The Schur index over the 2-adic field

By Toshihiko YAMADA

(Received Sept. 22, 1980)

Let k be a field of characteristic 0 and let B be a cyclotomic algebra over k; that is, a crossed product $(\alpha, k(\zeta)/k)$ in which ζ is a root of unity and α is a factor set on $Gal(k(\zeta)/k)$ having only roots of unity as values. R. Brauer [1], [2] and E. Witt [5] reduced the problem of determining the Schur index of a character of a finite group to the case of handling the index of a cyclotomic algebra. And E. Witt [5] gave a formula of index of it which is central over the rational p-adic field Q_p . But in order to investigate the Schur index and the Schur group of an algebraic number field in detail, it is necessary to obtain the formula of index of a cyclotomic algebra which is central over an arbitrary extension k of Q_p . And this was done by the author [6, Theorem 3] for an odd prime p (for the application of the formula, see [3], [6], [9], [10]). In [9, Theorem 5.6] we also handled the remaining case p=2 and obtained a formula when the field k and the factor set α satisfy some conditions.

The purpose of the paper is to settle the case p=2 completely. Namely, for any finite extension k of the rational 2-adic field Q_2 , we give the formula of index of any cyclotomic algebra $(\alpha, k(\zeta)/k)$ which is central over k (Theorem 2). This will be achieved by embedding the field $k(\zeta)$ into a field L, where the residue class degree of L is sufficiently large and a primitive 2^m -th root of unity ζ_{2^m} belongs to L with a sufficiently large integer m. Thus using this formula for the 2-adic field Q_2 and the formula for the p-adic field Q_p ($p \neq 2$) in [6, Theorem 3], combined with the Brauer-Witt theorem [9, p. 31], we can determine the Schur index of a character of a finite group, over an algebraic number field.

NOTATION. For a finite extension field K of the 2-adic numbers Q_2 , $\varepsilon_2(K)$ (resp. $\varepsilon'(K)$) is the group of roots of unity whose orders are of 2-power order (resp. relatively prime to 2). For a natural number m, ζ_m is a primitive m-th root of unity. If L is a Galois extension of K then $\mathcal{G}(L/K)$ is the Galois group of L over K. $|\mathcal{G}(L/K)|$ is the order of $\mathcal{G}(L/K)$. $|\sigma|$ is the order of $\sigma \in \mathcal{G}(L/K)$. $|\sigma|$ is the order of $\sigma \in \mathcal{G}(L/K)$. $|\sigma|$ is the inertia group of the extension L/K. $|\sigma|$ is the ramification index of L/K. If M is a Galois extension of K such that $M \supset L \supset K$, then for $\sigma \in \mathcal{G}(M/K)$, $\sigma | L$ is the restriction of σ on L. If ζ is a root of unity any subfield of $Q_2(\zeta)$ is called a cyclotomic extension of Q_2 .

1. The Schur group.

For the rest of the paper, k is a cyclotomic extension of Q_2 . The subset of the Brauer group Br(k) of k consisting of all those classes containing an algebra which is isomorphic to a simple summand of the group algebra k[G] for some finite group G is a subgroup, S(k), the Schur group of k. It follows from the Brauer-Witt theorem that this is the same group as the set of classes in Br(k) which contain a cyclotomic algebra over k (cf. [9, Corollary 3.11]). In order to state our formula of index of a cyclotomic algebra over k, we need the result on the Schur group of k which was obtained by the author [7].

Let h be the smallest nonnegative integer such that k is contained in a cyclotomic field $Q_2(\zeta_{2^ht})$ for some odd integer t. We will call h the height of k. It is clear that either h=0 or $h\geq 2$, and that h=0 if and only if k/Q_2 is unramified. Let s be the smallest positive integer such that $2^s\equiv 1\pmod{t}$. It is well-known that $Q_2(\zeta_{2^ht})=Q_2(\zeta_{2^h},\zeta_{2^{s-1}})$. The following lemmas are easy to prove and their proofs are given in [7].

LEMMA 1. Let h be the height of k. Set $M=k(\zeta_{2h})$. Then M is a cyclotomic field over Q_2 and contained in every cyclotomic field which contains k. That is, M is the minimal cyclotomic field containing k. If the residue class degree of M/Q_2 is f then $M=Q_2(\zeta_{2h}, \zeta_{2f-1})$.

LEMMA 2. Suppose that $h \ge 2$. Let $K = Q_2(\zeta_{2^c}, \zeta_{2^{s-1}})$ be a cyclotomic field containing k $(c \ge h)$ and let F be the maximal unramified extension of k in K. Then $F(\zeta_4) = Q_2(\zeta_{2^h}, \zeta_{2^{s-1}})$. In particular, if c = h then $F(\zeta_4) = K$. If $k(\zeta_4)/k$ is unramified, then $F = F(\zeta_4)$. If $k(\zeta_4)/k$ is ramified, then $F(\zeta_4)/F$ is also ramified and $F \cap k(\zeta_4) = k$.

