A note on Yoneda product

By L. R. VERMANI

(Received April 24, 1979) (Revised Dec. 24, 1979)

1. Introduction.

Let G be a group, Z the ring of integers, m a positive integer and Z_m the ring of integers modulo m. It is well known ([5], Proposition 5) that Yoneda product in the cohomology ring $\operatorname{Ext}_{Z_m}^* G(Z_m, Z_m)$ is anti-commutative. The aim of the present note is to prove that this anti-commutative property does not hold in the cohomology ring $\operatorname{Ext}_{ZG}^* (Z_m, Z_m)$. Recall that $a, b \in \operatorname{Ext}^* (A, A)$ of degree r, s respectively are said to anti-commute if $ab = (-1)^{r+s}ba$.

2. Preliminaries.

Let G, Z, m and Z_m be as in the introduction. The exact sequence

$$(2.1) 0 \longrightarrow Z \xrightarrow{m} Z \xrightarrow{\alpha} Z_m \longrightarrow 0$$

of trivial G-modules where α is the natural projection determines an element e of $\operatorname{Ext}_{ZG}^1(Z_m, Z)$ ([4], pp. 84-85; [3], p. 494). For ZG-modules A, B the connecting homomorphisms

$$\delta^r : \operatorname{Ext}^r_{ZG}(A, Z_m) \longrightarrow \operatorname{Ext}^{r+1}_{ZG}(A, Z)$$
 and $\partial^s : H^s(G, B) \longrightarrow \operatorname{Ext}^{s+1}_{ZG}(Z_m, B)$

are then given by ([3], p. 493)

$$\begin{split} &\delta^r(a)\!=\!-e\,a\;,\quad a\!\in\! \mathrm{Ext}^r_{ZG}(A,\;Z_{\,m})\quad \text{and}\\ &\partial^s(b)\!=\!be\;,\quad b\!\in\! H^s(G,\;B)\;. \end{split}$$

Here the product involved is the Yoneda product and observe that if $x \in \operatorname{Ext}_{ZG}^r(A, B)$, $y \in \operatorname{Ext}_{ZG}^s(B, C)$, then $yx \in \operatorname{Ext}_{ZG}^{r+s}(A, C)$.

For a ZG-module B, let

$$R(B): 0 \longrightarrow B \xrightarrow{\varepsilon_B} R^0(B) \xrightarrow{d_B^0} R^1(B) \xrightarrow{d_B^1} \cdots \longrightarrow R^n(B) \xrightarrow{d_B^n} R^{n+1}(B) \longrightarrow \cdots$$

denote an injective ZG-resolution of B. Then there exists a homomorphism $\phi = \{\phi^k\} : R(Z) \to R(Z_m)$ over the ZG-homomorphism $\alpha : Z \to Z_m$ i.e. $\phi^k : R^k(Z) \to R^k(Z_m)$ are ZG-homomorphisms such that

$$\phi^{k+1}d_Z^k = d_{Z_m}^k \phi^k \quad \text{for all } k \ge 0 \text{ and}$$

$$\phi^0 \varepsilon_Z = \varepsilon_{Z_m} \alpha.$$

 ϕ then determines an element of $H^0(G, Z_m)$ [2] which we again denote by ϕ . The natural projection α also induces homomorphisms

$$\alpha^* : \operatorname{Ext}_{ZG}^r(Z_m, A) \longrightarrow H^r(G, A)$$
 and $\alpha_* : \operatorname{Ext}_{ZG}^s(A, Z) \longrightarrow \operatorname{Ext}_{ZG}^s(A, Z_m)$,

where A is any ZG-module, which are given by ([3], p. 493)

$$lpha^*(a) = a\phi$$
, $a \in \operatorname{Ext}_{ZG}^r(Z_m, A)$ and $lpha_*(b) = \phi b$, $b \in \operatorname{Ext}_{ZG}^s(A, Z)$.

3. The main result.

Consider the commutative diagram

$$(3.1) \qquad \stackrel{m}{\longrightarrow} H^{n-1}(G, Z_m) \stackrel{\widehat{\partial}^{n-1}}{\longrightarrow} \operatorname{Ext}_{ZG}^n(Z_m, Z_m) \stackrel{\alpha^*}{\longrightarrow} H^n(G, Z_m) \longrightarrow \cdots$$

$$\downarrow \delta^{n-1} \qquad \qquad \downarrow \delta^n \qquad \qquad \downarrow \delta^n$$

$$\cdots \stackrel{m}{\longrightarrow} H^n(G, Z) \stackrel{\widehat{\partial}^n}{\longrightarrow} \operatorname{Ext}_{ZG}^{n+1}(Z_m, Z) \stackrel{\alpha^*}{\longrightarrow} H^{n+1}(G, Z) \longrightarrow \cdots$$

where the rows are long exact sequences for $\operatorname{Ext}_{ZG}(\ ,\ Z_m)$ and $\operatorname{Ext}_{ZG}(\ ,\ Z)$ corresponding to the extension (2.1) of Z by Z_m . We claim that

(3.2) If the Yoneda product in $\operatorname{Ext}_{ZG}^*(Z_m, Z_m)$ is anti-commutative, then $\alpha^*\delta^r(a)\alpha^*\delta^s(b)=0$ for all $a,b\in\operatorname{Ext}_{ZG}^*(Z_m, Z_m)$ of degree r, s respectively.

