On presentations of the fundamental group of the 3 -sphere associated with Heegaard diagrams

By Takeshi Kaneto

(Received Jan. 8, 1979)
(Revised March 29, 1979)

1. Introduction.

We argue a property on presentations of the fundamental group of the 3sphere S^{3} associated with Heegaard diagrams. Few years ago, Prof. T. Homma and M. Ochiai made many examples of homology 3 -spheres of Heegaard genus 2 by an electronic computer and picked up simply connected ones among them. In the process, they found an interesting fact that in case of 3 -sphere, one of two relators of the presentation is included completely in the other one as a subword. Using this property, they showed splendidly the triviality of the group. In this paper, we show that this fact is true in certain sense for the general case of Heegaard genus n. Our proof is based on Suzuki's result [4].

2. Statement of a result.

To state our result precisely, we need some definitions about presentations of groups. Let $\left\langle a_{1}, \cdots, a_{n} ; r_{1}, \cdots, r_{m}\right\rangle$ denote a presentation of a finitely generated group with generators a_{1}, \cdots, a_{n} and relators r_{1}, \cdots, r_{m}. It will be noticed that the relator r_{i} is a word in the alphabet a_{1}, \cdots, a_{n}.

Definition 1. (Simple transformation): We call the following transformations of relators of a presentation simple transformations, cf. [2]. Let b_{q} ($q=$ $0,1, \cdots, k$) denote a letter in the alphabet a_{1}, \cdots, a_{n}, that is, an element of the set $\left\{a_{1}, \cdots, a_{n}, a_{1}^{-1}, \cdots, a_{n}^{-1}\right\}$.
S_{1}) (Cyclic reduction); If a relator r_{i} is of the form $\left(b_{1} \cdots b_{j}\right) b_{0} b_{0}^{-1}\left(b_{j+1} \cdots b_{k}\right)$ or $b_{0}\left(b_{1} \cdots b_{k}\right) b_{0}^{-1}$, we say that the relator $r_{i}^{\prime}=b_{1} \cdots b_{k}$ is obtained from r_{i} by a cyclic reduction. Replace r_{i} by r_{i}^{\prime}. (cf. Note 1.)
S_{2}) (Cyclic permutation); Replace a relator $r_{i}=b_{1} \cdots b_{k}$ by the cyclically permuted one $r_{i}^{\prime}=b_{2} \cdots b_{k} b_{1}$.

[^0]S_{3}) (Inversion); Replace a relator $r_{i}=b_{1} \cdots b_{k}$ by the inverted one $r_{i}^{-1}=$ $b_{k}^{-1} \cdots b_{1}^{-1}$.
S_{4}) (Substitution); If there are two relators $r_{i}, r_{j}(i \neq j)$ such that $r_{i}=w_{1} r_{j} w_{2}$, where w_{1} and w_{2} are words in the alphabet a_{1}, \cdots, a_{n}, then we have a new relator $r_{i}^{\prime}=w_{1} w_{2}$. Replace r_{i} by r_{i}^{\prime}.

NOTE 1. In the case of $\left.r_{i}=\left(b_{1} \cdots b_{j}\right) b_{0} b_{0}^{-1}\left(b_{j+1} \cdots b_{k}\right), \mathrm{S}_{1}\right)$ is called a free reduction. In this case we say that r_{i} is obtained from r_{i}^{\prime} by a free expansion. A cyclic reduction can be obtained by a free reduction and S_{2}) but a cyclic reduction itself is natural and convenient for a transformation of a relator.

We use a notation $\left\{r_{i} \mid i=1, \cdots, m\right\} \searrow\left\{r_{i}^{\prime} \mid i=1, \cdots, m\right\}$ if a set $\left\{r_{i} \mid i=1, \cdots, m\right\}$ of relators can be transformed to another one $\left\{r_{i}^{\prime} \mid i=1, \cdots, m\right\}$ by finite applications of simple transformations.

DEFINITION 2. A presentation $\left\langle a_{1}, \cdots, a_{n} ; r_{1}, \cdots, r_{n}\right\rangle$ is said to be simply trivial if $\left\{r_{i} \mid i=1, \cdots, n\right\} \searrow\left\{a_{i} \mid i=1, \cdots, n\right\}$.

A relator r_{i} is called to be reduced if it is not possible to apply any cyclic reduction to r_{i}.

