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§0. Introduction.

In this paper we will study the problem of deforming a differentiable map
of a differentiable manifold N into a differentiable manifold P in the homotopy
class to a differentiable map which does not admit particularly complicated
Thom-Boardman singularities of order two.

Let YI(N, P) denote the Thom-Boardman singularity with symbol I which
is defined in the jet-space J"(N, P) where I denote either (7) for »r=1, or (i, j)

i for r=2 ([2], and [18]). Let Z(N, P) denote the closure of XI(N, P) in
J'(N, P), and vy, the codimension of 2¥(N, P) in J(N, P). Let N be a closed
differentiable manifold, n=dim N and p=dim P. The canonical fiber of X’(N, P)
over NX P will be denoted by X4(n, p). We will define in §2 and §6 the dual
class [J¥(N, P)] in H'Y(NXP; G) of the Thom-Boardman singularity 2*(N, P).
The coefficient group G denotes either Z or Z, depending on whether X’(n, p)
is orientable or not. When G is Z, we assume N and P to be orientable mani-
folds. For a differentiable map f: N—P We.de'n\ote_"the class (idy X /)*CZ1(N, P)D)
in H'X(N; G) by ¢ (TN, fTP)). We will give in §5 a formula to calculate
the dual class ¢/(TN, fX(TP)) in a ﬁnithe*pﬂrocess in terms of the characteristic
classes of N and P. The Z,-reduction of these dual classes coincides with those
which have been defined in under the sheaf homology (cohomology resp.)
groups with closed supports. We will use the singular homology (cohomology
resp.) groups in our definition. We will show the following two applications of
the dual classes. _

Let QI(N, P) denote the union of all Thom-Boardman singularities with
symbol smaller than or equal to I in the lexicographic order. Let C% (N, P)
denote the space of all differentiable maps, f: N—P such that the image of
J7f : N=J(N, P) is contained in Q27(N, P) with C~-topology. Let I,;(N) denote
the space of all continuous sect'ion_s, of the fiber bundle of J"(N, P) over N such
that the image of a section is contained’ in QI(N, P) equipped with compact-
open topology. Let Q(N, P) denote 27(N, P\X!(N, P) and we consider similarly
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C3(N, P) and I'o(N). Then we have a canonical cotinuous map ;7: C3(N, P)—
ITo(N). We will say that Q(N, P) is m-integrable when the induced map
(JN*: mo(CHN, P))—mo(lg(N)) is surjective and that a symbol I is good when
every fibre of 27(N, P) and of (N, P) over NXP are connected and simply
connected. The ro-integrability has been discussed in and extensively
and also in [1I]. Note that I is good if codim¥%>2 for every K with K=I,
and hence [ is good in most case. The following theorem will be proved in § 6.

THEOREM 1. Let N, P and f be as above. Let I be any good symbol such
that codimX (N, P)=n except for the case that r=2, p—n+i=1and i>j. Let
(N, P) be no-integrable. Then there exists a differentiable map g of C3(N, P)
such that j g is homotopic to j°f as maps of N into Q*(N, P) (hence g is homo-
topic to f) if and only if the dual class ¢'(TN, f*(T P)) vanishes.

In §7 we will treat continuous maps which are not homotopic to any C~-stable
map. J.N. Mather has proved in that C=-stable maps are dense in the space
of all proper differentiable maps of C*(N, P) in the ‘nice range’. We will obtain
the following result outside of the nice range.

THEOREM 2. Let f be a continuous map of a closed differeniiable manifold
N into a differentiable manifold P. We assume that there exists an integer i
such that

(1) <p—n+z‘){z’+%z'(i+1)}—z‘2—(p—n+i)2+1>n, and

(2) either (i) the determinant of the following (p—n-+i)-matrix whose (s, t)
component is the Stiefel-Whitney class Wivs_i(7) of y=TN—f*(TP)

W), WealD) \
Wi+1.(7')..'-,. ."'._

" .I’i"«;a(?’)
\ .V.Vi-}-l(r) .'Wi(T) /

is not zero, or

(ii) both of n—p and i are even, both of N and P are orientable and the
determinant of the following (p—n-1)/2-matrix whose (s, t) component is the
Pontrjagin class Pcijay+s-i(7)

( Pu(p), Pir-o(1) \
Pi/2+1(.7’) '

.".. 131'/2—1(7‘)
v Piais)  Pis)

.
.
.
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is not an element of 2-torsion.

Then f is not homotopic to any C=-stable map (especially when P is RP, there
exists no C=-stable map in C°(N, RP).

This theorem follows from more general In §7 we will give
examples of manifolds N and P such that there exists no C”-stable map in
C=(N, P).

All manifolds, fiber bundles and maps will be differentiable of class C* un-
less otherwise stated. All manifolds will be paracompact and Hausdorff.

§1. Notations and preliminaries.

Let £ and 7 denote respectively differentiable real vector bundles, £E—X and
F—X of dimensions n and p over a manifold X. Let E, and F, be respectively
fibres of £ and F over a point x in X. Let Hom (§, ) denote the union of all
linear maps of E, into F,, xgx Hom (E,, F.), which becomes naturally a real

vector bundle over X.

We begin with recalling the definition of Thom-Boardman singularities (see
2], and especially [15]). For convenience we put J%(&, n)=Hom (¢, %) and
J*&, n)=Hom (§, n) @ Hom (£-&, 7) where £-£ denote the symmetric product of
§. In the sequel we will denote an element of J*&, ) over a point x in X by
(a, B) where a (resp. B) is an element of Hom (E,, F,) (resp. Hom (E-E, F.)).
An element (a, B) of J¥E,, F.) determines a linear map j : Ker (a)—~Hom (Ker (a),
Cok (a)) which is induced from the projection of F, onto Cok (a) and the iso-
morphism of Hom (E,QE,, F;) onto Hom (E,, Hom (E, FJ)).

DEFINITION 1.1. Let X%, ) denote the space of all elements of J*&, 7)
such that the dimension of Ker (a) is i. Let Y%7, ) denote the space of all
elements (a, B) of J*§, ) such that a2, ») and that the dimension of
Ker (f) is j.

In the sequel I means either (1) or (7, j). Y%7, ) is nonempty if and only
if () n=i=7=0 (ii) i7=Zn—p and (iii) 7=; for i=n—p. We call I(&, ) the
Thom-Boardman singularity with symbol I. When & and y are trivial bundles
R™ and RP? over a single point, we simply write X?(n, p) (resp. J7(n, p)) in place
of Y1(&, n) (resp. J7(&, ). It is clear that X!(¢, p)= UX 2UE,, F,). Itisshown

ITE

in [2], and that 37(§, ) is a regular submanifold of J7(§, 5). The
codimension of 2%(&, ) in J*(&, 5) is {(p—n-+17) and the codimension of I*4(&, 7)
in J¥&, n), G+ie))p—n-+i)—ji—j) where an integer i-;j denotes the dimen-
sion j(i—)+(i/2)j(j+1) of R*-R/.

If we provide £ and » with metrics, then we can provide J7(¢, ») with a
metric. Let S7(§, ») denote the associated sphere bundle of J"(§, »). We put
N n=21¢&, NS¢, n). Then Y&, n) is empty for I=(n) and I=(n, n).
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If ¢t is a non-zero real number, then it is easy to see that tas 2§, ) (resp.
(ta, tBeXi(E, ) if and only if as%§, ) (resp. (a, f)e2>/(&, 7). Hence
21(&, n) is diffeomorphic to X¥(&, »)X R* unless I=(n) and (n, n). Here R* is
the set of all positive real numbers.

Let 2!(¢, n) denote the topological closure of X’(¢, ») in J7(§, ). Then
2UE, pNST(E, p) is equal to the closure of 3£, ) in S7(§, 7). Let 2%, n)
denote the union of all Thom-Boardman singularities X%(§, ») with symbols L
either smaller than or equal to K in the lexicographic order. We put 2£(&, 7)
=0Q%¢&, NS, ) and L2, =21, P\X(E, ). When & and 5 are trivial
bundles R™ and R?, we will write simply 27 and 2 for 2/(§, ) and 2(, )
respectively.

