On meromorphic maps into a compact complex manifold

By Hirotaka FUJIMOTO

(Received Feb. 10, 1981)

§ 1. Introduction.

In [8], the author has shown that, for any given hyperplanes H_1, \dots, H_{N+2} in $P^N(C)$ located in general position and effective divisors E_1, \dots, E_{N+2} on C^n , the set $\mathcal{F}:=\mathcal{F}{H_1,\dots,H_{N+2}\choose E_1,\dots,E_{N+2}}$ of all non-degenerate meromorphic maps of C^n into $P^N(C)$ such that the pull-backs $f^*(H_i)$ $(1 \le i \le N+2)$ of divisors H_i are equal to E_i respectively is finite. The purpose of this paper is partly to prove that the number of maps in the above set \mathcal{F} is bounded by a constant depending only on N and mainly to generalize this result to the case of meromorphic maps into a compact complex manifold.

Let M be an N-dimensional connected compact complex manifold and L be a line bundle over M. We denote by $H^0(M, \mathcal{O}(L))$ the set of all holomorphic sections of L and by (ϕ) the divisor of zeros of a non-zero section $\phi \in H^0(M, \mathcal{O}(L))$. Set

$$|L| = \{(\phi); \phi \in H^0(M, \mathcal{O}(L)), \phi \not\equiv 0\}.$$

DEFINITION 1.1. Let $D_1, \dots, D_m \in |L|$ such that $D_i = (\phi_i)$ $(1 \le i \le m)$ for $\phi_i \in H^0(M, \mathcal{O}(L))$. We define ϕ_1, \dots, ϕ_m (or D_1, \dots, D_m) to be algebraically independent if there exists no non-zero homogeneous polynomial $P(w_1, \dots, w_m)$ satisfying the relation

$$P(\phi_1, \cdots, \phi_m) \equiv 0$$

in $H^0(M, \mathcal{O}(L^d))$, where $d = \deg P$.

DEFINITION 1.2. A meromorphic map $f: \mathbb{C}^n \to M$ is said to be algebraically non-degenerate with respect to L if there exists no non-zero holomorphic section $\phi \in H^0(M, \mathcal{O}(L^d))$ (d>0) such that $f(\mathbb{C}^n) \subseteq \{\phi=0\}$.

Take N+2 divisors $D_1, \dots, D_{N+2} \in |L|$ and effective divisors E_1, \dots, E_{N+2} on C^n . Let $\mathcal{F}\binom{D_1, \dots, D_{N+2}}{E_1, \dots, E_{N+2}}$ denote the set of all meromorphic maps of C^n into M which are algebraically non-degenerate with respect to L such that the

This research was partially supported by Grant-in-Aids for Scientific Research (No. 564049 and No. 546004), Ministry of Education.

pull-backs $f^*(D_i)$ $(1 \le i \le N+2)$ are equal to E_i respectively. The main result is stated as follows.

MAIN THEOREM. In the above situation, if $D_1, \dots, D_{i-1}, D_{i+1}, \dots, D_{N+2}$ are algebraically independent for every $i=1, 2, \dots, N+2$ and have no common component, then the number of maps in $\mathfrak{F}\begin{pmatrix} D_1, \dots, D_{N+2} \\ E_1, \dots, E_{N+2} \end{pmatrix}$ is bounded by a constant depending only on L.

Needless to say, in the case of the hyperplane bundle over $P^N(C)$, N+2 hyperplanes in $P^N(C)$ located in general position satisfy the assumption of Main Theorem. The following proposition given by Aihara-Mori provides other examples satisfying the assumption of Main Theorem.

PROPOSITION ([1], Lemma 1). Let L be a very ample line bundle over an N-dimensional smooth projective algebraic variety M. If $D_1, \dots, D_{N+1} \in |L|$ satisfy the condition

Supp
$$D_1 \cap \text{Supp } D_2 \cap \cdots \cap \text{Supp } D_{N+1} = \emptyset$$
,

then D_1 , \cdots , D_{N+1} are algebraically independent.

COROLLARY. Let L be a positive line bundle over an N-dimensional smooth projective algebraic variety M, let $D_1, \dots, D_{N+2} \in |L|$ and let E_1, \dots, E_{N+2} be effective divisors on \mathbb{C}^n . If

$$\operatorname{Supp} D_{i} \cap \cdots \cap \operatorname{Supp} D_{i-1} \cap \operatorname{Supp} D_{i+1} \cap \cdots \cap \operatorname{Supp} D_{N+2} = \emptyset$$

for every $i=1, 2, \dots, N+2$, then the number of algebraically non-degenerate meromorphic maps $f: \mathbb{C}^n \to M$ with $f^*(D_i) = E_i$ $(1 \le i \le N+2)$ is bounded by a constant depending only on L.

This is the case where Aihara-Mori gave some degeneracy theorems in [1]. Corollary is an immediate consequence of Main Theorem and Proposition. Because, L^{l} is very ample for some positive integer l. On the other hand,

$$\#\mathcal{F}\begin{pmatrix}D_1, \cdots, D_{N+2} \\ E_1, \cdots, E_{N+2}\end{pmatrix} \leq \#\mathcal{F}\begin{pmatrix}lD_1, \cdots, lD_{N+2} \\ lE_1, \cdots, lE_{N+2}\end{pmatrix}$$

and the right hand side is bounded by a constant depending only on L, where $\sharp A$ denotes the number of elements of a set A.

We prove Main Theorem first in the case where L is the hyperplane bundle over $P^N(C)$ in § 2. For the proof, we need a lemma concerning on monomials, which is proved in § 3. After giving some algebraic lemmas, we complete the proof of Main Theorem in § 5.

§ 2. The case of meromorphic maps into $P^N(C)$.

First, we consider Main Theorem for the case where $M=P^N(C)$ and L is the hyperplane bundle over $P^N(C)$.

Let H_1, \dots, H_{N+2} be hyperplanes in $P^N(C)$ located in general position which may be regarded as divisors on $P^N(C)$. For any effective divisors E_1, \dots, E_{N+2} on C^n we consider the set $\mathcal{F}:=\mathcal{F}{H_1, \dots, H_{N+2} \choose E_1, \dots, E_{N+2}}$ of all meromorphic maps f of C^n into $P^N(C)$ which are non-degenerate, namely $f(C^n) \not \equiv H$ for any hyperplane H in $P^N(C)$, and satisfy the condition $f^*(H_i)=E_i$ $(1 \leq i \leq N+2)$. We shall prove the following theorem.

