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Introduction.

1°. In this paper we shall investigate further (cf. [9]) on the periods of
primitive forms (or the values at rational integer points in the critical strip of
the Dirichlet series attached to primitive forms) from a different point of view,
by generalizing the notion of modular symbols (cf. Birch [2], Manin [11, 12],
Mazur [13]) to arbitrary levels and weights and using the successive conver-
gents of rational numbers by the continued fractions. _

2°. A beginning seems to be due to Shimura [14], who computed the ratios

([tomte s (ot [ aowan: o
and
(o (st [t e

explicitly where A(z) is the unique normalized cusp form of weight 12 on
SL2, Z). Manin generalized these results to eigenforms of arbitrary inte-
gral weights on SL(2, Z) as follows. The ratios

(Szwf(Z)zdz: Simf(z)zsdz : S:mf(z)édz: ISZWf(Z)Z’”‘ldz>
and
®), ((“rdz: (“razaz: (“raetaz: - : | “arewaz)

are both rational over the field generated over @ by the Fourier coefficients of
f at z=ico if f is an eigenform of weight w+2 on SL(2, Z). Furthermore he
also showed that the Ramanujan type congruence for the Fourier coefficients of
f is derived from the ratio (B). They were based on the Eichler-Shimura iso-
morphism for cusp forms. Recently Shimura [16, 17], using a totally different

1) This paper forms a part of the author’s doctorial thesis presented to Faculty of
Science, University of Tokyo.
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method associated with the convolution of Rankin type, has extended almost
everything on the rationality to Neben type primitive forms of any level (in
the sense of Atkin-Lehner [1], Miyake, Li and others). And we have given a
new proof of that Theorem 1 (i), (ii) and (iii) of Shimura [I7], in Hatada [8, 9]
by combining the Eichler-Shimura isomorphism with the lemma of Shapiro. (See
e.g. Lang for details of the lemma of Shapiro.) In [9] we have also
studied p-adic Hecke series, attached to the primitive forms, which take alge-
braic values. But there still remain some problems, along the older lines (cf.
[12], [14]), left open in this field. The purpose of this paper is to solve one
of them. Now we describe in 3° below, about what problem we shall study.
In short, we shall give a concrete method for computing the ratios of certain
periods of a primitive form of any level. We note that it relates to the Rama-
nujan type congruence for the Fourier coefficients of a primitive form.

3°. Let N and w-+1 be positive integers, I’ be the Hecke’s congruence sub-
group I(N) (resp. Io(N)) and S,..(I") be the space of cusp forms of weight
w-2 with respect to I. Let dz, be the C**! valued differential form *(dz, zdz,
z%dz, -+, z%dz) on the complex upper half plane H. The special linear group

SL(2, R) acts on H to the left by (? 5)(z)=(az+b)/(cz+d). Let p,: GL2, Z)
—GL(w+1, Z) be the representation given by p,(g)dz,=(cz+d)***(dz,og) for
gz(? b>EGL(2, Z). Here dz,cg denotes the pull back of dz, by g. Set 7,

d

= Ind (pulr). Let SL(Z, Z)= @ I'g; be the left coset decomposition. Set
I'tSL¢2.Z) j=1

-1 0 0 -1 1 -1
t: ’ T: wty 1= » 2= ’
N R I
Pw(g1) 0

Pw(g2)
K= Pw(gs) . ’
0
Pw(gm)
(F(z)dzy)c g1 T(F(z)dzy)o(tg:t)
(F(z)dzy)o g T(F(2)dzyw)o(tgst)

Y= F@dzne g, | 0 QI T(FE@ ) (g

(F(2)dzw)o gn T(F(z)dzw)o(tgmt)

(for all FeS,:.(I")). We normalize 7, as 7,(@)9(F)=9(F)og for every ge
SL(2, Z). Set K'@Q(F)=D(F), K'9F)=D(F)* and 5kig)=K'7,(g)K. Let
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T +2(n) be the usual Hecke operator acting on S, ..(I"), defined by :

o d-1 a =+b
F|T y1s(n)(2)=n"? adzz‘)n EOF[w-&-ZI:Xa 0 d>:|(z>

a—l

5 2) (mod N)) .

if (n, N)=1 (SL(, Z);;Xaz(

Let a be a positive rational number and
a=by/dn, bn-1/dn-1, -+, bi/dy, bo/d,=0/1,

be the successive convergents in irreducible form by the continued fraction of
a. For each m with 1=<m=n, we have:

bm  (=1)"bmo,
ha= eSLZ, Z).
dn  (=D™dny

Using the technique of “Modular symbols” of Birch [2], Manin [11], [12] and
Mazur to Sp+2(l7), we obtain:

z¢

00.0); [ Flunlgl@dze=3 " “Floulgl@dz,

=3 0u(r) Fluvlghd@)dz,,

and
—a n th pt(ice)
002; [ ToFlunlteti@dze= 2| T ToFlultgti@)dzn
=2 puh)| TPl iltgh i@ dz,
a B .
since T2=1. Let <7’ 5>EM2’2(Z) with ad—8r>0. We have:
. . w fee 44 k
0.0.3); (ad— o+ F'“’“Kr 2@z

aly « w-
:Sﬂ/aF(z)(oz—‘B)k(a—rz) *dz

for keZ with 0=k=<w. From (0.0.1), (0.0.2) and (0.0.3), we know that there
exists a m(w-+1)Xm(w+1) integral matrix Mn)=M, r(n) for each positive
integer n with (n, N)=1 such that
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SZ“D(F|Tw+2(n>>=M<n>SZ°°D(F) and such that
[ DI T sty =M\ "D
for all FES,.,(I"). Let J be the (w+1)mX(w+1)m integral matrix defined by
D(F)*=JoD(F) for all FES,.+.(I"). For each g=SL(2, Z) and each FES,.(I),
we have 9(F)‘otgt=1%,(g)D(F)", and
g (fo0) tgt(ico) ico {00
S D(F)igtgm) D(F) :nmg)(So D<F>igo D(F) >

