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§1. Introduction.

In [8], the author has shown that, for any given hyperplanes Hy, -, Hy4»
in P¥(C) located in general position and effective divisors E;, ---, Eys+s on C?",
Hl: Tty HN +2
El, Tty EN+2
into P¥(C) such that the pull-backs f*(H;) (1=/<N-+2) of divisors H; are equal
to E; respectively is finite. The purpose of this paper is partly to prove that
the number of maps in the above set & is bounded by a constant depending
only on N and mainly to generalize this result to the case of meromorphic maps
into a compact complex manifold.

Let M be an N-dimensional connected compact complex manifold and L be
a line bundle over M. We denote by H%M, ©(L)) the set of all holomorphic
sections of L and by (¢) the divisor of zeros of a non-zero section ¢ € H'(M, O(L)).
Set

the set & ;:g( ) of all non-degenerate meromorphic maps of C™

IL|={(¢); g=H M, O(L)), $70}.

DEerFINITION 1.1. Let Dy, -, Dpe|L| such that D;=(¢;) (1=i=m) for
9 €H M, ©(L)). We define ¢y, -+, ¢n (or Dy, ---, D,) to be algebraically in-
dependent if there exists no non-zero homogeneous polynomial P(w;, -+, Wm)
satisfying the relation

P(¢l, ) ¢m)50

in H'(M, ©(L%)), where d=deg P.

DEFINITION 1.2. A meromorphic map f: C"—M is said to be algebraically
non-degenerate with respect to L if there exists no non-zero holomorphic section
€ H (M, ©(L%)) (d>0) such that f(C™)E {¢=0}.

Take N+2 divisors D,, ---, Dy..€|L| and effective divisors E,, «--, Eyas

on C*. Let Ef(gl’ T g””
1y *°° N+2

into M which are algebraically non-degenerate with respect to L such that the

)denote the set of all meromorphic maps of C™
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pull-backs f*(D;) (1=/=N+2) are equal to E; respectively. The main result is
stated as follows.
MAIN THEOREM. In the above situation, if Dy, --+, Di_y, Diyq, -+, Dyye are

algebraically independent for every i=1, 2, ---, N+2 and have no common com-
Dl) Tty DN+2

ponent, then the number of maps in 9’(
El; Ty EN+2

) s bounded by a constant

depending only on L.

Needless to say, in the case of the hyperplane bundle over PY(C), N+2
hyperplanes in PY(C) located in general position satisfy the assumption of Main
Theorem. The following proposition given by Aihara-Mori provides other ex-
amples satisfying the assumption of Main Theorem.

PROPOSITION ([1], Lemma 1). Let L be a very ample line bundle over an
N-dimensional smooth projective algebraic variety M. If Dy, ---, Dy € |L] satisfy
the condition v

Supp D;"\Supp Do -+ N\Supp Dy +1=0,

then Dy, -+, Dyy1 are algebraically independent.

COROLLARY. Let L be a positive line bundle over an N-dimensional smooth
projective algebraic variety M, let Dy, -+, Dywn€|L| and let E,, - , Exss be
effective divisors on C". If

Supp D1 - NSupp D;-3N\Supp Diin - NSupp Dy 4o=0

for every i=1,2, -, N+2, then the number of algebraically non-degenerate
meromorphic maps f: C"—M with f¥(D;)=FE; (1=i=N-+2) is bounded by a con-
stant depending only on L.

This is the case where Aihara-Mori gave some degeneracy theorems in [1].

Corollary| is an immediate consequence of Main Theorem and [Proposition|

Because, L! is very ample for some positive integer /. On the other hand,

Dl; T DN+2 an tty lDN+2

#Q(El; Ty EN+2)§#g<lE1, Tty ZEN+2>
and the right hand side is bounded by a constant depending only on L, where
%A denotes the number of elements of a set A. '
We prove Main Theorem first in the case where L is the hyperplane bundle
over PY(C) in §2. For the proof, we need a lemma concerning on monomials,
which is proved in §3. After giving some algebraic lemmas, we complete the

proof of Main Theorem in §5.

§2. The case of meromorphic maps into P¥(C).

First, we consider Main Theorem for the case where M=P¥(C) and L is
the hyperplane bundle over P¥(C).
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Let H,, ---, Hy,, be hyperplanes in P¥(C) located in general position which
may be regarded as divisors on PY(C). For any effective divisors Ei, -+, Ey4s
Hl) Tt HN+2
El; R EN+2
C™ into P¥(C) which are non-degenerate, namely f(C")EH for any hyperplane
H in P¥(C), and satisfy the condition f*(H;)=E; (1=/=<N-+2). We shall prove
the following theorem.

