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1. Introduction.

Let G be a real rank one, connected semisimple Lie group with finite
center and G=KAN an Iwasawa decomposition for G. Let ¢ be a unitary
double representation of K on a finite dimensional Hilbert space V and C(G, 7)
the r-spherical Schwartz space on G defined by Harish-Chandra [1]. Then
C(G, ) can be written as the direct sum of °C(G, ) and C.(G, 7), which consist
of z-spherical cusp forms on G and wave packets respectively (cf. [3, Theorem
27.2]). Here using the matrix coefficients of the discrete and principal series
for G, we define the Fourier transform of C(G, 7) as in the previous papers
[5, 6]. Let ¢ denote the dual space of the Lie algebra of A and C(F) the
usual Schwartz space on 4. Then from Theorem 1 in [6], roughly speaking,
the Fourier transform sets up a homeomorphism between C(G, 7) and the direct
sum of C*, n’=dim°C(G, 7), and the subspace C(F)% of C(F)* which consists
of all elements satisfying the functional equations for the Weyl group of (G, A),
where n=dim V¥ (cf. §3). Moreover from Theorem 2 in the Fourier
transform sets up a bijection between CZ(G, 7), the space of all r-spherical
C>-functions with compact support on G, and the subspace H(F): of C(F)%
which consists of all elements a in C(9)% such that (i) each component of «
extends to an entire holomorphic function on %, the complexification of &,
which is an exponential type, (ii) a satisfies the functional equations for Eisen-
stein integrals on F¢ (cf. §5).

In this paper we shall characterize the Fourier transforms of C?(G, ) which
consists of all functions in C(G, r) with finite L?-norm (0<p=2). Obviously,
for 0<p,=p.,=2 CPYG, 7)CC?%G, 7)CC(G, ) and C(G, z-)CKngC”(G, 7). Here

we put e:%—l and F(e)={vedc; |Imy|=ep}. Let '4% denote the subspace

of C(9)% which consists of all elements « such that (i) each component of «
extends to a holomorphic function on the interior of F(¢) which is rapidly de-
creasing on Z(e), (ii) a satisfies the functional equations for Eisenstein integrals
on F(e) (cf. §5), where when p=2, these conditions are omitted, i.e., " H5;=C(F)3:.
Then our main results can be stated as follows. Except a finite number of p the
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Fourier transform sets up a bijection between CP(G, ) and the direct sum of
C'», i,=dim°C(G, ©)N\C?(G, 7), and "435. To obtain this result we shall use the
same method in the proof of an analogue of the Paley-Wiener theorem, that is,
the characterization of the Fourier transforms of C(G, ) (Theorem 5.1)).

In the rest of the paper we shall study some topics in harmonic analysis of
L?-functions on G. For example, we show that the Fourier transforms of L?
(1=p<2) functions vanish at y=oco and moreover have polynomial growth

on (') (O§5’§5=—]?§——1> (Theorem 8.4). Next we obtain a formula for the

Fourier transform of the convolution of two functions and, applying these results
to a special case, we show the Kunze-Stein phenomenon for K-finite functions
on G (Lheorem 10.5).

2. Notations.

Let G be a connected semisimple Lie group with finite center and be of
real rank one. Let G=KAN be an Iwasawa decomposition for G and M (resp.
M’) denote the centralizer (resp. the normalizer) of A in K. Then P=MAN is
a minimal parabolic subgroup of G and W=M'/M is the Weyl group for (G, A).
For any subgroup of G we denote its Lie algebra by small German letter. As
usual for any real vector space V, V¢ (resp. V*) denotes the complexification
(resp. the dual space) of V. Let 4 denote the set of all roots of (g¢, ac), 4*

the set of positive roots in 4 such that nc= 3 g., where g, is the root space
acdt+

of @. Let a* denote the positive Weyl chamber in a determined by 4* and put
A*=expa®. Since dim A=1, there exists a unique positive reduced root a and
H,ea* such that a(H,)=1. For simplicity we put F=a* and F*={2€F ; A(H,)
>0}. For any real number ¢, >0 we define the subsets F(e), Fs5, Fi(e) of Fe¢
as follows.

F(e)={A€Fc; [Im A(Ho)| =ep(Ho)},
Fs={2€F; |AHy)| =0\ J{A€Fc; | A(Hy) | =0, Im A(H) =0},
Fi(e)={1€%c; 0=Im A(H))=ep(Hy)} I D;,

where A=Re 2++//—1Im 1 (Re 1, Im 1€ F), p:%—ﬁzﬁﬁ and Dy;={1€F¢; | A(Hy)|
(S

<0}. For any set S in a topological space, S (resp. CL(S)) denotes the interior
(resp. the closure) of S. Then F++/—1 CL(Z*) is the upper half plane of &,
and put Fi(c0)=F++/—1 CL(F*)UDs.
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3. Fourier transform on the Schwartz space.