Theorem 2.1. The number of maps in $\mathfrak F$ is bounded by a constant depending only on N.

To prove this, we assume \mathcal{G} contains mutually distinct maps f^1, f^2, \dots, f^q . Our task is to seek a number q_N with $q \leq q_N$ depending only on N. This is given by the induction on N. For the case N=1, we can take $q_1=2$ as was shown by H. Cartan and R. Nevanlinna (cf., [3], [10], [7], p. 79). We assume Theorem 2.1 is true and choose numbers q_1, \dots, q_{N-1} with the above property for each case N is replaced by $1, 2, \dots, N-1$ respectively.

For convenience' sake, we identify $P^{N}(C)$ with the subspace

$$\{w_1+w_2+\cdots+w_{N+2}=0\}$$

in $P^{N+1}(C)$, where $(w_1: w_2: \dots : w_{N+2})$ are homogeneous coordinates on $P^{N+1}(C)$. We may assume here

$$H_i = \{w_i = 0\} \cap P^N(C)$$
 $(1 \le i \le N+2).$

Using these coordinates, we express each f^{j} as

$$f^{j} = (f_{1}^{j} : f_{2}^{j} : \dots : f_{N+2}^{j}) \qquad (1 \le j \le q)$$

with holomorphic functions f_i^j on C^n , where each expression may be assumed to be reduced, namely

$$\operatorname{codim} \{f_1^j = f_2^j = \cdots = f_{N+2}^j = 0\} \ge 2$$
.

Take holomorphic functions k_i on \mathbb{C}^n such that $(k_i)=E_i$ $(1\leq i\leq N+2)$. Let \mathbb{H}^* denote the set of all nowhere zero holomorphic functions on \mathbb{C}^n . By the assumption $f^*(H_i)=E_i$, we see

$$h_{ij} := f_i^j / k_i \in \mathbf{H}^* \tag{1}$$

and they satisfy the condition

$$h_{1i}k_1 + h_{2i}k_2 + \cdots + h_{N+2i}k_{N+2} \equiv 0$$

for every $j=1, 2, \dots, q$. It then follows that

$$\det(h_{ij}; 1 \leq i, l \leq p) \equiv 0 \tag{2}$$

for every j_1, j_2, \dots, j_p with $1 \le j_1, \dots, j_p \le q$, where p = N + 2.

In this situation, there is no loss of generality in performing the following operations;

- (a) changing the order of the indices $i=1, 2, \dots, p$ or $j=1, 2, \dots, q$,
- (b) multiplying a row or column of the matrix $(h_{ij}; 1 \le i \le p, 1 \le j \le q)$ by a common element in H^* ,

because we can replace f_i^j by $h^j f_i^j$ and k_i by $h_i k_i$ for suitable h^j , $h_i \in H^*$.

LEMMA 2.2. Let h_{ij} $(1 \le i \le p := N+2, 1 \le j \le q)$ be functions given by (1). For some r with $2 \le r \le p$, if $e_{ij} := h_{ij} \equiv const.$ for $i=1, 2, \dots, r$, $j=1, 2, \dots, q$ and

$$rank(e_{ij}; i=1, 2, \dots, r, j=1, 2, \dots, q) < r$$

then $q \leq q_{N-1}$.

PROOF. By the assumption, changing indices if necessary, we can choose $\lambda_2, \dots, \lambda_r \in C$ such that

$$e_{1j} = \sum_{i=2}^{r} \lambda_i e_{ij}$$
 (j=1, 2, ..., q).

Setting $\tilde{k}_i := k_i + \lambda_i k_1$ for $i = 2, \dots, r$ and $\tilde{k}_i := k_i$ for $i = 1, r+1, \dots, p$, we define meromorphic maps

$$\tilde{f}^{j} = (e_{2j}\tilde{k}_{2}: \dots : e_{rj}\tilde{k}_{r}: h_{r+1j}\tilde{k}_{r+1}: \dots : h_{pj}\tilde{k}_{p})$$

of C^n into $P^{N-1}(C) = \{(w_2 : \dots : w_{N+2}) \in P^N(C); w_2 + \dots + w_{N+2} = 0\}$. Obviously, $\tilde{f}^{j_1} \not\equiv \tilde{f}^{j_2}$ for any mutually distinct j_1 , j_2 . We have $q \leq q_{N-1}$ by the induction hypothesis.

For our purpose, we need the following generalization of a classical theorem of E. Borel.

LEMMA 2.3. Let $h_1, \dots, h_t \in \mathbf{H}^*$ satisfy the condition that $h_1^{l_1} h_2^{l_2} \dots h_t^{l_t} \in \mathbf{C}^* := \mathbf{C} - \{0\}$ for any $(l_1, \dots, l_t) \in \mathbf{Z}^t - \{0\}$. Then h_1, \dots, h_t are algebraically independent, namely

$$P(h_1, \dots, h_t) \not\equiv 0$$

for any non-zero polynomial $P(w_1, \dots, w_t)$.

For the proof, see [4], Proposition 4.5.