LEMMA 3. Suppose that $h \neq 0$ and $k(\zeta_4)/k$ is ramified. Then $h \geq 3$. Let F be the maximal unramified extension of k in $M = k(\zeta_{2h})$. Then $M = F(\zeta_4)$ and M/F is ramified. Let $\langle \omega \rangle = \mathcal{G}(M/F)$ ($\omega^2 = 1$) and $\omega(\zeta_{2h}) = \zeta_{2h}^z$ for some integer z. Then either $z \equiv -1 \pmod{2^h}$ or $z \equiv -1 + 2^{h-1} \pmod{2^h}$.

Now we can state the theorem which completely determines the Schur group S(k) of k.

THEOREM 1 (Yamada [7]). Let k be a cyclotomic extension of Q_2 and let h be the height of k. Let the notation be as in Lemma 3. (I) If $k(\zeta_4)/k$ is unramified (including the case $\zeta_4 \in k$), then S(k)=1. (II) If $k(\zeta_4)/k$ is ramified, then only the following three cases happen: (i) h=0; (ii) $h\geq 3$ and $z\equiv -1\pmod{2^h}$; (iii) $h\geq 3$ and $z\equiv -1+2^{h-1}\pmod{2^h}$. For the cases (i) and (ii), S(k) is the subgroup of order 2 of Br(k). For the case (iii), S(k)=1.

Let $L_{c,s} = Q_2(\zeta_{2^c}, \zeta_{2^{s-1}})$, $(c \ge 2)$ be a cyclotomic field containing k. Let $\ell_{c,s} \in \mathcal{Q}(L_{c,s}/Q_2)$ be such that $\ell_{c,s}(\zeta_{2^c}) = \zeta_{2^c}^{-1}$, $\ell_{c,s}(\zeta_{2^{s-1}}) = \zeta_{2^{s-1}}$. We see easily that if for some c and s, $\ell_{c,s} \in \mathcal{Q}(L_{c,s}/k)$ then $\ell_{c',s'} \in \mathcal{Q}(L_{c',s'}/k)$ for any c' and s' such that

 $L_{c',s'}=Q_2(\zeta_{2c'},\zeta_{2s'-1})\supset k$, $(c'\geq 2)$. It is clear that Theorem 1 is equivalent to the following

THEOREM 1' ([8]). Let k be a cyclotomic extension of Q_2 . Then only the following two cases happen: (1) For any c and s such that $L_{c,s}\supset k$ ($c\geq 2$), $\iota_{c,s}\in \mathcal{G}(L_{c,s}/k)$ and S(k) is the subgroup of order 2 of Br(k). (2) For any c and s, $\iota_{c,s}\in \mathcal{G}(L_{c,s}/k)$ and S(k)=1.

Put $L=L_{c,s}\supset k$, $\iota=\iota_{c,s}$. Note that $\iota\in\mathcal{Q}(L/k)$ if and only if $\iota\,|\,k=1\in\mathcal{Q}(k/Q_2)$. It is well-known that ι is the norm residue symbol $(-1,L/Q_2)\in\mathcal{Q}(L/Q_2)$, $\iota\,|\,k=(-1,k/Q_2)$. Therefore, $\iota\,|\,k=1\in\mathcal{Q}(k/Q_2)$ if and only if $-1\in N_{k/Q_2}(k^*)$, where N_{k/Q_2} is the norm of k over Q_2 . Hence if $\iota\in\mathcal{Q}(L/k)$ then $-1\in N_{k/Q_2}(k^*)$. Conversely, if $-1\in N_{k/Q_2}(k^*)$ then $\iota_{c,s}\in\mathcal{Q}(L_{c,s}/k)$ for any c and s such that $L_{c,s}\supset k$. Thus Theorem 1' is equivalent to the following, as is noted by F. Lorenz.

THEOREM 1". Let k be a cyclotomic extension of Q_2 . Let N_{k/Q_2} be the norm of k over Q_2 . If $-1 \in N_{k/Q_2}(k^*)$ then S(k) is the subgroup of order 2 of Br(k). If $-1 \notin N_{k/Q_2}(k^*)$ then S(k)=1.

2. Formula of index.

Let B be a cyclotomic algebra over k:

$$B = (\alpha, k(\zeta)/k) = \sum_{\sigma \in \mathcal{G}} k(\zeta) u_{\sigma}, \qquad (u_1 = 1),$$

$$u_{\sigma} x = \sigma(x) u_{\sigma} \quad (x \in k(\zeta)), \qquad u_{\sigma} u_{\tau} = \alpha(\sigma, \tau) u_{\sigma\tau} \quad (\sigma, \tau \in \mathcal{G}),$$

where ζ is a root of unity and $\mathcal{Q}=\mathcal{Q}(k(\zeta)/k)$. Let $\alpha(\sigma,\tau)=\beta(\sigma,\tau)\gamma(\sigma,\tau)$, $\beta(\sigma,\tau)\in\varepsilon_2(k(\zeta))$, $\gamma(\sigma,\tau)\in\varepsilon'(k(\zeta))$, $\sigma,\tau\in\mathcal{Q}$. Then $B\sim(\beta,k(\zeta)/k)\otimes_k(\gamma,k(\zeta)/k)$. It is known by Witt [5] that $(\gamma,k(\zeta)/k)\sim k$ (see also [9, Proposition 5.1]), so $B\sim(\beta,k(\zeta)/k)$. Let K be the minimal cyclotomic field containing $k(\zeta)$. Then $K=Q_2(\zeta_{2^n},\zeta_{2^{n-1}})$ for some integers n and r. If $n\leq 1$, then K/Q_2 is unramified, a fortiori, $k(\zeta)/k$ is unramified, so $(\beta,k(\zeta)/k)\sim k$. Hence we assume $n\geq 2$.

