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The Schur index over the 2-adic field
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Let % be a field of characteristic 0 and let B be a cyclotomic algebra over
k; that is, a crossed product (a, £({)/k) in which { is a root of unity and « is
a factor set on Gal(k({)/k) having only roots of unity as values. R. Brauer
[1], [2] and E. Witt [5] reduced the problem of determining the Schur index
of a character of a finite group to the case of handling the index of a cyclo-
tomic algebra. And E. Witt gave a formula of index of it which is central
over the rational p-adic field Q,. But in order to investigate the Schur index
and the Schur group of an algebraic number field in detail, it is necessary to
obtain the formula of index of a cyclotomic algebra which is central over an
arbitrary extension %2 of Q,. And this was done by the author [6, Theorem 3]
for an odd prime p (for the application of the formula, see [3], [6], [9], [10]).
In [9, Theorem 5.6] we also handled the remaining case p=2 and obtained a
formula when the field £ and the factor set a satisfy some conditions.

The purpose of the paper is to settle the case p=2 completely. Namely,
for any finite extension % of the rational 2-adic field Q,, we give the formula
of index of any cyclotomic algebra (a, £({)/£) which is central over % (Theorem
2). This will be achieved by embedding the field £({) into a field L, where
the residue class degree of L is sufficiently large and a primitive 2™-th root of
unity {,» belongs to L with a sufficiently large integer m. Thus using this
formula for the 2-adic field Q. and the formula for the p-adic field Q, (p+#2)
in [6, Theorem 3], combined with the Brauer-Witt theorem [9, p. 31], we can
determine the Schur index of a character of a finite group, over an algebraic
number field.

NoTATION. For a finite extension field K of the 2-adic numbers Q,, &y(K)
(resp. ¢’(K)) is the group of roots of unity whose orders are of 2-power order
(resp. relatively prime to 2). For a natural number m, {,, is a primitive m-th
root of unity. If L is a Galois extension of K then ¢(L/K) is the Galois group
of L over K. |g(L/K)| is the order of ¢(L/K). |o]| is the order of 6 €G(L/K).
g(L/K) is the inertia group of the extension L/K. e(L/K)=|9(L/K)|=the
ramification index of L/K. If M is a Galois extension of K such that MDLDK,
then for e €G(M/K), a|L is the restriction of ¢ on L. If { is a root of unity
any subfield of Q,({) is called a cyclotomic extension of Q..
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1. The Schur group.

For the rest of the paper, £ is a cyclotomic extension of @,. The subset
of the Brauer group Br(k) of % consisting of all those classes containing an
algebra which is isomorphic to a simple summand of the group algebra k[G]
for some finite group G is a subgroup, S(k), the Schur group of k. It follows
from the Brauer-Witt theorem that this is the same group as the set of classes
in Br(k) which contain a cyclotomic algebra over & (cf. [9, Corollary 3.117]). In
order to state our formula of index of a cyclotomic algebra over k, we need
the result on the Schur group of k which was obtained by the author [7].

Let 2 be the smallest nonnegative integer such that % is contained in a
cyclotomic field Qy(,»,) for some odd integer t. We will call 4 the height of
k. It is clear that either A=0 or A=2, and that A=0 if and only if £2/Q, is
unramified. Let s be the smallest positive integer such that 2°=1 (mod?). It
is well-known that Qu({,»,)=Q:,r, £,s_,). The following lemmas are easy to
prove and their proofs are given in [7].

LEMMA 1. Let h be the height of k. Set M=Fk((,,). Then M is a cyclotomic
field over Q, and contained in every cyclotomic field which contains k. That is,
M is the minimal cyclotomic field containing k. If the residue class degree of
M/Q; is f then M=QyC,n, Lyr_,)-

LEMMA 2. Suppose that h=2. Let K=Qy{,:, {,s.,) be a cyclotomic field
containing k (c=h) and let F be the maximal unramified extension of k in K.
Then F)=Q:&,n, Cys_p)- In particular, if c=h then F({)=K. If k(C)/k is
unramified, then F=F({,). If k({.)/k is ramified, then F(,)/F is also ramified
and FN\k()=F.

LEMMA 3. Suppose that h+0 and k({,)/k is ramified. Then h=3. Let F
be the maximal unramified extension of k in M=k({,s). Then M=F(,) and M/F
is ramified. Let {w)=GM/F) (0*=1) and o({,.)={i for some integer z. Then
either z=-—1 (mod 2*) or z=-—-14+2""* (mod 2%).