We may regard C^* as a subgroup of a multiplicative group H^* . Let us consider the factor group $G=H^*/C^*$. For $h\in H^*$ we denote the class containing h by [h]. Take $\eta_1, \dots, \eta_t \in H^*$ such that $[\eta_1], \dots, [\eta_t]$ are linearly independent over Z and generate a subgroup G containing all $[h_{ij}]$'s $(1 \le i \le p, 1 \le j \le q)$. Then, we can write each h_{ij} as

$$h_{ij} = c_{ij} \eta_1^{l_{ij}^1} \eta_2^{l_{ij}^2} \cdots \eta_t^{l_{ij}^t}$$
(3)

uniquely, where $c_{ij} \in C^*$ and $l_{ij}^1, \dots, l_{ij}^t$ are integers. Moreover, η_1, \dots, η_t are algebraically independent by virtue of Lemma 2.3. We choose integers p_1, \dots, p_t such that, setting

$$l_{ij} := l_{ij}^1 p_1 + l_{ij}^2 p_2 + \cdots + l_{ij}^t p_t$$
,

we have $l_{ij} \neq l_{i'j'}$ whenever $(l_{ij}^1, \dots, l_{ij}^t) \neq (l_{i'j'}^1, \dots, l_{i'j'}^t)$ (cf. [4], (2.2)). We can assume that $l_{ij} \geq 0$ for all i, j by performing operation (b) suitably. With each h_{ij} we associate monomial $P_{ij}(u) = c_{ij}u^{l_{ij}}$ in one variable u. Then we have

$$\det(P_{ij}(u); i=1, \dots, p, j=j_1, \dots, j_p) \equiv 0$$
(4)

for all j_1, \dots, j_p . In fact, by (2) and (3),

$$\det(c_{ij}\eta_1^{l_{ij}^1} \cdots \eta_t^{l_{ij}^t}; i=1, \cdots, p, j=j_1, \cdots, j_p) \equiv 0.$$
 (5)

Since η_1, \dots, η_t are algebraically independent, (5) remains valid if we substitute $\eta_i = u^{p_i}$ $(1 \le i \le p)$. This gives (4).

We give here a lemma concerning on monomials which will be proved in §3. We consider $p \times q$ matrices $(P_{ij}(u); 1 \le i \le p, 1 \le j \le q)$ with monomials $P_{ij}(u) = c_{ij}u^{l_{ij}}$ as entries, where $c_{ij} \in C^*$ and l_{ij} are non-negative integers for various p, q. By $\operatorname{rank}(P_{ij})$ we mean the rank of the matrix in the field C(u) of rational functions.

MAIN LEMMA. For each $q_0 \ (\geq 1)$ there exists some constant $Q(p, q_0)$ depending only on p and q_0 with the following property:

If $q > Q(p, q_0)$ and $\operatorname{rank}(P_{ij}(u); 1 \le i \le p, 1 \le j \le q) < p$, then there exists an integer r depending on (P_{ij}) and satisfying $2 \le r \le p$ such that, after performing operation (a) suitably, we have

$$l_{i1} - l_{i'1} = l_{i2} - l_{i'2} = \dots = l_{iq_0} - l_{i'q_0} \tag{6}$$

for all i, i' with $1 \le i \le i' \le r$ and

$$\operatorname{rank}(P_{ij}(u); \ 1 \leq i \leq r, \ 1 \leq j \leq q_0) < r. \tag{7}$$

Apply Main Lemma to the above-mentioned monomials $P_{ij}(u)=c_{ij}u^{l_{ij}}$ and $q_0:=q_{N-1}+1$. Set $q_N:=Q(p,q_0)$. Suppose that $q>q_N$. We have then conclusions (6) and (7). This shows that h_{ij} $(1\leq i\leq p,1\leq j\leq q_0)$ satisfy the assumption of Lemma 2.2. So, we have an absurd conclusion q_0 $(=q_{N-1}+1)\leq q_{N-1}$. This concludes $q\leq q_N$ and completes the proof of Theorem 2.1.

§3. Proof of Main Lemma.

To prove Main Lemma, we give first

LEMMA 3.1. Assume that $P_{ij}(u) = c_{ij}u^{lij} \in C[u]$ $(1 \le i \le p, 1 \le j \le q)$ with $c_{ij} \in C^*$, $l_{ij} \ge 0$ such that

- (C₁) rank(P_{ij} ; $i=1, \dots, p, j=1, \dots, q$) < p in the field C(u) of all rational functions of u,
 - (C₂) there exist some indices a_1, \dots, a_s with $1 \le a_1 < \dots < a_s = p$ (let $a_0 = 0$)

such that, whenever $a_{\sigma-1} < i_1 \le i_2 \le a_{\sigma}$ $(1 \le \sigma \le s)$,

$$l_{i_21}-l_{i_11}=l_{i_22}-l_{i_12}=\cdots=l_{i_2q}-l_{i_1q}$$
 ,

- (C₃) $\det(P_{ij}; 1 \le i, j \le p-1) \not\equiv 0$,
- (C_4) $\det(P_{ij}; 1 \leq i, j \leq a_1) \not\equiv 0.$

Then, after a suitable change of indices j=p, p+1, \cdots , q, there exist some $q_1 (\geq p-1)$ and q_2 such that $q_1+q_2 \leq q$, $q_2(p!)^2 \geq q-q_1$ and

- (α) rank(P_{ij} ; $i=a_1+1, \dots, p, j=p, \dots, q_1$)< $p-a_1$,
- $(\beta) \quad l_{a_{\tau}q_{1}+1} l_{a_{\tau},q_{1}+1} = \dots = l_{a_{\tau}q_{1}+q_{2}} l_{a_{\tau},q_{1}+q_{2}}$

for some distinct τ , τ' .

REMARK. In Lemma 3.1, the case $q_1 = p-1$ of the conclusion means that the only case (β) occurs.

PROOF OF LEMMA 3.1. For each $j_0 = p$, p+1, ..., q, we have by condition (C_1)

$$\det(P_{ij}; i=1, 2, \dots, p, j=1, 2, \dots, p-1, j_0) \equiv 0.$$

For each $\ell=1, 2, \dots, p$ set

$$\Phi_{\iota}(u) = (-1)^{\iota-1} \det(P_{ij}; i=1, \dots, \iota-1, \iota+1, \dots, p, j=1, \dots, p-1)$$
.

Then,

$$c_{1j_0}u^{l_{1j_0}}\Phi_1(u)+\cdots+c_{pj_0}u^{l_{pj_0}}\Phi_p(u)\equiv 0.$$

Let

$$\Psi_{j_0}(u) := \sum_{\iota=1}^{a_1} c_{\iota j_0} u^{\iota_{\iota j_0}} \Phi_{\iota}(u)$$

and $q_1 := \#\{j_0; \Psi_{j_0} \equiv 0\} + p - 1$. We may assume

$$\Psi_p(u) \equiv \Psi_{p+1}(u) \equiv \cdots \equiv \Psi_{q_1}(u) \equiv 0$$

by a suitable change of indices $j=p, p+1, \dots, q$.