THEOREM 2.1. The number of maps in F is bounded by a constant depending
only on N.

To prove this, we assume & contains mutually distinct maps f?, f2, ---, f4
our task is to seek a number gy with ¢=¢y depending only on N. This is
given by the induction on N. For the case N=1, we can take ¢;=2 as was
shown by H. Cartan and R. Nevanlinna (cf., [3], [10], [7], p. 79). We assume
is true and choose numbers ¢,, -:-, gy-; With the above property
for each case N is replaced by 1, 2, ---, N—1 respectively.

For convenience’ sake, we identify PY(C) with the subspace

on C™ we consider the set & ::E}'( ) of all meromorphic maps f of

{w1+wz+ +wN+z:0}

in PY*Y(C), where (w;: w,: - : wy+s) are homogeneous coordinates on PY+{((C).
We may assume here

Hi={w;=0} n\PY(C) (1=/=N+2).
Using these coordinates, we express each f7 as
=i fh) (IS7=509)

with holomorphic functions f{ on C", where each expression may be assumed to
be reduced, namely

codim{f{=f{= -+ =f4+.=0} =2.

Take holomorphic functions %2; on C™ such that (k;)=FE; (1=/=<N-+2). Let H*
denote the set of all nowhere zero holomorphic functions on C™ By the
assumption f*(H;)=E;, we see

hij:=f}/kis H* (1)
and they satisfy the condition
hijkithejkod- - +hyizjk =0
for every j=1, 2, ---, q. It then follows that
det(hi;,; 11, I1=p)=0 @)

for every ji, js, *++, Jjp With 17y, -+, 7,=¢, where p=N-+2.
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In this situation, there is no loss of generality in performing the following
operations ;
(a) changing the order of the indices =1, 2, -+, p or j=1, 2, -+, ¢,
(b) multiplying a row or column of the matrix (h;;; 1Si<p, 1=j=¢) by
a common element in H*,

because we can replace f} by h’f] and k; by h;k; for suitable h’, h;€ H*,
LEMMA 2.2. Let hy; (1Si<p:=N+2, 1=j7=¢q) be functions given by (1). For
some v with 2=v=p, if e;j:=hy;=const. for i=1,2, - ,r, j=1,2, -+, q and

rank(e;;; i=1, 2, -, r, j=1, 2, ---, g)<r,
then ¢=qn-1.

Proor. By the assumption, changing indices if necessary, we can choose
Ao, v, A-€C such that

elj:2€=22ieij (]:1’ 2; Tt (])-

Setting £;:=k;+ Ak, for i=2, ---, » and Bii=k; for i=1, r+1, -, p, we define
meromorphic maps

Fi=(eoshy +: erjln: Rrpislrans 2 hpsky)

of C™ into PY Y C)={(ws:: wy+2)EPY(C); wot+ * +wysr2=0}. Obviously,
FiizEf2 for any mutually distinct j;, j,. We have ¢=<gy., by the induction
hypothesis. g.e.d.

For our purpose, we need the following generalization of a classical theorem
of E. Borel.

LEMMA 2.3. Let hy, -, h,< H* satisfy the condition that htihi - hite C* 1=
C—{0} for any (L, ---, )€ Z*—{0}. Then h,, -+, h, are algebraically independ-
ent, namely \

P(hl, Tt h’t):_»'—to

for any non-zero polynomial P(w,, -+, wy).

For the proof, see [4], Proposition 4.5.

We may regard C* as a subgroup of a multiplicative group H*. Let us
consider the factor group G=H*/C*. For he H* we denote the class contain-
ing h by [h]. Take 7%, -+, p,€H* such that [%,], ---, [n.] are linearly
independent over Z and generate a subgroup G containing all [h;;]'s (1=<i<p,
1=<j=gq). Then, we can write each h;; as

hi=cimitis 9oty o ngj (3)

uniquely, where c¢;;€C* and /i, ---, [§; are integers. Moreover, 7y, -+, 7; are
algebraically independent by virtue of Lemma 2.3 We choose integers py, -+, p:
such that, setting
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Lij:=bpr+18pat - +Hiispe,

we have [;;#[;  whenever (I%;, ---, )+, -+, 18,) (cf. [4£], (2.2)). We can
assume that /;;=0 for all 7, j by performing operation (b) suitably. With each

h;; we associate monomial P;;(u)=c;u't/ in one variable u. Then we have
det(Pi;(u); i=1, -, p, j=Jj1, =+, Jp)=0 4)
for all j;, ==+, jp,. In fact, by (2) and (3),
det(cip: i -+ 45 =1, =, p, j=J1, =, jp)=0. ()

Since %, -+, 5 are algebraically independent, (5) remains valid if we substitute
ni=u’t (1=i<p). This gives (4).