Let $\sigma_i' \in \mathcal{G}(K/k)$ and $\sigma_i = \sigma_i' | k(\zeta)$, (i=1, 2). Define $\beta_0(\sigma_1', \sigma_2') = \beta(\sigma_1, \sigma_2) \in \langle \zeta_{2^n} \rangle$. Then β_0 is a factor set of K/k and $(\beta, k(\zeta)/k) \sim (\beta_0, K/k)$. In fact, if β is regarded as an element of the cohomology group $H^2(k(\zeta)/k) = H^2(\mathcal{G}(k(\zeta)/k), k(\zeta)^*)$, β_0 is the image of the inflation map $\text{Inf}: H^2(k(\zeta)/k) \to H^2(K/k)$. Hereafter, we simply write $\beta_0 = \text{Inf } \beta$.

We know that

$$\begin{split} \mathcal{Q}(K/Q_2) &= \langle \iota_0 \rangle \times \langle \theta_0 \rangle \times \langle \xi \rangle \;, \\ \iota_0(\zeta_{2^n}) &= \zeta_{2^n}^{-1}, \quad \theta_0(\zeta_{2^n}) = \zeta_{2^n}^{5}, \quad \iota_0(\zeta_{2^{r-1}}) = \theta_0(\zeta_{2^{r-1}}) = \zeta_{2^{r-1}}^{}, \\ \xi(\zeta_{2^{r-1}}) &= \zeta_{2^{r-1}}^{2}, \quad \xi(\zeta_{2^n}) = \zeta_{2^n}^{}. \end{split}$$

(If n=2 then $\theta_0=1$. If r=1 then $\xi=1$.) The Galois group $\mathcal{G}(K/k)$ is a sub-

310 T. Yamada

group of $\mathcal{Q}(K/Q_2)$. The inertia group $\mathcal{I}(K/Q_2) = \langle \iota_0 \rangle \times \langle \theta_0 \rangle$ and $\mathcal{I}(K/k) = \langle \langle \iota_0 \rangle \times \langle \theta_0 \rangle) \cap \mathcal{Q}(K/k)$. It follows from Theorem 1' that if $\iota_0 \oplus \mathcal{Q}(K/k)$ then $(\beta, k(\zeta)/k) \sim (\ln \beta, K/k) \sim k$. Hence we may assume that $\mathcal{I}(K/k) = \langle \iota_0 \rangle \times \langle \theta_0^2 \rangle$ for some integer λ $(0 \le \lambda \le n-2)$, so $\zeta_4 \oplus k$. If the order of ζ is not divisible by 4, then $k(\zeta)/k$ is unramified, and $(\beta, k(\zeta)/k) \sim k$. So we assume $\zeta_4 \in k(\zeta)$.

Let f be the residue class degree of k/Q_2 . Then a Frobenius automorphism η' of K/k is of the form $\iota_0^{\nu}\theta_0^{\mu}\xi^f$ for some integers ν , μ such that $\nu=0,1$ and $0 \leq \mu < 2^{n-2}$. Since $\iota_0\eta'$ is also a Frobenius automorphism of K/k, we may assume $\eta' = \theta_0^{\mu}\xi^f$. The residue class degree of K/k is r/f and $|\xi| = r$. So $\mathfrak{I}(K/k) = (\eta')^{r/f} = \theta_0^{\mu r/f}\xi^{fr/f} = \theta_0^{\mu r/f}$. Since $\mathfrak{I}(K/k) = \langle \iota_0 \rangle \times \langle \theta_0^{2^{\lambda}} \rangle$, then $2^{\lambda} |(\mu r/f)$. Put $\iota = \iota_0 |k(\zeta), \ \tau = \theta_0^{2^{\lambda}} |k(\zeta)|$ and $\eta = \eta' |k(\zeta)|$. Then $\mathfrak{I}(k(\zeta)/k) = \langle \iota \rangle \times \langle \tau \rangle$ and η is a Frobenius automorphism of $k(\zeta)/k$. So $\mathfrak{I}(k(\zeta)/k) = \langle \iota \rangle \times \langle \tau \rangle \cdot \langle \eta \rangle$.

LEMMA 4. Notation and assumption being as above, $\varepsilon_2(k(\zeta)) = \varepsilon_2(K) = \langle \zeta_{2} \rangle$.