Let z=(z;, 7,) be a unitary double representation of K on a finite dimen-
sional Hilbert space V. Here we assume that V satisfies the conditions in [3,
§8]. Let C(G, ) denote the z-spherical Schwartz space on G, Ls="C(G, 7) the
space of r-spherical cusp forms on G and C4(G, 7) the space of all C*, r-spher-
ical functions f on G such that ff~0 (see for the definitions of these spaces).
Then dim°C(G, 7)<oo and C(G, 7)="C(G, t)PCG, 7) (direct sum). Since MCK
is compact, Ly="C(M, 74)=C>(M, ty), where 7, is the restriction of = to M,
and the mapping ¢— ¢(1) sets up a bijection between L, and the subspace V¥
of V consisting of all vectors v such that r,(m)v=vr,(m) for all meM. Let ¢}
(I1=i=n,, 1=7=m) (resp. e; (1=k=n’)) denote the orthonormal basis for Ly
(resp. Lg) chosen in the previous papers [5, 6]. For simplicity we assume that

sw;=w; (s€W) for all j in this paper, that is, Ly= énBILM(wj), where Ly(w) is the
]:

set of all zy-spherical, V-valued extensions of the matrix coefficients of the
discrete series @ of M. Then for f in C(G, 7) the Fourier transform F(f) of
f is defined by

FU%#@meﬁﬂB§Nﬂ¢LWﬂL veq), (1)

where f(ng{f, v)=(c*r)"MEP: ¢i:v: ), f) for veTF (see and [3, §11 and §2]
for the definitions of the Eisenstein integral E(P: ¢i:v: x) and the constants
c=c(P), r=r(P) respectively). Let C(¥) denote the Schwartz space on & and

C(F)i= é C(F)37 (n: in,) the closed subspace of C(&)"” consisting of all ele-
J=1 j=

ments a= D a;, a;=(a}, &}, -, a;;j)ec(g)"f, such that
=1

ai(s™W)'="Cpp(s; s v)a,;(v)" for all seW and ve g, (2)

where each a! is the transposed vector of «; and we regard the unitary operator
°Cpip(s; v) on Ly(w;), which is defined in [3, §17], as a matrix operator with
respect to the basis ¢ (1=/<n;) (cf. [5, (1.5)]). The bar denotes the complex
conjugate. Then we obtain the following theorem.

THEOREM 3.1 ([6]). The Fourier transform sets up a homeomorphism between

C(G, 7) and CVPC(F)i. Moreover for feC(G, )

1 S E’;Ly(wj, WEP: ¢i:v: x)f(¢d, vidv, (3)

0= 8, Cn Hern)t gy B

where each p(w;, v) is the p-function corresponding to w; (see [3, §117) and dv is
the usual Lebesgue measure on <.
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In what follows we shall characterize the subset of C™@PC(F): which
consists of the Fourier transforms of all functions in ¢(G, 7) with finite LP-norm
0<p=2).

4. Singularities of expansions for Eisenstein integrals.

In this section we consider the singularities of meromorphic functions which
appear in the Harish-Chandra expansions of p(w;, v) E(P: ¢i:v: a) (asA"), that
is, I(j, i:v: a)=0(v: a)Cpp(l; v)* 1¢i(1) (see in § 6 for the definition). Then
for a sufficiently small >0 we know that the poles of I(j,7:v:a) on Fi(oo)
do not depend on ea=A*, 0 and moreover they are finite and pure imaginary.
We fix such a 6>0. Let &i(t) (1=t=<T) denote the poles of I(j,7:v:a) on
F$(0) and mj the order of pole at &i(f). We may assume that |[&i(t,)] < |&i@E.)|
for 1=t,<t,=<Ti. Now for ¢>0 we put

Ti(e)=max {t; Eit) e Fi(e)}.

Obviously, Ti(e))=<Ti(e,) for e,<e, and Ti(oco)=T4. Then we define the set S.
as a collection of all functions on G such that

D™ENE(P: ¢i:v: x) for 0=m=mi()—1, 1=t<T¥ie), 1=Zi<n;, 1=75m,
dm

dy™ |v=¢
on G. Let S denote a maximal linearly independent subset of S., elements of
which we denote by

where D™(&)= Here we note that these functions are real analytic

Ep(x)=D™PhCLpMEP: iRl v: 1), 1=p=re.

For simplicity we put D,=D™P(ER2[p]), ¢[p]=¢#5 (1<p=r.) and may
assume that S;, CS;, for ¢;<e.. Since E, (1=p=7.) are linearly independent
and real analytic on G, there exist h,€C7(G, 7) (1=p=7.) such that

(Eq, hp)=0p, for all 1=<p, ¢<7w.

Then in [6, Lemma 2] we obtained the following Lemma.