We give here a lemma concerning on monomials which will be proved in
§3. We consider pXg¢g matrices (P;(u); 1<i=p, 1=7=<q) with monomials P;;(u)
=c;;u'iJ as entries, where ¢;;€C* and /;; are non-negative integers for various
P, q. By rank(P;;) we mean the rank of the matrix in the field C(x) of rational
functions. :

MAIN LEMMA. For each qo (=1) there exists some constant Q(p, q,) depend-
ing only on p and q, with the following property:

If ¢>Q(p, q0) and rank(P;;(u); 1=i<p, 1=j=q)<p, then there exists an
integer v depending on (P;;) and satisfying 2=<r=p such that, after performing
operation (a) suitably, we have

ln—lir1:liz—liv2:“':liqo—li'qo (6)
for all 1, ¢ with 1=i<i'<r and
rank(P;;(u); 1=i=r, 1S7=5q0)<r. .

Apply Main Lemma to the above-mentioned monomials P;j(u)=c;;u't and
go:=qn-1+1. Set gn:=Q(p, q»). Suppose that ¢>qy. We have then conclu-
sions (6) and (7). This shows that h;; (1=i=<p, 1=7=q,) satisfy the assumption
of So, we have an absurd conclusion ¢, (=¢y-1+1)<gy-,. This
concludes ¢=<¢y and completes the proof of [Theorem 2.1

§3. Proof of Main Lemma.

To prove Main Lemma, we give first

LEMMA 3.1. Assume that P (u)=c;u'teClu] 1=5i<p, 1=7=q) with c;;
eC*, 1;;20 such that

(Cy) rank(P;;; i=1, -+, p, =1, -+, q)<p in the field C(u) of all rational
functions of u,

(Cy) there exist some indices a,, ---, a; with 1=5a,<-<a,=p (let a,=0)
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such that, whenever a,-,<i,=i,=a, 1=Z0=5s),
li2l—li11:li22—li12: b :lizq_lilq ’

(Cy) det(Py;; 1=, j=p—1)%0,

(Cy det(Py;; 1=4, jéal)?_éo;

Then, after a suitable change of indices j=p, p+1, -+, q, there exist some
q: (Zp—1) and g, such that q:+¢.=q, ¢:(p1)*=q—q, and

(a’) I'aIlk(Pij; Z.:al‘{"l, -, b, ]:p, Tty C]1)<]>—(11,

(B laggr1—lapgs1=""=lagtes— lapiartas
for some distinct z, t’.

REMARK. In Lemma 3.1, the case ¢;=p—1 of the conclusion means that
the only case (8) occurs.

Proor oF LEMMA 3.1. For each j,=p, p+1, ---, ¢, we have by condition (C,)

det(P'L'j; Z:L 2: Tty .b; ]:l: 27 Tty ﬁ_ly ].0)—:—0°
For each ¢=1, 2, -+, p set
O (u)y=(—1)¢det(P;;; i=1, -, ¢—1, ¢+1, -, p, j=1, -+, p—1).
Then,
C13o 0D (U)+ o+ +cps,u' P00 (w)=0.
Let
U (w) =30, 5,ut 0D (u)
and ¢,:=%{jo; ¥;,=0}+p—1. We may assume
w‘p(u)zquHl(u)E qul<u>50

by a suitable change of indices j=p, p+1, -+, q.

First we shall show conclusion («). There is nothing to prove for the case
¢.=p—1. Let ¢;=p. Choose indices j;, ***, jp-q, out of 1,2, -+, g,. Our task
is to show

det(Pi;; i=as+1, a1+2, =+, p, j=J1, 5 Jp-a))=0.