PROOF. Let F be the maximal unramified extension of $k(\zeta)$ in K. Since K is the minimal cyclotomic field containing $k(\zeta)$ and $\zeta_4 \in k(\zeta)$, then Lemmas 1 and 2 imply that $K = F(\zeta_4) = F$, so $K/k(\zeta)$ is unramified. Consequently, $e(k(\zeta)/k) = e(K/k) = 2^{n-\lambda-1}$, and $\mathfrak{T}(K/k) = \langle \iota_0 \rangle \times \langle \theta_0^2 \rangle$ is canonically isomorphic to $\mathfrak{T}(k(\zeta)/k) = \langle \iota_0 \rangle \times \langle \tau_0 \rangle$. In particular, $|\tau| = |\theta_0^2| = 2^{n-2-\lambda}$. Let $\varepsilon_2(k(\zeta)) = \langle \zeta_{2m} \rangle$ and $\varepsilon'(k(\zeta)) = \langle \zeta_{1} \rangle$. Then $2 \leq m \leq n$, $k(\zeta) = k(\zeta_{2m}, \zeta_1)$, t divides $2^r - 1$. Now $\tau(\zeta_{2m}) = \theta_0^2 \langle \zeta_{2m} \rangle = \zeta_{2m}^{52\lambda}$, $\tau(\zeta_1) = \theta_0^2 \langle \zeta_1 \rangle = \zeta_1$. So $|\tau| = 2^{m-2-\lambda}$. Thus n = m, proving the lemma.

We recall that

$$t(\zeta_{2n}) = \zeta_{2n}^{-1}, \qquad \tau(\zeta_{2n}) = \zeta_{2n}^{5^{2\lambda}}, \qquad \eta(\zeta_{2n}) = \zeta_{2n}^{5^{\mu}},$$

and for any σ , $\tau \in \mathcal{G}(k(\zeta)/k)$, $\beta(\sigma, \tau) \in \langle \zeta_{2^n} \rangle = \varepsilon_2(k(\zeta)) = \varepsilon_2(K)$. Since $\beta(\ell, \ell) = u_\ell^2 = u_\ell u_\ell^2 u_\ell^{-1} = \ell(\beta(\ell, \ell))$, it follows that $\beta(\ell, \ell) = \pm 1$. Let

$$\begin{split} \beta(\tau, \, \eta)/\beta(\eta, \, \tau) &= \zeta_{2^n}^a \,, \qquad \beta(\iota, \, \eta)/\beta(\eta, \, \iota) = \zeta_{2^n}^b \,, \\ \beta(\tau, \, \iota)/\beta(\iota, \, \tau) &= \zeta_{2^n}^c \,, \qquad \beta(\iota, \, \iota) = (-1)^d \,. \end{split}$$

We shall see that the integers a, b, c and d determine the Hasse invariant of the cyclotomic algebra $B \sim (\beta, k(\zeta)/k)$.

Let ρ denote a primitive $2^{n+\lambda+2}$ -th root of unity $\zeta_{2^{n+\lambda+2}}$ and put $L=Q_2(\rho,\zeta_{0^{s-1}})\supset K\supset k(\zeta)\supset k\supset Q_2$, where $s=2^nr$. We have $\mathcal{L}(L/Q_2)=\langle \ell_1\rangle\times\langle \theta_1\rangle\times\langle \xi_1\rangle$,

$$\begin{split} &\iota_{1}(\rho) \!=\! \rho^{-1}, \quad \theta_{1}(\rho) \!=\! \rho^{5}, \quad \iota_{1}(\zeta_{2^{s}-1}) \!=\! \theta_{1}(\zeta_{2^{s}-1}) \!=\! \zeta_{2^{s}-1}, \\ &\xi_{1}(\zeta_{2^{s}-1}) \!=\! \zeta_{2^{s}-1}, \quad \xi_{1}(\rho) \!=\! \rho \; . \end{split}$$

Then $\iota_1|K=\iota_0$, $\theta_1|K=\theta_0$, $\xi_1|K=\xi$, so $\iota_1|k(\zeta)=\iota$, $\theta_1^{2\lambda}|k(\zeta)=\tau$, $\theta_1^{\mu}\xi_1^{\ell}|k(\zeta)=\eta$. For simplicity, put $\omega=\theta_1^{2\lambda}$, $\phi=\theta_1^{\mu}\xi_1^{\ell}$. Then ω , $\phi\in\mathcal{G}(L/k)$, and ϕ is a Frobenius automorphism of L/k. We have $\omega(\rho)=\rho^{\mathfrak{s}^{2\lambda}}$, $\phi(\rho)=\rho^{\mathfrak{s}^{\mu}}$. Since $e(L/k)=e(L/Q_2)/e(k/Q_2)=2^{n+1}$, then $\mathcal{G}(L/k)=\langle \iota_1\rangle\times\langle \omega\rangle$. Recall that 2^{λ} divides $\mu r/f$.

We have

$$\phi^{s/f} = \theta_1^{\mu s/f} \xi_1^{f s/f} = \theta_1^{2^n \mu r/f} = 1$$
,

because $|\theta_1| = 2^{n+\lambda}$. Thus the order of the Frobenius automorphism ϕ of L/k is equal to the residue class degree s/f of L/k. This implies that

$$\mathcal{G}(L/k) = \langle \ell_1 \rangle \times \langle \omega \rangle \times \langle \phi \rangle$$
.

For simplicity, put z=s/f.