£(0)
Let X be a Dirichlet character mod N and S,..(V, X) be the space

a b

{Fesutionm| Flos| (0 ]

)]:X(d)F for all (g 2>€Fo(1\7)}-

We want to study:
(0.1) PROBLEM. Let f be a primitive form (or a common eigenjfunction of

all the Hecke operators) in Sy+o(N, X) with f(z)= ﬁj}lan exp 2/ —1nz) (a,=1).
Let r be a column vector in C¥+V™,

(i): Mm)yr=a,r for all the positive integers n with (n, N)=1.
(ii): Jr=r. (ii): Jr=-—r.
(iv): (pEle)+Dr=0. (v): (p¥lo2)?+9Hos)+Dr=0.

v (73

Let W~ (resp. W) be the space of the solutions of the system of the above equa-
tions (i), (i), (v), (v) and (vi) (resp. (i), (iil), (iv), (v) and (vi)) over C. Is it true
that W~ (resp. W) is one dimensional over C?

(dim W*=1 since WeSZ“’(D(fHD( £)9)#0 and W*BSZW(D( H—D(F)9)#0.

The equation (vi) becomes trivial (viz. 0=0) when ['=/,(N)=>—1.)
Note that M(n)=M,, r(n) is not uniquely determined by n and S, ().
(0.2) LEMMA. Let p be a prime with p=1 (mod N). It is well known that

(¢ Dad—be=p, a—1=b=c=0 (mod M}= U IW)a,. (disjoint)

where we put au———(l Nu) Jor 0=su=<p—1 and ap:(p (1)) Then for each g

0 0
rqQ, the map I'N)a,—I'(N)g'ay,g induces a permutation on {0, 1, ---, p}.
(Cf. Lemma 1.11 in [9].)
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For primes p with p=1 (mod N), choose M(p) as foillows. We compute :

[PIT s Dl el g 1@ dz= o 2 [ Fluclaug 2z

P {oo
=pr* Zo So Flysi[ga,1(2)2dz

U=

vy

=3 (Sime:Vv/p)Fl w+z[gj](z)(pz~Nv)kdz+pw-kSZmF[ wial g1 1(2)2"dz

V=0 0

(FESu+o).

Using (0.0.1) (and (0.0.2)), expand this integration from 0 to Nv/p (resp. —Nv/p)
into a Z-linear combination of the fundamental periods

(7Fluslgl@)e'dz| g=S L2, 2), 1€ Z with 051w}

In this way we have M(p)=M,, r(p) for primes p with p=1 (mod N). Our
result is:

(0.3) THEOREM. Choose M(p)=M,, r(p) for primes p=1 (mod N) as above.
Let %, be the trivial character mod N, Then both W~ and W+ become one dimen-
sional over C at least if [ is either in Sy+(N, Xo) or in Si(q, Xo) where N and
w are positive integers and q is a rational prime. (Here we put N=gq in the case
of w+2=2.)

(Note that the above theorem gives the concrete way for the computation

of the ratio of the components of the vector Re SZWD( f) (resp. Im S:wD( m.)

This theorem is considered as a kind of “Multiplicity one theorem” on
ZNSL2, Z), 54, R). First Shimura showed that W- is one dimensional for
A2)ES1,(SL(2, Z)). Next Manin showed that W* and W~ are both one dimen-
sional for any eigenform in S,.,(SL(2, Z)) where w2 is any weight. (Cf. [12].)

We obtain also:

(0.4) THEOREM. Let f be a primitive form in Sy.a(N, Xo) (W-+2>2) and L
be the greatest common divisor of

{m SZ“’Zf |wrelg @)z dz / (V_—ngwf(z) dz)|1=r=w—1, 1=j=m}.

Then we obtain:

a,=1+p**! (mod L) for all the primes p with (p, N)=1.

(We have always swf(z)dzio if w+2>2. Cf. (1.12) below.)

!
0
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(0.5) THEOREM. Let f be a primitive form in S,(q, Xo) with Ssz(z)dz;to

and L be the greatest common divisor of
{1 {271 Le )@z / (V=11 R2)d2)|

I'(q)g; is neither I'4(q) nor Fo(q)ol} .

Then we obtain:
a,=1+p (mod L) for all the primes p with p ) 2q.

Main results of this paper were announced in a Proceedings of Japan Acad-

emy Note [7].

§1. Notations and preliminary results.

N: a positive integer. w-1: a positive integer.

SE..(I'): the subspace of S, :.(I") whose elements have all their Fourier co-
efficients at z=ioco in the real numbers R.

For every geSL(2, Z), put g=IgeI'\SL2, Z).

R™™+b : the real vector space consisting of column vectors with the basis
indexed by the pairs {(g; u)} which are the elements of the product set
I\SLQ2, Z)x (0, wlNZ).

Hyol, pw, R), Hy(SL(2, Z), 5§, R): the parabolic cohomology groups with
coefficients in the R.

&1 Sysol’) — Hboo(I, py, R): the Shimura isomorphism.

Set I'=Iy(N) and g1:((l) (1))

(1.1) LemMA (cf. Hatada, Theorem 2.3 in [9], Theorem 1 in [8]). The map
O :Sy+o(l’)— Hp (SL2, Z), %, R), F— the cohomology class of the cocycle

{aeSL(Z, Z)— Re SOZOD(F)}, s a surjective R-linear isomorphism (zo€ H).
29
(1.2) LEMMA. The map

U: Sy R™ D
U] v
F Re SZ“’D<F><2>

is an R-linear embedding.

PrROOF. Set z,=0 in (1.1). Recall that ¢, and o, generate SL(2, Z) and
that ¢,(0)=0¢,(0)=1c. Hence we obtain:
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g (0) foo
Re SO ' D(F)z)=0 for all c=SL2, Z) if ReX D(F)(z)=0.
0
Then from (1.1), we obtain (1.2).
(1.3) DEFINITIONS. S~(I"), (resp.> S*(I"),, resp.® S*(I"),) is the R-linear
subspace of R™™+1 formed by all the vectors

r= {7'<§j: B)} 1cjem 0sksw

satisfying the following system of equations (A; ), (B ), (C; ) and (Dj ;)
(resp.® (Aj 1), (By), (Cjx) and (Dj,4), resp.” (Bj 1), (Cy) and (D;,,)) for all
the integers j and k2 with 1<j<m and 0=k=w.