LEMMA 4.1. A, r=(es, hp) USp=7e, 1S k=n’) do not depend on any choice
of hy ASp=T2).

Now we note that ¢, (1=<k=n’) are V-valued extensions of the matrix
coefficients of the discrete series for G. Thus, using the results in [7, 8], we
can check the growth order of ¢,. From this fact, for 0< p<2 we may assume
that e, (1=k=:,) do not belong to L?(G, ) and the rest belongs to L?(G, 7),
where L?(G, 7) is the space of all r-spherical measurable functions f on G such

!/
that for any continuous seminorm s on V, (| f [Ipz(ga | f(x)lg’dx)1 p<00. Obvi-
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ously, e, (1,+1=k=n’) are contained in C?(G, ) (see §5 for the definition) and
ip,Zip, for p;<p,. Moreover ;=0 and for a sufficiently small p>0, i,=n’.

5. Statement of the main theorem.

Let 0<p=2 and ez%—l (=0). Let 5 and ¢ be the spherical functions

on G given in [1, §10], Z* non-negative integers and S(V) the set of all
continuous seminorms on V. As usual we regard an element in the universal
enveloping algebra U(ge) of g¢ as a differential operator on G (cf. [1, § 15]).
Then let C?(G, 7) denote the space of all z-spherical C* functions on G satis-
fying the following conditions; for any meZ*, g, g.€U(gc) and seS(V),

/“#L,grgz,s(f):ilégl f(gﬂ X, g2)|85(x)—2/p(1+0(x>)m<oo . (5)

The seminorms u% ;...,s convert C?(G, 7) into a Frechet space. Obviously,
CHG, ©)=C(G, 7) and for 0< p,<p.=2, C3(G, ) Cc? G, 7)C PG, ). Let S(9)
denote the symmetric algebra over $¢. As usual we regard an element in S(F)
as a differential operator on . Then let 4% denote the space of all elements
(@)D Gﬂé (ad(w)il, in C™ PC(F); satisfying the following conditions; (i) each
Jj=

aj(v) extends to a holomorphic function on (e), (ii) for any (€ Z* and ueS(F)

Pulad)= sup |ai(v; u)|(1+[v])I <0, (6)

VEF (e
where |v|=|v(H,)|, (iii) if there exists a functional equation for Eisenstein
integrals such that

m Ny T%.(e) m{f(;)_l
JZ::] é g:—l rgo A(]’ 7, t, T)Dr(fi(t))E(P gZS{ y: x)=0 (7)

(x€G, A(j, 1, t, r)eC), then aj(y) 1=i=<n,, 1=j<m) satisfy the same equation,
that is,

i T miwy—1

222 2 AG 4 NDEERIe=0, (8)
(v a1= % AgiDualy]  (ASRSiy), (9)

where a[¢]=aily for 1=<¢<y.. When p=2 (¢=0), these conditions are omitted,
i.e., H5=C"PBC(F);i.
The following theorem, which will be proved in §7, is our main result.

THEOREM 5.1. Let 0<p=2 and suppose that cp (e:—i—~1) s not equal to
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Ei(Ti(e)) for all i and j. Then the Fourier transform sets up a bijection between
C¥(G, 7) and 4%.

REMARK 1. When p=0, let .4 denote the space of all (a,)i,D él (ad(W)iy
J:

in CV@HC(F): satisfying the conditions (i), (iii), (iv) for p=0 (¢=c0) and more-
over the following condition (ii)’ instead of (ii); (ii)’ there exists an R>0 such
that for any NeZ* there exists a constant cy for which

)| <ey(4-[v]) NeRIm¥t  (vEF().

Then we obtained the following theorem in [6].

THEOREM 5.2 (an analogue of the Paley-Wiener theorem). The Fourier
transform sets up a bijection between C(G, ) and (5.

REMARK 2. It follows from that 45 C5, for 0<p,<p,=2.
Therefore when e, is not in L? (G, 7) 0<p<p’'=2), 7. and 7, in (9) can be

replaced by 7., and 7, (s’:i)z—,—l) respectively.

6. Some results.

In this section we summarize some results which will be used in the proof
of the main theorem.

First we recall the following properties of the spherical functions 5 and ¢
(see [1, §10]). There exist numbers ¢;>0 and »,>0 such that

e—p(log(a)) ég(a)écl(l+a(a))rle—p(log(a))

for all a= A+ and there exists »,>0 such that
S(;E(x)2(l+a(x))"°dx< oo (10)

Moreover, o(xy)<o(x)+0(y) (x, yEG).