Let Inf denote the inflation map from $H^2(k(\zeta)/k)$ into $H^2(L/k)$, and put $\beta' = \text{Inf } \beta$. Then $B \sim (\beta, k(\zeta)/k) \sim (\beta', L/k)$. We have

$$\begin{split} (\beta', L/k) &= \sum_{\sigma \in \mathcal{G}(L/k)} L v_{\sigma} = \sum_{i=0}^{1} \sum_{j=0}^{2^{n-1}} \sum_{l=0}^{z-1} L v_{\iota_{1}}^{i} v_{\omega}^{j} v_{\phi}^{l} \,, \\ v_{\omega} v_{\phi} &= (\beta'(\omega, \phi)/\beta'(\phi, \omega)) v_{\phi} v_{\omega} = \zeta_{2^{n}}^{a} v_{\phi} v_{\omega} \,, \\ v_{\iota_{1}} v_{\phi} &= (\beta'(\iota_{1}, \phi)/\beta'(\phi, \iota_{1})) v_{\phi} v_{\iota_{1}} = \zeta_{2^{n}}^{b} v_{\phi} v_{\iota_{1}} \,, \\ v_{\omega} v_{\iota_{1}} &= (\beta'(\omega, \iota_{1})/\beta'(\iota_{1}, \omega)) v_{\iota_{1}} v_{\omega} = \zeta_{2^{n}}^{c} v_{\iota_{1}} v_{\omega} \,, \\ v_{\iota_{1}}^{2} &= \beta'(\iota_{1}, \iota_{1}) = (-1)^{d} \,. \end{split}$$

In the above, we recall that $\beta'(\omega,\phi)/\beta'(\phi,\omega)=\beta(\tau,\eta)/\beta(\eta,\tau)=\zeta_{2}^{a}$, etc.

Let L' and L'' be the fixed fields of the subgroups $\langle \omega \rangle$ and $\langle \iota_1 \rangle \times \langle \phi \rangle$ of $\mathcal{G}(L/k)$, respectively, in the sense of Galois theory. Then L = L'L'' and $L' \cap L'' = k$. We identify $\mathcal{G}(L'/k)$ with $\langle \iota_1 \rangle \times \langle \phi \rangle$, and $\mathcal{G}(L''/k)$ with $\langle \omega \rangle$. Since $5^{2^{\lambda}} \equiv 1 \pmod{2^{\lambda+2}}$, $5^{2^{\lambda}} \equiv 1 \pmod{2^{\lambda+3}}$, we choose a primitive $2^{n+\lambda+2}$ -th (resp. 2^n -th) root of unity $\rho = \zeta_{2^{n+\lambda+2}}$ (resp. ζ_{2^n}) such that $\zeta_{2^n} = \rho^{5^{2^{\lambda}-1}}$. Then, $\rho^{5^{2^{\lambda}}} = \rho \cdot \zeta_{2^n}$. We have

$$\begin{split} v_{\omega}(\rho^{-c}v_{\ell_1}) &= \rho^{-c5^{2}} v_{\omega} v_{\ell_1} = \rho^{-c5^{2}} \zeta_{2n}^{c} v_{\ell_1} v_{\omega} = (\rho^{-c}v_{\ell_1}) v_{\omega} , \\ v_{\omega}(\rho^{-a}v_{\phi}) &= \rho^{-a5^{2}} v_{\omega} v_{\phi} = \rho^{-a5^{2}} \zeta_{2n}^{a} v_{\phi} v_{\omega} = (\rho^{-a}v_{\phi}) v_{\omega} . \end{split}$$

Note that v_{ω} commutes with each element of L'. Also, $\rho^{-c}v_{\ell_1}$ and $\rho^{-a}v_{\phi}$ commute with each element of L''. Thus we have

$$\begin{split} (\beta', \, L/k) &= \sum_{j=0}^{2^{n}-1} \sum_{i=0}^{1} \sum_{l=0}^{z-1} L'' L' v_{\omega}^{j} (\rho^{-c} v_{\epsilon_{1}})^{i} (\rho^{-a} v_{\phi})^{l} \\ &= \left[\sum_{j=0}^{2^{n}-1} L'' v_{\omega}^{j}\right] \cdot \left[\sum_{i=0}^{1} \sum_{l=0}^{z-1} L' (\rho^{-c} v_{\epsilon_{1}})^{i} (\rho^{-a} v_{\phi})^{l}\right] \\ &\cong (v_{\omega}^{2^{n}}, \, L''/k, \, \omega) \bigotimes_{k} \left[\sum_{i=0}^{1} \sum_{l=0}^{z-1} L' (\rho^{-c} v_{\epsilon_{1}})^{i} (\rho^{-a} v_{\phi})^{l}\right], \\ v_{\omega}^{2^{n}} &= \beta'(\omega, \, \omega) \beta'(\omega^{2}, \, \omega) \cdots \beta'(\omega^{2^{n}-1}, \, \omega) \in \langle \zeta_{2^{n}} \rangle \cap k = \{\pm 1\}, \end{split}$$

because $\zeta_4 \oplus k$.