(Aj.0) "(&; B)=(—=D**rligf, &)

(45.0) 15 B)=(—D*r(g], #)

(By.0), 12y B)H—D (g5, w— k=0
ks k —

(Cs.0), @y B+ B (] ) D@ w—k+D)

+ (T F )0z, =0

(Dj. ), r(g;, B)=(—1"r(—g;, k).

Set B=S*)uN\{rlmHe)—Dr' =(pklc) —r’'=r, r eR™™*Y} and B*=
S* M) wNB (resp. B-=S"(I")»NB).
(1.4) DEerFINITIONS. We define mappings ¢*, ¢, § §* as follows.

o SB () —> S-([)w/B~, F—>Re Si”D(F) (mod B-).
o2V =ISE () —> S*Mw/B*, F—>Re SZ“’D(F) (mod B*).
&: Swssl) —> S*D)w/B,  F—>Re SZ”D(F) (mod B) .

&:. S*I'"),/B —> Hp(SLQ2, Z), 13, R)
r (mod B) — the cohomology class of the cocycle
{o,——r and g,——>r}.
& : S (Iw/B™ —> Hpu(SL2, Z), 93, RIND(SE(L),
&1 S*(Mw/B* —> H}o(SLQ, Z), 7%, NGV —1SE:(),

r (mod B*) — the cohomology class of the cocycle
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{o;—>r and g,—r}.

(14.1), Well definedness of £&. For each r in B, there exists a vector r’ in
R™™+b guch that r=1—93(e))r'=(1—n¥(c))r’. Hence £§(r)=0=the cohomology
class of {¢=SLQ2, Z)—(1—nka)r'}.

It is due to the following lemma that the image under &* of S*(I"),/B*
coincides with H},,(SL2, Z), p¥, RNO(V —19=/28k, ().

(1.5) LEMMA. The composite map Eo¢ is the surjective isomorphism @ given
in (1.1). All the maps ¢, ¢*, & and &= given in (1.4) are surjective isomorphisms.

PrOOF. Set z,=0 in (1.1). By (1.1), (1.2) and (1.4), it is easy to see Eo¢)=0Q
and that & is injective. Hence & becomes an isomorphism and so does ¢. From
Eogp=0, we have §*ogp*=0*. Since q)t:@bﬁ'(er/Zs{‘HZcr) and &* is injective,
¢* and &* become surjective isomorphisms.

(1.6) THE LEMMA OF SHAPIRO (See e.g.[18].) The map sh: H(SL2, Z),
,73, R)—HYI, pw, R) induced by the compatible maps, I'GSL(2, Z) and the
projection of R™*D™ to the first (w+1) components, is a surjective isomorphism.
Here we set R=R or Z.

(1.7 LEMMA (Theorem 2.2 (ii) in Hatada [9], [8]). The composite map
sho® (R=R) is the Eichler-Shimura isomorphism Sy +o:(I")—=Hpe(l, pw, R).

Proor. This is a consequence of (1.1) and (1.6). Cf. [9].

From (1.6) and (1.7), we obtain :

(1.8) LEMMA (Theorem 2.2 (iii) in Hatada [9], [8]). The map sh in (1.6)
induces the surjective isomorphism

H3yur(SL2, Z), 3%, R) —> Hpo(I, pu, R).
Furthermore we have proved in Theorem 0.1 in Hatada that the map sh
in (1.6) induces the surjective isomorphism
Hpo(SL2, Z), 1%, Z) —> Hpor(L, puw, Z).  (Also cf. [8])

We need the following well known results.

(1.9) LEmMMA (Manin [11]). There exists a bijection between the right
SL(2, Z) sets, given by

I(NN\SL@, Z) PYZ/NZ)
U U]

FO(N)CI 5) (¢ (mod N): d (mod N)).

(1.10) The field Q(ay, a,, as, ---) is a totally real algebraic number field for
any Haupt type primitive form f(z)= i}lan exp 2z —1nz) (a,=1). (See e.g.
Shimura [15].)
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(1.11) Let 4, be an eigenvalue of the Hecke operator T,..(p) (for a prime
p with pt N) acting on S,..(I4(N)). Then we have |4,/(1+p**)|—0 when
p——+oco for any Archimedean absolute value |-|. (For the more precise result,

see [3])
(1.12) REMARK. We sketch a proof of S:wf(z)a’z;ﬁo if w+2>2in Theorem 0.4.
From (B,,) in (L3), we obtain Szwf(z)dz:—Szwflww[al](z)z“’dz. Since
N 0 0 1y (@ ol 0 I\, . .

01(0 l)—<—N 0), So f2)dz=—N ’zgo flw”[(—N 0)](2)2 dz. It is well

0 1
—N 0
{zeC|Re z=(w+3)/2}. Note w+1=(w-+3)/2 if even w=1.

known that the zeta function attached to f|w+2[( )} have no zeros on

§2. Proof of Theorem 0.3 in case of w+2>2.

Let N=1 and w+2>2 be integers and I be [, (N). First we prove 10
lemmas.

(2.1) LEMMA. Let r={r(gj, )} 1sjsm.osrsw be an element of B. Then
7’(g-'j, k):()
for all jeZ with 1=j=<m and k€ Z with 1<k=w—1.

PrROOF. By the definition of B, there exists a vector r,e R™™*+D guch that
r=(1—x¥(c.))r, and p¥(o3'ec)r,=r,. For each gj, there exists a positive integer n;
with n,=m such that Ty (N)g;(o3'0.)"=Iy(N)g,. Note that (s3'c,)™= (}l g’)

j
Compute :

oL D) i@ 0, 7@y D, (8 2, 1 )

nj
=" ri(g; 0), (&5 1), 71(85 2), -, ri(Es w)).
Then we obtain:
ri(g;, k)=0  for all keZ with 1Zk=w.

