectional curvature of
any plane tangent to $\dot{\sigma}_{x}$ is equal to $R$ , where $a_{x}$ : $[0, l]arrow M$ is the unique
geodesic joining $\Gamma_{1}$ to $x$ such that $dis_{M}(\Gamma_{1}, a_{x}(t))=t$ for $t\in[0,1]$ and $\Gamma_{1}$ is totally
umbilic (i.e., $\langle S_{\xi}X,$ $Y\rangle=h’(0)\cross\langle X,$ $Y\rangle$). Let $\Psi:[0,2C_{2}(R, \Lambda)]\cross\Gamma_{1}arrow M$ be the
map defined as above. Then $\Psi$ induces an isometry from the warped product
$[0,2C_{2}(R, \Lambda)]\cross_{h}\Gamma_{1}$ onto $M$. This completes the proof of Theorem B.

Before the proof of Theorem $C$ , we remark that the proof of Theorem $B$

and Lemma (1.8) will yield the following
THEOREM $B’$ . Let $M$ be a Riemannian manifold of class $(R, \Lambda)$ . Supp0se

$\partial M$ is connected and supp0se there is a minimal immerston $\iota:\tilde{N}arrow M_{0}$ from a
Riemannian manifold $N$ without boundary into $M$ such that dim $N=\dim M-1$

and the immage $N=\iota(\tilde{N})$ is compact. Then:
(1) If $R=0,$ $\Lambda=0$ and $M\backslash N$ is connected, there exists an involutive isometry

$\sigma$ of $\partial M$ without fixed points and $M$ is isometnc to the quotient space $[0,2l]\cross$

$\partial M/G_{\sigma}$ where $G_{\sigma}$ is the isometnc group of $[0,2l]\cross\partial M$ which consists of the
identity element and the involutive isometry a defined by $\sigma((t, x))=(2l-t, \sigma(x))$ .

(2) If $R>0$, then $\Lambda>0$ and $dis_{M}(\partial M, N)\leqq C_{2}(R, \Lambda)$ . Moreover if
$dis_{M}(\partial M, N)=C_{2}(R, \Lambda)$ , there is an involutive isometry $\sigma$ of $\partial M$ without fixed
poznts and $M$ is isometnc to the quotient space $[0,2C_{2}(R, \Lambda)]\cross_{h}\partial M/G_{\sigma}$ , where
$h$ is as in Theorem $B$ and $G_{\sigma}$ is as above.
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PROOF OF THEOREM C. It follows from the assumptions that there is a geo-
desic ray $r:[0, \infty$ ) $arrow M$ such that $dis_{M}(\partial M, \gamma(t))=t$ for $t\geqq 0$ (cf. Lemma (1.5)).

Since $\gamma$ has no conjugate point, we see that $R\leqq 0$. Let $\eta_{\gamma}$ be the Busemann
function with respect to $\gamma$ . Then $\eta_{\gamma}+\rho_{\partial M}\geqq 0(\rho_{\partial M}=dis_{M}(\partial M, *))$ on the half-space
$B_{\gamma}$ by the triangle inequality and $(\eta_{\gamma}+\rho_{\partial M})(\gamma(t))=0$ for any $t\geqq 0$ by the definition
of $\eta_{\gamma}$ . We remark here the following properties of $\eta_{\gamma}$ : $B_{\gamma}=\{x\in M:\eta_{\gamma}(x)<0\}$

and for any $a<0$,

(2.13) $\eta_{\gamma}(x)=a+dis_{M}(x, \eta_{\overline{\gamma}^{1}}(a))$

on $\{x\in B_{\gamma} : \eta_{\gamma}(x)\geqq a\}$ (cf. [11: Lemma 7] and Lemma (1.7)). Set $\omega=\{x\in M$ :
$\eta_{\gamma}(x)+p_{\partial M}(x)=0\}$ . Then by (2.13) and Lemma (1.5), we see that $\omega$ is a closed
subset of $M_{0}$ contained in $\Omega_{\partial M}\cap B_{\gamma}$ . Let $x$ be a point of $\omega$ . Then we see by
(1.4) that, on some neighborhood $C_{\partial M,x}\backslash \partial M$ of $x$ , the distance function $\rho_{1}=$

$dis_{c_{\partial Mx}}.(C_{\partial M.x}\cap\partial M, *)$ is smooth and satisfies

(2.14) $\Delta\rho_{1}\leqq(m-1)(h’/h)(\rho_{1})$ .