Let @ denote the Cartan involution of g induced by K and g=I+p the cor-
responding Cartan decomposition of g. Let §) be a #-stable Cartan subalgebra
of g such that h\p=a and §\!Cm, where m is the centralizer of a in . Put
H,;=9~I and 3 denotes the center of U(ge). Then using the same arguments in
[9, Lemma 3.5.3], we can prove that Eisenstein integrals satisfy the following
facts. For any u€S(F) and ¢ Ly(w) (ws&(M)), see the notation for [2, § 18],
let d(u) denote the degree of u and A, an element of +/—1 %¥ which corre-
sponds to the infinitesimal character of w. Then if z€3,

EP:¢:v;u:x;z—pan(z; 2o+ —1)2®+0)=0 (11)

for all y&F, where p4/5 denotes the usual isomorphism of 3 into § (see [1, § 111).
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Furthermore for any g, g.€U(gc), u=S(F) and s=S(V) there exist constants
¢;>0 and »,=0 such that

|[EP: ¢ v; u: giix; g@)ls=callglll v, x)|m2E(x)~*! (12)

for all ve9(e) and x =G, where ||-||, denotes the L?norm on M and |(y, x)|=
A4+ v A+ (x)).

Next we recall that the Eisenstein integral satisfies the Harish-Chandra’s
expansion (see [10, Theorem 9.1.5.17), that is, there exist uniquely determined
End(V¥)-valued meromorphic functions Cpp(s; v) (s€W) and rational functions
I'ne (nEZ*) on ¢ such that

eP RN (P gy a)_—:sgv_‘,vd)(sv: a)Cpip(s; v)§(1) (aeAY),

where
O(v: @)=e 0x@® 53 T, (v/ =Ly ple~necioste (13)
ne

and vy varies in a certain open dense subset ‘F¢ on F¢ (see [10, p. 288 and
Theorem 9.1.4.1]). Put @y(v: a)=e¢ v-1*Ueg@@P(y: q). Then we see that @, and
Cpp*~! satisfy the following estimates. Put Ai{={a=sA*; logla)—H,=a*}. Let
D (resp. D’) denote a domain in ¢ on which @, (resp. Cpp*~*) is holomorphic
and whose imaginary part is bounded. Then for any u=S(¥) and b=U(ac), the
subalgebra in U(ge) generated by 1 and a¢, there exist constants c¢;, 75>0 such
that

1Pov; u: a; b)=c(l+[v])s  (veD, a€A), (14)

where ||-| denotes the operator norm in End(V¥) (cf. [4, Lemma 2.37) and there
exist constants c,, #,>0 such that

ICpip(s ;s * M =c(l+ v (veD) (15)

(see [4, §3]). Last we recall that for each j (1=<7=<m) the Plancherel measure
tw;, v) (veF) extends to a meromorphic function on F¢ and satisfies the fol-
lowing relation (see [3, Lemma 17.17J);

tw;, v)Cpip(s; v)*Cpip(s; v)=c(P)? (seW).

Furthermore there exists a sufficiently small §>>0 such that (i) plw;, v) A=<7<m)
are holomorphic on %(d), (ii) there exist numbers ¢, » >0 such that

| s, V)| Sc(1+|Re ) (16)

for all 1=7=m and v=%(0) (see [3, Theorem 25.1]).
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7. The proof of Theorem 5.1.

We keep to the notations in the preceding sections. First we prove that
for feC?(G, r) F(f) is contained in %%, that is, f(qS{, y) (1=i=n;, 1=7<m) and
(er, f) I=Sk=n’) satisfy the four conditions of the space 47%.

Cl. 1t follows from and that

176, =@ ] I F@LIEP: g:v:0)ldx (5€SV)
() g 1)) B (L4 ()70
To & -e+1 — 2
xelglal o, I8 (e=7-1)

=) v 11 s(N)Call@llo(1+ | v] )TZSGE(x)Z(l—[—g(x))‘Tde
< o0

for all gLy and veF(e). Therefore f(g, v) is well-defined on () and obvi-
ously, holomorphic on Sf (e).

C2. First we note that the same argument as above and show that for
any usS(F) there exist integer /,=0 and a continuous seminorm g, on C?(G, 7)
such that .

|f(@, v; w) S0+ v e (f)

for all yeJ(e) and f€C?(G, 7). Thus using the same arguments in [9, Theo-
rem 3.5.5] and we can obtain the following result. For any u#<S(&) there
exists an integer [,=0 satisfying the following condition; for each integer »=0
there exists a continuous seminorm p,,, on C?(G, r) such that

A+ oD 1A@, v; W) SA+ v D sy, o(f)

for all fecC?(G,r) and vES%(e). Then since [, does not depend on #, the
desired relation (6) is obvious.
C3. We note that for meZ* and =T (¢)

D™E)f(, v)=(c*) " (D™E)EP: ¢p:v: ), f)

for ve E}(e) by Cl. Therefore it is clear that if there exists a relation (7), then
f(¢{f, y) (1=i=n; 1=j=m) satisfy the corresponding relation (8).

