J. Math. Soc. Japan
Vol. 33, No. 3, 1981

Vector bundles on ample divisors

By Takao FUJITA

(Received Aug. 21, 1979)

Introduction.

Suppose that a scheme A lies as an ample divisor in another scheme M.
Then, as we saw in and [2], the structure of M is closely related to that
of A. Keeping this principle in mind, we study in §1 the behaviour of a vector
bundle F on M in relation to that of F,. In §2 and §3 we prove the following
extendability criterion announced in [1]: A vector bundle E can be extended
to a vector bundle on M if H*(A, &nd (E)[—tA])=0 for any t=1, H?(A, E[tA])
=0 for any 0<p<dim A4, t€Z and if M is non-singular. In §4 and §5, as an
application, we show that the Grassmann variety G, , parametrizing r-dimen-
sional linear subspaces of an n-dimensional vector space cannot be an ample
divisor in any manifold except the well known classical cases, namely the cases
in which r=1, r=n—1 or (n, r)=04, 2).

Notation, Convention and Terminology.

In this paper we fix once for all an algebraically closed field %2 of any
characteristic and assume that everything is defined over k. Basically we
employ the same notation as in [2]. In particular, vector bundles are confused
with the locally free sheaves of their sections. Here we show examples of
symbols.

Ev: The dual vector bundle of a vector bundle E.

S'E: The i-th symmetric product bundle of E.

End (E): =Hom (E, E)Y=EVQRE.

F[E]: =FQReOLE] where F is a coherent ©-module.

[D]: The line bundle associated with a Cartier divisor D.

BsA: The intersection of all the members of a linear system A.
Note that a line bundle L is generated by its global sections if and only if
Bs| L|=0.

o4: The rational mapping induced by A.

Ly: The pull back of L to 7.
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§1. The hyperplane section principle of Lefschetz.

(1.0) Throughout this section A is an ample divisor on a scheme S. We
fix ae H(S, [A]) which defines A. For a coherent sheaf & on S, let a4 denote
the natural homomorphism F[—A]— <, and let &, denote Coker (a5). This is
consistent with the fact that 0,=Coker (aoy).

(1.1) PROPOSITION. Let &F be a coherent sheaf on S such that a< is injective.
Let p be a positive integer such that the natural mapping HP?'(S, F[tA])
—H? YA, gTtAl,) is surjective for any t>0. Then H?(S, F)=0.

For a proof, see [2, (2.1)].

REMARK. ag is injective if S is irreducible and reduced and if & is locally
free.

(1.2) PROPOSITION. Let & be a locally free sheaf on S and suppose that S
1s non-singular. Let p be an integer less than dim S such that H?(A, e[ —tA]4)
=0 for any t=0. Then H?(S, &)=0.

For a proof, see [5, Lemma [-B].

(1.3) Let L be a line bundle on S and let G(S, L) denote the graded £A-
algebra P;z,H(S, tL). For any coherent sheaf & on S, M(ZF, L)=P;c,H(S,
F[tL7]) has a natural graded G(S, L)-module structure. Of course the grading
is given by M(F, L)=H"(S, Z[tL]).

Let 6= HYS, dL) for some d>0 and let D be the divisor of zeros of §. By
M(&, L)p we denote the image of the natural mapping M(ZF, L)— M(Fp, Lp).

THEOREM. Let G be a graded subalgebra of G(S, L) containing 6. Suppose
that 04 is injective and that M(F, L)=0 for t<0. Let X be a set of homoge-
neous elements of M(ZF, L) such that M(ZF, L)p is generated by the image of 2
as a G-module. Then M(ZF, L) is generated by 2 as a G-module.

PrROOF. Let Z be the G-submodule of M(&, L) generated by 2X. Putting
Zy=Z"\M,(&F, L), we show Z,=M,(ZF, L) by induction on #. This is obvious for
<0 by assumption. Let us assume Z,=M,(F, L) for any p<t. The injectivity
of 04 implies Ker (M(ZF, L)— M(ZF, L)p)=0M(ZF, L) via the long exact sequence
of cohomology. On the other hand, Z— M(ZF, L), is surjective by assumption.
Hence we infer that MJ(F, L)=Z,+0M,_ «(F, L)=2,4+6Z,.4—=Z,. Thus we
prove the assertion.