Next we will fix notations about grassmann bundles which will be often
used. Let G, ,-i(V) be the grassmann manifold of all 7-planes in an n-dimensional
vector space V and Gy, j n-i(V), the iterated grassmann manifold of all pairs
(a, b) where a is an i-dimensional space of ¥V and b a j-dimensional space of
a. We often write simply G; ,-; and G, »-; when there is no confusion. Let
v be a vector bundle over a space M. Then G; ,_;(v) (resp. Gy, n-i(v)) denote
the associated (resp. iterated) grassmann bundle over M whose total space is

U Gy n-i(vz) (resp. U Gy, jn-i(vs)) where v, is the fiber of v over a point x of
TeEM zeM

M. We will denote by ™ any trivial bundle of dimension m over any base
space.

Here we give an outline of the proof of [Theorem 1. Let zy: NXP—N
and zp: NXP—P be respectively the projection maps. Let é=(zx)*(TN) and
p=(zp)*(TP) where TN and TP denote the tangent bundles of N and P. We
can identify J7(N, P) with J7(§, n) ([15, §3]). Let f: N—P be a given map and
consider J(TN, f*(TP)) which is induced from J7(§, ») by the map idyX/f:
N—-NxP. Then the primary obstruction class for ;7f: N>QI(TN, f*(TP)) to
be homotopic to a section of (TN, f*(TP)) exists in H*'(N; =, (27, 2)) where
y; is the codimension of X%(n, p) in J7(n, p). Let d, denote the dimension of
2i(n, p). The essential part of the proof is to compute =,, (27, 2) and Hy,
(Zi(n, p); Z). In most cases these groups are isomorphic to either Z or Z,
depending on whether 37(n, p) is orientable or not. This enables us to define
the fundamental class of F{TN, f*(TP)), and its dual class becomes the above
primary obstruction class.

§2. The closure of X(n, p).

In this section we will determine the homology and cohomology groups,
Hy (Z¥(n, p)) and H*'(T(n, p)) with the coefficient group Z or Z, where d;=
dim X{(n, p). We will simply write X7 in place of XI(n, p) if there is no
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confusion.

Let («, 8) be an element of Y“™(n, p). Let K be an i-dimensional subspace
of Ker(a) and L a j-dimensional subspace of K. Then (a, 8) induces a homo-
morphism a’: R"/K—R? and a restriction map 8’ : K- LCR"-R"—RP?.

LEMMA 2.1. Let (a, B) be an element of J*n, p) such that acXi(n, p).
Then (a, B) belongs to X%¥(n, p) if and only if (1) (=i and (2) there exist an i-
dimensional subspace K in Ker (a) and a j-dimensional subspace L in K such that
the dimension of the kernel of (a’, §'): R*/K@K-L—R? is not less than i-].

PROOF. Let (a, B) belong to X7, Then there exists a sequence (a;, S:)
in Y%7 which converges to (a, §). Since the sequence {a;} converges to a, it
is clear that /=;. Since dim Ker (a;)=7, dim Ker (5;)=; and Ker(a;)DKer(j:),
we obtain an element (Ker (a;), Ker (8;)) of Gy jn-; for each ¢. Then there
exist subspaces K, and L, and a subsequence {{;} of {f} such that the sequence
(Ker(a,), Ker(ﬁts)) converges to (Ko, Lo) in Gy ;.. Let & and &; denote the
canonical vector bundles of dimension 7/ and j respectively over G; j n-i. We
consider the vector bundle Hom(0"/&,P&-&;, 67) over Gy, .-; in which we have
a sequence {(a:,, B8:,)}, where (ai,, fBi,): R"/Ker(ats)@Ker(ats)oKer(Bts)—»Rp is
induced from {(a.,, B:,)}. Since K, is contained in Ker(a), we can also define
an element (a/, f): R"/KDKo°Lo—R? in Hom (0"/§,D&:°&;, 67). Then it
follows from the construction that the sequence {(a:,, B:,)} converges to (a’, ).
Therefore the dimension of the kernel of («’, 8’) is not less than 7-; since the
dimension of the kernel of (ai,, B:,) is 7oj for each ;.

Conversely we assume that the conditions (1) and (2) are satisfied by («, B).
Since dim (Ker (a/, f/))=7-j, we know that the dimension of Ker (p-p’) where
p is the projection of R? onto R?/Im(a) is not less than iej—(/—7). We con-
sider the usual metrics on R™ and R?. Let V, be the orthogonal space of jKo
in Ker(«) and V, the orthogonal space of Im(a) in R?. Then dim V,=(—,
dim V,=p—n-+/ and dim V,=>dim V,. Hence there exists a homomorphism
7: R*>RP? such that y maps V, injectively into V, and annihilates both of K,
and the orthogonal complement of Ker (a). We put a;=a-+(1/t)r. Then it is
clear that Ker (a;) is constantly K, and Im(«a;) the direct sum of Im(a) and
Im(y). Then we have that B'(K,°L,)CIm(a;). Hence the dimension of the
kernel of f: K,—Hom(K,, R?/(Im (a)®Im (7)) induced from (a:, B) is not less
than 7. Since we can construct easily a sequence {8} which converges to B
such that the dimension of the kernel of j,: K, — Hom (K,, R?/(Im (a)PIm(pB)))
is equal to j, there exists a sequence {(a;, By} in 2"/ which converges to (a, f).

Q.E.D.

Let V7 be the union of all Thom-Boardman singularities X%(n, p) with K
>1. Then as a trivial corollary of lemma 2.1, we have the followihg '

COROLLARY 2.2. (1) X%i(n, p) is contained in V.
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() If h=j, then Z*™n, p) is contained in Z"I(n, p).

It is clear that S%(n, p) is exactly the union V? of all X*(n, p) with k=i
and that it is an algebraic set of J'(n, p). For r=2, V7 is represented as a
set of all elements z of J%(n, p) which satisfy the following conditions under
the notations of [11, §3 and §4]

rk I(z)=n—i and rk L' JE@)=n—7.

Hence V7’ is an algebraic set of J%*(n, p). The closure of 2Z(n, p) is also an
algebraic set of J%(n, p)([15, Proposition 4.1]).

For a given symbol I, we define a symbol I’ as follows. We put I'=(+1)
for r=1. For r=2 we put I'=(+1, 0) when /=5 and I'=(, j+1) when i>].
Then it follows from that $7\Y! is equal to VI'"\E!. Hence
SI\3! is an algebraic set. Next we will estimate the dimension of S\ as
an algebraic set.

PROPOSITION 2.3. Let I be either (i) or (1, 7) and p—n—+i=1. Then the
dimension of Si(n, p)\Z¥n, p) is smaller than d;—1 except for the case of
p—n+i=1 and j=0. When p—n—+i=1 and j=0, it is equal to d;—1.

PrROOF. It is easy to prove for »=1 by the formula codim X*=Fk(p—n+Ek).
For »=2 it is enough to estimate the dimension of ZN\(Y'XHom (R"- R", R?))
for each /=i, If /=7 and h>j, then we have

codim X**—codim Y/ =i(p—n+i)+i-h(p—n+i)—h(GE—h)
—i(p—n+i)—ij(p—n+i)+ji—7 )
=1/2)h(h+1D—G/2);(G+1D) .

Hence the difference is greater than 1 unless p—n+i=1, h=1and j=0. In the
last case the difference is equal to 1.

Let [ be greater than 7. Let & denote the differentiable vector bundie of
dimension / over 2'XxHom (R"-R", R?) whose total space is the set of all pairs
((a, B), v) such that a3’ and v is a vector of Ker (a). Then we can consider
the iterated grassmann bundle G;,j;-:(§) over X'XHom(R"-R™, R?) whose
total space is the set of all triples ((a, B), a, b) where a is an /-dimensional
subspace of Ker (a) and b a j-dimensional subspace of a. The projection p
maps ((a, B), a, b) onto (a, B). Clearly its fibre is Gy ;;-:. Let &; and & denote
the canonical vector bundles of dimensions 7 and j respectively over G ;-:(%).
The total space of & (resp. &;) is the set of all quadruples ((«, B), a, b, v) such
that v is a vector of a (resp. b) for an element ((a, B), a, b) of G, ;. ,-«(§). We
have a vector bundle Hom (8"/&,P&:°&;, 07) over G ;1-:(§). Then there exists
its cross section s which is defined as follows

s((a, B), a, b))=(a’, B')
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where a’: R"/a — R? and ’: a-b— R? are the homomorphisms canonically
induced from « and J respectively. It follows from that
P(s~H(ZI(O™)&,DE &, OP))) is equal to TWIN(Z ' XHom (R"-R™, R?)). In fact,
let (a, B) belong to the last space. Then there exist subspaces a and b which
satisfy the condition (2) of [Lemma 21  Therefore (a, §) belongs to
p(s™H TG /&, DE,°E,, 67))). Conversely if we have an element ((a, B), a, b)
such that « belongs to X' and that the dimension of the kernel of (a’, ') is
not less than 7o, then (a, ) is clearly contained in 3%/,