C4. In order to obtain the relation (9) we shall apply the method in the proof
of the Paley-Wiener theorem (cf. [5, 6]). First we put

F(x)=f(x)— 2 chdx)  (xe0),
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where cquqj?(gb[q], v) (1=¢=7.). Here we note that ¢, (1=¢=<y. are well-
defined, because for each 7, j, ep is not equal to &{(T(¢)) and f(¢{3, y) is holo-
morphic on Eof(s). Then FeC?(G, r) and satisfies the following Lemma.
LEmMMA 7.1. Dm(E{(t))F(gb{f, v)=0 for all 0=m=mit)—1, 1=t=Ti(e), 1=i=n;
and 1=7=m.
Proor. Fix m, ¢, 7 and j. Since S;={FE,; 1=¢=r.} is a maximal linearly
independent subset of S., there exist constants a, (1=¢=7.) such that

D™EMEP: ¢ v: x)= 2 0, (%)

Te
= qgl agDEP: glgl:v: x).
Then from the condition (iii) of 4% which was obtained in C3 we have
) N i Te
D™E W) F (i, v)= q§=31 aDF (g, v) .

Here we recall that (czr)Dqﬁs(gé[q], V)=(DeEP: ¢lgl:v: +), hy)=(E,, hy)=0y, for
all 1=s, g=7.. Then we have

DF@La, =D, f(lal, v~ 3, e.Deh(gLel, ¥

Te
=Cy— Z}l Cs0sq
=0.
Therefore D™E@)F (¢4, v)=0. This completes the proof of Lemma. Q.E.D.
Put F=F,+F,, where F,e°C(G, 7) and F,€C.G, 7). Let 6>0 be a suffi-
ciently small number satisfying the condition in §4 and [16). Then using Theo-
rem 3.1, (2), the results in §6 and Cauchy’s Theorem, we see that for as A+,

ni

o

.
I
[y
-
Il

|| 0 o8 F ()= Sg w;, VEP: ¢i:v: a)E(pl, v)dver doste

t=1

n

= ﬁn] _ > S wj, )e? CsENE(P: ¢l v: a)F(p, v)dy
=1 i=1Jg;

- é :S% I D(sv: a)Cripls ; )* " GIDF (g, v)dv

=3 3 3] 00 Caxl; DG iy
J=1 i=1 sEWJs(Fg)

Here we put I(j, i: v: a)=®v: a)Cpp(l; v)* '¢i(1)F (i, v). Then

1 m nj ~ o
Flo== 2 2 2 e"’“m‘ms eV ~1vUog@ [(f {:y: a)dy.
IW| =1 <1 sEw $(F5)
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Now we note that for each 7, ; F(¢{f, y) is holomorphic on E%,}L(s) by C1 and has
zero points &i(f) of order mi(t) (1=t=<T¥(e)) by Lemma 7.l. Therefore from
the definition of &j(f) we see that I(j,7:v :a) is holomorphic on Sof,;’ ().
Moreover since F(¢, v) satisfies the condition (i) of 4% by C2 and @,, Cpp*™*
satisfy [(14), respectively, it follows that for any ueS(F), seS(V), reZ*
and veU(ac) there exists a constant ¢y, q s .>0 such that

]I(j:i: v,u:a ;v)lségcu.usn(l4"I”[)_r

for veg¥(e) and a= Af. For any meZ* we can choose a u,<S(F) such that

(I+o(@)"<un(v/—1Llogla)) (acA).

Here we note that for any g,, g.€U(g¢) and sS(V) there exist a constant
¢>0 and elements ay, a,, -+, a;U(g¢) such that

|Fgii x5 g)liSe B IRGs anls  (€6)

(see [11, p. 344, Lemma 37]). Moreover we can easily prove that for each a.
(1=k=t) there exist elements b, cp,EUl(ac) and f,,C(A") (1=I=my)
satisfying |f:.:(a)| <Ce P8 for some C>0 such that for a=A*

Fa; adls B 3 IR bl | fau@] 1Fla; el

Put Af={a<€Af; |fr. | =1 for all 1=k<t, 1=/<m,;}. Then using these facts,
we obtain that for any g,, g.€U(g¢), s€S(V) and meZ+

sup | Fi(gi: x; g |:E(x) 221+ (x)™

TEKATK

l
Scysup X [Fi(a; by)|se®Predos@n(14-g(a))™

aeAf n=1

for certain by, bs, -+, b,€U(ac). Hence for each h (1<h=() there exist poly-
nomials P, on 9¢ and elements v,=U(a¢) such that

Sgum(ev?Tv(log(a)))Ph<\/‘_~ly)