First we shall show conclusion (α) . There is nothing to prove for the case $q_1=p-1$. Let $q_1 \ge p$. Choose indices j_1, \dots, j_{p-a_1} out of 1, 2, \dots, q_1 . Our task is to show

$$\det(P_{ij}; i=a_1+1, a_1+2, \dots, p, j=j_1, \dots, j_{p-a_1}) \equiv 0.$$

We may assume $p \le j_1 < \dots < j_{p-a_1} \le q_1$ and, moreover, $j_1 = p$, $j_2 = p+1$, \dots , $j_{p-a_1} = 2p - a_1 - 1$ after a suitable change of indices. We set

$$P_{1j}^* = \cdots = P_{a_1j}^* = 0$$
, $P_{a_1+1j}^* = P_{a_1+1j}$, \cdots , $P_{pj}^* = P_{pj}$

for $j=p, p+1, \dots, 2p-a_1-1$. Since

$$\sum_{\iota=a_1+1}^p c_{\iota j} u^{\iota \iota j} \Phi_{\iota}(u) \equiv 0$$
 ,

we see

$$\det(P_{i_1}, \dots, P_{i_{n-1}}, P_{i_i}^*; i=1, 2, \dots, b) \equiv 0$$

for $j=p,\ p+1,\ \cdots$, $2p-a_1-1$. By condition (C_3) , ${}^t(P_{1j}^*,\ \cdots,\ P_{pj}^*)$ can be expressed as a linear combination of ${}^t(P_{11},\ \cdots,\ P_{p1}),\ \cdots,\ {}^t(P_{1p-1},\ \cdots,\ P_{pp-1})$ over C(u). Therefore,

$$rank(P_{i1}, \dots, P_{ip-1}, P_{ip}^*, \dots, P_{ip-q-1}^*; 1 \leq i \leq p) < p.$$

Particularly,

$$\begin{aligned} \det(P_{i1}, \, \cdots, \, P_{ia_1}, \, P_{ip}^*, \, \cdots, \, P_{i2p-a_1-1}^*; \, \, 1 &\leq i \leq p) \\ &= \det(P_{ij}; \, \, 1 \leq i, \, \, j \leq a_1) \det(P_{ij}; \, \, i = a_1 + 1, \, \cdots, \, \, p, \, \, j = p, \, \cdots, \, 2p - a_1 - 1) \\ &\equiv 0 \, . \end{aligned}$$

By condition (C_4) , we obtain the desired conclusion

$$\det(P_{ij}; i=a_1+1, \dots, p, j=p, \dots, 2p-a_1-1)\equiv 0.$$

Next let us show conclusion (β) . We may assume $q > q_1$. Set

$$\Phi_{\iota}(u) = : d_{\iota_1} u^{m_{\iota_1}} + d_{\iota_2} u^{m_{\iota_2}} + \dots + d_{\iota_t} u^{m_{\iota_t}} \quad (a_1 + 1 \leq \iota \leq p),$$

and

$$\nu_i := l_{i1} - l_{a_{\sigma}1} \ (= l_{i2} - l_{a_{\sigma}2} = \cdots = l_{iq} - l_{a_{\sigma}q})$$

if $a_{\sigma-1}+1\leq i\leq a_{\sigma}$ (let $a_0=0$), where $d_{\iota 1}, \dots, d_{\iota t_{\iota}}\in C^*$ and $0\leq t_{\iota}\leq (p-1)!$. Take arbitrarily a quadruple of indices $(i_1, i_2, \tau_1, \tau_2)$ such that $1\leq i_1\leq a_1, a_{\sigma-1}+1\leq i_2\leq a_{\sigma}$ for some $\sigma\geq 2$, and $1\leq \tau_1\leq t_i$, $1\leq \tau_2\leq t_i$. Set

$$A_{i_1i_2\tau_1\tau_2}\!:=\!\{j\;;\;l_{a_1j}-l_{a_\sigma j}\!\!=\!\!\nu_{i_2}-\nu_{i_1}+m_{i_2\tau_2}-m_{i_1\tau_1},\;q_1+1\!\!\leq\!\! j\!\!\leq\!\! q\}\;\!.$$

For each j with $q_1+1 \le j \le q$, since

$$\Psi_j(u) + \sum_{\iota=a_1+1}^p c_{\iota j} u^{\iota_{\iota j}} \Phi_{\iota}(u) \equiv 0$$

and $\Psi_j \not\equiv 0$, we can find a term of $\Psi_j(u)$ which has the same degree as a term of $\sum_{\ell=a_1+1}^p c_{\ell j} u^{l_{\ell j}} \Phi_{\ell}(u)$ has. Therefore, there exist indices i_1, i_2, τ_1, τ_2 with $1 \leq i_1 \leq a_1, a_{\sigma-1} + 1 \leq i_2 \leq a_{\sigma}$ ($\sigma \geq 2$), $1 \leq \tau_1 \leq t_{i_1}$, $1 \leq \tau_2 \leq t_{i_2}$ such that

$$l_{i,j}+m_{i,\tau_1}=l_{i,j}+m_{i,\tau_2}$$

and so

$$v_{i_1}+l_{a_1j}+m_{i_1\tau_1}=v_{i_2}+l_{a_\sigma j}+m_{i_2\tau_2}$$
.

This shows $j \in A_{i_1 i_2 \tau_1 \tau_2}$. We have thus

$$\bigcup_{(i_1, i_2, \tau_1, \tau_2)} A_{i_1 i_2 \tau_1 \tau_2} = \{q_1 + 1, q_1 + 2, \dots, q\}.$$

Set $q_2 := \max_{(i_1, i_2, \tau_1, \tau_2)} \# A_{i_1 i_2 \tau_1 \tau_2}$. Then,

$$q_2(p!)^2 \ge \sum_{(i_1, i_2, \tau_1, \tau_2)} \#A_{i_1 i_2 \tau_1 \tau_2} \ge q - q_1$$

because there are at most p! possibilities of choices of quadruples $(i_1, i_2, \tau_1, \tau_2)$. If we choose indices so that $\{q_1+1, \cdots, q_1+q_2\} = A_{i_1i_2\tau_1\tau_2}$ for some $(i_1, i_2, \tau_1, \tau_2)$, we have the desired conclusion.