We may assume p=;;<:-<Jjp-q,=¢: and, moreover, j1=p, jo=p+1, =+, Jp-q,
=2p—a,—1 after a suitable change of indices. We set

Pikj: e :P:‘L‘ljzo, P§1+1j:Pa1+1j, e, P;fj:ij
for ]:py P+1, Tty 217"“(11“'1. Since

Z?=a1+1czjul‘j@t(u)—:‘0 ’
we see

det(Pilr Tty P‘L'p—l; P’}EJ; Z':ly 2.' Tty :D)EO
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for j=p, p+1, -+, 2p—a,—1. By condition (Cs), “P¥, ---, P%;) can be express-
ed as a linear combination of (P, «+, Ppy), =+, {(Pip-1, ***» Ppp-1) over C(u).
Therefore,

rank(P;y, -+, Pipo1, PFp, =+, Php-ay-1; 1SiSp)<p.
Particularly,
det(Piy, -+, Piay, Plp, ) Plp-ay-1; 1SISD)
=det(Py;; 1=4, j=ay)det(Py;; i=a,+1, -, p, j=p, -, 2p—a,—1)
0.

Il

By condition (C,), we obtain the desired conclusion
det(P;;; i=ay+1, -+, p, j=p, -, 2p—a,—1)=0.
Next let us show conclusion (8). We may assume ¢>¢;. Set

O (wy=":dau"™*du™ - Fd, u" et (e, +1=2cZp),
and

Vi ::lil—lagl (:liz_la,,z: :liq—laaq)

if a,.,+1=i=a, (let a,=0), where d,;, ---, d,;,,€C* and 0=t,=<(p—1)!. Take
arbitrarily a quadruple of indices (7, 7, 71, 72) such that 1=7,Za,, as_+1=0=a,
for some 0=2, and 1=7,=t;, 1=7,<¢;,. Set

Aiigeiry =175 layy—lagi=Viy—Viy+Migey =My o, (1H1=7=¢}.
For each j with ¢,+1=j=g, since
)+ 2P i 49O (0)=0

and ¥;%0, we can find a term of ¥,(u) which has the same degree as a term
of Z,ﬁa]ﬂc,jul”'d)‘(u) has. Therefore, there exist . indices 7y, 75, 71, 7, With
1i=ay, a1 FH1505a, (022), lé‘hétil, 1§’52§ti2 such that

Lijbmi e =li;tme,,
and so
1"1'1+lﬂlf—“n/lil’~'1:")iz_}—lﬂai_*_mizfz :

We have thus

Ailizflfzz {l]1+1, q1+2; ) C]}-

(1,192,771, 72)

Then,

This shows j=A

iyigTyTg"

Set gy:= max #$A; 00,
(11,12,71,72)

Q2(p ‘)22 E #Ailizrlrzgq'—'QI )

(11,792,717, 79)



534 H. FujimMoTo

because there are at most p! possibilities of choices of quadruples (7y, 73, 71, T2).
If we choose indices so that {g;41, -+, ¢1Fgs} = Ay iye;r, fOr some (iy, iy, T3, 72),
we have the desired conclusion. q.e.d.

PROOF OF MAIN LEMMA. We shall prove Main Lemma by induction on ».
In the case p=2, we easily see ly;,—1;,={s;,— 1, for each jj, j» with 1=5,<;j,=¢
by the assumption. For each ¢, (=1), Q(2, ¢go)=¢go—1 has the desired property.
Assume that Main Lemma is true for the case =p—1 and so there exist

Q2, qo), -+, Q(p—1, g,) with the property in the conclusion of Main Lemma.
For any given ¢, (1) we set

¢* :=max(qo, Q2, qo), =+, Q(p—1, q0)).

Moreover, we define g; (1=s=<p) by ¢i=¢* and ¢i :=¢*+p+g¢s-1(p !)* inductively.
We shall prove that Q(p, g,):=q), has the desired property. To this end, we
shall show the following by downward induction on s (p=s=1).

(3.2) Either the conclusion of Main Lemma is valid, or there exist indices

ai, as -, a; with 1<a;< - <a,=p (let a,=0) such that, for each 7;, 7, with
o1 +H1=050,5a, (1£0=5)

Zigl_lillzliZZ_lilzz : ":Zizq’s —lilq's

after performing operation (a) suitably.

In the case s=1, the conclusion of (3.2) means that Main Lemma is true
when we take »=p. Therefore, we can conclude Main Lemma from (3.2).