DEFINITION 3. (Simple equivalence of presentations): Two presentations $\left\langle a_{1}, \cdots, a_{n} ; r_{1}, \cdots, r_{m}\right\rangle$ and $\left\langle a_{1}, \cdots, a_{n} ; r_{1}^{\prime}, \cdots, r_{m}^{\prime}\right\rangle$ are said to be simply equivalent if there exists a presentation $\left\langle a_{1}, \cdots, a_{n} ; r_{1}^{*}, \cdots, r_{m}^{*}\right\rangle$ such that each r_{i}^{*} is reduced, $i=1, \cdots, m$, and both $\left\{r_{i} \mid i=1, \cdots, m\right\}$ and $\left\{r_{i}^{\prime} \mid i=1, \cdots, m\right\}$ can be transformed to $\left\{r_{i}^{*} \mid i=1, \cdots, m\right\}$ by finite applications of simple transformations of type S_{1}), S_{2}) and S_{3}.

Now, we can state our result as follows;
THEOREM. For a presentation $\left\langle a_{1}, \cdots, a_{n} ; r_{1}, \cdots, r_{n}\right\rangle$ of $\Pi_{1}\left(S^{3}\right)$ associated with a Heegaard diagram of genus n, there exists a simply equivalent presentation $\left\langle a_{1}, \cdots, a_{n} ; r_{1}^{\prime}, \cdots, r_{n}^{\prime}\right\rangle$ which is simply trivial.

Note 2. In general, the required simply trivial presentation $\left\langle a_{1}, \cdots, a_{n}\right.$; $\left.r_{1}^{\prime}, \cdots, r_{n}^{\prime}\right\rangle$ can be derived from $\left\langle a_{1}, \cdots, a_{n} ; r_{1}, \cdots, r_{n}\right\rangle$ by finite applications of free expansion. So, the $\left\langle a_{1}, \cdots, a_{n} ; r_{1}^{\prime}, \cdots, r_{n}^{\prime}\right\rangle$ is not always a presentation associated with a Heegaard diagram for S^{3}.

Next example will illustlate the assertion of Theorem more clearly.
Example 1. A presentation $\left\langle a_{1}, a_{2}, a_{3}, a_{4} ; r_{1}, r_{2}, r_{3}, r_{4}\right\rangle$, where $r_{1}=a_{4} a_{3} a_{2} a_{1}^{3}$, $r_{2}=a_{2} a_{1} a_{2}, \quad r_{3}=a_{3} a_{2} a_{1}^{2} a_{3}$ and $r_{4}=a_{4} a_{3} a_{2} a_{1} a_{2}^{-1} a_{3}^{-1} a_{1}$, is not simply trivial. But there exists a simply equivalent presentation $\left\langle a_{1}, a_{2}, a_{3}, a_{4} ; r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, r_{4}^{\prime}\right\rangle$, where $r_{1}^{\prime}=a_{4} a_{3} a_{2} a_{1}^{2} a_{3} a_{3}^{-1} a_{1}, r_{2}^{\prime}=r_{2}, \quad r_{3}^{\prime}=r_{3}$ and $r_{4}^{\prime}=a_{4} a_{3} a_{2} a_{1}^{2} a_{3} a_{3}^{-1} a_{1}^{-1} a_{2}^{-1} a_{3}^{-1} a_{1}$, which is simply trivial.

Before ending this section, we touch on our plan for the following sections, briefly. After establishing a Heegaard diagram for a 3-manifold M in Section 3, we formulate the associated presentation of the fundamental group $\Pi_{1}(M)$ in Section 4. In Section 5 we discuss such the presentations for the 3 -sphere and prove key lemmata, and in Section 6 we prove our Theorem.

3. Heegaard splittings, diagrams and sewings.

We sketch the definitions of Heegaard splittings, diagrams and sewings and the relationships among them. (To know them in detail, see [1].) Let T denote a solid torus of genus n and $T_{i}(i=1,2)$ denote a copy of T. Suppose that M is a connected orientable closed 3-manifold. A triplet $\left(M ; M_{1}, M_{2}\right)$ is called a Heegaard splitting of M with genus n if M_{1} and M_{2} are homeomorphic to T satisfying $M=M_{1} \cup M_{2}$ and $M_{1} \cap M_{2}=\partial M_{1} \cap \partial M_{2}=\partial M_{1}=\partial M_{2}=F$, the Heegaard surface.