Now we can state the theorem which completely determines the Schur
group S(k) of k.

THEOREM 1 (Yamada [7]). Let k be a cyclotomic extension of Qs and let h be
the height of k. Let the notation be as in Lemma 3. () If k(,)/k is unramified
(including the case {,k), then S(k)=1. () If k(,)/k is ramified, then only the
following three cases happen: (i) h=0; (ii) h=3 and z=—1 (mod 2*); (iii) h=3
and z=—142""1 (mod 2"). For the cases (i) and (ii), S(k) is the subgroup of
order 2 of Br(k). For the case (iii), S(k)=1.

Let L s=Qx(,c, &55-), (¢=2) be a cyclotomic field containing k. Let ¢,
G(L.,s/Q.) be such that ¢ (£,0)=C30 te.o(,5_,)=C,s.,. We see easily that if for
some ¢ and s, ¢, @(L.  /k) then ¢, €G(L. 5 /k) for any ¢’ and s’ such that
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Lo o=0Qx(,e, Lo )Dk, (¢'=2). ltis clear that is equivalent to the
following

THEOREM 1’ ([8]). Let k be a cyclotomic extension of Qs. Then only the
following two cases happen: (1) For any ¢ and s such that L. Dk (c=2), ¢, s<
G(Le,s/k) and S(k) is the subgroup of order 2 of Br(k). (2) For any ¢ and s,
te,s EG(L. s/k) and S(k)=1.

Put L=L. Dk, t=¢.;. Note that cc@(L/k) if and only if ¢|k=1€2(k/Q>).
It is well-known that ¢ is the norm residue symbol (—1, L/Q.)€2(L/Q>), ¢| k=
(—1, 2/Q.). Therefore, ¢|k=1=2(k/Q,) if and only if —1&N;q,(k*), where
Nty is the norm of %k over Q.. Hence if c€@(L/k) then —1& Ny q,(k*). Con-
versely, if —1&N,q,(k*) then ¢ ;€2(L. /k) for any ¢ and s such that L. ,Dk.
Thus [Theorem 1V is equivalent to the following, as is noted by F. Lorenz.

THEOREM 1”. Let k be a cyclotomic extension of Q,. Let Nyq, be the norm
of k over Q,. If —1&N,q,(k*) then S(k) is the subgroup of order 2 of Br(k).
If —1€& Ny (k*) then S(k)=1.

2. Formula of index.
Let B be a cyclotomic algebra over % :
B=(a, kQ/)= 2 kQus,  (w=1),
usx=o(x)u, (x€k@Q), UsU.=a(0, DUy, (0, TEG),

where { is a root of unity and ¢=2(k({)/k). Let a(o, 7)=p(a, o)1 (0, 7), Blo, T)
€ey(k(Q), 1(o, 7)€’ (kQ)), 0, 7€4. Then B~(B, kQ)/E)Qu(y, kQ)/k). 1t is
known by Witt [5] that (7, 2({)/k)~F (see also [9, Proposition 5.17), so B~
(B, R()/k). Let K be the minimal cyclotomic field containing k({). Then K=
Q+(C,n, C,r_,) for some integers n and r. If n=1, then K/Q, is unramified, a
fortiori, £()/k is unramified, so (B, k(Q)/k)~Fk. Hence we assume n=2.

Let oi€G(K/k) and g,=0}| k), (i=1, 2). Define (o], 02)= (01, 02) <L ).
Then B, is a factor set of K/k and (B, k(Q)/k)~(By, K/k). In fact, if B is
regarded as an element of the cohomology group H2(k({)/k)=H*G(k()/k), )%,
Bo is the image of the inflation map Inf: H*(k({)/k)—H*K/E). Hereafter, we
simply write S,=Inf S.

We know that

G(K/Q2)={eo» X<bOop X<ED,

(o) =8y 06Cn)=C0ny 0oy )=00C,r_)=C0r_,,
ECr_ =04, ECn)=C5n.
(If n=2 then #,=1. If r=1 then £=1.) The Galois group ¢(K/k) is a sub-
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group of @(K/Q.). The inertia group I(K/Q:)=<topX<8y> and T(K/k)=
Leod XLODING(K/E). 1t follows from [Theorem 1 that if ¢, G(K/k) then
(B, kQ)/k)~(Inf 8, K/k)~k. Hence we may assume that EI(K/k):<:0>><<0%Z>
for some integer 4 (0=<1=n—2), so {,& k. If the order of { is not divisible by
4, then %({)/k is unramified, and (B, £({)/k)~k. So we assume {,= k(D).