If s=p, (3.2) is trivial because we can take a,=1, -, a,=p. Suppose that
(3.2) is true for the case =s and particularly the conclusion of (3.2) is valid.
Then, P;; (1=i=p, 1=7=gq;) satisfy conditions (C,) and (C,). Moreover, we may
assume that they satisfy also conditions (C,) and (C,) after a suitable change of
indices. In fact, if (C,) does not hold for any choice of indices, we have

rank(P;;; i=1, 2, -, p—1, j=1,2, -, ¢)<p—1.

Then, monomials P;; (1=:=<p—1, 1<j=q) satisfy the assumption of Main Lemma.
By the induction hypothesis concerning on p for Main Lemma, Main Lemma is
true. Moreover, by the same reason, we may assume that conclusion (C,) is
also satisfied after a suitable change of indices j=1, 2, ---, p—1.

Apply to Py; (1<i<p—1, 1=j=q.). There exists an index g¢;
(=zp—1) such that (@) and (B) hold. If ¢;=p-+¢* then

G—(p—D=q¢—p+1>¢*=Q(p—ai, qo)

and P;; (a,+1=/<p, p=s7=gq,) satisfy the assumption of Main Lemma for the
case p—a, (<p) because of (a). So, the conclusion of Main Lemma is valid.
Assume that ¢;<p-+g¢*. By (B), there exist 7, z/ with z#7" and ¢. with ¢,+¢.
=<g¢: and g.(p!)*=g¢:i—q, such that
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[arql+1_lar’q1+1: :larqlﬂzz—larqﬁqz-

We see here ¢,>¢;i-; because

gPN*>qs—q*—p=qs-1(p1)*.

Then, we obtain easily the conclusion (3.2) for the case s—1 after a suitable
change of indices. This completes the proof of Main Lemma.

§4. Some algebraic lemmas.

For the proof of Main Theorem, we need some preparations.

DEeFINITION 4.1. Let M; and M, be irreducible complex analytic spaces. A
set-valued map f: M,—M, is called to be meromorphic if there is an irreducible
analytic set G’ in M;X M, such that f(x)==,n7%(x) and

(i) = : G'—M, is proper,

) mlzatM¥P): a7 (MF)—>M¥* is a biholomorphic map for an open dense
subset M¥ of M,, where =;: G'—M,; (=1, 2) denote the canonical projections
into M;. The set G’ is called the graph of f.

We have easily

(4.2) Let L be a line bundle over an irreducible compact complex analytic
space M and @i, ¢s, -+, P H(M, O(L)), where m=1 and ¢;, 70 for some i,.
Consider the set G®:=the closure of {(x, (¢1(x):: Gms1(x)); (s(x), ) Pm+1(x))
#(0, -+, 00} in MXP™C). Then, a meromorphic map @ : M—P™(C) whose graph
is G? can be defined uniquely.

We denote the map @ defined as above by (@;:: - : ¢m+y) in the following.

LEMMA 43. Let P(w,, -+, wn+1) be a homogeneous polynomial of degree d
(=1) which is expanded as

P(w)=3311P,(w)
with non-zero monomials P,(w) and define a meromorphic map F=(Py:-: Psyy):
P™(C)—P(C). Assume that
Tfi({(wl: el W) EP™C) 5 Plwy, - ) wm+1):0}):Pm_l(C)

for every i=1, 2, ---, m+1, where =m;: P™(C)—>P™ YC) are meromorphic maps
defined by wi((wy:: Wms)=(W1: "1 Wiy Wisrt ***: Wmsy). LThen, $F ' Fw)sd™
for every point weG :={(Wwy: - : Wnr); WilWs -+ Wt F0}.

ProoOF. The proof is given by induction on m. In the case m=1, we set

Plw;, wo)=awi+awiw,+ - +aqwé (a;€C).