PROOF OF MAIN LEMMA. We shall prove Main Lemma by induction on p. In the case p=2, we easily see $l_{2j_1}-l_{1j_1}=l_{2j_2}-l_{1j_2}$ for each j_1 , j_2 with $1\leq j_1< j_2\leq q$ by the assumption. For each q_0 (≥ 1), $Q(2, q_0)=q_0-1$ has the desired property. Assume that Main Lemma is true for the case $\leq p-1$ and so there exist $Q(2, q_0), \dots, Q(p-1, q_0)$ with the property in the conclusion of Main Lemma. For any given q_0 (≥ 1) we set

$$q^* := \max(q_0, Q(2, q_0), \dots, Q(p-1, q_0))$$
.

Moreover, we define q'_s $(1 \le s \le p)$ by $q'_1 = q^*$ and $q'_s := q^* + p + q'_{s-1}(p!)^2$ inductively. We shall prove that $Q(p, q_0) := q'_p$ has the desired property. To this end, we shall show the following by downward induction on s $(p \ge s \ge 1)$.

(3.2) Either the conclusion of Main Lemma is valid, or there exist indices a_1, a_2, \dots, a_s with $1 \le a_1 < \dots < a_s = p$ (let $a_0 = 0$) such that, for each i_1, i_2 with $a_{\sigma-1} + 1 \le i_1 \le i_2 \le a_{\sigma}$ ($1 \le \sigma \le s$)

$$l_{i_21}-l_{i_11}=l_{i_22}-l_{i_12}=\cdots=l_{i_2q'_8}-l_{i_1q'_8}$$

after performing operation (a) suitably.

In the case s=1, the conclusion of (3.2) means that Main Lemma is true when we take r=p. Therefore, we can conclude Main Lemma from (3.2).

If s=p, (3.2) is trivial because we can take $a_1=1, \dots, a_p=p$. Suppose that (3.2) is true for the case $\geq s$ and particularly the conclusion of (3.2) is valid. Then, P_{ij} ($1 \leq i \leq p$, $1 \leq j \leq q'_s$) satisfy conditions (C_1) and (C_2). Moreover, we may assume that they satisfy also conditions (C_3) and (C_4) after a suitable change of indices. In fact, if (C_3) does not hold for any choice of indices, we have

$$rank(P_{ij}; i=1, 2, \dots, p-1, j=1, 2, \dots, q) < p-1.$$

Then, monomials P_{ij} $(1 \le i \le p-1, 1 \le j \le q)$ satisfy the assumption of Main Lemma. By the induction hypothesis concerning on p for Main Lemma, Main Lemma is true. Moreover, by the same reason, we may assume that conclusion (C_4) is also satisfied after a suitable change of indices $j=1, 2, \dots, p-1$.

Apply Lemma 3.1 to P_{ij} $(1 \le i \le p-1, 1 \le j \le q'_s)$. There exists an index q_1 $(\ge p-1)$ such that (α) and (β) hold. If $q_1 \ge p+q^*$, then

$$q_1 - (p-1) = q_1 - p + 1 > q^* \ge Q(p - a_1, q_0)$$

and P_{ij} $(a_1+1 \le i \le p, \ p \le j \le q_1)$ satisfy the assumption of Main Lemma for the case $p-a_1$ (< p) because of (α) . So, the conclusion of Main Lemma is valid. Assume that $q_1 < p+q^*$. By (β) , there exist τ , τ' with $\tau \ne \tau'$ and q_2 with $q_1+q_2 \le q_s'$ and $q_2(p!)^2 \ge q_s' - q_1$ such that

$$l_{a_{\tau}q_{1}+1} - l_{a_{\tau'}q_{1}+1} = \cdots = l_{a_{\tau}q_{1}+q_{2}} - l_{a_{\tau'}q_{1}+q_{2}} \,.$$

We see here $q_2 > q'_{s-1}$ because

$$q_2(p!)^2 > q_s' - q^* - p = q_{s-1}'(p!)^2$$
.

Then, we obtain easily the conclusion (3.2) for the case s-1 after a suitable change of indices. This completes the proof of Main Lemma.

§ 4. Some algebraic lemmas.

For the proof of Main Theorem, we need some preparations.

DEFINITION 4.1. Let M_1 and M_2 be irreducible complex analytic spaces. A set-valued map $f: M_1 \rightarrow M_2$ is called to be meromorphic if there is an irreducible analytic set G^f in $M_1 \times M_2$ such that $f(x) = \pi_2 \pi_1^{-1}(x)$ and

- (i) $\pi_1: G^f \rightarrow M_1$ is proper,
- (ii) $\pi_1 | \pi_1^{-1}(M_1^*) : \pi_1^{-1}(M_1^*) \to M_1^*$ is a biholomorphic map for an open dense subset M_1^* of M_1 , where $\pi_i : G^f \to M_i$ (i=1, 2) denote the canonical projections into M_i . The set G^f is called the graph of f.

We have easily

(4.2) Let L be a line bundle over an irreducible compact complex analytic space M and $\phi_1, \phi_2, \cdots, \phi_{m+1} \in H^0(M, \mathcal{O}(L))$, where $m \ge 1$ and $\phi_{i_0} \not\equiv 0$ for some i_0 . Consider the set $G^{\emptyset} :=$ the closure of $\{(x, (\phi_1(x):\cdots:\phi_{m+1}(x))); (\phi_1(x), \cdots, \phi_{m+1}(x)) \neq (0, \cdots, 0)\}$ in $M \times P^m(C)$. Then, a meromorphic map $\Phi: M \to P^m(C)$ whose graph is G^{\emptyset} can be defined uniquely.