Since the section s is transverse to each X*(0"/&,PE,-&,, 67), the codimen-
sion of s (X (O"/E,DE &, 0P)) in Gy j1-4(&) is equal to ioj(p—n-+i). Now
we can estimate the codimension of S%/\X%*/ as follows.

codim (F*/N\(X*xHom (R™ R™, R?)))
=dim J%(n, p)—dim (F*/"N\(Y'xHom (R™= R", R?)))
=dim J*(n, p)—dim s(Z7°(0"/§:D&1o&,, 07))
=dim J*(n, p)—dim G, 1-(§)+ioj(p—n-+1)
=dim J*(n, p)—dim (Z'XxHom (R". R™, R?))—dim Gy, ;,;-;+i°j(p—n-+17)
=codim 2'—dim Gy, ; ;- ;+iej(p—n-+i).
Since dim G, ;,;-;=i({—i)+j({—7), we have
codim (3% (X' xHom (R"- R™, R?)))—codim X'*’
=codim X'—dim Gy, ;,,-s+ie j(p—n+i)—(p—n+0)i+ie )+ ji—7)
=(—)(p—n+1D).

Since />7 and p—n—+i=1, we have that ([—i)(p—n-+{) is greater than 1.
Q.E.D.
LEMMA 24. Let P be a finite simplicial complex with dim P=p and let Q
be a subcomplex of P. Let P\Q be a connected differentiable manifold without
boundary with dim P—dim Q=2. Then the following holds.
(1) If P\Q is orientable, then we have

H,P; Z)y=Z and H?(P; Z)=Z.
(2) If P\Q 1is nonorientable, then we have
H,(P; Z)={0} and H?(P;Z)=Z,.

PrOOF. By the universal coefficient theorem it is enough to show that if
P\Q is orientable, then H,(P; Z)=Z and the torsion of H,_,(P; Z)={0} and
that if P\Q is nonorientable, then H,(P; Z)={0} and the torsion part of
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H, (P; Z)=Z,. A proof for H,(P; Z) is similar as the proof for the case of
manifolds. We give a proof for the torsion part of H,_(P; Z) which is also
similar to the manifold case. So we give an elementary proof. Consider
the chain complex 0 — C,(P)— Cp,-(P)—--. We assume that there exist a
(p—1)-cycle @ and a p-chain b such that d(b)=Ia for a positive integer /. Let
A, (resp. A,) be the set of all (p—1)-simplexes (resp. p-simplexes). Then we
may write as
b= X wmd. (dy#d, if s+#1).
A€y

If we put ¥’=27.d; and a’=a—0(XZ pid;) where p,=Ilp;+7:, 0=7.<!, then we
have 0(b")=la’. Let a’ be written as

a’' = 2 /21;()1; (C«,;?':Cj if Zi]).

c; €41

Let ¢; be a (p—1)-simplex. Then there exist exactly two p-simplexes, say d;
and d,, such that ¢; is a common face of d; and d;. It follows from the equality
a(b’)=la’ that

7sLds: cid+r.ld:: cJ=14;

where the bracket means the incidence number. The following (A) follows
from the fact that |[ds: ¢;1|=]|[d;: ¢;]1|=1 and [>7,, 7,=0.

(A) 4; is equal to +1, —1 or 0. If |A;|=1, then 7,+7.=[ and [d;: ¢;],
[d;: ¢;] and A; have the same sign. If 4;=0, then 7,=7, and [d;: ¢;]+
[d;:c;]1=0.

Now we take a p-simplex d; and put 7,=7. Let d, be any other p-simplex.
Then there exists a sequence of p-simplexes d,, -+, d;, such that d,,=d, and
d;,=d, and that d,, and d.,,, have a common (p—1)-face. Then we have
either 7;,+7:,,,=! or 7,,=7:.,, by (A). Hence we can prove inductively that
every 7, is equal to either [—7 or 7.

If [—y+#y, then we put P, (resp. P)={d,4,|d,=r (resp. [—7)}. Then
clearly A,=P,\UP,. If we consider

Y 7di= 2 rd: and > rde= X (=7,

diePq diEPy diEPy dEPy
then it follows from (A) that o( > d,)=( X d:)=a’. Hence a’ is a bounding
diEPy diePy

cycle, that is, a is also a bounding cycle.

Next we consider the case of [—y=y (this means that / must be even and
7 is positive). If P\Q is orientable, then we can choose the incidence number
such that the identity [ds: ¢;]+[d:: ¢;1=0 holds for all pairs of p-simplexes
which have a common (p—1)-face. Hence it follows from (A) that a’ must be
zero, therefore a is a bounding cycle. Thus the torsion of H, (P; Z) is zero
in the case where P\Q is orientable.
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Now let P\Q be nonorientable. Then for any choice of orientations of
simplexes there exists a (p—1)-simplex ¢; such that [ds: ¢;]=[d:: ¢;]. If we
put d°:d§,1 d,, then it follows from (A) that 0(d,)=2(31;c;)=2a’ since [=27.

t 2

Since (2a’)=0%4d,), we know that a’ determines a unique homology class. This
shows that the torsion of H,_(P; Z) is Z,. Q.E.D.

Since Si(n, p) and Ii(n, p)\Xi(n, p) are respectively an algebraic set and
its subalgebraic set, we can triangulate X¥n, p) by [7, Theorem 1] such that
Zi(n, p)\Z%n, p) becomes a subcomplex of Zi(n, p). In §4 we will show that
either every connected component of X%(n, p) is orientable or every connected
component is nonorientable. Let ¢; denote the number of connected com-
ponents of Xi(n, p). Then the following theorem follows from [Proposition 2.3
and Lemma 24 by the Mayer-Vietoris sequence.

THEOREM 2.5. Let I be as in Proposition 2.3 except for the case of p—n—1
=1 and j=0. Let G denote either Z or Z, depending on whether X'(n, p) is
orientable or not. Then

Hy,(Zi(n, p); G)=c,;G and He1(Xi(n, p); Z)=c,G

where ¢;G is the direct sum of c; copies of G.

REMARK 2.6. In [Proposition 4.1 of §4 we will describe the number ¢; and
when 2X7(n, p) is orientable or not. If JXin, p) is nonorientable, then
H;,(Z¥n, p); Z)={0}. When p—n+i=0, it is easy to see that Ti(n, p)=
S(n, p). When p—n-+i=1 and j=0, we know that S%(n, p)=2""?*(n, p)X
Hom (R™- R™, RP).

We will say that I is a good symbol if both of the spaces £2!(n, p) and
2(n, p) are connected and simply connected. If codim X¥ is greater than 2 for
any K such that K=I, then the symbol I is clearly good.

COROLLARY 2.7. Let I be as in Theorem 25 and we assume that I is a
good symbol. Then

nvl(QI; Q)ECIG .

PrOOF. The complement of Q27 (resp. 2) is V! (resp. V¥). Then we may
triangulate the triple of algebraic sets, (S"(n, p), VI, V1) by [7, Theorem 1] so
that V§ (resp. Vi) becomes a subcomplex of S7(n, p) (resp. VI). We also trian-
gulate the pair of algebraic sets (JI, ¥I\2X7) so that I{\2! becomes a subcom-
plex of XI Since 7, (27, 2) is {0} for i<y, and I is good, we have that
7, (27, ) is isomorphic to H, (27, 2; Z). If I is neither (n) nor (n, n), then
(21, 2) is diffeomorphic to (£2{, 2,)X R*. Now using the Alexander duality
theorem for 2{=S7(n, p)\V? and Q,=S"(n, p)\VZ, we have

H,,9%, Q; Z)=H, (2, 2; Z)
=H,(S"(n, p\VE, S'(n, p\VE; Z)



250 Y. AnpoO

=HY(V, V' Z)

=H(VVY, x; Z)

=H*1(Z{/(ZNZD), *; Z)

~H1(Z}, S\3; Z). Q.E.D.