By the assumption, there are at least two indices 7;, 7, (0=7,<i,=d) with a;,#0,
a;,#70. For each c¢=(c,: ¢)€G, take w=(w,: w,)EF'F(c) arbitrarily. Then,
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ai,wiHwi/a,wi rwir=a; cf e/ aqgcf e

and so (wi/w.)2""=(c,/c,)*2"%1, This gives $F'F(¢)<i,—i,=d.
Assume that Lemma 4.3 is true for the case <m—1. We express P(w) as

P(w):AO(wl, Tty wm)wgn+1+A1(wh Ty wm)w?nq-ll-*_”'_*—Ad(wl’ Tty w’rn)r

where A;(w,, -+, wn) are homogeneous polynomials of degree d—: or vanish
identically. We may assume Ag(w,, -+, wn)F0. For, otherwise, we may replace
P(w) by Pw)=Pw)wzl: with wmet P(w) (1>0). Moreover, we see
A (wy, =+, wn)#0 for some 7, with 0=7,=d—1 by the assumption. Consider
a hypersurface V={(w;: " :wn); Asws, -+, wn)=0 in P™YC). For each

point W:=(wy: i Wisy: Wisr: - : Wwn)EP™¥C), there exists a point w*:=
(Wit Wiert Wit Wisrt ot Wwm s 0)EP™(C) such that P(w*)=0 by the assumption.
Since P(w*)=Aq4(w*)=0, we get w*:=(wy: 1 Wi1:Ws: Wiyt :wWn)EV and

#(0*)=®w for the map #;: P" Y{C)—»P™*C) defined by #((w,:-:wn))=
(Wit i Wioyt Wigr: ot Wa). So, T{(V)=P™*¥C). This shows that the homo-
geneous polynomial Ags(w,, -+, wn) in m variables satisfies the assumption of
By the induction hypothesis, if we expand A4 as

Agwy, -y W)= P (wy, -, wa)

with non-zero monomials ﬁ, and define a meromorphic map F :(ﬁlz et ﬁm):
P™Y(C)—PYC), then $F-1F()<d™* for each &=(&,: - : &,) With &, - &, #0.
For a point c=(c;: - :cn+1)EG, take w=(w;: - : wWn+)EF 1F(c) arbitrarily.
Since {131, e, ﬁm} is a subset of {P,, ---, P;+.}, we have

(Byw): -1 Brayw)=Bo): -2 Praslo)).

Set ¢=(¢y, -+, cm) and ﬁ‘lﬁ(f)z {e®, ..., &9} where ¢=¢® and 1=Ze=d™

The point W=(w,: - : wn) coincides with some &®, say #*®, Since F(c)=F(w),
Aser, -+, em)emzit/Agles, -, Cm)
=Ai(wy, -, Wawail/Ag(wy, -, W)
:Aio(cl(“"), ce, cf20Yy A2to/ A (cf00, e clamy,

For each fixed «, there are at most d—7, (<d) complex numbers wn.,’s satis-
fying this condition. Thus, we conclude #F-1F(c)<d™.

LEMMA 44. Let M be an N-dimensional connected compact complex manifold
and L a line bundle over M. Then there exists a positive constant dj depending
only on L satisfying the condition that for any N+2 holomorphic sections ¢, -+,
dn+2:€HU M, O(L)) we can find a homogeneous polynomial of degree at most dj,
such that

P(¢1, ¢2’ Tt ¢N+2):0-
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For the proof, see L. Siegel [11].

LEMMA 4.5. Let L be a line bundle over an N-dimensional connected compact
complex manifold which has at least one system of N-+1 algebraically independent
holomorphic sections. Then, there exists a positive constant kp depending only on
L such that for algebraically independent ¢,, -+, dy+1€H'(M, O(L)) the mero-
morphic map O=(¢;: ¢o: -+ : dn+1): M—PYN(C) satisfies the condition that @ (w)
=ky for every point w in a Zariski open dense subset G of P¥(C).

ProoF. Take a basis {¢i, =+, ¢m+1} of H'M, O(L)) and define a mero-
morphic map T=(¢;: ¢z Pms1): M—P™C). The image ¥(M) is an algebraic
subset of P™(C) and we can find a positive number d, such that $¥ Yw)=d,
for each w in a Zariski open dense subset of ¥(M). Obviously, d, and the
degree d, of ¥'(M) are determined independently of a choice of a basis of
H(M, o(L)). Let ¢i, ---, ¢+ be arbitrary algebraically independent holomorphic
sections of L. We can choose ¢yis, =, @m+1 Such that ¢, -+, dyi1, Pyse,
Pm+1 constitute a basis of H(M, O(L)). Let @=(¢;:: dy+1), B=(d1: " : Pms1)
and #: P™(C)—PY(C) be defined by 7((wi: - : Wms))=(wi: - :wy+i). Since
generic fibers of | @(WM): O(M)—P¥(C) consist of at most d, points, generic
fibers of 7@ : M—P¥(C) consist of at most d,d, points. The number k;:=d,d,
has the desired property.