(1.4) COROLLARY. Let & be a coherent sheaf on S such that az is injective.
Suppose that the mnatural mappings HS, F)—H(A, F,) and HYS, [A])—
H'(A, [Als) are surjective. Suppose further that the natural wmapping
H(A, F[tAJORQHYA, [Al)—HA, FL(t+1)All) is surjective for every t=0.
Then, the natural mappings H'(S, F[tADN—HYA, F[tA],) and HYS, F[tA])
QH(S, [AD—HS, F[(t-+1)A]) are surjective for any t=0.

Proor. Put L=[A] and let G be the subalgebra of G(S, L) generated by
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H°(S, [A]). Then, letting X=H*S, &), a similar argument as in (1.3) proves
this corollary.

(1.5) REMARK. Let & be as in (1.4). Then & is generated by its global
sections.

Indeed, the second assertion implies that F[tA] is generated by its global
sections if FL(t+1)A] is so. On the other hand, F[[A] is generated by its
global sections for [>»>0 since A is ample. Therefore [ tA] is generated by its
global sections for any ¢=0.

(1.6) REMARK. Return to the situation in (1.3). Consider the case in which
2 is a finite set {;, =+, {m. Each {; defines a G-homomorphism G— M(Z, L).
Combining them together we get a surjective G-homomorphism @ : G5 --- BG
—M(, L). To give a fundamental system of relations among {;, -+, L, is
equivalent to give a generator system of Ker (@) as a G-module.

Since X generates M(ZF, L), we have similarly a surjective homomorphism
Dp: GpP - PGp— M(F, L)p. Then, we can show, similarly as in [2, (3.2)], that
the natural homomorphism Ker (@)—Ker (@p) is surjective. In other words, any
relation among ;, -+, {» on D can be lifted to a relation on S.

However, such lifted relations do not always generate Ker (@). This is
because Ker (G— Gp) might be greater than ¢G. So, suppose in addition that
0—0G—-G—Gp—0 is exact. Then, quite similarly as in [2, (3.2)], we can
show that any lift of a generator system of Ker (®@,) to Ker (@) becomes a
generator system of Ker (@) as a G-module.

We omit detailed arguments since we don’t use these facts in the following
sections.

(1.7) Before closing this section we present the following

PROPOSITION. Suppose that there is a morphism =m:S— A such that the
restriction of m to A is the identity. Then Pic(S)— Pic(A) is not injective.

Proor. Put L=[A],ePic(A). Then =n*L,=[A],;. On the other hand,
7*L is not ample since dim A<dim S, while A is ample. Hence Pic(S)— Pic (A)
is not injective.

§2. Formal extendability of vector bundles.

(2.1) The purpose of this section is to prove the following

PROPOSITION. Let A be an effective divisor on a scheme S such that aog1s
injective. Let E be a vector bundle on A such that H*(A, &nd (E)[tA]4)=0 for
any t<0. Then E can be extended to a vector bundle on the formal completion
S of S along A. ’

(22) Let 4 be the defining ideal of A. Then J=0s[—A] since apy is
injective. Moreover, J%/4%*! ig canonically isomorphic to @, —FkA] for any £=0.

(2.3) Let & be a coherent sheaf on S. For each open set U in S, let
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M (F)U) be the module of (n, n) matrixes each: (i, j) component of which is
an element of I'(U, &). Clearly this defines a coherent sheaf ¥,.(%) on S.

Let # be a sheaf of @g-algebra. Then M,.(B)(U) has a natural (probably
non-commutative) I'(U, Og)-algebra structure. Let 1y denote the unit of it.
Let @l,(8)(U) be the set of P=M,(B)U) such that PX=YP=1,; for some
X, Yean,(8)U). Then this gives rise to a sheaf of (probably non-abelian)
groups on S, which is denoted by &/,.(B).

(24) For each =0, we have the following natural exact sequence of sheaves
of groups: {1} —>M,(I*/I*)— @l ,(Os/I*)—Gl,(Os/9*)—{1}. Here we map
XEML(I*/IFDU) to 1y+ X< @l (Og/I%+).