On the other hand, we see by Lemma (1.13) that

(2.15) A $\eta_{\gamma}\leqq(m-1)\sqrt{-R}$

as a distribution on $B_{\gamma}$ . Therefore by (2.14) and (2.15), we have

(2.16) $\Delta(\rho_{1}+\eta_{\gamma})\leqq(m-1)\{(h’/h)(\rho_{1})+\sqrt{-R}\}$

as a distribution on a neighborhood $U$ of $x$ . Suppose $R=0$ and $\Lambda=0$ . Then
the right-hand side of (2.16) is equal to $0$ , that is, $\rho_{1}+\eta_{\gamma}$ is superharmonic on
$U$ , and further it takes the minimum $0$ at $x$ . Therefore we see that, on a
neighborhood $U’$ of $x(U’\subset U)$ ,

(2.17) $\rho_{1}+\eta_{\gamma}=0$

and hence

(2.18) $\Delta\rho_{1}=0$ .
Then (2.17) implies that $x$ is an interior point of $\omega$, since $p_{1}+\eta_{\gamma}\geqq dis_{M}(\partial M, *)$

$+\eta_{\gamma}\geqq 0$ . Thus $\omega$ is an open and closed subset of $M_{0}$, so that $\omega=\Omega_{\partial M}=B_{\gamma}=M_{0}$ .
Moreover (2.18) and the equality discussion in Lemma (1.3) tell us that for any
$x\in M_{0}$ , the sectional curvature of any plane tangent to $\dot{\sigma}_{x}$ vanishes, where
$\sigma_{x}$ ; $[0, l]arrow M$ is the unique geodesic joining $\partial M$ to $x$ such that $dis_{M}(\partial M, a_{x}(t))$

$=t$ for $t\in[0, l]$ , and $\partial M$ is totally geodesic. Let $\Psi:[0, \infty$ ) $\cross\partial Marrow M$ be the
map defined by $\Psi(t, y)=\exp_{\partial M}(t\xi(y))$ , where $\xi:\partial Marrow(\partial M)^{\perp}$ is the unit inner
normal vector field on $\partial M$. Then $\Psi$ is an isometry from the Riemannian prod-
uct manifold $[0, \infty$ ) $\cross\partial M$ onto $M$. This completes the proof for the assertion
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(2) of Theorem C. As for the last assertion (3), $we_{4}^{w}see$ by the preceding asser-
tion (2) that $R<0$ and by (3) of Theorem A that $\Lambda\geqq-\sqrt{-R}$ . Now suppose
$\Lambda=-\sqrt{-R}$ . Then the right-hand side of (2.16) is equal to $0$ . Therefore the
same argument as in the preceding assertion (2) shows that the map $\Psi:[0, \infty$ )
$\cross\partial Marrow M$ as above induces an isometry from the warped product $[0, \infty$ ) $\cross_{h}\partial M$

onto $M$. This completes the proof of Theorem C.
Now we shall show the following
THEOREM 1. Let $M$ be a connected, complete Riemannian manifold of dimen-

ston $m$ without boundary. We assume $M$ is noncompact and has nonnegative Ricci
curvature. SuPpose there exists an isometric minimal immerston $\iota;Narrow M$ from
a connected, compact Riemannian manifold $\hat{N}$ of dimension $m-1$ into M. Then
a noncompact connected compOnent of $M\backslash N(N=\iota(N))$ is the isometnc product
$(0, \infty)\cross L$ , where $L$ is compact. In particular, $N$ is a totally geodestc (imbedded)

submanifold of $M$.
PROOF. Let $\Omega$ be a noncompact connected component of $M\backslash N$. Since $\partial\Omega$