We denote the map Φ defined as above by $(\phi_1: \dots : \phi_{m+1})$ in the following. LEMMA 4.3. Let $P(w_1, \dots, w_{m+1})$ be a homogeneous polynomial of degree $d \geq 1$ which is expanded as

$$P(w) = \sum_{\sigma=1}^{s+1} P_{\sigma}(w)$$

with non-zero monomials $P_{\sigma}(w)$ and define a meromorphic map $F = (P_1 : \cdots : P_{s+1}) : P^m(C) \rightarrow P^s(C)$. Assume that

$$\pi_i(\{(w_1:\cdots:w_{m+1})\in P^m(C); P(w_1,\cdots,w_{m+1})=0\})=P^{m-1}(C)$$

for every $i=1, 2, \dots, m+1$, where $\pi_i: P^m(C) \to P^{m-1}(C)$ are meromorphic maps defined by $\pi_i((w_1: \dots : w_{m+1})) = (w_1: \dots : w_{i-1}: w_{i+1}: \dots : w_{m+1})$. Then, $\sharp F^{-1}F(w) \leq d^m$ for every point $w \in G := \{(w_1: \dots : w_{m+1}) : w_1w_2 \cdots w_{m+1} \neq 0\}$.

PROOF. The proof is given by induction on m. In the case m=1, we set

$$P(w_1, w_2) = a_0 w_1^d + a_1 w_2^{d-1} w_2 + \cdots + a_d w_2^d \quad (a_i \in \mathbb{C}).$$

By the assumption, there are at least two indices i_1 , i_2 $(0 \le i_1 < i_2 \le d)$ with $a_{i_1} \ne 0$, $a_{i_2} \ne 0$. For each $c = (c_1 : c_2) \in G$, take $w = (w_1 : w_2) \in F^{-1}F(c)$ arbitrarily. Then,

$$a_{i_1}w_1^{d-i_1}w_2^{i_1}/a_{i_2}w_1^{d-i_2}w_2^{i_2} = a_{i_1}c_1^{d-i_1}c_2^{i_1}/a_{i_2}c_1^{d-i_2}c_2^{i_2}$$

and so $(w_1/w_2)^{i_2-i_1} = (c_1/c_2)^{i_2-i_1}$. This gives $\#F^{-1}F(c) \le i_2-i_1 \le d$.

Assume that Lemma 4.3 is true for the case $\leq m-1$. We express P(w) as

$$P(w) = A_0(w_1, \dots, w_m)w_{m+1}^d + A_1(w_1, \dots, w_m)w_{m+1}^{d-1} + \dots + A_d(w_1, \dots, w_m),$$

where $A_i(w_1,\cdots,w_m)$ are homogeneous polynomials of degree d-i or vanish identically. We may assume $A_d(w_1,\cdots,w_m)\not\equiv 0$. For, otherwise, we may replace P(w) by $\widetilde{P}(w)=P(w)w_{m+1}^{-l}$ with $w_{m+1}\not\upharpoonright\widetilde{P}(w)$ (l>0). Moreover, we see $A_{i_0}(w_1,\cdots,w_m)\not\equiv 0$ for some i_0 with $0\leq i_0\leq d-1$ by the assumption. Consider a hypersurface $V=\{(w_1:\cdots:w_m);\ A_d(w_1,\cdots,w_m)=0\}$ in $P^{m-1}(C)$. For each point $\widetilde{w}:=(w_1:\cdots:w_{i-1}:w_{i+1}:\cdots:w_m)\in P^{m-2}(C)$, there exists a point $w^*:=(w_1:\cdots:w_{i-1}:w_i:w_{i+1}:\cdots:w_m:0)\in P^m(C)$ such that $P(w^*)=0$ by the assumption. Since $P(w^*)=A_d(w^*)=0$, we get $\widetilde{w}^*:=(w_1:\cdots:w_{i-1}:w_i:w_{i+1}:\cdots:w_m)\in V$ and $\widetilde{\pi}_i(\widetilde{w}^*)=\widetilde{w}$ for the map $\widetilde{\pi}_i:P^{m-1}(C)\to P^{m-2}(C)$ defined by $\widetilde{\pi}_i((w_1:\cdots:w_m))=(w_1:\cdots:w_{i-1}:w_{i+1}:\cdots:w_m)$. So, $\widetilde{\pi}_i(V)=P^{m-2}(C)$. This shows that the homogeneous polynomial $A_d(w_1,\cdots,w_m)$ in m variables satisfies the assumption of Lemma 4.3. By the induction hypothesis, if we expand A_d as

$$A_d(w_1, \dots, w_m) = \sum_{\tau=1}^{t+1} \tilde{P}_{\tau}(w_1, \dots, w_m)$$

with non-zero monomials \widetilde{P}_{τ} and define a meromorphic map $\widetilde{F} = (\widetilde{P}_1 : \cdots : \widetilde{P}_{t+1}) : P^{m-1}(C) \to P^t(C)$, then $\#\widetilde{F}^{-1}\widetilde{F}(\widetilde{c}) \leq d^{m-1}$ for each $\widetilde{c} = (\widetilde{c}_1 : \cdots : \widetilde{c}_m)$ with $\widetilde{c}_1\widetilde{c}_2 \cdots \widetilde{c}_m \neq 0$. For a point $c = (c_1 : \cdots : c_{m+1}) \in G$, take $w = (w_1 : \cdots : w_{m+1}) \in F^{-1}F(c)$ arbitrarily. Since $\{\widetilde{P}_1, \cdots, \widetilde{P}_{t+1}\}$ is a subset of $\{P_1, \cdots, P_{s+1}\}$, we have

$$(\widetilde{P}_1(w):\cdots:\widetilde{P}_{t+1}(w))=(\widetilde{P}_1(c):\cdots:\widetilde{P}_{t+1}(c)).$$

Set $\tilde{c}=(c_1, \dots, c_m)$ and $\tilde{F}^{-1}\tilde{F}(\tilde{c})=\{\tilde{c}^{(1)}, \dots, \tilde{c}^{(a)}\}$, where $\tilde{c}=\tilde{c}^{(1)}$ and $1 \leq a \leq d^{m-1}$. The point $\tilde{w}=(w_1:\dots:w_m)$ coincides with some $\tilde{c}^{(a)}$, say $\tilde{c}^{(a_0)}$. Since F(c)=F(w),

$$\begin{split} A_{i_0}(c_1, \ \cdots, \ c_m) c_{m+1}^{\,d-i_0} / A_d(c_1, \ \cdots, c_m) \\ = & A_{i_0}(w_1, \ \cdots, \ w_m) w_{m+1}^{\,d-i_0} / A_d(w_1, \ \cdots, \ w_m) \\ = & A_{i_0}(c_1^{\,(\alpha_0)}, \ \cdots, \ c_m^{\,(\alpha_0)}) w_{m+1}^{\,d-i_0} / A_d(c_1^{\,(\alpha_0)}, \ \cdots, \ c_m^{\,(\alpha_0)}) \,. \end{split}$$

For each fixed α_0 there are at most $d-i_0$ ($\leq d$) complex numbers w_{m+1} 's satisfying this condition. Thus, we conclude $\#F^{-1}F(c)\leq d^m$.