Let D_{1} (respectively D_{2}) be a complete system of meridian disks of M_{1} (resp. M_{2}), that is, D_{1} (resp. D_{2}) consists of n mutually disjoint proper disks in M_{1} (resp. M_{2}) such that M_{1} (resp. M_{2}) cut open along D_{1} (resp. D_{2}) is a 3-ball. We say that $C_{1}=\partial D_{1}$ (resp. $C_{2}=\partial D_{2}$) is a complete system of meridian curves of $F=$ ∂M_{1} for M_{1} (resp. $F=\partial M_{2}$ for M_{2}). Then we call a triplet ($F ; C_{1}, C_{2}$) a Heegaard diagram of genus n for M. Conversely, suppose that C_{1}^{\prime} and C_{2}^{\prime} are two complete system of curves on F, that is, C_{1}^{\prime} (resp. C_{2}^{\prime}) consists of n mutually disjoint simple closed curves such that F cut open along C_{1}^{\prime} (resp. C_{2}^{\prime}) is a $2 n$-punctured 2 -sphere. Then there are self-homeomorphisms h_{1} and h_{2} on F such that $h_{1}\left(C_{1}\right)$ $=C_{1}^{\prime}$ and $h_{2}\left(C_{2}\right)=C_{2}^{\prime}$. And we have an orientable closed 3 -manifold M^{\prime} by attaching M_{1} and M_{2} to both sides of F using h_{1} and h_{2} respectively, (M^{\prime} is distinct from M in general). ($F ; C_{1}^{\prime}, C_{2}^{\prime}$) is a Heegaard diagram for M^{\prime} and ($M^{\prime} ; M_{1}^{\prime}, M_{2}^{\prime}$) is a Heegaard splitting of M^{\prime}, where M_{1}^{\prime} (resp. M_{2}^{\prime}) is the image of M_{1} (resp. M_{2}) in M^{\prime} by the attaching.

By the definition, for a Heegaard splitting ($M ; M_{1}, M_{2}$), there are two homeomorphism $f_{i}: T_{i} \rightarrow M_{i}(i=1,2)$. A sewing space $T_{1} \cup_{\phi} T_{2}$ by the sewing map $\phi=f_{1}^{-1} f_{2} \mid \partial T_{2}: \partial T_{2} \rightarrow \partial T_{1}$ is homeomorphic to M. In fact, $f_{1} \cup f_{2}: T_{1} \bigcup_{\phi} T_{2} \rightarrow M$ is a homeomorphism between triplets $\left(T_{1} \cup_{\phi} T_{2} ; T_{1}, T_{2}\right)$ and ($M ; M_{1}, M_{2}$). We may assume that ϕ is orientation-preserving, (if necessary, exchange f_{1} for $f_{1} r$, where $r: T_{1} \rightarrow T_{1}$ is an orientation-reversing homeomorphism). Conversely, for an orientation-preserving homeomorphism $\phi: \partial T_{2}=\partial T \rightarrow \partial T=\partial T_{1}$, the sewing space $T_{1} \bigcup_{\phi} T_{2}$ has a natural Heegaard splitting ($T_{1} \bigcup_{\phi} T_{2} ; T_{1}, T_{2}$). A map ϕ is called a Heegaard sewing.

We may identify a triplet with another triplet if they are homeomorphic as triplets. Hence hereafter, we prefer to use a Heegaard sewing ϕ, splitting ($T_{1} \cup_{\phi} T_{2} ; T_{1}, T_{2}$) and diagram ($\partial T ; C_{0}, \phi\left(C_{0}\right)$) for the technical reason. Here, C_{0} is a standard complete system of meridian curves on $\partial T\left(=\partial T_{1}=\partial T_{2}\right)$ as shown in Fig. 2.

4. A presentation $\Pi_{1}(\phi)$ associated with a Heegaard diagram.

Now, for a given Heegaard sewing ϕ or Heegaard diagram ($\partial T ; C_{0}, \phi\left(C_{0}\right)$), we give a method of calculating a presentation $\Pi_{1}(\phi)$ of the fundamental group $\Pi_{1}\left(T_{1} \cup_{\phi} T_{2}\right)$. Take a fixed point $p \in \partial T$ and a fixed system $\left\{a_{i}, b_{i} \mid i=1, \cdots, n\right\}$ of p-based curves on ∂T as shown in Fig, 1.(a). We use the same notation a_{i} (or b_{i}) to indicate the homotopy class of a_{i} (or b_{i}) for convenience sake. $\left\{a_{i}, b_{i} \mid i=1, \cdots, n\right\}$ makes a set of generators for $\Pi_{1}(\partial T, p)$. Let R be a retraction of T onto a bouquet $B=\left|\bigcup_{i=1}^{n} a_{i}\right|$, and let σ be an arc from p to $\phi(p)$.