Let f be the residue class degree of £/Q,. Then a Frobenius automorphism
n’ of K/k is of the form ¢304¢” for some integers v, g such that »=0, 1 and
0=p<2"% Since ¢’ is also a Frobenius automorphism of K/k, we may as-
sume 7’=0%&7. The residue class degree of K/k is r/f and |&|=r. So I(K/k)
S(p/ I =04m17¢IT1I =047, Since T(K/ k)= ey X <03, then 2%[(ur/f). Put
t=to|B©Q), T=62*|k() and p=7'kQ). Then T(kQ)/k)={)*x<{z> and 7 is a
Frobenius automorphism of 2({)/k. So G(k()/k)=({e>X<Td)<{p>.

LEMMA 4. Notation and assumption being as above, &,(k(L))=2eo(K)=<(,n>.

PROOF. Let F be the maximal unramified extension of 2({) in K. Since K
is the minimal cyclotomic field containing £({) and {,=k({), then Lemmas 1 and
2 imply that K=F()=F, so K/k() is unramified. Consequently, e(k({)/k)=
e(K/k)=2""4-1 and Z(K/k):<zo>><<6'§2> is canonically isomorphic to g(&()/k)
={>x<r>. In particular, |¢]|=]62"|=2""2-% Let e k)=, m> and &' (k)=
. Then 2=m=n, k(Q)=k,n, ), t divides 2"—1. Now r(CZm):ﬁgl(sz):
cgf,f, (C)=02*¢&)=C. So |r|=2m"%-2, Thus n=m, proving the lemma.

We recall that

C)=Cat,  tC=0E,  pCm=Ck,
and for any g, t€@(k(Q)/k), Blo, )L, > ="¢:(k(Q))=¢(K). Since (¢, ()=ui=
uulu7 =P, o), it follows that B(¢, c)==+1. Let

Bz, 9)/ By, ©)=C3,  Ble, )/ By, O=Clu,

Bz, 0/ B, D=L5n,  Bl, D=(—1)*.

We shall see that the integers a, b, ¢ and d determine the Hasse invariant of
the cyclotomic algebra B~(S, k()/k).

Let p denote a primitive 2"*#*%.th root of unity {,ns:+» and put L=
Q:(p, 55 )DKDRL)DEDQ,, where s=2"r. We have @(L/Q:)={c> X{0:)X{&p,

a(p)=p7 0.(p)=p% ;s )=0:C,s )=C0s_
&(Czsﬂ):CiM, Ex(P):p.

Then ¢;|K=¢,, 0:|K=0,, £,|K=¢, so0 ¢;|k(Q)=¢, 63*|k(C)=1, 04&{|k()=7. For
simplicity, put w=6%", ¢=04¢{. Then w, ¢=2(L/k), and ¢ is a Frobenius
automorphism of L/k. We have w(p):p‘izz, #o)=p*". Since e(L/k)=
e(L/Q.)/e(k/Qs)=2"+, then T(L/k)={t;>X{w). Recall that 2% divides ur/f.
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We have
¢S/f: gﬁtSIfg{S/f: g%”pr/le ,

because |6;|=2"*%. Thus the order of the Frobenius automorphism ¢ of L/k
is equal to the residue class degree s/f of L/k. This implies that

G(L/ k)=t XL X<P> .
For simplicity, put z=s/f.
Let Inf denote the inflation map from H*&()/k) into H*(L/k), and put
B’'=Inf 8. Then B~(B, kQ)/k)~(f’, L/k). We have

B

2n-1 z

-1 .
zzo Lot vivh,

B, L= _% Lu=3

ocEg(L/ k) Jj=0

vV =(5" (@, $)/ B (¢, ®)Vgv0e=LnVsV0 ,
v,ve=(B(ts, )/ B/ (P, tvgv.,=Convgv,,,
VoV, = (B (w, 1)/ B'(t1, @)V v0=C5nV. V0 ,
v, =f ey, e)=(—1)%.