LEMMA 4.4. Let M be an N-dimensional connected compact complex manifold and L a line bundle over M. Then there exists a positive constant d_L depending only on L satisfying the condition that for any N+2 holomorphic sections $\phi_1, \dots, \phi_{N+2} \in H^0(M, \mathcal{O}(L))$ we can find a homogeneous polynomial of degree at most d_L such that

$$P(\phi_1, \phi_2, \cdots, \phi_{N+2})=0$$
.

For the proof, see L. Siegel [11].

LEMMA 4.5. Let L be a line bundle over an N-dimensional connected compact complex manifold which has at least one system of N+1 algebraically independent holomorphic sections. Then, there exists a positive constant k_L depending only on L such that for algebraically independent $\phi_1, \dots, \phi_{N+1} \in H^0(M, \mathcal{O}(L))$ the meromorphic map $\Phi = (\phi_1 : \phi_2 : \dots : \phi_{N+1}) : M \rightarrow P^N(C)$ satisfies the condition that $\#\Phi^{-1}(w) \leq k_L$ for every point w in a Zariski open dense subset G of $P^N(C)$.

PROOF. Take a basis $\{\phi_1, \cdots, \phi_{m+1}\}$ of $H^0(M, \mathcal{O}(L))$ and define a meromorphic map $\Psi=(\phi_1:\phi_2:\cdots:\phi_{m+1})\colon M\to P^m(C)$. The image $\Psi(M)$ is an algebraic subset of $P^m(C)$ and we can find a positive number d_1 such that $\sharp \Psi^{-1}(w)=d_1$ for each w in a Zariski open dense subset of $\Psi(M)$. Obviously, d_1 and the degree d_2 of $\Psi(M)$ are determined independently of a choice of a basis of $H^0(M,\mathcal{O}(L))$. Let ϕ_1,\cdots,ϕ_{N+1} be arbitrary algebraically independent holomorphic sections of L. We can choose $\phi_{N+2},\cdots,\phi_{m+1}$ such that $\phi_1,\cdots,\phi_{N+1},\phi_{N+2},\cdots,\phi_{m+1}$ constitute a basis of $H^0(M,\mathcal{O}(L))$. Let $\Phi=(\phi_1:\cdots:\phi_{N+1})$, $\widetilde{\Phi}=(\phi_1:\cdots:\phi_{m+1})$ and $\pi:P^m(C)\to P^N(C)$ be defined by $\pi((w_1:\cdots:w_{m+1}))=(w_1:\cdots:w_{N+1})$. Since generic fibers of $\pi \mid \Phi(M):\Phi(M)\to P^N(C)$ consist of at most d_2 points, generic fibers of $\pi\circ \Phi:M\to P^N(C)$ consist of at most d_1d_2 points. The number $k_L:=d_1d_2$ has the desired property.

§ 5. Proof of Main Theorem.

As in § 1, let L be a line bundle over an N-dimensional connected compact complex manifold M, and let D_1, \cdots, D_{N+2} be divisors on M such that $D_i = (\phi_i)$ for $\phi_i \in H^0(M, \mathcal{O}(L))$ and $D_1, \cdots, D_{i-1}, D_{i+1}, \cdots, D_{N+2}$ are algebraically independent for each i. Moreover, let E_1, \cdots, E_{N+2} be effective divisors on C^n and $\mathcal{F}\begin{pmatrix} D_1, \cdots, D_{N+2} \\ E_1, \cdots, E_{N+2} \end{pmatrix}$ the set of all meromorphic maps f of C^n into M such that f is algebraically non-degenerate with respect to L and $f^*(D_i) = E_i$ $(1 \le i \le N+2)$. Consider the meromorphic map $\Phi = (\phi_1 : \cdots : \phi_{N+2}) : M \to P^{N+1}(C)$ and set $V = \Phi(M)$, which is an irreducible algebraic set in $P^{N+1}(C)$. We define a map $\pi_i : P^{N+1}(C) \to P^N(C)$ by $\pi_i((w_1 : \cdots : w_{N+2})) = (w_1 : \cdots : w_{i-1} : w_{i+1} : \cdots : w_{N+2})$. If $\pi_i(V) \subseteq P^N(C)$, there exists a non-zero homogeneous polynomial R such that $\pi_i(V) \subseteq \{R=0\}$. Then

$$R(\phi_1, \dots, \phi_{i-1}, \phi_{i+1}, \dots, \phi_{N+2}) \equiv 0$$

which contradicts the assumption. Therefore $\pi_i(V) = P^N(C)$ for each $i=1, 2, \dots, N+2$. Since

$$N \ge \dim \Phi(M) \ge \dim \pi_i \Phi(M) = N$$
,

we have dim V=N. Take an irreducible non-zero homogeneous polynomial P such that $P(\phi_1, \dots, \phi_{N+2})=0$, where $d:=\deg P$ is not larger than a constant d_L

depending only on L by Lemma 4.4. Then,

$$V = \{(w_1 : \cdots : w_{N+2}) \in P^{N+1}(C); P(w_1 : \cdots : w_{N+2}) = 0\}$$

and P(w) satisfies the assumption of Lemma 4.3. We expand P(w) as

$$P(w) = \sum_{\sigma=1}^{s+1} P_{\sigma}(w)$$

with non-zero monomials P_{σ} and consider the meromorphic map $F=(P_1:\cdots:P_{s+1}):P^{N+1}(C)\to P^s(C)$. By Lemmas 4.3 and 4.5, $\sharp F^{-1}F(w)\leq d^{N+1}$ for each point $w\in G:=\{w_1w_2\cdots w_{N+2}\neq 0\}$ and $\sharp \Phi^{-1}(w)$ does not exceed a constant k_L depending only on L for each point w in a Zariski open dense subset of $\Phi(M)$. Consequently, for the meromorphic map $\Psi:=F\circ\Phi:M\to P^s(C)$