(2.5) Let {U,} be a sufficiently fine affine open covering of S such that E
is free on each V,=ANU,. Let eqq, =+, €0 .€(V,, E) be a free base of E

on V,, where r=rank E. Then e, ;= 51} (Zap)i, s€ 5, ; for some gaﬁeF(Vaﬁ, Ma(04))
i

on V,s=V.n\Vs Clearly gapgs.=1. Hence gogEl'(Vap, Gln(04). Moreover,
Zas8pr8ra=1 on each V.5 =V.nVsn\V;. So {ga.p} is a l-cocycle defined on
the covering {V,} with coefficients in &/,(O4).

(2.6) We want to find a l-cocycle {g.s} defined on {V,} with coefficients
in ¢l,(05)=3!,(proj-lim,..(0s/9*)) such that g.s=g.s modulo 4. If this is
done, then {g,s} defines a vector bundle £ on S with £,=E.

(2.7) To find {g.s} is equivalent to find a compatible system of l-cocycles
g{®}, k=0, 1,2, -, where g is with coefficients in @/,(0s/J**'). Clearly we
must set g&3=g.s in order to have g,3=g.s modulo J.

(2.8) Assuming that we have already constructed {g@™"} with g =
Z.pmod J, we want to get a l-cocycle {g&} with coefficients in G/,(0s/J%*)
such that g¥}=g¥% ™ mod J*.

(2.9) Since V,; is affine, we can find ge; ©['(Vap, ¢ln(0s/9*%*Y)) such that
gus=gdP mod g*. We may assume gepQi.=gs8es=1 fo each a, .

(2.10) Clearly ghsghgra=1modS*. Hence gihsgigra=1+xp7, for some
Zra €L (Veagr, Ma(I*/I%*Y). By (2.9) we infer xp,.=0 if any two of «, 8, 7
are the same index.

(2.11) We have 14 xp0a=8as8¢r81a=8ur(8ra8ap8kr)81a=8ar(l+ Xupr)gra=1
+ GayXazyra- Therefore xsra=gar¥aprgrar Note that J-x.s,=0modJ*** and
the right hand side is well defined as a section of M,(9%/g%**).

(2.12) On each V,p;5 We have gs;Xapr85=XrastT Xapstxprs. This follows
from: 1+ gs;% a 3;876= 851+ X apy) 815= 851 81a8up Ll 815=85r 8ra 8as8oa 8 upL 3855 8 b7 870
=14 x,06) A+ X aps)A+ % 575) =A+ X pas+ Xapst X pra)-

(2.13) Put B=y in the above situation. Then 0=xgss+xaps by (2.10).

(2.14) We define @s;a S (Vapy, End (EXI*/I**N)=T(Vap;, Hom (E, E(I*/

Jkﬂ))) bY @‘Sra(ea,i):]a(xﬂra)i,jea,j- Then @ﬁra(er. i)zgﬂﬂra(g (gra>i.jea.j>
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:jzk (gra)i,j(xﬂra)j,kea,k = j;l (gra)i,j(xﬁra)j,k(gar>k,ler,l: lE (graxﬂragar)i,ler,l
=3 (Xasr)u 187, 1=@aps(€r,1). Hence @pra=¢ap;. Combining this with (2.13) we

infer that {¢p.s,;} is a 2-cochain.
215 In view of (212) we calculate: @as(es)=pas(Z (@ str.s)
J

= J_Ek (g’a-f)i,j(xa,sr)j,ker,k: j;l (gar)i,j<xaﬁr)j,k(gns)k,zea,l: ;(gﬁrxaﬂrgrﬁ)i,leﬁ,l

=@ras(€s, 1) T 0ags(s i) T 0pra(es ). Thus we have @.p=@ras+@agst@prs. This
means that {p.s;} is a 2-cocycle.

(2.16) {V,} 1is an affine covering of A and HZ(A, &nd (E)(JI*/I**Y)
=H%A, é&nd (E)_—kA]4)=0 for any £>0. Hence by Cech theory {¢pap,} must
be a 2-coboundary. Namely we have a 1-cochain {p.s} such that ¢,z =0g—@;
+¢qp for any a, 8, 7.

(217) Let @asles. 0= 3 (yaphi 05 Tor ¥uaSI(Vas, Ha(s"/S*).  Then

Qapr=0sr— CartQap IMplies Xap; =Yg~ Var+&rsYap8pr- This follows from a
calculation as in (2.14). Similarly we obtain yge+gapyapgsa=0 from ¢go+¢@,5=0.