Computing 7#(¢,) and (1—x:5(e))r;, we obtain (2.1).
(2.2) LEMMA. Let p be a prime with p=1 (mod N) and T, be the set of
integral matrices:

T,={(¢ Z)EMZ,Z(Z)'ad—bc:;b, a—1=b=c=0 (mod N)}.

Then for any g&SL(2, Z), we have gT,g7'=T,. (Cf. Lemma 1.11 in [9].)
ProoF. For any heT,, we have det(ghg ")=det (h)=p and ghg™! (mod N)
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- g((l) (1)>g‘151 (mod N), a.e.d.

(2.3) LEMMA. Let p be a prime with p=1 (mod N) and g be an element of
SL(2, Z). Then we have:

231), [T w1212

p-1

oo Nv/p
=(p+ 1) Fluslgd@dz— 2 | " Fluslgl()dz

Jor all FES,.(I(N)).

(1 Nv . . (b 0
PROOF. Set av——<0 p) for veZ with 0=Zv=p—1 and ap—(o l)' Then
we have:
the left side of (2.3.1)=pw2 é Sszle[avg](z).
By (2.2),

the left side of (2.3.1)=p®” ﬁo SZ“FI il 0:1(2)

V=

[
Nv

=0°| Flonled@de+ 2 | Fluwlgl)dz

ioo P-1CNv/p
=+ 2| Flowlgl@dz—E | Flowlgl@dz,  q.e.d.

=1

(2.4) LEMMA. Let r={r(Z;, B)}isjsm.osksw be an element of S*(I4(N))y.
Then we have:

—~r(gotay, O+r(g, 0)
=—rgay D+r(@ah w—D+ Z(Y T ) =Dererg, 0

for all geSL2, Z).
PrROOF. Let F be a form in S,.+:(I(IN)). Then we have

oo 09(ic0) G2 (fo0)
@4.1), (3 ) VPl wnlgo)@zdz=0.
0 72(0) 05 (0)

Changing the variable of the integrations in (2.4.1), we have:
(242), (" Fluslgod@adz+] Fluslgotl@—De" 1dz

—{"Flulgde—1 - 1dz=0.
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By the definitions of 7% and S*(I\(N)),, (2.4.2) proves (2.4).
(243) REMARK. For each Fe&S,.,([y(N)), the vector Re S:‘”D<F> s in

S*(Io(N)),, and satisfies the formula in (2.4).

Set t=03'0c,=—0%0, below.

(25) LEMMA. Let g be an element of SL(2, Z) and v be a rational integer.
Then there exist rational integers E(g, v, j, 1) for all the pairs (j, 1) in ([1, mINZ)
X ([0, wINZ) such that

w

—_— -1
T(gz.v) O)ZT(E: 0)+ > 4 E(g; v, jy l)?’(gj, 1)

j=1l=
Jfor all the vectors r=A{r(Z;, B)}1cjsm,o5ksw 0 S¥Lo(N))yp.
Proor. We can prove (2.5) by the recursive argument on v using (2.4),
q.e.d.

v

il

’

26) Lewwa. Let h=(" 5) and 1=(", 3) be two clements of SL2, Z)

with b=0b" and d=d’. Then there exists a rational integer e such that
Lo N)hee=To(N)R

10
where we put ’Z'——(l 1).
PROOF. Case 1 of (d, N)=1. Use the bijection given in (1.9). There exist

rational integers c¢; and ¢; such that
(c:d)=(c;:1) and (¢’:d)=(ci:1) in P(Z/NZ).
Put e=c{—c;. Then we have
(cy: Drt=(c;+e: )=(c;:1).

(2.6) is proved in case 1.
Case 2 of (d, N)=1. Let d,>1 be the greatest common divisor of d and N
(namely d,|d, d,| N and (d3;'d, N)=1). Since h and h’ are in SL(2, Z), we have

—bc=1 (modd,) and —bc’'=1 (mod d,).
Hence
—blc—c")=0 (modd,) and c¢=c¢’ (modd,)

since (b, d)=(b, dy)=1. Put x=(c’—c)/d,eZ. There exists an integer 2’ such
that (d/dy)* =1 (mod N). Put k=~k’—1 and y=(d/d,)*x. Note that

(c: d)=(c(d/do)* : dy) in P(Z/NZ),

(" d)y=(c'(d/dy)¥ : dy) in P{Z/NZ)
and that
' c'(d/do)t=c(d/do)*+dox(d/do)* .
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By the bijection in (1.9), we have
(c(d/dy)k : do)yrv=(c'(d/dp)* : dy) .
Hence (¢: d)z¥=(c¢’: d’), namely Io(N)hc?=1,(N)}’, g.e.d.
Now let
SLR, 2)= U T{N)G(e>
be the disjoint union with respect to the action of /,(N) and the infinite cyclic
group <z to the left and to the right respectively on SL(2, Z). Here m,=
§(TWNNSLE, 2)/). We set Gi=gi=(y ©). Let p be a prime with /N
and v be an integer with (v, p)=1. Let
Nv/p=bn/dn, bn-1/dn-1, =, b:i/dy, be/ds=0/1

be the successive convergents of Nv/p in irreducible form by the continued
fraction of Nv/p. It is well known that each

b, (—=D'b;-y
ht:( ) (1=t=n)
d: (‘"l)t—ldt—l

is an element of SL(2, Z). We put H,==+h, such that H,=h,, Ht((l)):Hm((l))

for all t=Z with 1=<t<n—1. Then we write

B:  B. _
H,= for all teZ with 1=<t<n.
D, D,_,

It is easy to see

¢

No/p n (H; (i)
(2.7.1), S F(z)dz= % S F(z)dz
0 t=1JH(0)

Il
M=

| Pl L HI@Dez+ Do) d

o~
]
—

for all FES,+.(Lo(N)).