In the above, we recall that f'(w, ¢)/ B (¢, w)=B(z, )/ B(n, ©)=C%%, etc.

Let L’ and L” be the fixed fields of the subgroups <w) and <{>X<@)> of
G(L/k), respectively, in the sense of Galois theory. Then L=L’L” and L’'"\L”
=k. We identify @(L’/k) with {¢;>X<{¢>, and @(L”/k) with {w). Since 5:t=]
(mod 27+2), 5**=£1 (mod 24+%), we choose a primitive 27+4**-.th (resp. 2"-th) root
of unity p={,n:242 (resp. {,;n») such that Czn:p*"zz‘l. Then, p"’zl:p-czn. We
have

A 2
- __ _-e52 _ _—c52 _ -
Vo0~V )= 0" vV = 07 Lo, V0= (0" Ve WV

2 2
Vu(0705)= % vV =0~ L Ggve=(p" )V, .

Note that v, commutes with each element of L’. Also, p~‘v,, and p~%vy4 com-
mute with each element of L”. Thus we have

n

&, Lib=3% %

S L7 L0, (™ vy

l=

=03 LI5S 3 Lo v,) (o ve)1]

1

1=0
1 z-1 .

=, L7/k, o@iL % 3 L'(p70,) (0™ )'],

vy =F(0, 0)f (@, 0) - f(0* 7, @) nk={x1},
because {, < k.
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Denote by C the above cyclic algebra (1%, L”/k, w). We will show C~k.
If v2"=1, then C~%. Suppose that v2'=-—1. The index of the cyclic algebra
(—1, L”/k, w) is the order of the nmorm residue symbol (—1, L”/k)sa(L”/k).
If [k:Q,] is divisible by 2, then (=1, L”/k)=(Nyo,(—1), L"/Q:)=(1, L"/Qs)=
1eg(L”/Q,), and so C~Ek. If [k: Q,] is not divisible by 2, then %/Q, is un-
ramified and hence Q(L/k)=<0:> X<t X<L@>, (A=0, w=8,). Consequently, &{=
#0717 is also a Frobenius automorphism of L/k, and so we may assume ¢==£&7.
Then L7=k-ko, ko=Q:x,n+Ln), kNko=0Q: <00=G(L"/k)=34(k,/Q.). Hence
we have

(=1, L"/k, 00=(—1, ko/Qs, 000,k .

The index of the cyclic algebra (—1, k,/Q,, 0,) is equal to the order of the
norm residue symbol (—1, 2,/Q.). But k, is the fixed field of the norm residue
symbol (—1, Qx({,n)/Q2)€2(Q:(L,2)/Q2), and s0 (—1, ko/Q2)=(—1, Qx((,2)/Q2)| ko
=1€6(k,/Q,). This implies (—1, ko/Qs, 0,)~Q,, and (—1, L”/k, 8,)~F. Thus

B~(8', L/R)~

1 z-1
i=

> Lo~ v.) (0 vy)t.

0 1l=0
We have

-ct+a

(o~ v NP~ "vg)=p ", v5=p L nvgv,,

:p-c+a+(521—1)b ~c+a+(52’1—1)b

VgVe=p VPPV,

:p2a+(521—1)b+(5.u—1)c(p—avgﬁ)(p—cvq) .
Put
h'=2a+G"*—1b+G—1c, w,=p v, ws=p v,.

Then w,wg=p" wsw,, and so p*' =w, wyw;ws'. Since v, commutes with w,,
and wy, it follows that v,p"'v;'=p" and

nr 524

o .‘D:w(ph,)p_h':vah’val'p_h,:phlp_hlzl .

Therefore, h’ is divisible by 2". Put h=h’/2". p*" is a primitive 2**2-th root
of unity, so write {,;4.=p*". Then p" = p*"* /2" =({ ;)" Set ys=01+L,1::)"wg.
It follows that

wq,w:(1+C;}+2)"C21+2w¢wq:(1+C22+z)hw¢w,1=y¢wq .