We now define the fundamental class of S{(&, 7). In the sequel of the
paper we assume that a manifold X is compact without boundary and that
vector bundles &, 7 and a manifold X are orientable when XZ(n, p) is orien-
table. Using a spectral sequence technique, we see that there exists the funda-
mental class of SUE, ) in Hy,vamx (34E, 5); G) for every symbol I by [Theoreml
2.5 and Remark 2.6 which we denote by [Yi(&, »)]. We choose orientations of
&, n and X together with an orientation of X’(n, p). Then the fundamental
class is the sum of generators associated with the orientations of groups G since
Hy idimx (JUE, 7); G) is the direct sum of a certain number of copies of G.
We will show in §4 that each connected components of X¥n, p) is invariant
under coordinate transformations of R™ and R?. Let Xi(n, p). 1=t=c;) denote
a connected component of Xi(n, p) and we put 2i(¢, p)lzngE‘é(Ex, Dx). 1T

is as in [Proposition 2.3, then we can similarly define the fundamental class of
SU&, n), which is denoted by [3¥&, n).]. Then [ZX& )] is the

sum ¥ LS4 7).

Next we consider the dual classes. Let 7: J¥(&, n) — S"(&, 5) be the inclu-
sion. Since S7(¢, ) is a closed manifold, we may use the Poincaré duality
theorem. We will denote the dual classes of (2)«([T4(&, n)]) and (D)«([Z¥(E, 7)e])
in H*1(S"(&, 5); G) by [Z¥(¢&, 5)]° and [F4(&, 5).1° respectively. We denote the
projection of S7(§, ») onto X by z. Then we know by the Gysin sequence that
7 induces an isomorphism of H*I(X; G) to H*#(S"(§, n); G). We put

&, =@ LIUE »I)  T#(n), (n, n))

and for a symbol I as in [Proposition 2.3
cI(&, =) NLZUE, ).

When I=(n), or (n, n), we define ¢’(§, 7) to be the Euler class of the vector
bundle J7(§, n). We will call c’(¢§, ) the dual class of Thom-Boardman singu-
larity with symbol I. We should note that c¢’(§, ) depends on a choice of
orientations.

REMARK. 2.8. The existence of fundamental classes and dual classes of
27(&, ») under the coefficient group Z, has been shown in [15]. The Z,-reduc-
tion of our dual classes of Thom-Boardman singularities coincides with those

in [15].
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§3. The primary obstruction class.

Let s be a continuous section of the fibre bundle 24(¢, ») over X. In this
section we will consider the primary obstruction class to deform 's homotopically
to a continuous section of the fibre bundle £24&, ) over X. We will denote
this primary obstruction class of s by ¢(s)([17]). The following proposition
will be used in §6 to prove [Theorem 1.

PROPOSITION 3.1. Let I be as in Theorem 2.5 and a good symbol. Then the
primary obstruction class c(s) of a section of L&, n) over X is equal to
(&, i, -, 1, p)ep) of H (X, 7, (2F, Q) under the identification =, (27, £2)
=~c,G.

Proor. If I is either (n) or (n, n), then the proposition is well known
[BD. Let 2:=07(n, pAZ (n, p). and Q& N)=24E P\IKE, 7 Let cis)
denote the primary obstruction class for s to be homotopic to a section of
2(¢, n), over X. Consider the natural homomorphism of H*!(X, =,, (27, 2))
into H*1(X, m, (27, 2;)) induced from the inclusion of £ into £,. Then c(s)
is mapped onto c,(s) by the definition of the primary obstruction class ([17).
Therefore we know that c¢(s) is the sum of all ¢,(s) under the identification
T, (21, Q)=c,C.

Next we show that c,(s) is equal to the dual class c’(¢, 5).. We may con-
sider 2{(¢, 7) in place of 27(§, ) and regard s as a section of £2{(¢, ) over X.
Note that Q& PNZYE, 7),=34E, n).. We may consider that the section s
is differentiable and transverse to the manifold 3§, »),. We take a sufficiently
small normal disk bundle vy of X¥(&, ). in 2!, ) and denote its associated
sphere bundle by dvs. We put N=s"%Z¥&, ), vy=s"vz) and dvy=s"*(0vs).
Then we have sections, s|ay.avy 2 W, Ovw) — (s, v2\2UE, 7)) and s|cx, xep:
(X, X\ox) — (RUE, n), QUE, p\Ps). Let c(s|wy.aupy) (resp. c(s|cx, xsy)) be the
primary obstruction class to be homotopic to a section of vz\X¥(&, 7). over vy
(resp. 24, P\2IE, ). over X) relative to dvy (resp. X\by). Let ix: (vy, Ovy)
— (X, X\05) be the inclusion. It follows from the naturality of the primary
obstruction class that (ix)*(c(s|cx. xuy)=¢c(S|wy.avy), Where 7% : H*1(X, X\Dy)
— H*1(yy, 0vy) is the excision isomorphism and that (7%)(s|cx,xey)=ci(s),
where ;% : H*1(X, X\Py) — H*1(X). It is easy to see that ¢(s|ewy, avy>) is equal
to the Thom class of the vector bundle vy over N (cf. and [17]). If we
take a sufficiently small disk bundle vy, we can extend vs to a tubular neigh-
bourhood 7' of S¥(&, ): in S7(&, 5) with collapsing map p so that 97 Dovs ([6,
§5 of Ch. I[]). We put T'=p"«I¥UE ) \2¥E, n)). In the following com-
mutative diagram we simply write 2f and S in place of Q{(, ») and S"(§, %)
and use the given notations such as the inclusions, iz, 7o, 7,, ¥ and 7s. The
coefficient group is G under the identification =, ,(27, 2)=G.
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%

]

J% .
HH(ST) €———— H*I(ST, S\T) ————> HYX(T, 3T)

T

HT(Ql) €————— H*1(0%, Q0\55) ————>H" (v, dus)

'SR l

H”’(X)<———3i—H”I(X, X\vy) Y S HI(yy, ovy)

(*)

it

=%

IR

S~

HVI(T, aT) G_L_Hd I(T.) e__(i‘s—*_'_“Hd_l(‘?g(EI ﬁ)t)

o~

(i)* ()« ()

H" (s, dv)=H"(T\T", 0T\T") <L~ H, (T, T')<(—”>f-Hd,(§€<$, e Z4E MAZIE, 7))
In (*) P and P’ denote the isomorphisms of the Poincaré duality. Then it fol-
lows from the definition of the Poincaré duality and (x) that [Z¥(&, 5).] is
mapped onto [, 7),1° by j§-(1F)"*ePe(is)x and onto the Thom class of the
normal bundle vy over X¥(&, n): by i¥eP-(ix)x. We know by the commutativity
of (*) that c,(s) is equal to (s*i$)[Z¥(&, 5).]1°) which is equal to c’(§, 7). since
mreiges=idy. Q.E.D.

§4. Orientability and connected components of X’(n, p).

In this section we will describe the number of connected components of
21(n, p) and whether XY¥(n, p) is orientable or not. We will omit to refer to
the case of p—n+z’:—'—0 in the following proposition because it is easy and is
not important for our purpose.

PROPOSITION 4.1. Let p—n-+i=1. (1) X%n, p) is orientable if and only if
(1) n+p=0(2) or (ii) 1=0 or n.

(2) 2%n, p) is always connected.

3) We put w@=(p-+n-+7)+(p—n+i)+iej and w())=i+(p—n+i)(+j+1).
Then X%i(n, p) is orientable if and only if one of the following conditions is
satisfied.

(Case 1: p—n-+i>1 and i>7)

(i) n>i>5>0, w@=02) and w()=02),
(ii) n=:>7>0 and w()=002),

Qi) n>i>;=0 and w@H=0Q2),

(iv) n=i>;7=0,
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(Case 2: p—n-+i=1 and i>7)

(i) i—/=12), ;>0 and w()=0Q2),

(ii) /—7;=12) and ;=0,

(i) i—7=02), n>i>7>0, w@)=02) and w(;)=0(2),
(iv) i—7=02), n=i>5>0 and w(;)=002),

(v) i—7=02) and n=i>;=0,

(Case 3: p—n-+iz=l and i=j)

(i) n>i=7>0 and w@+w())=002),

(i) n=i=75>0,

(iii) n>i=;=0.

4) 2%(n, p) is connected except for the case of p—n-+i=1 and i>j. If
p—nti=1,1>7 and i—j=0(2), then the number of connected components of
ti(n, p) is (i—j1). If p—n+i=1 and i—j=1(2), then it is (1/2)i—j+1).

PrROOF. (1) Let & denote the canonical vector bundle of dimension 7 over
G n-i. We define a differentiable fibre bundle p: X" — G; ,-; by pla)=Ker(a),
where a2’ We define a map ¢: X% — Hom (8"/¢, 6?) by ¢(a)=a’. Then we
have the following commutative diagram,

¢

.