Using the formulae

(i) the binomial expansions of (D.,z+D,.)* for t=Z with 1<t<n,
and

(i) [ Fluslgl@dz+{ Fluslgo@e"dz=0

for all FeS,,.,([«(N)) and g=SL2, Z),
we can simplify the right side of (2.7.1) as follows.
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(2.7) LEMMA. There exist rational integers as, (Nv/p) with 1=s=m and
1=Z[=w—1 such that

the right side of (2.7.1)
=1 F@dzt £ 8 a0 uWo/ o) Fluwled@)zdz

for all FES,.(I(N)). (Note that [ is neither 0 nor w and that {as,(Nv/p)}s.:
are explicitly computable by the elements {H,} ..
Proor. We compute as follows.

@72, | F@lenlHI@D e+ D  dz

=Dt FluslHod@dz+ Dt Fluv L H )z
w-1
T &

(L; )D%D?:llSZmFl wrel H1(2)z'dz .

273, 2

t=1

[ Flusl HA@XDiz+ Do) dz

=5 (0| Fluonl Hied@) = D¥| Flusl Hio Y2)d2)

0

—D%S"”Fl wiel Hao1(2)dz

0

+ 05| Pl sl Hi(2)dz

now-1 Too
+ 3 () )i TR we L HA@)2
t=1 [=1 0

for all FES,, .l ().

In case 1 of 1=t=<n—1. It is easy to see that H,,, and H,o, satisfy the
condition in Lemma 2.6 (for h=H;.; and h'=—H,0,). Namely [ (N)H;..{t>=
I'W(N)H;6,{t>. Then apply Lemma 2.5. Then we see that there exist rational
integers {b; s ;} such that

(274) (| FluslHiJ@dz— FluslHio (2 d2)

=3 b Flulad@edz

$=1 Il= 0

for all FE S, «(N)).
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0
1
I'(N)z>. Apply Lemma 2.5. We see that there exist rational integers {b;;, }
such that

In case 2 of t=1. Since D,=1 and le(: ) we have Ty (N)H,<(t>=

275) g\ FluwlHid@)dz— | Fla)dz
m w-1 too
=2 S| Flunled@ztdz
§=1 1l=1 0

for all FES,+.(L(N)).
In case 3 of t=n. Note that D,==+p. Since (p, N)=1, we obtain that
there exists some x<Z such that

(+Dpor: Dp)=(xDyp_y: p)=(x:1) in P(Z/NZ).
Namely ,
Ly(N)Ho,=1(N)z=.
Hence
F0<N>Hn(71<f>: o NX<T> ™

Apply Lemma 2.5. We see that there exist rational integers {b, ;;} such that

2.76), =1\ Flusdl Hao J(2) dz+p*| F(2)dz
=32 Sbusi] Flonle @z

for all FES,..,(Io(N)). (2.7.3), 2.7.4), (2.7.5) and (2.7.6) prove (2.7), qg.e.d.
We recall

SLE, Z)= U T(N)G(z>  (disjoint).
=1

It is easy to see

H

Nvlp n )
ean,  [UFlLuGa@de= 51T TFlLWG )@z

t=1
= 3\ Fluwl G H(NDiz+ Do) v dz

for all FES,+:(IW(N)) and {G;} 8.

Let p be a prime with p=1 (mod N) and G, be a representative of a double
coset IW(N)GK{z>CSL(2, Z). Using the formulae:

(i), the binomial expansions of (D.z-+D,.,)* for t€Z with 1={=n,
and
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(@), | Fluslgd@dz+| Flulgo@zdz=0

for all FES, (I (N)) and geSLQ2, Z),
we can simplify the right side of (2.8.1) as follows.

(2.8) LEMMA. There exist rational integers a¥,(Nv/p) with 1<s=m and
1=12w—1 such that

the right side of (2.8.1)

~-1

== )| Flonl Gzt 3 8 et Vo/ ) Flusl8(2) 2z

§=1 l=1

for all FES,+s(I'(N)). (Note that [ is neither 0 nor w). Hence {a{¥,(Nv/p)}
are explicitly computable by the elements {H,}, and {G;};3.
PrOOF. In the same way of (2.7.2) and (2.7.3), we obtain:

@82, E| Flu.lCHIDetD ) dz
=S (D# " Flusdl G Ho 1@ dz—D¥| Flui GiHio 1(dz2)

~ D2\ Flusl GiHao 12+ Dt). Fluwol GHI2)dz

+ %wg—)l

t=1 1l=1

(") piDet| Pl sl g A2 2

for all FES,+o(L5(N\N)).

In case 1 of 1=t=n—1. It is easy to see that G;H;.; and —G,;H,0, satisfy
the condition of Lemma 2.6 for h=G;H,., and h"=—G;H;o,. Hence I \(N)G;H;+.{z)
=IyN)G,;H;0,{z>. Apply Lemma 2.5. Then we see that there exist rational
integers {b¥};} such that

283) Di(] FlunlGHe1Ddz= | FlunlGiHio1(2)dz)

w-1

= zj) E bg]élS:wF[ w+2[gs](z> Zldz

s=1l=1

In case 2 of t=1. Since D,=1 and le(: (1)>, we have I W(N)G;H.\{z)=

I'(N)Gi<z> by Lemma 2.6. Apply Lemma 2.5. We see that there exist rational
integers {b{");} such that
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2.84), 5| ") w”[G,»Hl](z)dz—ﬁ“m v G2z

1,81
s=11=1

=2 500 TFlunlad@2dz

for all FES,,..(L(N)).
In case 3 of t=n. By Lemma 2.7, we may assume that
F0<N)Gj<7>¢[’0(]v)<f> .

By the bijection given in Lemma 1.9, I4(N)G; corresponds to (c;: ¢,y P(Z/NZ)
for some c¢;€Z and e;=Z with ¢;|N and ¢;=2. We prove:
F0<N>Gan0'1<T>:F0<Z\’7>Gj<7-> .

(2.8.5),
We use the bijection in Lemma 1.9. Then

PROOF OF (2.8.5).
i_N Bn—l
(Cj§ €j>
*p Dy
:(CjBn_1+€an_1: $€JP>EP1(Z/NZ) .

0 —1 o
)(1 O>:(CjBn—l+ean—1 i FciN=Fe;p)

Since p=1 (mod N), +B,_;=1 (mod N) and
(CjBn_1+ean_1: iejp):(icj+ean-1: 18;)

_ 1 0
=(c;Fe;Dp_1: e)=(c;: ej)<$D . 1).