is compact, there is a ray $\gamma:[0, \infty$ ) $arrow\Omega$ such that $p_{\partial\Omega}(\gamma(t))=t$ for any $t\geqq 0$,

where $\rho_{\partial\Omega}=dis_{M}(\partial\Omega, *)$ . Let $\eta_{\gamma}$ be the Busemann function with respect to $\gamma$ .
Then by Lemma (1.12) $(R=0),$ $\eta_{\gamma}$ is superharmonic on $M$. Moreover Lemma
(1.8) $(R=0)$ tells us that $p_{N}=dis_{M}(N, *)$ is superharmonic on $M\backslash N$. In parti-
cular, $\eta_{\gamma}+\rho_{\partial\Omega}$ is superharmonic on $B_{\gamma}(p_{\partial\Omega}=p_{N1\Omega})$ and further it takes the mini-
mum $0$ on $B_{\gamma}$, since $(\eta_{\gamma}+\rho_{\partial\Omega})(\gamma(t))=0$ for any $t\geqq 0$ . Therefore by the same
reason as in the proof of (2) in Theorem $C$ , we see that $\eta_{\gamma}+p_{\partial\Omega}=0$ on $\Omega$, so
that both $\eta_{\gamma}$ and $\rho_{\partial\Omega}$ are harmonic. In particular, $\eta^{-1}(a)$ is a (imbedded) minimal
hypersurface for any $a<0$ , since the trace of the second fundamental form of
$\eta^{-1}(a)$ is equal to $(\Delta\eta)|_{\eta^{-1(a)}}$ by (2.13). Therefore $\{x\in\Omega:\eta(x)<a\}$ for any $a<0$

satisfies all the conditions of (2) in Theorem C. This shows that the map $\Psi_{a}$ :
$(a, \infty)\cross\eta^{-1}(a)arrow\Omega(a<0)$ defined by $\Psi_{a}(t, x)=\exp_{x}(t\xi(x))(\xi(x)=-grad\eta(x))$ is
an isometry from the Riemannian product $(a, \infty)\cross\eta^{-1}(a)$ onto $\Omega$ . This completes
the proof of the theorem.

Now it would be interesting to give an alternative proof of the following
Cheng’s theorem [6] as an application of Theorem A.

THEOREM (Cheng). Let $M$ be a connected compact Riemannian manifold
without boundary. SuPpose the Ricci curvature of $M\geqq(m-1)R$ ($m=\dim M$ and
$R>0)$ and the diameter of $M=\pi/\sqrt{R}$ . Then $M$ is isometnc to the standard sphere
$S^{m}(R)$ of constant curvature $R$ .

PROOF. Let $p$ and $q$ be two points in $M$ such that $dis_{M}(p, q)=\pi/\sqrt{R}$ . Fix
any small $\epsilon>0$ . We write $B_{\epsilon}(q)$ for the metric open ball centered at $q$ with
radius $\epsilon$ . Then Lemma (1.1) shows that $\Delta p_{q}\leqq(m-1)\Lambda_{\epsilon}$ on $\partial B_{\epsilon}(q)$ , where $\rho_{q}=$

$dis_{M}(q, *)$ and $A_{\epsilon}=\sqrt{R}\cos\sqrt{R}\epsilon/\sin\sqrt{R}\epsilon$ . This implies that

(2.19) the trace of $S_{\xi}\leqq(m-1)\Lambda_{\epsilon}$ ,



Ricci curvature and geodesics 129

where $S_{\xi}$ is the second fundamental form. of $\partial B_{\text{\’{e}}}(q)$ with respect to a unit
normal vector $\xi$ of $\partial B_{\epsilon}(q)$ which points to $M\backslash B_{\epsilon}(q)$ . Moreover by the assump-
tion: $dis_{M}(p, q)=\pi/\sqrt{R}$ , we see that

(2.20) $i(M\backslash B_{\epsilon}(q))=C_{1}(R, \Lambda_{\epsilon})$ .
Thus by (2.19) and (2.20), we see that $M\backslash B_{\epsilon}(q)$ satisfies all the conditions of
Theorem $A$, so that $M\backslash B_{\epsilon}(q)$ is isometric to $\overline{B}(C_{1}(R, \Lambda_{\text{\’{e}}});R)$ . Since $\epsilon$ is any
small positive constant, we can conclude that $M$ is isometric to $S^{m}(R)$ . This
completes the proof of the theorem.