Let E (resp. F) denote the fixed field of <¢;> (resp. <¢>) in L’/k. Then L’'=
E-F, EnF=Fk, G(E/k)=<¢>, and G¢(F/k)={¢;>. We have

~N
I
=

M-

1 z-1
B~ L'wiwhy= = ZZOE-walyé
= =

o
Il

0

~
I

0

=02 Fuwt]-[ S Eysl=w}, F/k, @0 E/E, 8,

1=0
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w?1:(‘0_cvz1)2:P_cvzlp_cvh:p_”cv%l:ﬁ/(!“ 1)
:‘8([, !):(_1)(1 ’

5= {04 L wgh =L I {14 6'Coar0) "I},

wh=(p= vy =1{TL "o~} B'(4, B/ ) B 9.

For a finite extension £2 of Q,, Vo denotes the normalized discrete valuation
of 2. That is, if 7 is a prime element of 2, then Vg(z)=1. The elements

1+¢Z(C22+2) (ZZO: ]-: Ty Z_—l)

are prime elements of Q.({,;+.), and w} is a root of unity contained in L. Since
e(L/k)=2""" and e(L/Q:({,1+2))=2", it follows that

2V )=V oy =V T 4+ Crea))

z—-1 z—
= SRVl G = B b2V gcuain(l+ s =27z,

and consequently, V.(y3)=hz/2. Because E/k is an unramified extension of
degree z, it follows from the definition of Hasse invariant that the Hasse invari-
ant of the cyclic algebra (v3, E/k, ¢) is:

inv(ys, E/k, )=V i(y3)/z=h/2.

Next consider the cyclic algebra (—1, F/k, ¢,), whose index is equal to the order
of the norm residue symbol (—1, F/k)=(N,(—1), F/Q,). If 2|[k: Q.], then
Nig,(—1)=1, so (—1, F/k, t;)~k. It is easy to see that if 2/ [k: Q.], then
k/Q. is unramified, F=*k(,), and N, o,(—1)=—1. But there is no element dEF
such that Npe,(8)=—1, because there is no element ¢’ € Qy({)CF=Fk(,) such
that Ng,cc,/e,(0)=—1. Hence the order of the norm residue symbol (—1, F/Q:)
equals 2. Consequently, we have

1

=, if 2/[k: Q] and 8¢, O=—1,
inv(w?, F/k, :1>={ 2

otherwise.

Thus we have proved the following theorem.

THEOREM 2. Let k be a cyclotomic extension of the 2-adic numbers Q,. Let
B=(a, k(Q)/k) be a cyclotomic algebra over k. Let ;(k(L)=<L,n>, ¢'(R({Q)=L,
so RQ)=k;n, o). For o, 6’'€3(kQ)/k), let a(a, 0")=p(a, ¢")1(0, 0'), B(a, 0')E
C,n>, 10, 6")E<E:>. Then B~(B, k(Q)/k). If n<2, then B~k. Assume that
n=2. If the inertia group I of k(Q)/k does not contain an automorphism ¢ such
that «(C,.)=C5, «()=C,, then B~k. Suppose that c= . Then I is of the form:
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T={>X<>, where T(Czn)=C§il 0=2=n—-2), €)= Uf A=n—2, t=1)
There exists a Frobenius automorphism n of k()/k such that p(C,n)= gﬁ for some
integer p (0= p<2™°%). Let

Bz, 9)/ By, ©)=C%, B¢, n)/B(n, =L,
B(z, o)/ Be, T)=C%q, B, )=(—1)¢,
h={2a+(B**"—1)b+(5*—1)c} /2" .

Then h is an integer and the Hasse invariant of B is:
. _h —d
invB =7—|—[k 1 Q.20 (mod 1).

So the index of B is 1 and 2 if the right side is congruent to 0 and 1/2(mod 1),
respectively.

When K is a field which is not necessarily cyclotomic, we have

THEOREM 3. Let K be a finite extension of Q. and let B=(a, K({)/K) be a
cyclotomic algebra over K, where { is a root of unity. If the group of roots of
unity in K(C) is generated by ', then K({)=K({’) and the values of a belong to
’'>. Let k denote the maximal cyclotomic extension of Q, contained in K. Then
QKQ)/K)=g(k(")/k) and B=(a, k[(")/E)RQ:K. So invB=[K: k]-inv(a, £({")/k),
and inv (a, k(") k) is given by Theorem 2.

ProoF. Put F=kF({')NK. Then Fis a cyclotomic extension of Q, contained
in K. Hence F=F and @(k({(")/k)=6(K({)/K). The rest of the assertions fol-
lows immediately.
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