Hence I'(N)G;H,0,=Iy(N)Gj*Pr-1, (2.8.5) is proved.
From (2.8.5) and Lemma 2.5, we obtain that there exist rational integers

{b.;} such that
= ([, Flusdl GiHao 1@ dz—{ " FlL,.[G)(2)d2)

g

-1 1o
S 00] Flenled@2de

m
=2
§=1

(2.8.2), (2.8.3), (2.8.4) and (2.8.6) prove (2.8),
Then there exist even integers

g.e.d.

for all FES (I (N)).
(2.9) LEMMA. Let p be a prime with p} N.

[ FIT st p@de=1+ )| " F@det £ Eris, 1, 9" FluwLed@aez

2
0

Jor all FE S, .(Iy(N)).
PROOF. By the linearity, we may assume F&+/—1SE (I W(N)). Then
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FITursDEV=TSELN) and | Fade={ " F(2)dz.

Let p be odd.

[ PITwsp@dz=p2 2|7 Flo sl ad(2)dz

=prZ°°F<z)dz+ R Si“ F(2)dz

v=-(p-1)/2JNv/Dp

p-1)/2

© ( Nv/p
=(p+pW)S F@dz—2"3 SO F(2)dz

1
0

where we put a,,:((l) N;) for v with 0=v=(p—1)/2
av———(l N((p"b/z_“)) for v with (p+1)/2=v=p—1
0 p
(P 0
ap»(o 1).

Apply Lemma 2.7. We obtain

(" AT wap@dz=04p) FRde—2"8 1—p)| “F2)dz
(P-1d/2

—2"8" 2 8 0 o/ Flusile @7z

)
v=1 0

T Flunled@2dz

(14|

(P-1/2

278 2 S /)] Flunlg )2tz

1
=1 0

461

for all Fev/—1SE,(I'(N)) (and hence for all FES,..(I[(N))). For the case of

p=2, it is proved in a similar way (cf. Hatada [6])).

(2.10) LEMMA. Let p be a prime with p=1 (mod N) and G; be a repre-
sentative of a double coset I'(N)Gi{z)CSL(2, Z). Then there exist rational

[ FIT wsD)] e G2

i i
0 0

=+ " FlunlG@dz+ B Ebs, 1, ] Flusled@edz
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for all FES ,+.(Ly(N)).
PrROOF. From (2.3.1) and Lemma 2.8, we obtain

Szm F| Tw-}-z(p) | w+2[Gj:|(z)dz

i 2
0 0

=), FluslGl@dz+1=p)1~p)| “Flu. G2z

=% 25 e /)| Fluled@zdz

=141 7 Flonal GA@dz— 3 3 5 ati o/ Flusaled(2)2dz,
JO v=1 §=1 l=1

0
g.e.d.
(2.11) FINAL STEP OF PROOF OF THEOREM 0.3 IN CASE OF w-2>2.

Let f(z)= ilan exp (2r+/—1nz) (a;=1) be a primitive form in S,..(lo(N)).

Let ri={ri(gs, D} 1cssm, 0515w (resp. rs={ra(Zs, D} 1zssm.0s1sw) be a column vector
in ST(LH(N)), (resp. ST H(N)),)CTR™™* guch that

Mmn)r,=a,r, (resp. M(n)ry=a,rs)

for all positive n=Z with (n, N)=1. By Lemmas 1.5 and 2.1, there exists a
cusp form f; (resp. f») in SE.o(Iy(N)) (resp. v/ —1SE ,(I4(N))) such that

(2.11.0), Re Sszli wrel g (22 dz=r(gs, I)

(resp. Re Szwle w+2[gs](z>zld2:7’2(gs’ l>>

for all s=€Z with 1<s<m and all [eZ with 1ZI[=w-—1. Let SL(2, Z)
:QI}(N)GK*:% and p be a prime with p=1 (mod N). Then we shall show
j=

first :
@ILD,  Re{|”AITurd) el GI@dz—14 57| " fil sl 612042 |

=(ap,~1=p**r(Gj, 0)

(resp. Re {7 22l TussD) il Gz~ 149240 [ " 210G 202}

=(a,—1—p* (G, 0)).

PrROOF OF (2.11.1). Apply Lemma 2.10. Then we obtain:
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-1

the left side of 2.11.1)=3 S'bs, I, p)Re SO‘” Filwsel 2:1(2)7dz

=1

@
-

g

bis, I, @y, ) from (2.11.0).
1

Il
Ms

4

DS
U
-

U

Since M(p)ri=a,r,, we obtain from Lemma 2.10,

m w-1
E 1

§=1 l=

bys, I, p)ri(&s, D=(ap,—1—p**)1:(G;, 0).

Hence (2.11.1) is proved for f;. In the same way, (2.11.1) is also proved for f,,
g.e.d.

Now divide both the sides of (2.11.1) by 1+p**%. Since Sy+(Io(N)) is a
semi-simple C[{T ,+:(n) | >0, n€Z, (n, N)=1}J-module (cf. Shimura [15]), we
obtain from (1.11) that

|57 Re | " A1 T s9)] sl G A2z | —> 0

(resp. |(1+p7 7 Re | "ol T )l ol G)@)d2| —>0)
when p—-+co with p=1 (mod N). Hence we obtain from (1.11) and (2.11.1):

2112) Re | il G de=r:(G), 0

(resp. Re | " fol vl 61DV dz=n(G,, 0))
for all j&Z with 1<j<m, Now apply Lemma 2.5. Then we have:
(G2, 0=r:(C,, 0+ é ’glE(c’; v, s, D@y, D)
and
Re | " AilunlGrl@dz=Re | il vl G212
+ g)l 1:g'}:E(Cj, v, s, ) Re Sszllwﬂ[gs](z)z‘dz.