(2.18) We put gdfi=gas(1—yap). Then, using (2.17), we see gihgHg®
=g1a(1=70)80s(1—Y2p)85r(L — ¥ 8y) = 81a80p8%r — raVralap8pr — LrpYapler — Vp-
=+ %4057) T Var—8rsYap8sr— ¥sr=1. Thus {g#} is a l-cocycle having the pro-
perty in (2.8).

(2.19) In such a way we can construct {g®} s 1. inductively and wc
obtain g.z;=projlim gfi. g¥gR=1 implies Z.sfp.=1. Hence g,pl'(V,g,
2l,(08)) and {g.s} is a l-cochain. Similarly we infer that {g.s} is a l-cocycle
since each {g{} is so. Thus we get a l-cocycle {g.s} asin (2.6). This proves
the proposition (2.1).

§3. Global extendability of vector bundles.

(3.1) The purpose of this section is to prove the following

PROPOSITION. Let A be an ample divisor on a non-singular variety M with
dim M=3. Let E be a vector bundle on the formal completion M of M along
A. Suppose that HP(A, E[tA])=0 for any t<Z, 0<p<dim A, where E is the
restriction of E to A. Then there is a vector bundle E on M such that Eﬁ:E.

For a proof, we recall the following lemmas.

(3.2) LEMMA. Let F be any vector bundle on M. Then the natural mapping
H(M, F)—H"M, Fg) is bijective.

(3.3) LEMMA. For any vector bundle V on M, P l(M, V[tAls) is
finitely genevated as a G(M, [AD=@:x (M, [t A]) module.

(34) LEMMA. For any locally free sheaf & on M, F[tA] is generated by
its global sections if t>0.

For a proof of the above facts, see Hartshorne [3, Chap. IV,
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(3.5) DEFINITION. Let L be a line bundle on a scheme 7 and let V be a
vector bundle on 7. Then V is said to be L-free if V is a direct sum of line
bundles of the form (L, teZ.

(3.6) LEMMA. For any vector bundle V on M, there are a LAl4-free vector
bundle W on M and a homomorphism @ :W—V such that H(P[tA]):
H(M, W[tAl)—HM, V[tA]) is surjective for every t<Z.

ProOF. We take homogeneous generators &,, -+, &, of P,ezH' (M, V[tA))
by (3.3). Each &&I'(M, V[d;A]) defines a homomorphism 0;: —d;Alp—V.

Put W= Qnal[—de]f, and let @ be the map W—V obtained by ¢; This is
g

easily seen to have the desired property.

(3.7) The above @ is surjective. This follows from (3.4).

(3.8) Now we prove (3.1). By (3.6) we have a [A]s-free vector bundle F
on M and a homomorphism @ : F—E such that HY(®@[tA]) is surjective for any
teZ. O is surjective by (3.7). So Ker (@) is locally free. Again by (3.6) and
(3.7), we obtain a [A]s-free vector bundle F’ and a surjective homomorphism
@’ : F'— Ker(®). This induces a homomorphism ¥': F’— F such that £=Coker (¥).

Both F and F’ are [A];-free. Hence they can be extended to [AJ-free
vector bundles on M. We denote them by F and £’. By (3.2), ¥'=Hom (F’, F)
extends uniquely to QNfeHomM(F", F). Let 6”:Coker(§7f). Then clearly &3=E
and &’ is locally free in a neighbourhood of A.

Since H(A, &'[—tA]4)=0 for ¢ >0, we have g= Z such that H°(M, &'[—tAJ))
=HM, &[—qA]) for any ¢=q. Let 1 be the subsheaf of &’ generated by
Im (), where ¢ moves in Homy([¢A], &)=H'M, &'[—qA]). Let ac H"M, [AD)
be a defining section of A as in (1.0). Then, ag is surjective since Ji[—qgA] is
generated by its global sections and I'(JI[—(¢+1)AD)=I(:I[—qA]). This implies
J4=0 and Supp (INNA=0. So Supp (J) is a finite set since A is ample. Put
e=¢’/91. It is easy to see H?(M, &'TtAD=H?M, &[tA]) for any (<Z, >0
and H°(M, &[—tA])=0 for t=q.