312 T. Yamada

Denote by C the above cyclic algebra $(v_\omega^{2^n}, L''/k, \omega)$. We will show $C \sim k$. If $v_\omega^{2^n} = 1$, then $C \sim k$. Suppose that $v_\omega^{2^n} = -1$. The index of the cyclic algebra $(-1, L''/k, \omega)$ is the order of the norm residue symbol $(-1, L''/k) \in \mathcal{G}(L''/k)$. If $[k:Q_2]$ is divisible by 2, then $(-1, L''/k) = (N_{k/Q_2}(-1), L''/Q_2) = (1, L''/Q_2) = 1 \in \mathcal{G}(L''/Q_2)$, and so $C \sim k$. If $[k:Q_2]$ is not divisible by 2, then k/Q_2 is unramified and hence $\mathcal{G}(L/k) = \langle \theta_1 \rangle \times \langle \iota_1 \rangle \times \langle \phi \rangle$, $(\lambda = 0, \omega = \theta_1)$. Consequently, $\xi_1^\ell = \phi \theta_1^{-\mu}$ is also a Frobenius automorphism of L/k, and so we may assume $\phi = \xi_1^\ell$. Then $L'' = k \cdot k_0$, $k_0 = Q_2(\zeta_{2^n} + \zeta_{2^n}^{-1})$, $k \cap k_0 = Q_2$, $\langle \theta_1 \rangle \cong \mathcal{G}(L''/k) \cong \mathcal{G}(k_0/Q_2)$. Hence we have

$$(-1, L''/k, \theta_1) \cong (-1, k_0/Q_2, \theta_1) \bigotimes_{Q_2} k$$
.

The index of the cyclic algebra $(-1, k_0/Q_2, \theta_1)$ is equal to the order of the norm residue symbol $(-1, k_0/Q_2)$. But k_0 is the fixed field of the norm residue symbol $(-1, Q_2(\zeta_{2^n})/Q_2) \in \mathcal{Q}(Q_2(\zeta_{2^n})/Q_2)$, and so $(-1, k_0/Q_2) = (-1, Q_2(\zeta_{2^n})/Q_2) | k_0 = 1 \in \mathcal{Q}(k_0/Q_2)$. This implies $(-1, k_0/Q_2, \theta_1) \sim Q_2$, and $(-1, L''/k, \theta_1) \sim k$. Thus

$$B \sim (\beta', \ L/k) \sim \sum_{i=0}^1 \sum_{l=0}^{z-1} L'(\rho^{-c} v_{\iota_1})^i (\rho^{-a} v_{\phi})^l \ .$$

We have

$$\begin{split} (\rho^{-c}v_{\iota_1})(\rho^{-a}v_{\phi}) &= \rho^{-c+a}v_{\iota_1}v_{\phi} = \rho^{-c+a}\zeta_{2n}^b v_{\phi}v_{\iota_1} \\ &= \rho^{-c+a+(5^{2^{\lambda}}-1)b}v_{\phi}v_{\iota_1} = \rho^{-c+a+(5^{2^{\lambda}}-1)b}v_{\phi}\rho^c\rho^{-c}v_{\iota_1} \\ &= \rho^{2a+(5^{2^{\lambda}}-1)b+(5^{\mu}-1)c}(\rho^{-a}v_{\phi})(\rho^{-c}v_{\iota_1}) \;. \end{split}$$

Put

$$h'\!=\!2a\!+\!(5^{\imath^{\lambda}}\!-\!1)b\!+\!(5^{\mu}\!-\!1)c\;,\quad w_{\,\iota_1}\!=\!\rho^{-c}v_{\,\iota_1}\;,\quad w_{\,\phi}\!=\!\rho^{-a}v_{\,\phi}\;.$$

Then $w_{\iota_1}w_{\phi}=\rho^{h'}w_{\phi}w_{\iota_1}$ and so $\rho^{h'}=w_{\iota_1}w_{\phi}w_{\iota_1}^{-1}w_{\phi}^{-1}$. Since v_{ω} commutes with w_{ι_1} and w_{ϕ} , it follows that $v_{\omega}\rho^{h'}v_{\omega}^{-1}=\rho^{h'}$ and

$$\rho^{h'(5^{2^{\lambda}}-1)} \! = \! \omega(\rho^{h'}) \rho^{-h'} \! = \! v_{\omega} \rho^{h'} v_{\omega}^{-1} \! \cdot \! \rho^{-h'} \! = \! \rho^{h'} \rho^{-h'} \! = \! 1 \, .$$

Therefore, h' is divisible by 2^n . Put $h=h'/2^n$. ρ^{2^n} is a primitive $2^{\lambda+2}$ -th root of unity, so write $\zeta_{2\lambda+2}=\rho^{2^n}$. Then $\rho^{h'}=\rho^{2^n\cdot h'/2^n}=(\zeta_{2\lambda+2})^h$. Set $y_\phi=(1+\zeta_{2\lambda+2})^hw_\phi$. It follows that

$$w_{\,\iota_1} y_{\,\phi} \!=\! (1 \!+\! \zeta_{2\lambda+2}^{-1})^\hbar \zeta_{2\,\,\lambda+2}^\hbar w_{\,\phi} w_{\,\iota_1} \!=\! (1 \!+\! \zeta_{2\,\lambda+2})^\hbar w_{\,\phi} w_{\,\iota_1} \!=\! y_{\,\phi} w_{\,\iota_1} \,.$$