XI(j,i:v:a;vy)dy

8(2/p—1)p(wg(a))
s

and obviously, there exist elements uy,q, #;, €S5(F) (1=¢=d) such that

n

<,

=y Sup
aeAT

s

l d
> 2
h=1 g=1

S eV-ivtos@np (/—Ty; u, )
F

i=1

l

XI(F, 1:v; Usqt @; vp)dy| P Tostan (s:—‘%—l).
$
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Then by Cauchy’s Theorem

m i1 d - S
=¢; sup 2, PIEDD S eV P/ — 1y Uy )
aEAf‘ Jj=1 i=1 h=1 ¢=1|JF+vV-1ep

XI(J, 71 v; Us,q: a; vp)dy| e°Fost®»
8

m "y ! d
-2
§01<J_§1 1_21 h2=31 q;lcuz:q,vnvs,dh,q)g p(1+|”1) dy<oo,

F+v"1¢

where dp, ,=2-4deg(P,(-; u,4) for all A, q.
On the other hand, since CL(A*— A7) is compact, we deduce that

sup |Fi(gii x5 @) 1:5(x) 7 ?(14a(x))™ <0

Therefore this implies that F;, and thus F, are contained in C?(G, 7). Here we
note that

ip ne
Fo= 2 (ex, Fley+ 20 (er,Fle,
k=1 k=ip+1

and ¢, (1=k=<i,) are not in C?(G, ). Then using the linear independence of
¢, and the results in [7, 8], we obtain that (e,, F)=0 for 1<k=i,, that is, by
the definition of F,

0 )= 3, clen, b

Te .
= q‘gl qu(¢[‘]], U)Aq_ 1 (1§k~_<—_lp)

This is the desired relation (9).

All the conditions of 4% have now been established and thus for any
fec?(G, ), F(f) is contained in 47%.

The injectivity of the mapping f—F(f) of C?(G, 7) into 4% is clear by
Theorem 3.1, because C?(G, 7) is contained in C(G, 7). Thus it remains to prove
the surjectivity.

Let a=(a )LD énﬁl (ai(v)iZ, be an arbitrary element in 4 and put
P
ot B B e BEEP: g1 v: e
WA = @5 Tl v X)ad(v)dy
=fo(x)+f1(x) (xeG).
Then by feC(G, v) and F(f)=a, that is, (ex, f)=a, (1=k=n’)

and f(qﬁ{f, v)=ai(y) veF, 1=i<n;, 1=<7<m). Hence to prove the surjectivity it
is enough to show that f belongs to C?(G, ). Now we put

flx)= :21 arer(x)+
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F=F(x)— 3 cohol®),

where c,=D,alql(v) 1=¢=7.), which are well-defined as before (cf. C4). Put
F(F)=p8. Then, since each h, has compact support and thus h,€C?(G, 7), F(h,)
satisfies the conditions of 4% by the above considerations and f also satisfies
these conditions. Therefore, using the same arguments as above, we see that
F, belongs to C?(G, 7). On the other hand, since a satisfies the relation (9),

(ers PY=(en, )= 3, cier hy)

Te
=ar— q§1 Dalg1(»)Ag v

=0
for 1=k=i,. In particular, Fy= \ nZ')“(ek, Fle,ec?(G, 7). Hence F=F,+F, and
5
thus f are contained in C?(G, r). This is the desired assertion.
is thereby established. Q.E.D.

8. An analogue of the Riemann-Lebesgue’s Lemma.

Let LYR) denote the set of all complex valued measurable functions on R
with finite L'-norm and for feLXR) f(x) (x&R) the usual Fourier transform
of f on R. Then the Riemann-Lebesgue’s Lemma implies that

lim f(x)=0.

| x| >0

In this section we shall obtain an analogue of this Lemma. The similar results
were obtained by M. Eguchi and K. Kumahara in [15].

For simplicity we fix a continuous seminorm s&S(V) and denote the
L?-norm |||, by [,

PROPOSITION 8.1. Let f be in LYG, 7). Then for all $<Ly

lim flg, =0 (veI).

ProOOF. First we note that there exists a constant M,=0 such that
|E(P: ¢:v: x)|: =M 5(x) vedg, x=G6). 17)

Obviously, |E(P: ¢:v: x)|[,<M, for all x€G and ved. Since CI(G, 1) is
dense in LYG, 7), for any 0>0 there exists a function g€C?(G, 7) such that
lf—gll:<6/2M,. Then we have

| A(p, v)—8(¢, V)| <5/2.



Fourier transform of LP 573

Moreover by 8(¢, v) is contained in C(F). Hence there exists a
constant N>0 such that |g(@, v)|<d8/2 for |v|>N. Thus |A@, v)|<d for
|v]|>N. This proves Proposition. Q.E.D.

LEMMA 8.2. Let 2<qg<co. Then %ggllE(P: g:v: x)lg=M;<co (dELy, vEF).

Proor. We note that for a>0, =0 there exists a constant C,, >0 such
that

F)*"A+a(x)P=Cop(l+a(x)™  (see §6).

Therefore for v g

~

MgzsyLEIgSG!E(P: ¢y x)|idx
éMlngE(x)qu by

SMACy EGIU o) mdx<oo by [ QED.