Finally we shall show the following
THEOREM 2. Let $M$ be a connected, complete Riemannian manifold of dimen-

sion $m$ without boundary. SuPpose the sectional curvature of $M\geqq R>0$ and sup-
pose there are isometnc minimal immersions $C_{i}$ ; $\tilde{N}_{i}arrow M(i=1,2)$ from connected,
compact Riemannian manifolds $\tilde{N}_{i}$ of dimensions $n_{i}>0$ into M. Then $dis_{M}(N_{1}, N_{2})$

$\leqq\pi/2\sqrt{R}$ , where $N_{i}=\iota_{i}(\hat{N}_{i})(i=1,2)$ . Moreover if the equality holds and $n_{1}+$

$n_{2}\geqq m-1$ , then $n_{1}+n_{2}=m-1$ and $(M, N_{1}, N_{2})=(S^{m}(R), S^{m}(R)\cap L_{1},$ $S^{m}(R)\cap L_{2})/\Gamma$,
where $S^{m}(R)=\{v\in R^{m+1} : \Vert v\Vert=1/\sqrt{R}\},$ $L_{i}(i=1,2)$ are mutually orthogonal linear
subspaces of $R^{m+1}$ with dim $L_{i}=n_{i}+1$ , and $\Gamma$ acts reducibly on $S^{m}(R)$ leaving
both $L_{1}$ and $L_{2}$ .

PROOF. The first assertion of our theorem is well known (cf. e.g., [10:

Chap. IV, Theorem 6.3] and Lemma (1.10)). Now we shall show the second
assertion of the theorem. Set $p_{i}=dis_{M}(N_{i}, *)(i=1,2)$ . Then by Lemma (1.10),

we see that each $\rho_{i}$ satisPes $\rho_{i}\leqq C_{1}(R, 0)=\pi/2\sqrt{R}$ and

$\Delta\rho_{i}\leqq(m-n_{i}-1)(f’/f)(p_{i})+n_{i}(h’/h)(\rho_{i})$

as a distribution on $A_{i}=\{x\in M:0<\rho_{i}(x)<C_{1}(R, 0)=\pi/2\sqrt{R}\}$ . Therefore we
see that $\rho_{1}+p_{2}$ satisfies

(2.21) $\Delta(\rho_{1}+p_{2})\leqq n_{1}\{(f’/f)(\rho_{2})+(h’/h)(p_{1})\}+n_{2}\{(f’/f)(\rho_{1})+(h’/h)(\rho_{2})\}$

$+(m-n_{1}-n_{2}-1)\{(f’/f)(\rho_{1})+(f’/f)(p_{2})\}$

as a distribution on $A_{1}\cap A_{2}$ . Since $dis_{M}(N_{1}, N_{2})=\pi/2\sqrt{R}$ and $n_{1}+n_{2}\geqq m-1$ ,
(1.15) implies that the right-hand side of (2.21) is nonpositive, so that $\rho_{1}+p_{2}$ is
superharmonic on $A_{1}\cap A_{2}$ . $Set\omega=\{x\in M:0<\rho_{i}(x)(i=1,2),$ $\rho_{1}(x)+\rho_{2}(x)=$

$\pi/2\sqrt{R}\}$ . Then $\omega$ is a closed subset of $M\backslash (N_{1}\cup N_{2})$ contained in $A_{1}\cap A_{2}$ , and
further $p_{1}+\rho_{2}$ takes the minimum $\pi/2\sqrt{R}$ on $\omega$. Therefore by the minimum
principle for superharmonic functions, we see that $p_{1}+\rho_{2}$ is equal to $\pi/2\sqrt{R}$

on a connected component of $A_{1}\cap A_{2}$ which intersects with $\omega$. This shows
that $\omega$ is open and closed in $M\backslash (N_{1}\cup N_{2})$ , and