> Hom (6"/¢, 6%)

’

- Gi,n—~i .

D€ b4

-,

E]
[}

-

It is clear that X% is mapped bijectively onto X°(6"/&, 67) by ¢. Hence we
consider the last space'in place of X% Let p’: 2%0"/&, 67) — G, »-; be the
restriction map of the projéction. Let T(x) denote the tangent bundle and
T ;(x) the tangent bundle along the fibre of a differentiable fibre bundle. Then
we have that 7(2°0"/&, 67)) is isomorphic to the Whitney sum (p"*T(G;, n-s)
DT ,(p’). Since Hom (§"/&, 67) is a vector bundle, the vector bundle T ;(p’) is
isomorphic to (p")* (Hom (6"/§, 67)). Let W,(x) denote the first Stiefel-Whitney
class. Since T(G; »-;) is isomorphic to Hom (&, /&), we have

WGy, n-)=W (Hom (&, 6"/£))
=(n—)W(E)+iW.(0"/§)
=nWi&).

Hence we have

W(2°(67/&, 62)=p" WGy, n-0)+W:(Hom (67/¢, 67)))
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=@ ) W)+ pW (&)
=(n4pXp" VW) .

If p—n+i=1, then 3%(n—i, p) is connected since the codimension of i(n—i, p)
is p—n-+i+1. Hence the homomorphism (p’)*: H G n-i; Z,) — H(2°(8"/&,
07); Z,) is injective. Hence 2°(#"/&, 67) is orientable if and only if either
(i) p+n=02) or (ii) & is trivial, that is, /=0 or n. This proves (1).

(2) 1is clear.

(3) Let & denote the induced bundle p*(€) over 2* and let G, ;- ;&) denote
the associated grassmann bundle with projection g which is identified with the
space

{(a, b)lasd® and b is a j-dimensional subspace of Ker (a)}.

Then there exists a map ¢: 2%/ — G, ;-4€) defined by ¢((a, B)=(a, Ker (§)).
Let &, and &, be respectively the canonical vector bundles of dimensions 7/ and
j over G f&). If we define a map 2 of Gj:-;(§) onto Gy j i by (e, b)=
(Ker (a), b), then &,=(g)*¢; and &,=(2)*&; (§; and &; are as in the proof of
Lemma 2.I). Let h: G, i-(E)XR™— G, ;- ()X R? be a bundle homomorphism
defined by h{(a, b), v))=(e, b), a(v)) for ve R™ Since h is of constant rank
(n—1), the image of h (denoted by 7) is a vector bundle. Now we consider the
bundle Hom (6"-8", 67) over Gj-4€). Then there exists an injective map
¢: 27 — Hom (6m-0", 07) defined by ¢((a, B)=Wa, Ker (f)), B). Then we
have the following commutative diagram

P S S Hom(ge6", 67)
lq
Gi,1-5&) Gj.:-18)

Now we determine the image of ¢. Consider the two surjective bundle homo-
morphisms, h,: Hom (6"-6", §7) — Hom (£,°&,, 8?/%) and h,: Hom (§,°§,, 6%/7%)
— Hom (§;°&,, 67/7) which are induced from the restrictions and the projection
of #? onto 6?/y. Then the bundle Ker (h;) is canonically identified with
Hom ((§1/62)°(£1/45), 67/7m). Let H° be the subspace of all elements of Hom((&,/£.)
°(£1/&:), 67/7n) whose corresponding elements of Hom (£,/&,, Hom (§,/&., 67/%))
are of rank (7—j). Let K° be the subspace of Ker(h,) which corresponds to
H°® by the above identification. Then it follows from the definition of X%/ that
Y4 is mapped diffeomorphically onto (h,)"%(K°) by ¢. Hence we will consider
(hy)"Y(K°) in place of X%4, We denote the projection of (h,)"*K°) onto G; ;- )
by ¢’. The tangent bundle of (h;)"(K°) is isomorphic to the Whitney sum
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@ VT(G,i-;ENDTs(g") and T,(¢g") is isomorphic to (g")*(Ker (h,oh,)). Since
T(G; :_#&)) is isomorphic to g*(T(X")@Hom (&,, &/&,)), we have

W(G;, i—j(é))ég*(Wl(Zi)nLWl(Hom (&, 51/52)))
=g* W (2D +E— )W)+ TV (E)—W (&)
=g*(p*((n+p+ W) +iW(£2)
=@ (n+p+ W) +iW (&) .
Since % is isomorphic to 6"/&;, we have
W(Ker (hyehy))=W,(Hom (§:°&2, 07/7))
=(p—n+0Wi(§1o8)+ (i )W (%)
=(p—n+OWi(§:6:D(61/E) Q&) +io JWi(E1)
=—n+)G+DWi(E)+ W i(E)—W i)+ — HW (&)
1o Wi(&y)
=(p—n+00+j+DWi(E)+(G(p—n+D)+i IW (D)
=@M (p—n+)0+ ]+ DW(EN+G(p—n+i)+ie IWi(£2) .
Hence we have |
(A) Wi(hi{ (K°)=(&¢V*{i+(p—n+)G++1WiE))
+((p+n+)+i(p—nt+i)+ic Wi},

Since H° is identified with X*%%§&,/&,, 67/79), the codimension of the complement
of H° is equal to ({—j)p—n-+i—1)+1. Hence if />7 and p—n-+:i>1, then the
fibre of Zo¢’ is connected and the homomorphism (g-¢’)*: HNGq,j n-i; Z2)—
HY(h7Y(K%; Z,) is injective. Therefore the result of Case 1 follows from (A).

(Case 2) The codimension of A7YK® is 1. We consider a map det:
Hom ((§,/&,)°(§1/62), 67/7) — R which is defined by determinants of quadratic
forms. However the map det is not well defined when 7—7 is odd. For, let x
be an element of A7Y(K°) and h,(x)=! with ¢’(x)=(a, Ker (5)). Then the sign
of det(l) changes depending on a choice of orientation of Cok (a). Therefore x
determines the orientation (which is denoted by o(a)) of Ker (a) such that
det(l) is positive. This enables us to define a map §': h7'(K°) — éj,i_j(é_) where
the last space denote the set of all triples («, o, b) such that ¢ is an orientation
of Ker (). We put ¢'(x)=(a, ola), Ker (§)). Then we have the following com-
mutative diagram
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hI%K%m hII(KO)

RL b

Gj,i-fE)——>G-8).

Since the choice of a basis of £,/&, does not change the signature of quadratic
forms, it is easy to see that the number of connected components of A7} K°) is
equal to the number of connected components of the fibre of ¢’. This is equal to
(1/2)(7—j+1) which is the order of the set of signatures of nonsingular quad-
ratic forms with rank (/—j ) and positive determinants. Clearly we have that
(8oq'*W(&;)=0 and that (g-¢")*W,(§;,)=0 if and only if j=0. If /—j is positive
and even, the map det is well defined. Hence we obtain similarly that the
number of connected components of A7Y(K°) is equal to /—7 which is the order
of the set of signatures of nonsingular quadratic forms. It is clear that
(geq'Y*Wi(&:)=0 if and only if /=0 or n and that (g.¢’)*W,(&,)=0 if and only
if 7=0.

(Case 3) In the case the result follows from the fact that the fibre of Z-g”
is connected. Q.E.D.

§5. Calculation of the dual classes.

In this section we will calculate the dual classes of Thom-Boardman singu-
larities. When the coefficient group is Z,, the dual classes coincide with those
which are defined and calculated in [15]. We should also mention [16]. There-
fore we only consider the case that X7(n, p) is orientable. We will follow the
method of desingularization in under the singular (co)homology groups in
place of sheaf (co)homology groups with closed supports in [3]. We also need
to consider orientations in our desingularization.