PROPOSITION 83. Let f be in L?(G, 7) (1<p<2). Then for all ¢=Ly
lim A($, =0 (eI

ly| =00

Proor. Put ¢g= })-_?_—lu Then %—{——(1]—:1 and 2<g<oco. Since C¥(G, 7) is

dense in L?(G, r), for any 0>0 there exists a function gC?(G, ) such that
\f—gll,=0/2M, Then by Holder’s inequality we have

16, =8, =] | F~g | EP: g:v: s

SIf—gllEP: g:v: )l
<d/2.
The rest of the proof is the same as before. Q.E.D.
THEOREM 84. Let f be in L?(G, t) and put ez—i——-l (1=p<2). Then for

any 0=e,<e there exists a constant l.,=0, which does not depend on f, such that
for all gLy

_ f_(¢’,”,) o
meﬁlm (14 v’ =0 (ve%(eo),
where 1,=0 and F(0)=9F, when e,=0.
Proor. Obviously, since [Proposition 8.1 and 8.3 imply the case of &,=0,
we may assume that ¢,>0. Here we recall that there exist constants ¢, =/,
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and >0 such that for all yve F(s,)
|EP:¢:v: x)|,=c(l+|vDi1+a(x) E(x) %o (see [I2).
p

Therefore for q:Ff and ve F(s,)

Mg,%:SG]E(P: p:v:x)|idx
a1+ v B(n-realo(n)ids

SEC-qegraes VD] EGP(1+0(x)"dx

<N 1+ |vDet.

Here we note that —qee+¢—2>—ge+¢—2=0 and N does not depend on v.
Then for any d>0 there exists a function geC?(G, 7) such that

I/—gl»<d/2N.

Thus by Holder’s inequality we obtain that

| /3, v)—8(p, V)|
RSP

Therefore Theorem is obvious by the same arguments as before. Q.E.D.

9. Convolution.
Let f and g be in C?(G, ) (0=p=2). Then it follows from the results in
that f*g(x):SGf(y)g(y‘lx)dy is contained in C?(G, 7). In this section we

shall obtain the Fourier transform of fxg. Put f=f,+f, and g=g,+g;, where
fo, 0€°C(G, 7) and f,, g:=C4(G, ) respectively. Then we have

LEMMA 9.1. frg=fokgot+/frxg:.

Proor. We note that since f, is a cusp form,

foxEP:¢:v: )=EP: (fo)P*d:v: )=0 (pe Ly, ved)

(see [3, Lemma 8.2]). Therefore, since g; can be written as the sum of wave
packets (cf. (3)), foxg; must be equal to zero. By the same way, we obtain that
fi*g,=0. Then the desired relation is clear. Q.E.D.

The space of cusp forms is an algebra under convolution and thus, there
exist constants Cp.s (1=k, &/, s=n’) and Ci¥ (1=4, 7, v=n,, 1=, 7/, u<m)
such that
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n'
ek*ek,:g}lek,ses
18
e (18)
pirgt= 3 3 citugr.
u=1 v=1

PROPOSITION 9.2. Let notations be as above. Then for 1=v=n,, 1Susm
and 1<s=n’ we have

gt v=r 3 3 CHEf@h ety e,

m
J,jr=1 1

k

(o frg)= 3 Cunsles Nlew, 8).

PrRoor. We note that for any f=C(G, 1)
m Py )
(=3 3 fgh gl ved)

fo= }gl (er, e

(cf. [3, Theorem 20.1]). Then the second relation of Proposition is obvious by
(18) and the fact that (f*g),=f.*g,. The first is easily obtained by the follow-
ing relation.

A~
fxg(@, v)=(*r)"(EP: ¢:v: "), fxg)
=(c*r) e, (f*2)P)

=(c*r) Mg, (NUP«(KP)  (ved)

(see [3, Lemma 8.1]). Q.E.D.

COROLLARY 9.3. CP(G, 7) is commutative under convolution if and only if
V¥ is abelian.

Proor. Using Proposition 9.2, we can easily see that C?(G, 7) is commuta-
tive if and only if L; and L, are commutative. On the other hand, since a
compactly supported function is determined by its principal part, that is, wave
packets (cf. and (9)), L; is commutative when L, is commutative.
Therefore the desired assertion is clear from the facts that C¥(G, 7) is dense
in ¢c?(G, 7) and the mapping ¢— ¢@(1) sets up a bijection between L, and V¥,

Q.E.D.

10. Special case.

Put W=C=(KXK) and define a representation pu=(g,, ¢,) of K on W as
follows ;
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#1(k)v(k1, ko)=v(k.k, k)
v(ky, k)pa(R)=v(ky, kks)

(klr kZ) kEK, UEW).