Since we have proved already that the above right sides are equal to each
other, we obtain:

2.11.3),, PG, 0=Re | "fil el GiN2)dz

for all veZ. (In the same way, we obtain :
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2.11.3),, G2, 0)=Re S:”fnwtcjrvxz)dz

for all yeZ). Note that the vectors r,, r,, Re SZ”D( £, and Re SO‘” D(f,) satisfy
the formula (B, ;) in (1.3) Definitionl Hence from (2.11.0), (2.11.2) and (2.11.3),

we obtain r;=Re S:OOD(fl) and r,=Re SZWD(fz). (Namely

1@, D=Re | “fil sl 21207z

and
r(Zs, )=Re S:wlemz[ g:1(2)z'dz  for all seZ

with 1=<s<m and [eZ with 0=Z/<w.) We have assumed
Mnyri=a,r, (resp. M(n)ry=a,r,)

for all the rational integers n>0 with (n, N)=1. This implies that

(2.11.4), The form f, (resp. f:) is an eigenform with f;|T ,.(n)=a,f; (resp.
Fel Twis{n)=anfs) for all the integers n>0 with (n, N)=1.

PROOF OF (2.11.4). We have

Mwyri=Re (M| " D(7))=Re(| " DA I Twss(n))

0
=a,r;=Re (SZND(anfl))
since a, is real. In the same way, we have,
Re (| " DA Ture))=Re (| "Dan1).

By Lemma 1.5, ¢~ (resp. ¢*) is injective. Hence fi]|Tys2(n)=a.f1 (resp.
Lol Twi(n)=a, fo). (2.11.4) is proved.

By multiplicity one theorem (cf. [I]) there exists a unique ¢;€R (resp.
¢:€R) such that fi=c,f (resp. f;=+/—1c.f). Hence we obtain:

r=c: Re (SZ“D( f) and r=cIm (SZ“D( ).

Hence W~ (resp. W*) is one dimensional and spanned by the vector Re(gzm D(f ))
(resp. Im(S:wD(f)» over R, q.e.d.
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§3. Proof of Theorem 0.3 in case of w+2=2 and a prime N=q.

Let N be a prime and w+2 be 2. Then m=N+1.
(3.1) LEMMA. Let r={r(g;, 0)}icjsm be an element of B. Then r(g;, 0)=0

Jor all g; with Iy (N)g;#1o(N) and T'o(N)g;#«(N)o,.
1 0 0 —1
< < — —_—
f—1 1) for 1=¢t<N and gN——(l O)—al. Then from

the definition of B, B is spanned by the vectors (1—»¥(a,))r® and (1—k(e,))r®
defined as follows.

PROOF. Set gr—”(

r={r®(g;, Ot icjsm with r®(g, 0)=r™(g,;, 0)=1
for all j with 1=<j=<N, and r®(g,, 0)=0, and
rO={r®(g;, Oticjsn with 7®(g, 0)=r®(g;, 0)=0

for all j with 1=j=<N and r®(g,, 0)=1.
Note that g0, {g,, &5, -, &v-1} for any j with 2<;<N—1 and that g0,
=gy (gyo:i=g,). Hence (3.1) is proved.

Note that Lemmas 2.2 and 2.3 hold in the case of w-+2=2. Let p be a
prime with p Y N, v be an integer with (v, p)=1 and Nv/p=b,/dn, bu-1/dn_1, *,
b./d,, be/d,;=0/1 be the successive convergents of Nv/p by the continued frac-
tion. We use the same notations h; and H; for t€Z with 1=<t<n as in § 2.
(2.7.1) holds also in the case of w+2=2.

(32) LEMMA. Let w=0. Using only the formulae {Bj o}1sjsn+1 in (1.3)
Definition, we can simplify the right side of (2.7.1) as follows (when w+2=2).
There exist rational integers as(Nv/p) with 2=s=N such that

N foo
the right side of 21.1)= 3 a.(Nv/p)| " FlL.](2)dz
for all FES,(I'(N)). (Note that s#+1 and s+ N-+1.)
ProoF. It is sufficient to consider those H; such as N|D; or N|D;_,. Since
pIY N, we have pt D, Lett be an integer with 1=¢t<n—1 and N|D,. Then
we have

SZ“’F| 2[H,j(z)dz+SZ°°Fl LH,.1)(2)dz
:SZ“F(z)dz+Sz°°F1 Lo:)(2dz
0

=V, q.e.d.

(3.3) LEMMA. Let p be a prime with p J 2N. Then there exist even integers
{b(s, p)} 258N such that
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[T FITp@de=4 ) F@de+ s, pf) FlLededz
for all FES,(I'y(N)).

PrROOF. By the linearity, we may assume Fe+/—1SRIW(N)). In the same
way as in Lemma 2.9, we have, for odd primes p,

(P-1)/2

too ) No/p
SO F|T2(p)(z)dz:(l+p)g F(2dz—2 3 SO F(z)dz.

1
0 =1

Apply Lemma 3.2. Then we have:

2 1
0 0

[ FiTaoxade=4 0| F@de—2 £ S 0 o/n)| Flled0d

for all Fe+/—ISB[,(N)) (and hence for all FeS,(I(N))).

(3.4) FINAL STEP OF THE PROOF OF THEOREM (.3 IN CASE OF w+2=2 AND
A PRIME N.

Let f(z)= i;lanexp 27/ —1nz) (a,=1) be a primitive form in Sy(IH(N)). Let

ri={r1(Zs, 0} 1sssnv+1 (resp. ry={r2(Zs, 0)} 15555+1) be a column vector in S™(I4(V)),
(resp. SHIW(N))o)TRY*! with M(n)r,=a,r; (resp. M(n)r,=a,r,) for all the posi-
tive integers n with (n, N)=1. By Lemmas 1.5 and 3.1, there exists a cusp
form £, (resp. f») in SR W(N)) (resp. v/ —1SHIW(N))) such that

(349), Re |" fil.Le@dz=ri2., 0

(resp. Re (" £2liLg.)@dz=ru(z,, )

for all the integers s&€Z with 2<s<N. Let p be a prime with (p, 2N)=1. We
shall show first:

(34), Re{|" Al Tup@dz—1+5)| " fi2)dz}
:(ap—]-_p)ﬁ(gx, 0)

(reso. Re{[ " Al Tup@dz—(1+ )" Ai2)d2}

=(a,~1=p)r(8:, 0)).
PRrROOF OF (3.4.1). Apply Lemma 3.3. Then we have:

the left side of (34.1)= sz’:‘,zb(s, ) Re So“’ flLg1(2)dz
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= 205, P 0).