We denote the projection of J™(§, ») onto X by the common letter = for
r=1,2 and we put &=x*¢) and »'==n*(y). We consider the (iterated) grass-
mann bundles associated with & and & as in §1. We denote the canonical
vector of dimension 7 over G ,-:(§) and Gy, ; »-«(§) by the letter &;. Let &; be
the canonical vector bundle of dimension ; over G j.-i«(§). Let p be the
projection Gy, jn-4(6) = X. Then we put &;,;=(p*6/£,)PE;-&; and consider
Gioj n-i(€i, ;) Whose projection onto G ,-i(§) will be denoted by g. The projec-
tion of G; »-«§) onto X will be denoted by p;. We put p; ;=gep:;. We simi-
larly define maps, pi: Gin-i(§")— J(E n) and g': Giojin-i(§1 ) = Gy n-i(§’) and
put p: ;=picg’. Then we have the following diagram,
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(5.A) Giojn-i(8) é_—Gj"j.n-i(El) ‘

|

Gi, jn-i(8) < Gy, j,n-i(&) g
Gineil8)——> Ginsl) € Gy ni(&)

J/;b; - )\%Pi - lpi

JWE p—> <6,
(1) The desingularization of T%§&, ») is defined in G; , (&) by

’

e, p={a, a)lacZ¥¢, 5) and a is an i-dimensional
subspace of Ker (a)}.

Let («, a) be an element of G, ,_;(&") with n{a)=x. Then it induces a homo-
morphism a’: £;/a —n,. We define a section s, of a vector bundle Hom (&,
(p*(p") over Gy n-i(&") by s:(@, a))=a’. Then s, is transverse to the zero-
section and we have 3%(&, 7)=(s,)"*(zero-section).

(2) We denote the following subset of G, ,-4(&’) over J*&, ») by the same
notation.

S, n={(a, B), a)lac ¢, p) and a is an i-dimensional
subspace of Ker (a)}.

Let ((a, B), a, b) be an element of Gj,;.-:(§) such that ((a, B), a)e S, 7)
with z((a, 8))=x. Then it induces a homomorphism (a’, §): Ez/a@a-b— 75,
where a’ is defined as in (1) and B’ is a restriction map. In the desingu-
larization 39§, 5) of TiI(E, p) is defined in Gy, .-«(&) as follows.

Suag, p=1{(e, ), a, bl (@, p), )5S, 7)
and dim (Ker ((a’, §"))=i-J}.

However 3¢9, 7) is not generally a nonsingular manifold (nevertheless, we
can still use the calculation in [15]). For our purpose we need nonsingular
desingularization because we must consider orientations. So we have considered
Giojn-i(§}, ;). We define a subset S, 7) as follows,

{(a, ), a, b, O, B), a, byeS™I(&, 5) and ¢ is an
7- j-dimensional subspace of Ker ((a’, 8'))} .

This is defined analogously as 3¢, ») in (1). Let (&7 ,:.; be the canonical
vector bundle of dimension iej over Gi.j .-}, ;). Then there exists a section
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s, of a vector bundle Hom (&, ;)isj, (b4 )¥(")) restricted on (g')'S%&, 7). s, is
defined by

SZ(((“J ‘8): a: b) C)):(a/, ‘B,)‘|c-

Then the following facts will be shown similarly as in (1). s, is transverse to
the zero-section and sz’j(f, 7) is equal to (s,)~*(zero-section) (hence b LI, p) is
nonsingular). Since Suig, ) is mapped onto E*I(E, x) by the forgetting map
of ¢, we know that the restriction of 7 j to 5 “J(&, n) define the desingulariza-
tion of 3*/(&, 7).

We may restrict our construction of the.desingularization onto S(§, 7). Let

SuE, p=2E, NN U(SE 7)),
Siie, n=29E, pN(ph)(SHE, 7).

The (iterated) grassmann manifolds are not always orientable. So we next need
to consider the oriented (iterated) grassmann manifolds. We define @,n_i(u)
and éi,j,n_i(v) similarly as in § 1 by considering oriented subspaces of dimen-
sions 7 and j. We have a double covering space of 5i,n_i(u) onto Gy, ,-;(v) and
a quadruple covering space of CNIi,,-,n_i(v) onto Gy, »-:(v). Then we may consider
the similar diagram as in (5.A) with the given notations and restrict it from

J7 &, ) to S7E, 7).

(5.B) Crogn-iléi,s) < Crogini(h)
’ I
Givnei(8) —————— Gy nilf) < Gin-i(8")
\Lﬁé \[{ iﬁz
T T
SE, 7) > X < S, 7)

We put &'=n*(&), 7’=x*() and i ;=& pi, b1;=8& b
Let ¢1: Gin-i(§) = Gin-i(§) and ¢2: Giojn-i(5s,5) = Gioj n-i(§) be respectively
the covering maps of degree 2 and 8. Let

(B HYGin-il8); Z) —> HXX; Z),
Bi )l HSGiojnil8); Z) — HXX; Z)

denote the Gysin homomorphisms which are the dual maps of (§,)« and (§, ,)s.
THEOREM 5.1. Let I denote either (1) or (i, j). Let X%(n, p) be orientable.
Then we have

1

(D) G p=£ 5 (B Hom (cXE), Prn))),
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@ g =g (i) IHOmEH(Ex Jees) )

- (Hom(c¥(&:), PEm)}.

PROOF. We again denote the covering maps, Gy n-i(&)— Gin-s(&) and
Gioj n-i(E1 ;) = Giojn-i(§L,;) Dy the same letters ¢; and ¢,. We put

G M=ci{(SUE 1), sHE =cSHE, 7).

Since s’(§, ) are always orientable, we provide those with orientations which
come from 2Y(&, ). We have sections

3,1 G noil&) —> Hom (¢, (B1)(%")
%0 (8)7GUE, 7)) —> Hom (¢, o)y (Bh(n")

which are induced from s, and s,. Then s’(§, 7) is equal to §;'(zero-section).
Then the fundamental class of s¥(&, p) (resp. s“/(§, »)) is mapped onto 2 (resp.
8) multiple of [Ti(&, 5)] (resp. [T§/(E, 7))

(1) It follows from the construction of s*(&, ) that the dual class of s%(¢, »)
is 2(Hom (c¥(&}), (p7)*(n”)). By the definition of the Gysin homomorphism we
have the dual class of (H7)*([s*(¢, 7)1) is (§i)! X(Hom (c¥(&;), (F7)*(p")). This
means that

2LEUE, 7)1 =(P1) ! AHom(c¥(E), (Bi)*(n" ).

Thus the first formula follows from the naturality of the Gysin homomorphism
and ©*(c¥(§, n)=[I¥E&, n)1° by considering the diagram (5.B).

(2) Let #;: (8)U(s%E, ) — 5ioj,n-i(53,j) and 7,: sH(E, 9) — (&)7UsUE, )
be the inclusions. Then the dual class of s*7(§, ») is the cup product of the
dual class of (7)«([(&)*(s%&, »)]) and X (Hom (c$((&}, )i05), (P71 *(n"))) since the
last class is mapped onto [(@)«([s*%(¢, )] by (G)*. The first class is equal
to ()% (X (Hom (c¥(&1), (pi)*(y”))) as in (1). Therefore

8LZEI(¢, 7)I°=(p},)! (A(Hom (C?((Eé,f)u;){'(ﬁ%,;)f“(ﬁ')))
B '(;‘Q’)*(Z‘(Hom’(‘Cf(E%»)‘,.(ﬁ{ YO}
The second formula again follows from the néﬁﬁrality of the Gysin homomor-
phism and z*([ZE9(E, p)1)=c"(&, 7) by (5.B). Q.E.D.

Let { — X be an orientable vector bundle of dimension p’, and consider
JIEDL, nPL). Here we should note by [Proposition 4.1 that 3’(n, p) and
2I(n+p’, p+p’) become orientable (resp. non-orientable) at the same time.
Let { be a vector bundle such that »@( is trivial and f: X—»@nﬂ,,, §ya

classifying map of £P{. Let 7 be a universal bundle over 5n+p,,N. Then if
we consider c¢!(y, §7*#") for vector bundles y and #7*?" over G, n, then we
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can prove the following proposition similarly as in [15, Theorem 4.4].
PROPOSITION 5.2. Let I be as in Theorem 5.1. Then we have

& P=FHE, 077 and G D=, 07).

COROLLARY 53. Let I be as in Theorem 5.1.
(1) If i is odd, then c¥(&, u) is an element of 2-torsion.
(@) If either i or iej is odd, then c¢*%(§, n) is an element of 2-torsion.

PrOOF. It is enough to prove the corollary for ¢’(y, §7+?') by
5.2. We note that

X (Hom (cf(rq), 072 )=@cTGon?*?",
X (Hom (c$((72, )ios), 07+ N=(cH (s, Dio )PP

Then the corollary follows from [Theorem 5.1 and the fact that the Euler class
of an orientable vector bundle of odd dimension is of order 2 ([13]). Q.E.D.
When p—n and ¢ are even, we can represent ¢(§, ) by Pontrjagin classes
of £ and ». This has been already mentioned in in a slightly different form.
PROPOSITION 54 ([16]). If p—n and i are even, then ¢, n) is equal modulo
2-torsion to the determinant of the following (p—n-1i)/2-matrix, whose (s, t)
component s Pcijoyscs-n(E—7).