HY(M, F[tAD)=HYM, F[tA])—H(M, E[tA)) is surjective for any ¢ by
construction of F. This is factored to H'(M, E[tAD—H'M, &'[tA])—H M,
E[tA])—H'(M, E[tAD). So H(M, E[tA])— H(M, E[tAJ) is surjective for any
teZ. On the other hand, H'(M, E[tA])—H*A, E[tA],) is surjective since
HY(A, E[tA])=0 for any tZ. Therefore H(M, E[tA])—HA, E[tA],) is
surjective for any #. Hence (1.1) applies to the effect that H*(M, g’[tA])zO for
any t. (1.1) proves also that H?(M, g’[tA]):O for any teZ, 0<p<dim M.

Thus we have HP(M, 5[—1“4]):0 for p<dimM and ¢>0. Then
Ext%y (&, wy[tAD)=0 for ¢>0, >0 by Serre duality, where w, is the canonical
sheaf of M. We claim that this implies J[‘I:é’xt%M(g’, wy)=0 for ¢>0. To see
this, consider the spectral sequence £E7?— Ext}’ ‘1(5, wyltA]) with EP?
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=H?(M, 99 tA]). EP?=0 for p>0if t»0. Therefore, if >0, H(M, 4 tAJ)
=F%9=FExt}, (é’ wyltA]=0 for ¢>0. This implies #?=0 for ¢>0 since A is
ample.

Thus we obtain Sx:‘f,M(é’N, wy)=0 for ¢>0. This implies that € is locally
free, since M is non-singular and w, is invertible. So € is a desired extension
of E.

(3.9) THEOREM. Let A be an ample divisor on a non-singular variety M
with dim M=3. Let E be a vector bundle on A such that H*(A, Exd(E)[—tA],)
=0 for any t >0 and that HP(A E[tA]4)=0 for any teZ, 0<p<dim A. Then
there exists a vector bundle E on M such that EA E.

For a proof, combine (2.1) and (3.1).

§4. Geometries on flag manifolds.

In this section, for the convenience of the reader, we review several results
on Grassmann varieties which we use in the next section. Most of them are
more or less known.

(4.1) We fix a vector space V over k with dim V=n. Let R={ry, -, s}
be a set of integers such that n>r,>v,> - >r,>0. Then we denote by
Fr(V), or by Fy as an abbreviated form, the flag manifold parametrizing the
filtrations 0CV,C - CV,CV of linear subspaces of V such that codim V;=r;
for j=1, -, h. Fin-1,n-2,..,5 1 is denoted by F. F,, is a usual Grassmann
variety Gg, n-r.

(4.2) For any subset S of R, we have a natural morphism Ilzs: Fr— Fs.
It is easy to see that Ilgs makes Fy a fiber bundle over Fg with each fiber
being isomorphic to a product of flag manifolds. It is also well known that
R g 5)+0r,=0 for ¢>0 and (ITg/s)xOr,=0rs. Hence, for any vector bundle
W on Fg, we have H?(Fs, W)=H?(Fg, (Ilg;5)*W). We write W instead of
(ITr/s)*W when there is no danger of confusion. In particular we have
H?(Fg, W)= H?(F, W).

(4.3) Let Vg denote the trivial vector bundle VX Fy over Fr. This has a
natural filtration 0C EX_, CE%_,,C -« CE}.,,C Vg of subbundles of Vz such
that rank E¥=j;. Putting ETJ.: VR/E;',‘_,J., we get a cofiltration Vp—-E, —E,,
—- o —»E, —>0 of Vi with rank E;=j. Obviously (/g s)*E.=E, for any
ScCR and r€S. Our notation is consistent with this fact.

(4.4) For any i>j we have E¥_;/Ex_;=Ker (E;— E;). This vector bundle
is denoted by E;;;. In particular, we set E;,=E; and E,/;=FE%_,.

(4.5) Taking the dual of a cofiltration of V, we get a filtration of VV.
This induces an isomorphism D: Fe(V)—Fr(VV), where R* is the set
{n—ry, =, n—r;}. Note that D*(E, . (VV)=(E%..(V))¥ and D*E¥VV))
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=(E(V))V for any reR.