Let E (resp. F) denote the fixed field of $\langle \iota_1 \rangle$ (resp. $\langle \phi \rangle$) in L'/k. Then $L' = E \cdot F$, $E \cap F = k$, $\mathcal{G}(E/k) \cong \langle \phi \rangle$, and $\mathcal{G}(F/k) \cong \langle \iota_1 \rangle$. We have

$$B \sim \sum_{i=0}^{1} \sum_{l=0}^{z-1} L' w_{\ell_{1}}^{i} w_{\phi}^{l} = \sum_{i=0}^{1} \sum_{l=0}^{z-1} E \cdot F w_{\ell_{1}}^{i} y_{\phi}^{l}$$

$$= \left[\sum_{i=0}^{1} F w_{\ell_{1}}^{i} \right] \cdot \left[\sum_{l=0}^{z-1} E y_{\phi}^{l} \right] \cong (w_{\ell_{1}}^{2}, F/k, \ell_{1}) \bigotimes_{k} (y_{\phi}^{z}, E/k, \phi),$$

$$\begin{split} w_{\ell_1}^2 &= (\rho^{-c} v_{\ell_1})^2 = \rho^{-c} v_{\ell_1} \rho^{-c} v_{\ell_1} = \rho^{-c+c} v_{\ell_1}^2 = \beta'(\ell_1, \, \ell_1) \\ &= \beta(\ell, \, \ell) = (-1)^d \,, \\ y_{\phi}^z &= \{ (1 + \zeta_{2^{\lambda+2}})^h w_{\phi} \}^z = \prod_{l=0}^{z-1} \{ 1 + \phi^l(\zeta_{2^{\lambda+2}}) \}^h] \cdot w_{\phi}^z \,, \\ w_{\phi}^z &= (\rho^{-a} v_{\phi})^z = \{ \prod_{l=0}^{z-1} \phi^l(\rho^{-a}) \} \, \beta'(\phi, \, \phi) \beta'(\phi^2, \, \phi) \cdots \, \beta'(\phi^{z-1}, \, \phi) \,. \end{split}$$

For a finite extension Ω of Q_2 , V_{Ω} denotes the normalized discrete valuation of Ω . That is, if π is a prime element of Ω , then $V_{\Omega}(\pi)=1$. The elements

$$1+\phi^{l}(\zeta_{2\lambda+2})$$
 $(l=0, 1, \dots, z-1)$

are prime elements of $Q_2(\zeta_{2^{\lambda+2}})$, and w_ϕ^z is a root of unity contained in L. Since $e(L/k)=2^{n+1}$ and $e(L/Q_2(\zeta_{2^{\lambda+2}}))=2^n$, it follows that

$$2^{n+1} \cdot V_k(y_{\phi}^z) = V_L(y_{\phi}^z) = V_L(\prod_{l=0}^{z-1} (1 + \phi^l(\zeta_{2^{\lambda+2}}))^h)$$

$$= \sum_{l=0}^{{\bf z}-1} h \cdot V_L(1+\phi^l(\zeta_{2^{\lambda+2}})) = \sum_{l=0}^{{\bf z}-1} h \cdot 2^n V_{Q_2(\zeta_2\lambda+2)}(1+\phi^l(\zeta_{2^{\lambda+2}})) = 2^n hz \; ,$$

and consequently, $V_k(y_\phi^z) = hz/2$. Because E/k is an unramified extension of degree z, it follows from the definition of Hasse invariant that the Hasse invariant of the cyclic algebra $(y_\phi^z, E/k, \phi)$ is:

$$inv(y_{\phi}^{z}, E/k, \phi) = V_{k}(y_{\phi}^{z})/z = h/2$$
.

Next consider the cyclic algebra $(-1,F/k,\iota_1)$, whose index is equal to the order of the norm residue symbol $(-1,F/k)=(N_{k/Q_2}(-1),F/Q_2)$. If $2|\lceil k:Q_2\rceil$, then $N_{k/Q_2}(-1)=1$, so $(-1,F/k,\iota_1)\sim k$. It is easy to see that if $2\not\mid \lceil k:Q_2\rceil$, then k/Q_2 is unramified, $F=k(\zeta_4)$, and $N_{k/Q_2}(-1)=-1$. But there is no element $\delta\in F$ such that $N_{F/Q_2}(\delta)=-1$, because there is no element $\delta'\in Q_2(\zeta_4)\subset F=k(\zeta_4)$ such that $N_{Q_2(\zeta_4)/Q_2}(\delta')=-1$. Hence the order of the norm residue symbol $(-1,F/Q_2)$ equals 2. Consequently, we have

$$\operatorname{inv}(w_{\iota_1}^2, F/k, \iota_1) = \left\{ egin{array}{ll} rac{1}{2}, & ext{if } 2 \not \mid \lceil k : Q_2
ceil ext{ and } eta(\iota, \iota) = -1, \\ 0, & ext{otherwise.} \end{array}
ight.$$

Thus we have proved the following theorem.