Pyp(6— ﬂ) Pijs_ 1($ 7?)
z/2+1(5”“77) '

1./2 1(5 77)
z/2+1(§ 7]) P1/2<{: 77)

REMARK 5.5. The Z,-reduction of c*(§, 7) has been also represented in [15]
by Stiefel-Whitney classes as the determinant of the following (p—n-+7)-matrix
whose (s, t) component is Wiy :(E—1).

Will—n) Wi 1(5—77)
1+1(5—v)

. 1. 1(5—7])
H—I(S'—ﬂ) W’L(é——)?)

REMARK 5.6. [Theorem 5.1 and [Proposition 5.2 enable us to calculate c*7(§, )
modulo 2-torsion in a finite process in terms of Pontrjagin classes of £ and 7.
Although this method is quite similar to that given in [15, Ch. II], our adapta-
tion require much preparation. Hence we will give only an exam ple for
I=(4, 4) and p—n+2=0, as follows.
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¢! (&, n)=Psd(0, 0)+5P,d(1, 0)+4P;d(2, 0)+15P:d(0, 1)
+10P,d(1, 1)+16P,d(2, 1)—59P,d(0, 2)—16d(3, 1)—107d(1, 2)

Pa+1+j }_D_a

for P=P-1,
Poissi Pty

where P;=P;(§—») and d(j, a)=(—1)

§ 6. Singularities of differentiable maps.

Let N and P be respectively manifolds of dimensions n and p. Let zp:
NXP— P and ny: NXP— N be the canonical projections. Then the jet space
J7(N, P) is identified with J7(§, ») over NXP for §=z%(TN) and 5»p==¥TP)
and X!(N, P) corresponds to X7(¢, ») under this identification ([15, §3]). Con-
sider the commutative diagram,

J(TN, f¥TP)) > ]’(j,/ 7)
J\\Lf idy 3/ > NXP

where f is a differentiable map of N into P. Then j7f: N— J(N, P) (=]"(&, 7))
induces a map of N into J(T'N, f*(T P)) which we denote by d"f. We consider
two dual classes c¢/(TN, f¥(TP)) and c’(§, ). Then we have the relation
(TN, fTP)=(>dyXf)*(c1(& 5)). Therefore ¢’(TN, f*(TP)) depends only
on the homotopy class of f.

PROPOSITION 6.1. Let N be a closed manifold. When X¥(n, p)is orientable,
we assume that N and P are orientable. Let f be a differentiable map of
C31(N, P). If the dual class ¢*(TN, f*(TP)) does not vanish, then there exists
no differentiable map g of C3(N, P) such that d"g is homotopic to d”f in I'o1(N).

Proor. We assume that such a map g exists and that j"g is transverse
to 27(§, y) where & and 7 are as above. Then ;7f and ;g are homotopic in
Q7(¢&, p). Since f and g are homotopic, we have ¢/(TN, g*(TP)=c'(TN,
f*(TP)). On the other hand c¢/(TN, g*(TP)) is equal to the dual class of
G )2 E, p) (=d"g)" Y(FI(TN, g*(TP))) which is empty. Hence c¢/(TN,
f*(TP)) must be zero. This is a contradiction. Q.E.D.

PROOF OF THEOREM 1. We may deform f so that d"f: N— QI(TN, f*(TP))
is transverse to XY!(TN, f*(TP)). It follows from [Proposition 3.I that the
primary obstruction class is ¢’(TN, f*(TP)) for d"f to be homotopic to a sec-
tion of (TN, f*(TP)) in QITN, fXTP)). So there exists such a section
s: N— (TN, f#(TP)) if the dual class vanishes. Let s’ be the corresponding
section of 2(§, 7) (=Q(N, P)) over N where & and » are as above. Since
(N, P) is m,-integrable for N and P, there exists a differentiable map g in
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C%(N, P) such that j7g is homotopic to s’ in Io(N).

Conversely let g be a differentiable map of C3(N, P) such that j”g is homo-
topic in 1(N, P) to jf. Then we get ¢!(TN, f¥(TP))=c'(TN, g*(TP)) as in
the proof of [Proposition 6.1 Since j g *(X¥(N, P)) is empty, ¢(TN, g*(TP))
must be zero. Q.E.D.

The condition for 2(N, P) to be m,-integrable have been discussed in [1],
and [14]. Especially if £>n—p, then Q*N, P) is =,-integrable for any N
and P([4]). For r=2, %N, P) is m,-integrable for any N and P if [>n—p—d
where d denotes either 1 for £—/>1 or 0 for k—/=<1([14]). As an application
of to k-mersions ([4]) we have the following proposition.

PROPOSITION 6.2. Let f be a continuous map of a closed manifold N into a
manifold P. Let i(p—n+i)=n and i>n—p-+1. Then there exists an (n—i+1)-
mersion which is homotopic to f if and only if

(1) n-+p is odd and c¢*(TN, f*(TP))=0,

(ii) n+4p is even and i is odd, or

(ili) n-+p and 7 are even and ¢(TN, f*(T P))=0.

Proor. It is clear that f is homotopic to a (n—i7)-mersion since
codim 2% (n, p)=G+1)p—n+i+1). Hence the proposition follows from Theo-
rem 1. Q.E.D.

§7. C= unstable maps.

We will consider differentiable maps which are not homotopic to any C*=
stable map. Here we will recall the results due to J. Mather and use the same
notations given in [9] Let 6(f). denote the set of C* vector fields along a
germ f: (N, x) — (P, f(x)), i.e., C* map germs {: (N, x) — TP such that {(x")
is in TP for any point x” of N. We put (N),=0(idy)., (P),=0(@dp),
and let tf: O(N), — 0(f), and wf: O(P);czy — 0(f), be defined by tf(§)=Tf-&
and wf(y)=x-f. The following theorem is only a part of Theorem 4.1 of [9].

THEOREM 7.1 ([9]). If f: N— P is a proper C* stable map, then we have

() 0()2=tf(O(N)2)+@f(0(P)scx)

for every point x of N.
Let n—i, be the rank of f at x. We can choose local coordinates xi, ==+, xn
for N, null at x and y,, ---, y, for P, null at f(x) such that f has the form

{ Yyiof=xi, i=n—i,
%k
d(yefND)=0, n—i+l1=i<p

‘where d denotes the differential. Let & (resp. &’) denote the ring of germs at
0 of C~ functions in the variables x,, -+, x, (resp. Xp_s41, =+, Xa). Let &7 74
be the (p—n-+i,)-fold product &' X --- X&’ of &’. For any u of &, let u” denote
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the element of & defined by u'(Xnp-i+1, +) Xa)=u(0, ==+, 0, Xnoigs1, =+, Xu)
There exists a canonical identification of #(f) with the p-fold product £€? of &.
We can define a certain projection of #(f) onto &’?~"*i1 under this identification
((8, §11). Then tf(O(N)z)+wf(O(P)scx) corresponds by the projection to the
sum of modules Q2(f7-z+, *=, fp) and [0f] defined as follows. Let Q2(f7-n+iy,
-+, f») be the &’-submodule of £&’?-"*1 generated by the 7; vectors

[f;z—il-u/ax_j, .., f;,/axj:l (]:n—-zl_|_1’ . n)

and the (p—n-+1,)-fold product J(f)X -+ XI(f) of J(f’) where I(f’) means
the ideal generated by f%-n+s,, =+, fp. Let [0f] denote the R-vector subspace
of &’?-"*%1 spanned by the (n—i,) vectors

[(fr-iger/0x3), oo, (fp/0x)]  (G=1, -+, n—iy).

Let m’ be the maximal ideal of &’. If V is any subset of &?-"*i1, we denote
the image of V under the projection of &?-"*%1 onto &'P~"*i1/m'*.(g’?-"+i1) by
VD,

THEOREM 7.2 ([8]). Let k>p. For a germ f: (N, x)— (P, f(x)) the rela-
tion (x) of Theorem 7.1 holds if and only if

(%) Q(fﬁo-nnl, Tty f’p)(k_l)+[af:l(k‘1>:(m’g’p—n+i1)(k—1>.