(4.6) THEOREM. Let R={ry, -+, vy} and S=R—{r;} and set v,=n and
ra+1=0. Then, (RUlz;5)x(OrgLE s ;17,,, D=0 for ¢>0 and (I r/$)«(OrsLEr 17,4, D)
=O0psLE v yir 4]

Proor. First we consider the case in which r;=r;,;+1. Then Fg
EPFS(E,J._I,,J.H) and E,,,, is the tautological line bundle ©(1). So the
assertion is well known in this case. In the general case in which r;>#;.,+1,
put r=v;;,+1 and let T=R\U{r}. Using the Leray spectral sequence EP?:¢
=>RP*([]7,5)+F for F=0p;[E+/r;1,] such that E}=RP(I] g/ s)« (R 1,p)xF),
we reduce the problem to the above special case.

(4.7) COROLLARY. For any vector bundle W on S, HP?(Fg, E, v, QW)
=H?(Fp, By yr,, QW).

(4.8) We denote det E, by H,. It is well known that H, is very ample on
Fiyy and p,, is the Pliicker embedding of the Grassmann variety F.,. Clearly
Fy is a submanifold of Fo,X -+ XFy, and H, + - +H,, is very ample on Fk.
It is also ‘well known that {H.},cz gives an integral base of Pic (Fg).

h
(4.9) Let K denote the canonical bundle of Fr. Then Kp=— > (rj_l-er)H,j,
i=1
where r,=n and 7r,,,=0. ’
To see this, note that K,,=—nH, since the tangent bundle of F,, is

h
canonically isomorphic to Hom (E%.,, E,). We put Kz= Zingrj since Pic (Fg)
£

is generated by {H,},cr. Let X be a fiber of IYR,R_(,].,. Then XEF;T]._T].H,(V,-)
for a vector space V; with dim V,=r;_,—7;;,, HTjIX::H,J._TjH( Vy), Hylx=0 if
i#:] and KR!X:KX:_(rj-l_rj+l)HTj-Tj+1(Vj)' ThiS implieS ﬂj:'_(rj_lﬂrj.*.l).

(4.10) THEOREM. For L= 712-11 piH;€ Pic (F), the following conditions are
=

equivalent to each other.

a) p;=0 for any j.

b) Bs|L|=0. Namely L is generated by its global sections.

c) |L]|+#0.

PROOF. a) implies b) since H; is very ample on Fy;. Obviously b) implies
c). Recall that H;: F—Fi,_y,.. j+1 j-1,...,n Mmakes Fa Pl-bundle and H;{X;} =0,
for any fiber X; of II;. So c) implies 0= L X,;=p;.

(4.11) COROLLARY. H°(Fi,, E.[—tH,])=0 if t>0.

Proor. HF., E,[—tH,)=HF,, 4, —tH.+H),) by (4.7). So (4.10) applies.

(4.12) REMARK. Suppose that L < Pic(F) satisfies the conditions a), b) and;
¢) in (4.10). Let R be the set of j such that p;>0. Then L comes from a
very ample line bundle on Fr. Hence £(L)=dim p,;,(F)=dim Fg.

(4.13) THEOREM. Suppose that L < Pic(F) satisfies the conditions in (4.10).
Then HP(F, —L)=0 unless p=«(L).
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For a proof, see Kempf [4, p. 328, Theorem 2]. If char £=0, this is a
special case of Kodaira-Ramanujam’s vanishing theorem.

(4.14) COROLLARY. Let L& Pic (Fg) and suppose that L—Kg is ample on
Fy for some SOR. Then H?(Fg, L)=0 for p>0.

PROOF. Putting g=dim Fs—p, we have h?(Fr, L)=h?(Fs, L)=h%Fs, Kgs—L)
=hi(F, —[L—Kg]). So (4.13) applies.

(4.15) COROLLARY. H?(F,, tH.)=0 for any t€Z, 0<p<dim F,,.

PrOOF. For t<0, (4.13) applies. For t>—n, (4.14) applies since K,,=—nH,
by (4.9).

(4.16) LemMmA. H?(Fi,, EX_,[tH.])=0 for p>0, t>—r.