$$\# \Psi^{-1} \Psi(w) \leq k_L d^{N+1} \leq k_L d_L^{N+1}$$

for each point w in an open dense subset M^* of M, where $M-M^*$ is the set of zeros of a holomorphic section of L^d (d>0). We consider hyperplanes

$$H_{s+2} = \{u_1 + u_2 + \dots + u_{s+1} = 0\}$$
 $(\cong P^{s-1}(C))$,

$$H_i = \{u_i = 0\} \cap H_{s+2} \qquad (1 \le i \le s+1)$$

in $P^s(C)$, where $(u_1:\cdots:u_{s+1})$ are homogeneous coordinates on $P^s(C)$. With each $f \in \mathcal{F}\begin{pmatrix} D_1, \cdots, D_{N+2} \\ E_1, \cdots, E_{N+2} \end{pmatrix}$ we associate $\tilde{f}:=F \circ \Phi \circ f \colon C^n \to P^{s-1}(C)$. Then, \tilde{f} is non-degenerate. For, if there is a hyperplane $H=\{a_1u_1+\cdots+a_{s+1}u_{s+1}=0\}$ such that $H \neq H_{s+2}$ and $\tilde{f}(C^n) \subseteq H$, then

$$f(C^n) \subseteq \{a_1 P_1(\phi_1, \dots, \phi_{N+2}) + \dots + a_{s+1} P_{s+1}(\phi_1, \dots, \phi_{N+2}) = 0\}$$

but $a_1P_1+\cdots+a_{s+1}P_{s+1}\not\equiv 0$. This contradicts the assumption. Let

$$P_{\sigma}(w_1, \dots, w_{N+2}) = c_{\sigma} w_1^{l_{\sigma 1}} \dots w_{N+2}^{l_{\sigma N+2}}$$

for $\sigma=1, 2, \dots, s+1$. We set

$$\tilde{D}_{\sigma} := l_{\sigma 1} D_1 + \cdots + l_{\sigma N+2} D_{N+2}$$

$$\widetilde{E}_{\sigma} := l_{\sigma 1}E_1 + \cdots + l_{\sigma N+2}E_{N+2}$$
.

Since (ϕ_1) , \cdots , (ϕ_{N+2}) and $P_1(w)$, \cdots , $P_{s+1}(w)$ have no common component respectively, we have $(F \circ \Phi)^*(H_\sigma) = \widetilde{D}_\sigma$, $f^*(\widetilde{D}_\sigma) = \widetilde{E}_\sigma$ and therefore

$$\widetilde{f}^*(H_\sigma) = \widetilde{E}_\sigma$$
 ($\sigma = 1, 2, \dots, s+1$).

Set

$$\tilde{\mathfrak{G}} := \{ \tilde{f} ; \tilde{f} = F \circ \Phi \circ f, f \in \mathfrak{G} \}.$$

Since H_1, \dots, H_{s+2} are located in general position, $\sharp \tilde{\mathcal{I}}$ is bounded by a constant

depending only on s. On the other hand, $s+1 \le \binom{d_L+N+1}{N+1}$. So, $\sharp \tilde{\mathcal{I}}$ is bounded by a constant q_1 depending only on L. Take a map $f_0 \in \mathcal{I}$. We shall show

$$\#\{f \in \mathcal{F}: \Psi \circ f = \Psi \circ f_0\} \leq k_L d_L^{N+1},$$

which gives the desired conclusion because this gives

$$\#\mathcal{F} \leq k_L d_L^{N+1} q_1$$
.

Suppose that there are mutually distinct $q:=k_Ld_L^{N+1}+1$ meromorphic maps f^1 , ..., $f^q\in\mathcal{F}$ such that $\Psi\circ f^i=\Psi\circ f$. Set $G^*:=\{z\in C^n;\ f^i(z)\in M^*\ \text{for all }i$ and $f^i(z)\neq f^j(z)$ if $1\leq i< j\leq q\}$. By the assumption of non-degeneracy of f^i , G^* is an open dense subset of C^n . For a point $z_0\in G^*$, we have $w_0=f_0(z_0)\in M^*$ and

$$\{f^{1}(z_{0}), \dots, f^{q}(z_{0})\} \subseteq \Psi^{-1}\Psi(w_{0}),$$

whence $\sharp \Psi^{-1} \Psi(w_0) \geq q$. This is a contradiction. Thus, the proof of Main Theorem is completed.

References

- [1] Y. Aihara and S. Mori, Algebraic degeneracy theorem for holomorphic mappings into smooth projective algebraic varieties, Nagoya Math. J., 84 (1981), 209-218.
- [2] E. Borel, Sur les zéros des fonctions entières, Acta Math., 20 (1897), 357-396.
- [3] H. Cartan, Sur les systèmes de fonctions holomorphes a variétés linéaires lacunaires et leurs applications, Ann. Sci. École Norm. Sup., 45 (1928), 255-346.
- [4] H. Fujimoto, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J., 58 (1975), 1-23.
- [5] H. Fujimoto, A uniqueness theorem of algebraically non-degenerate meromorphic maps into $P^N(C)$, Nagoya Math. J., 64 (1976), 117-147.
- [6] H. Fujimoto, Remarks to the uniqueness problem of meromorphic maps into $P^N(C)$, I, II, Nagoya Math. J., 71 (1978), 13-41.
- [7] H. Fujimoto, Remarks to the uniqueness problem of meromorphic maps into $P^N(C)$, III, Nagoya Math. J., 75 (1979), 71-85.
- [8] H. Fujimoto, Remarks to the uniqueness problem of meromorphic maps into $P^N(C)$, IV, Nagoya Math. J., 83 (1981), 153-181.
- [9] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, Inc., New York, 1978.
- [10] R. Nevanlinna, Le théoremès de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929.
- [11] L. Siegel, Meromorphe Funktionen auf kompakten analytischen Mannigfaltigkeiten, Nachr. Akad. Wiss. Göttingen, 1955, 71-77.

Hirotaka FUJIMOTO
Department of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464
Japan