The above theorem says that whether the relation (x) of holds
or not for a germ f depends only on the p+1 jet of a germ f. Let 2>p. We
will say that a germ f (or a k-jet of f) is unstable if and only if the relation (*)
does not hold for f. Let X(n, p) denote the set of unstable k-jets in J*(n, p)
which has been defined in [9, 10]. Then X(n, p) becomes an algebraic subset
of J¥(n, p) by We consider X, (N, P) similarly in J% ,(N, P)
and put (N, P)=z€Nk.JyEP2’ 2. y(N, P) in J*(N, P). The following corollary is a

direct consequence of [Theorem 7.1.
COROLLARY 7.3. If f is a proper C* stable map, then the following holds
for B>p.
JHAN)NZ(N, P)=0.

Our purpose is to obtain topological conditions for N, P and f that for any
map g which is homotopic to f, the intersection j*g(N)NZX(N, P) is not empty.
Since the set of unstable jets 2'(n, p) is unfortunately so difficult to observe,
we will consider the Thom-Boardman singularity X'Z(n, p) with symbol I=(z,
i, =+, 1) such that X(n, p)D2!(n, p) in place of X(n, p)(see the definition of
the Thom-Boardman singularity with general symbol I of [11]). It is clear that
if J(n, p)DX(n, p), then X(n, p)D(n, p). ,

For a symbol I=()(resp. (7, j)) we will simply write X% %(n, p) for
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2 @00y by (resp. 2 E3%0(n, p)). Let x, be the canonical projection of
J¥(n, p) onto J(n, p) (k=r). Then it follows from the definition of the Thom-
Boardman singularities that (z,)"%(3%(n, p))=2%"(n, p). In the rest of the
section we assume that NN is a closed manifold.

THEOREM 74. Let N be a closed manifold and f: N— P a differentiable
map. We assume N and P to be orientable when X1(n, p) is an orientable mani-
fold. If there exists a symbol I such that X(n, p)DXT%"(n, p) and that the
dual class c¢*(TN, f*(T P)) does not wvanish, then f is not homotopic to any C
stable map (especially when P is R?, there exists no C stable map in C*(N, RP)).

Proor. Consider a C* stable map g and a stratification of X#(N, P) which
satisfies the Whitney’s condition (b) ((12]). Then j7g: N— J'(N, P) is transverse
to the stratification since g is C* stable. Then we can show by the elementary
property of the stratification the existence of the fundamental class of I7(g)
similarly to the case of X7(N, P). The dual class of the fundamental class of
S1(g) is equal to ¢’(TN, g*(TP))(ctf. [15, §4]). Let f be homotopic to a C»
stable map g. Then 3%(g) is empty since (j*g)(N)NZ(N, P)=0 by
7.3 and Y(N, P) contains X% 9(N, P). Therefore ¢’(TN, g*(TP)) must be
zero which is a contradiction since ¢?(T'N, f*(TP)) is equal to ¢/(TN, g*(T P)).

' Q.E.D.

We have showed in §5 that ¢Y(TN, f*(TP)) is explicitly represented by
characteristic classes and showed the formula to calculate ¢*/(TN, f*(T P)).
Another problem is to show when YZ(n, p) is contained in X(n, p).

Let I be (44, ---, 7z). Consider an ideal

Slz(xn—il+1; T xn—i2>2+(xn-i1+1; T xn—i3)3+
+(xn—i1+ly H) Xﬂ-ik)k

of &/m’*** and its elements g,_; 41, -, gp. We denote the vector [0g,-;,+1/0%,
-+, 0gp/0x;] by [0g/0x;]. Let J(g) be the ideal generated by gn-ij+1, ***» Qp-
We define a &’-submodule,

g)=€'[0g/0xn-1,411+ -+ +E'[0g/0x ,1+J(g)? "+
We define d(I) to be the minimal number of
dimR(m/elp—nHl)(k—1)/Q(g>(k—1)

where gn-i,+1, "+, gp vary in J’.

PROPOSITION 7.5. Let k>p and I=(iy, -+, ip). Then X(n, p)DX(n, p) if
and only if d()>n—i,.

ProoF. Let X(n, p) contain X7(n, p). This means that X(n, p) contains
3(n, p). Suppose that d(I)=n—i,. Then there exist elements gn_i41, '+, gp
of I’ such that
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dimk(m/éa/p—n+i1)(k—l)/Q(g)(k-l))én_l.l )

So we can take (n—i,) vectors [A%_; 41, =, hp] (1=s=n—1i;) of (W/&'?-rHir)k-D
such that their images span (m/'&’?-"*h)¢-D/Q(5) %~ by the canonical projec-
tion. We define a germ f: (N, x) — (P, y) by

Vyief=x; i=n—i,

(***) n-ij

yief=git 2 xshi n—i,<isp.
It follows from the definition of the Thom-Boardman singularities that j*fe
2Z(n, p). Therefore f is not stable. On the other hand we have [9f,;,+1/0x,,
R afp/axs]:[hsn—ilﬂ, ey, h%] Hence,

Q<gn_il+l, TN gp)ck—n+[afjde—1):(g)}'g/p—n+i1><k—1) .

Therefore f must be stable by which is a contradiction.

Let d(I) be greater than n—7,. Let z be represented by a germ f: (N, x)
— (P, y). Then we can choose coordinates (%;, ---, %) and (¥, -+, 5,) of N
and P for z€2?(n, p) such that the relation (*x) holds for the coordinates.
Since X(n, p) and X!(n, p) is invariant under any coordinate transformation of
N and P, we may consider only germs f represented as in (xx). Then we have

dim (2 f sy, -+, F)ED+[OF1H)
=dim (Q(f p-n+iyp =5 [p)FP)+dim [of]FD

=dim (m'eP- kD _—d()+-n—i;

<dim (m/e/P-n+icE-n,

That is, 2(fp-n+iy, =, fp)FP+HLOf]F DG/ e/P-rintk-1, Q.E.D.
COROLLARY 7.6. Let k>p, k=zl+1and I=(, 14, ---,4,0, -+, 0). If
l

(p—n+idim (m'/m'**)— G+ +(p—n+i)—1)>n—i,

then X(n, p) contains X'(n, p).
Proor. It is enough from [Proposition 7.5 to show that d(J) is greater than
or equal to

(p—n+i) dim (m'/m’"*)—(G-+2 4+ (p—n+i)*—1).

In our case X is equal to (x,-411, -+ » X't which is m/**/m’**, Let d()®
be the minimal number of

{dlm [(m//m/l+2)p—n+i/g(g>(l+l)]}

where gp-n+i, -+, gp vary in J’.  Clearly d(I) is not less than d()*®. Let g;
be any element of J’. Then
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g,= i.lxh(agj/axh) (modulo m'**2).

h=n-i+

Therefore the vector [gn-i+1, =, gp1™" is contained in (€'[0g/0xn-s 411+ -
+&'[0g/0x 1), It is not difficult to show that

dim J(g)P=p—n+i and
dim (&'[0g/0%x n-1,41]+ -+ +&[0g/0x 1) Zi+42.
So we have that dim £2(g)"*V<i+*+(p—n-+1)’—1. Hence,

dDP=(p—n+1) dim (m’/m"*+2)— (@ +*+(p—n-+i)*—1).
Q.E.D.
We are now ready to prove
PROOF OF THEOREM 2. We consider the case of /=1 in
Then we have that if (p—n-+i){i+1/2)i(G+1)} —i—2—(p—n-+i)*+1>n—i, then
X(n, p)DX &0y, p). On the other hand the dual class ¢/(TN, f*(TP)) has
been calculated as in [Proposition 5.4] and Remark 5.5 for §=TN and »=f*(T P).
Therefore follows from and the above fact.
Q.E.D.
ExaMPLE 7.7. Consider maps of RP™ into R™ for n=2'-a—1 where a is
odd, 2!=a=<2'"'(2'—1) and [=2. Then there exists no C™ stable map in
C*(RP", R™). In fact, we know that

W(RP™=(1+W* e =1+W)*=1+aWi'+ .

We take an integer 2' as 7 of Then we have that W;=0 for 1<
j<2% Therefore

Wi

=Wi=wi,

Wi Wi
and W2 is not zero by 2!<a (c.f. [5, §6 of Ch. VI]).
We may construct such examples for C*(CP™, R?) by the formula P(CP™)

=(1+4h3)"** where h, is a generator of H*(CP™; Z) ([13]). For example, there
exists no C> stable map in C*(CP*, R®).
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