PROOF OF CLAIM. From the definitions of the maps α^* , δ^k and the assumed anti-commutativity of Yoneda product it follows that

$$\begin{split} \alpha^* \delta^r(a) \alpha^* \delta^s(b) &= (-e \, a \, \phi)(-e \, b \, \phi) = e(a(\phi e))(b \, \phi) \\ &= (-1)^{r+1} e((\phi e) \, a)(b \, \phi) = (-1)^{r+1}(e \, \phi)(e \, a \, b \, \phi) \; . \end{split}$$

Set $(-1)^{r+1}eab\phi=c$ which is an element of $H^{r+s+1}(G,Z)$. Then $\alpha^*\delta^r(a)\alpha^*\delta^s(b)=e\phi c=-(\delta^{r+s+1}\alpha_*)(c)$ which is zero because the sequence $H^k(G,Z) \xrightarrow{\alpha_*} H^k(G,Z_m)$ $\xrightarrow{\delta^k} H^{k+1}(G,Z)$ is exact.

Now suppose that G is a cyclic group of order m. For n odd, $H^n(G, Z) = 0$ ([1], p. 251) and, therefore, in (3.1) $\alpha^* : \operatorname{Ext}_{ZG}^{n+1}(Z_m, Z) \to H^{n+1}(G, Z)$ is an isomorphism. Also $\delta^n : \operatorname{Ext}_{ZG}^n(Z_m, Z_m) \to \operatorname{Ext}_{ZG}^{n+1}(Z_m, Z)$ is an epimorphism. Hence for any non-zero element $\lambda \in H^{n+1}(G, Z)$ we can choose a non-zero $a \in \operatorname{Ext}_{ZG}^n(Z_m, Z_m)$ such that $\lambda = \alpha^* \delta^n(a)$. Since the integral cohomology ring $H^*(G, Z)$ is non-trivial ([1], p. 252) and the cup product coincides with Yoneda product in this case ([5], Proposition 5), we can find λ , $\mu \in H^*(G, Z)$ both non-zero such that $\lambda \mu \neq 0$. But then there exist $a, b \in \operatorname{Ext}_{ZG}^*(Z_m, Z_m)$ such that $\alpha^* \delta(a) \alpha^* \delta(b) = \lambda \mu \neq 0$. Observation (3.2), in view of this example, then shows that Yoneda product in $\operatorname{Ext}_{ZG}^*(Z_m, Z_m)$ is not anti-commutative.

- (3.3) REMARKS (i) Since the cup product in $\operatorname{Ext}_{ZG}^*(Z_m, Z_m)$ is anti-commutative ([1], p. 212), cup product in $\operatorname{Ext}_{ZG}^*(Z_m, Z_m)$ does not coincide with the Yoneda product.
- (ii)*) An explicit counter example for the anti-commutativity of Yoneda product in $\operatorname{Ext}_{ZG}^*(Z_m, Z_m)$ can be constructed as follows.

Let G be a finite cyclic group of order m generated by σ (say) and let \bar{r} denote the residue class $\alpha(r)$ of $r \mod mZ$. Let a be the element of $\operatorname{Ext}^1_{ZG}(Z_m, Z_m)$ determined by the exact sequence

$$0 \longrightarrow Z_m \longrightarrow Z_{m^2} \longrightarrow Z_m \longrightarrow 0$$

which is defined by the maps: $\bar{r} \rightarrow mr \pmod{m^2}$ and $s \pmod{m^2} \rightarrow \bar{s}$, G acting trivially on Z_{m^2} ; and $b \in \operatorname{Ext}^1_{ZG}(Z_m, Z_m)$ determined by the exact sequence

$$0 \longrightarrow Z_m \longrightarrow Z_m \times Z_m \longrightarrow Z_m \longrightarrow 0$$

defined by the maps $\bar{r} \rightarrow (\bar{r}, 0)$, $(\bar{r}, \bar{s}) \rightarrow \bar{s}$ and G acting on $Z_m \times Z_m$ by $\sigma(\bar{r}, \bar{s}) = (\bar{r} + \bar{s}, \bar{s})$. It can then be proved (using arguments of sections 2 and 3) that ab=0 while $ba \neq 0$.

References

- [1] H. Cartan and S. Eilenberg, Homological Algebra, Princeton, 1956.
- [2] P. Cartier, The groups $\operatorname{Ext}^s(A,B)$, Séminaire A. Grothendieck (Algebre Homologique), 1956/57.
- [3] P.J. Hilton and D. Rees, Natural maps of extension functors and a theorem of R.G. Swan, Proc. Cambridge Philos. Soc., 57 (1961), 489-502.
- [4] S. MacLane, Homology, Springer Verlag, 1963.
- [5] N. Yoneda, Notes on products in Ext, Proc. Amer. Math. Soc., 9 (1958), 873-875.

^{*)} The author is thankful to the referee for suggesting the present explicit counter-example.

L. R. VERMANI

Department of Mathematics Kurukshetra University Kurukshetra, India and Department of Mathematics University of Manitoba Winnipeg, Canada