§5. Proof of Main Theorem.

As in 8§81, let L be a line bundle over an N-dimensional connected compact
complex manifold M, and let D,, ---, Dy., be divisors on M such that D;=(¢:)
for ¢, H'(M, o(L)) and Dy, -+, D;y, Dysy, +, Dy, are algebraically independ-
ent for each :. Moreover, let E,, ---, Ey., be effective divisors on C* and

D1; tty DN+2
g(El: Ty EN+2
is algebraically non-degenerate with respect to L and f*(D;)=E; (1=i=N-+2).
Consider the meromorphic map @=(¢;: - : dy+2): M—=P¥*(C) and set V=0(M),
which is an irreducible algebraic set in PY**(C). We define a map =;: PY+(C)
—PY¥(C) by ml(ws: -t wy))=(Wat -t Wery Wit -t wyse). I m(V)EPN(C),
thete exists a non-zero homogeneous polynomial R such that z(V)S {R=0}.
Then

) the set of all meromorphic maps f of C™ into M such that f

R(@y, ) Pio1, Pizr, =, Pu+2)=0,

which contradicts the assumption. Therefore n(V)=P¥(C) for each /=1, 2, ---,

N+2. Since
N=dim @(M)=dim 7, Q(M)=N,

we have dim V=N. Take an irreducible non-zero homogeneous polynomial P
such that P(¢,, -+, ¢n+2)=0, where d:=deg P is not larger than a constant d,
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depending only on L by Then,
V={(wi: 1wy EPTHC); P(wy: -t wyss)=0}
and P(w) satisfies the assumption of We expand P(w) as
P(w)=2541Ps(w)

with non-zero monomials P, and consider the meromorphic map F=(P;: - : Ps41):
PY¥+(CY—P3(C). By Lemmas and (45 #F'F(w)<d"*! for each point weG
={w,w. - wy+:7#0} and £#P*(w) does not exceed a constant &, depending only
on L for each point w in a Zariski open dense subset of @(M). Consequently,
for the meromorphic map ¥ :=F-@: M—P*C)

U T(w)sk dV sk dit

for each point w in an open dense subset M* of M, where M—M* is the set
of zeros of a holomorphic section of L¢ (d>0). We consider hyperplanes

Hypo={ustust - tus, =0 (=2P7YC)),

Hi={ui=0t NHis (I=i=s+1)
in P¥(C), where (uy: - :us;) are homogeneous coordinates on P*(C). With each
fefr’(gi: :gz:? we associate f:=Fe@f: C*—P*"YC). Then, f is non-

degenerate. For, if there is a hyperplane H={a,u,+ -+ as. 1s+:=0} such that
H+H,,, and f(C*)S H, then

f(Cn)g {a1P1(¢1, ) ¢N+2)+ +as+1Ps+1(¢1; "y ¢N+2>:O}
but a,P,++as:1Ps+17#0. This contradicts the assumption. Let

— lg1 lgn
Po(wy, «y wyss)=Cowi"t - wids?

for =1, 2, -+, s+1. We set

o~

D;i=1;1D,4 -+ +lsn42Dyse

Esi=lgE+ - Floni:Enye.

Since (@y), +*+, (Pn+2) and Py(w), -+, Psiy(w) have no common component respec-
tively, we have (Fe@)*(H,)=D,, f*(ﬁn):Eq and therefore

FHH)=E, (6=1,2, -, s+1).
Set
§:={f; f=F-®-f, feg}.

Since Hi, -+, Hsy, are located in general position, £ is bounded by a constant
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di+N+1
N+1
by a constant ¢, depending only on L. Take a map f,=%. We shall show

#{feg; Vf=¥f =kdf*,

depending only on s. On the other hand, s—l—lé( ) So, #4 is bounded

which gives the desired conclusion because this gives
§F <k d}"q:.

Suppose that there are mutually distinct ¢:=k;d{*'+1 meromorphic maps
i, -+, f7€9 such that Tofi=T-f, Set G*:={z=C™"; fi(z)eM* for all i and
fU2)#f(z) it 1=i<j=<q}. By the assumption of non-degeneracy of f? G* is
an open dense subset of C™. For a point z,&G*, we have w,=f,(z,)eM* and

{f*(z0), ++, fUa} ST T (w0),

whence ¥ ¥ (w,)=q. This is a contradiction. Thus, the proof of Main Theo-
rem is completed.
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