Then it is clear that g is differentiable and unitary with respect to the norm;
pie={___ 10k, &) *dkidk,.
KxK

For any finite subset FC&(K) we denote by Wi the subspace of all veW such
that

v={ an(bymbde=| arkyuk)ie,

where apzaéd(ﬁ)ia, X; is the character of ¢ and d(6)=%;(1). Then it is easily

to verify that Wy is stable under g and its dimension is finite. Let yr denote
the restriction of g on Wy Moreover we define tr(v), v* and the product v-w
(v, weW) as in [3, §9] and write (V, 7) for (Wg, pr). Let C(G)r denote the
subspace of the Schwartz space C(G) of G which consists of all feC(G) such
that

[rap(R)=apxf(R)=f(k)  (kEK).

Then the mapping f(x)—7(x)(ky, ko)=f(kixks) (x €G, ki, b, K) sets up a
homeomorphism between C(G)r and C(G, 7).
Let 9, (ws&(M)) denote the representation space of

75.,=Indfan(Qe Q1)  (ved)

and put &L=E9,), where EFngaF(k)n{,,’,y(k)dk. Then the following results

were obtained in [3].

LEMMA 10.1 (see [3, §7]). For each T in End(9L) we can associate a ¥y in
Ly(w) such that the mapping T—d(@)'* Ty sets up a linear isometry between
End($%) with the Hilbert-Schmidt norm and Ly(w) with the L*norm, where d(w)

is the formal degree of the class w.
LEMMA 10.2 (see [3, Lemma 9.17). Let S, T<End(9L). Then

Vsl r=d(w) ¥rs,
s, Ur)=d(w) tr(SxT).
LEMMA 10.3 (see [3, Theorem 7.17). Let T<End(9%). Then
EP:Ur:v: x)ky, ky)=tr(Trh (kixks))
for ky, k€K and x<G.
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Now we shall apply the arguments in the preceding sections to the pair
(V, ©)=(Wpr, pr) and use the same notations as before.

For each w; (1=7<m) let hi (1=i=m;=dim 9% ) denote an orthonormal base
for §F, and T, (1=k, [=m,) elements in End($5) such that T .(h)=0,:hi.
Then using Lemmas 1 and 2, we see that

{pli=d()"Wrj ; 1=k, [Sm;, 1S 7<m}

is an orthonormal base for Ly(w;). For simplicity we write ¢] for @i, Here
we note that

EP: ¢l v: D)=d(@)"*tr(T},)=0ud(@;)"?
and
G 1x0% 1 =030 2 (@) * Gl 1 (19)

Then using these relations, we can easily deduce the following formulas.
PrROPOSITION 10.4. Let f=fo+f1€C(G, 1), where f,€°C(G, ) and fLECAG, 7).
Then

ms

=7 3 de 3 | oy, 0o v,

W

1 » 7 o
=y & 32 ] s 1 gt ity (20)
and
Ifult= 2 1(fo, eal®. @1

The following results was obtained for G=SL(2, R) in [12], for G=SL(n, C)

in and for the general case in [14]. Here we shall give a more direct
proof for the K-finite case.

THEOREM 10.5 (the Kunze-Stein phenomenon). There exists a constant A,
for each 1=p<2 such that the inequality

17xgl:= A1 fl2l glle

is valid for all f in L?(G, t) and g in L*G, 7).
Proor. Using the standard limiting arguments, we may assume that f and
g belong to C¥(G, ). Thus we can apply the previous results to this case.

First we note that |fxglli=|/foxgol3i+1fi*gill3 (cf. Lemma 9.I). Then we see
that

I f1xg:E=1(Fxg)3

1 m» 7 A~
Wl = %185#(%’ V)| fxg(@h, )2y

j=1 k
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:% = k%ilgs,#(% 2 gf(¢§,z, V)&(ph1, v)|*dy

Jj=1

(see [Proposition 9.2 and [19))

< max {m; max( sup |A(@d.0, ») |2}

Lo Y 50 2
X W] El k’Zslzlggy(wj, V)| &(@t s, v)|2dy

=Apallfl51 813

I , _ . N PN P
by Hoélder’s inequality, where Ap,l—mjax {m; IE%X<§§§||E(P' o:v: )N} (q— p—l>

(ct.

[Lemma 8.2). Moreover
[l foxgoll3=1I(f*g)ll3

’

= 5 1(xg, el?

’

3 (G2 ]2 (g0, €0)]?

t,8,t=1

A

(see [Proposition 9.2)

=n’ max(ICuil?) B 1(for e01* E 1(go, €0l

=Ap. 15183

by Holder’s inequality, where A, ,=n’ ma)%(lCistl") é lesll2. Here we put A,=
1,8, s=1

Ap1+Ap .. Then the desired relation is obvious. Q.E.D.
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REMARK. The assumption that the real rank of G equals one is not essen-
for the arguments in Sections 8, 9 and 10. Therefore we can easily extend
results in these sections to the case of arbitrary rank.
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