(2.22) $\rho_{1}+\rho_{2}=dis_{M}(N_{1}, N_{2})=\frac{\pi}{2\sqrt R}$
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on $\omega$ . If $n_{1}+n_{2}>m-1$ , the right-hand side of (2.21) is negative. Therefore by
(2.22), we see that $n_{1}+n_{2}=m-1$ , so that $\omega=M\backslash (N_{1}\cup N_{2})$ . That is, equality
(2.22) holds everywhere on $M$. Hence we see that, for each $i(i=1,2),$ $N_{i}$ is a
closed (imbedded) submanifold of $M$ and the exponential map $\exp_{N_{i}}$ of $N_{i}$ re-
stricted to $\hat{V}_{i}=\{v\in N_{i}^{\perp} : \Vert v\Vert<\pi/2\sqrt{R}\}$ induces a diffeomorphism between $\hat{V}_{i}$ and
$V_{i}=\{x\in M:\rho_{i}(x)<\pi/2\sqrt{R}\}$ . Therefore each $p_{i}(i=1,2)$ is smooth on $V_{i}\backslash N_{i}$

and further by equality (2.22) on $M$, we have

(2.23) $\Delta\rho_{i}=(m-n_{i}-1)(f’/f)(\rho_{i})+n_{i}(h’/h)(\rho_{i})$

on $V_{i}\backslash N_{i}$ . Set $U_{\epsilon}=\{x\in M:\epsilon\leqq\rho_{1}(x)\leqq(\pi/2\sqrt{R})-\epsilon\}(0<\epsilon<\pi/2\sqrt{R}),$ $(\partial U_{\text{\’{e}}})_{+}=\{x\in$

$M:p_{1}(x)=\epsilon\},$ $(\partial U_{\epsilon})_{-}=\{x\in M:\rho_{1}(x)=(\pi/2\sqrt{R})-\epsilon\}$ and

$\Phi_{\epsilon}=-\int_{\epsilon}^{\rho_{1}}(\int_{t}^{\pi/2\sqrt{R}}f^{n_{2}}h^{n_{1}}ds)/(f^{n_{2}}h^{n_{1}})(t)dt$ .

Then by (2.23), we see that $\Phi_{\epsilon}$ satisfies

A $\Phi_{\text{\’{e}}}=1$

on $V_{1}\backslash N_{1}$ . Therefore we have

Vol $(M)= \int_{V_{1}\backslash N_{1}}\Delta\Phi_{\epsilon}$

$= \lim_{\epsilonarrow 0}\int_{U_{\epsilon}}\Delta\Phi_{\text{\’{e}}}$

$= \lim_{\epsilonarrow 0}\int_{\partial U_{\epsilon}}*d\Phi_{\epsilon}$

$= \lim_{\epsilonarrow 0}\{Vol((\partial U_{\epsilon})_{+})\cdot\int_{\epsilon}^{\pi/2\sqrt{R}}(f^{n_{2}}h^{n_{1}})(t)dt/(f^{n_{2}}h^{n_{1}})(\epsilon)$

$- Vol((\partial U_{\epsilon})_{-})\cdot\int_{\epsilon}^{\pi/2\sqrt{R}}(f^{n_{2}}h^{n_{1}})(t)dt/(f^{n_{2}}h^{n_{1}})(\epsilon’)\}(\epsilon’=\frac{\pi}{2\sqrt{R}}-\epsilon)$

$=Vol(N_{1})$ . Vol $( S^{n_{2}}(1))\cdot\int_{0}^{\pi/2\sqrt{}\overline{R}}(f^{n_{2}}h^{n_{1}})(t)dt$ ,

where $S^{n_{2}}(1)$ is the unit sphere in Euclidean space of dimension $n_{2}$ . Hence
Theorem 2 follows from Theorem 4.6 in [7]. This completes the proof of
Theorem 2.
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