Since M(p)r,=a,r,, we obtain from Lemma 3.2 that

356, B =0y~ 1—p)1(2s, 0).
Hence (3.4.1) is proved for f,.

In the same way, (3.4.1) is proved for f,,

q.e.d.
Since S,([W(N)) is a semi-simple C[{Tx(n)|n>0, n=Z, (n, N)=1}]-module,
we obtain also from (1.11) that

(497 Re | “AITu )@ dz| —> 0

(resp. |(1+ 5)"1 Re SO“’ Fol Tl p)(z)dz] —>0)
when p—+oo. Hence we obtain from (3.4.1),
(342) Re | “riadz=r(2, 0)

(resp. Re S“’ fuDdz=riEs, 0)).

The vectors ry, 1, Re S“’ D(f)) and ReSZ‘”D( 7. satisfy the formulae {(B; o)}
in (1.3) Hence (3.4.0) and (3.4.2) assert that

ri=Re SO‘” D(f) and r,=Re SO“’ DSy,
We have assumed that

M(?’L)T'l:anrl

(resp. M(n)ry=ayr,)
for all neZ with (n, N)=1.

By the same argument as in §2, we obtain
fl[ Tz(n):anfl

(resp. fz] To(n)=an f>)
for all neZ with (n, N)=1.

By multiplicity one theorem there exists a unique
c:€R (resp. c;€R) such that fi=c,f (resp. fo=+/—1c,f). Hence we obtain:

r.=c; Re (sz D(f)) and r,=c,Im (gzwD(f)) .

Hence W- (resp. W*) is one dimensional over R,
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§4. Applications of Theorem 0.3.
(4.1) PrROOFs OF THEOREMS 0.4 AND 0.5.
By Theorem 0.3, the ratio of the components of Im (S:m D( f)> is obtained

by finite steps as is shown in §2 (resp. §3). Then Theorem 0.4 (resp. 0.5) is a
direct consequence of Lemma 2.9 (resp. Lemma 3.3).

700
For the explicit computations of the ratio of the components of Re SO D(f)
(resp. Im S:w D( f)), the following proposition is useful (or saves much efforts).

(4.2) ProPOSITION (Hatada [10]). If N is a square free integer, 4 or §,
B~={0} for I'=I"\(N).
(4.3) ExampLES. The following are obtained by the computation by hand.

Example 1. Let f(z)= i a, exp (2r+/—1nz) be the unique primitive form in
n=1

Sl %(2)) (a,=1). Set gl———((l) (1)>, gzz(i (1)), r;=Re (S:w D(f)) and rgzlm(SZwD(f))

Then we have:

(1181, 1) 2 71(81, 3) 1 71(81, 5) 1 71(F2, 1) 2 74(Ze, 3))=(8: —3:2: —10:6)
and

(re(81, 0): 7a(81, 2) 1 (81, 4) 2 7a(81, 6) 2 72(Z2, 0) 2 72(F2, 2))
=(120: —34:17: —15: —135:51).
G.CM. of {—34, 17, 51} =17. Hence we have

ap,=1+p" (mod 17) for all the odd primes p.

Example 2. Let f(z)= Sa, exp (2r+/—1nz) be the unique primitive form in
n=1

Suly(2). Set g1:<(1) M) a=(; Y) n=Re ({"pn) and re=tm ({"D01)).
Then we have: ’
(rig, D iri@y, 3): (81, 5) 1 ri(8r, ) 71(8s, 1) 1 1i(Ge, 3))

=(—8:2:—-1:1:7:-1)
and
(ro(81, 0): 72(81, 2): 72(81, B 2 72(G1, 6): 72(G1, 8) 1 72(Zs, 0) 1 7:(Zs, 2): 7:(Z2, 4))

=(—3360:620: —217:155: —210:3150: —465: 0).
G.CM. of {620, —217, 155, —465} =31. Hence we obtain:
a,=14p° (mod 31) for all the odd primes p.
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Example 3. Let f(z) be the unique primitive form in S¢(I,(4)). Set r,=

(70 56 ) st Y s am(l ) e e

(ro(&1, 0) 2 7(81, 2) 2 7a(81, 4) 1 72(Es, 0) 1 72(Fs, 2) 2 7o(Zsy 4)
r2(82y 0) 1 75(Z2, 1) 2 75(85, 2))
=(—48:8: —3:48: —8:3:0:—24:0).
G.C.M.Apf] {§,1—8, —24, 0} =8. 8 divides 48.

Example‘l. Let f(z)= ian exp (27+/—1nz) (a;=1) be the unique primitive
. " e 10 10 2 1
form in S(I6). Set re=Im | "D(9), =, |) &= 1) 8= ,) &=

01 31 3 2
G (1)) and g;-,:(; (1)> Then we have:

(781, 0) 1 72(Z2, 0) 1 75(Z2, 2) 1 72(Zs, 2): 72(84, 0) 2 7(&s, 0) : 72(8s, 1))
=(—3:0:0:1:—-3:—1:-—1).
Note that 3 is odd. Hence we obtain:
a,=0 (mod 2) for all the primes p+#2, 3.

(4.4) Examples 4-6 in are obtained by our Theorems 0.3 and 0.5 (cf.
Theorems 7.9 and 8.3 computations of the table in Manin [11].

(4.5) REMARK. Let f(2)= ij}lanexp (27+/—1nz) be a primitive form in

Swi2(lo(N)). If the algebraic number field Q(a,, a, as, --) is an extension of a
small degree over @, for example, 1, 2, 3 or 4, the ratio of the components of

the vector Im Sm D(f) is computed easily.
0
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Added in proof.
From proposition 4.2, we obtain dim; W-=1 also in the case of w-+2=2

and N: a square free integer.
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