Theorem 2. Let k be a cyclotomic extension of the 2-adic numbers Q_2 . Let $B=(\alpha, k(\zeta)/k)$ be a cyclotomic algebra over k. Let $\varepsilon_2(k(\zeta))=\langle \zeta_{2^n}\rangle$, $\varepsilon'(k(\zeta))=\langle \zeta_t\rangle$, so $k(\zeta)=k(\zeta_{2^n},\zeta_t)$. For σ , $\sigma'\in \mathcal{Q}(k(\zeta)/k)$, let $\alpha(\sigma,\sigma')=\beta(\sigma,\sigma')\gamma(\sigma,\sigma')$, $\beta(\sigma,\sigma')\in \langle \zeta_{2^n}\rangle$, $\gamma(\sigma,\sigma')\in \langle \zeta_t\rangle$. Then $B\sim(\beta,k(\zeta)/k)$. If n<2, then $B\sim k$. Assume that $n\geq 2$. If the inertia group \mathcal{Q} of $k(\zeta)/k$ does not contain an automorphism ϵ such that $\epsilon(\zeta_{2^n})=\zeta_{2^n}$, $\epsilon(\zeta_t)=\zeta_t$, then δk . Suppose that $\epsilon \in \mathcal{Q}$. Then δk is of the form:

314 T. Yamada

 $\mathcal{I}=\langle \iota\rangle \times \langle \tau\rangle$, where $\tau(\zeta_{2^n})=\zeta_{2^n}^{5^2}$ $(0\leq \lambda\leq n-2)$, $\tau(\zeta_t)=\zeta_t$. (If $\lambda=n-2$, $\tau=1$.) There exists a Frobenius automorphism η of $k(\zeta)/k$ such that $\eta(\zeta_{2^n})=\zeta_{2^n}^{5^\mu}$ for some integer μ $(0\leq \mu<2^{n-2})$. Let

$$\begin{split} \beta(\tau,\,\eta)/\beta(\eta,\,\tau) &= \zeta_{2^n}^a\,, \qquad \beta(\iota,\,\eta)/\beta(\eta,\,\iota) = \zeta_{2^n}^b\,, \\ \beta(\tau,\,\iota)/\beta(\iota,\,\tau) &= \zeta_{2^n}^c\,, \qquad \beta(\iota,\,\iota) = (-1)^d\,, \\ h &= \left\{2a + (5^{2^\lambda} - 1)b + (5^\mu - 1)c\right\}/2^n\,. \end{split}$$

Then h is an integer and the Hasse invariant of B is:

$$invB \equiv \frac{h}{2} + [k:Q_2] 2^{(-1)^d} \pmod{1}.$$

So the index of B is 1 and 2 if the right side is congruent to 0 and $1/2 \pmod{1}$, respectively.

When K is a field which is not necessarily cyclotomic, we have

THEOREM 3. Let K be a finite extension of Q_2 and let $B=(\alpha, K(\zeta)/K)$ be a cyclotomic algebra over K, where ζ is a root of unity. If the group of roots of unity in $K(\zeta)$ is generated by ζ' , then $K(\zeta)=K(\zeta')$ and the values of α belong to $\langle \zeta' \rangle$. Let k denote the maximal cyclotomic extension of Q_2 contained in K. Then $\mathcal{G}(K(\zeta)/K)\cong \mathcal{G}(k(\zeta')/k)$ and $B\cong (\alpha, k(\zeta')/k)\otimes_k K$. So $\mathrm{inv} B=[K:k]\cdot\mathrm{inv}(\alpha, k(\zeta')/k)$, and $\mathrm{inv}(\alpha, k(\zeta')/k)$ is given by Theorem 2.

PROOF. Put $F=k(\zeta')\cap K$. Then F is a cyclotomic extension of Q_2 contained in K. Hence F=k and $\mathcal{Q}(k(\zeta')/k)\cong\mathcal{Q}(K(\zeta)/K)$. The rest of the assertions follows immediately.

References

- [1] R. Brauer, Representations of groups of finite order, Proc. Int. Cong. Math., 2 (1950), 33-36.
- [2] R. Brauer, On the algebraic structure of group rings, J. Math. Soc. Japan, 3 (1951), 237-251.
- [3] G.J. Janusz, The Schur group of an algebraic number field, Ann. of Math., 103 (1976), 253-281.
- [4] S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, Mass., 1970.
- [5] E. Witt, Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zahlkörper, J. Reine Angew. Math., 190 (1952), 231-245.
- [6] T. Yamada, Characterization of the simple components of the group algebras over the p-adic number field, J. Math. Soc. Japan, 23 (1971), 295-310.
- [7] T. Yamada, The Schur subgroup of a 2-adic field, J. Math. Soc. Japan, 26 (1974), 168-179.
- [8] T. Yamada, The Schur subgroup of a p-adic field, J. Algebra, 31 (1974), 480-498.
- [9] T. Yamada, The Schur Subgroup of the Brauer Group, Lecture Notes in Mathe-

matics, Springer, Berlin-Heidelberg-New York, 1974.

[10] T. Yamada, More on the Schur index and the order and exponent of a finite group, Tokyo J. Math., 1 (1978), 269-273.

Toshihiko YAMADA Department of Mathematics Science University of Tokyo Wakamiya 26, Shinjuku-ku Tokyo 162, Japan