Proor. Using 4.7) we infer H?(Fy,y, E¥_J[tH,)=ZH?*(Fyi1.n, ErLtH )=
H?(Fipiyny, Hepy-(t—1)H,). Hence (4.14) applies since Kiyyn=—(n—r)Hy i,
—(r+1H, by 4.9).

(4.17) THEOREM. Suppose that r=2 and n—rz=2, namely, Fu, is not a
projective space. Then HP(Fy,, E.[tH,])=0 for any teZ, 0<p<dim F,,.

Proor. H?(F, E[tH,)=H?(F, 4, H-+tH,) by (4.7). So (4.14) applies if
t>1—n,since K, y=—rH,—(n—1)H,. On the other hand, wehave h?(F,, E,[tH,])
=h%F,, EY[—(n+1t)H,]) for ¢g=dim F,,—p. In view of (4.5), we infer h¥(Fy,,
EY[—(n+0)H, )=hFin-n, E¥[—(n-+1t)H,_,]). Therefore (4.16) proves the
assertion if t<—r7.

(4.18) THEOREM. Suppose that n—r=3. Then H*(Fi,, End (E)Q[—tH,])=0
for any t>0.

Proor. On F, E, has a co-filtration E,—FE, ;—--—FE,; such that
Ker (E;—E;_)=E;;., (see (4.3) and (4.4)). This induces a filtration of EY.
Combining them, we obtain a double filtration of &nd (E,)= EYQRE,. Hence we
easily see that it suffices to show the following

(4.19) CLamM. H¥F, EY);-1:QF;i-«QL—tH,)=0 for any t>0, 1=iZr,
1=7<r.

Proor. We put L=E;Y QR Eyi-1Q[—tH]=H,—H;, ,—H;+H; ,—tH,.
Consider the projection II:Fiy ,—y...u—F-1,..n and let X be a fiber of it.
Then X=P" " and deg (L y)=—t+0;,—0;. Hence R?II.L=0 for p=2 unless
t=1, i=r and j<r. Using the Leray spectral sequence we infer H*F, L)=0
in that case. If t=1 and r=1>j, we infer H¥F, L)=H*F, —H,-,—H;+H;_,)=0
by a similar argument using the projection Fi_y,...u—Firos,.., 1.

(4.20) THEOREM. The mnatural mapping H(Fin, E[tH.)QH(F,, H)—
HYF,,, E[(t+1)H,]) is surjective for t=0.

ProoF. Note that H(F\,, E,[tH.)=H(F\ y, H+tH,) by (4.7). So thisis
a special case.of [4, p. 327, Theorem 1, (3)].
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§5. Grassmann varieties as ample divisors.

(5.1) Let G, , denote the Grassmann variety F,(k") as in §4. If =1 or
n—r=1, then G, , is a projective space. It is well known that G,, becomes a
hyperquadric by the Pliicker embedding. In these cases G, is an ample divisor
on a manifold. However, for other Grassmann varieties, we have the following

(5.2) THEOREM. G, . cannot be an ample divisor in any manifold M unless
(n, r)=(n, 1), (n, n—1) or 4, 2).

Proor. We assume G=G,, , to be an ample divisor on a non-singular variety
M. Assuming r#1, n—r+1 and (n, r)#{, 2), we will derive a contradiction.
Since G, ,=Gn, n-» We may assume that n—r=3 and r=2. Put L=[G]e Pic (M).
Note that Ls=mH, for some m>0. By (4.18) and (4.17) we can apply (3.9) in
order to extend the vector bundle E, to a vector bundle E on M. By (1.2),
(4.11) and (4.17) we obtain H?(M, E[—L7)=0 for p=0,1. Hence H°M, E)
—H%G, E,) is bijective. Similarly by (1.2) and (4.15) we infer that H°(M, L)
— H%G, L) is surjective. Moreover, the natural mapping H%G, E[t L))QHYG, L)
—HYG, E[(t++1)L7]) is surjective for t=0 by (4.20). Hence (1.4) applies and
we see that FE is generated by its global sections by (1.5). Since A°(M, E)
=h%G, E,)=n, we get a morphism I : M— G, .,=G such that IT*E,=E. Itis
easy to see that the restriction of I/ to G is the identity. So Pic (M)— Pic (G)
cannot be injective by (1.7). This contradicts [2, (2.5)] since HY(G, —tL)=0 for
any t>0 by (4.15).
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