Fig. 1. (a)

$\left|\bigcup_{i=1}^{n} a_{i}\right|$
bouquet

Fig. 1.(b)
Definition 4. A presentation $\Pi_{1}(\phi)$ of $\Pi_{1}\left(T_{1} \cup_{\phi} T_{2}, p\right)$ associated with a Heegaard sewing ϕ is $\left\langle a_{1}, \cdots, a_{n} ; r_{1}, \cdots, r_{n}\right\rangle$ such that each r_{i} is a word $r_{i}\left(a_{1}, \cdots, a_{n}\right)$ determined by $\left[R\left(\sigma \cdot \phi\left(b_{i}\right) \cdot \sigma^{-1}\right)\right] \in \Pi_{1}(B, p)=\left\langle a_{1}, \cdots, a_{n}\right\rangle$, where [] denotes a homotopy class and • indicates a composition of curves, (cf. Fig. 1.(b)).

In fact, we can easily check that $\Pi_{1}(\phi)$ is a presentation of $\Pi_{1}\left(T_{1} \cup_{\phi} T_{2}, p\right)$ by van Kampen's theorem. Since $\Pi_{1}(B, p)$ is a free group $\left\langle a_{1}, \cdots, a_{n}\right\rangle$, a word $r_{i}\left(a_{1}, \cdots, a_{n}\right)$ is uniquely determined up to free reduction. By this fact and next Lemma 1, $\Pi_{1}(\phi)$ is well-defined for ϕ up to simple equivalence.

Remark 1. Since $\Pi_{1}(B, p)=\left\langle a_{1}, \cdots, a_{n}\right\rangle$ is isomorphic to $\left\langle a_{1}, \cdots, a_{n}, b_{1}\right.$, $\left.\cdots, b_{n} ; \prod_{i=1}^{n}\left(b_{i}^{-1} a_{i}^{-1} b_{i} a_{i}\right), b_{1}, \cdots, b_{n}\right\rangle=\Pi_{1}(\partial T, p) / N\left(b_{1}, \cdots, b_{n}\right)$, where $N()$ means a normal closure, the relator r_{i} can be obtained as follows: Let $\bar{r}_{i}\left(a_{1}, \cdots, a_{n}\right.$, $\left.b_{1}, \cdots, b_{n}\right)$ be a word determined by $\left[\sigma \cdot \phi\left(b_{i}\right) \cdot \sigma^{-1}\right] \in \Pi_{1}(\partial T, p)$, then $r_{i}=$ $\bar{r}_{i}\left(a_{1}, \cdots, a_{n}, 1, \cdots, 1\right)$.

Remark 2. Let $C_{0}=\left\{c_{1}, \cdots, c_{n}\right\}$ be the standard complete system of meridian curves on ∂T as shown in Fig. 2. By reading signed geometric intersections $C_{0} \cap \phi\left(c_{i}\right)$ along $\phi\left(c_{i}\right)$, we have a word $\bar{r}_{i}\left(c_{1}, \cdots, c_{n}\right)$. Put $r_{i}^{\prime}=\bar{r}_{i}\left(a_{1}, \cdots, a_{n}\right)$

Fig. 2.
by replacing c_{j} by a_{j}, then $\left\langle a_{1}, \cdots, a_{n} ; r_{1}^{\prime}, \cdots, r_{n}^{\prime}\right\rangle$ is called a presentation of $\Pi_{1}\left(T_{1} \cup_{\phi} T_{2}, p\right)$ associated with a Heegaard diagram $\left(\partial T ; C_{0}, \phi\left(C_{0}\right)\right)$. This definition coincides with Definition 4 up to simple equivalence, because each c_{i} is isotopic to b_{i}, (cf. Proof of Lemma 2, below).

Lemma 1. A presentation $\Pi_{1}(\phi)$ does not depends on the choice of an arc σ up to simple equivalence.

Proof. Let σ^{\prime} be another arc from p to $\phi(p)$, then the corresponding relator r_{i}^{\prime} is presented by a homotopy class

$$
\begin{aligned}
r_{i}^{\prime} & =\left[R\left(\sigma^{\prime} \cdot \phi\left(b_{i}\right) \cdot \sigma^{\prime-1}\right)\right]=\left[R\left(\sigma^{\prime} \cdot \sigma^{-1} \cdot \sigma \cdot \phi\left(b_{i}\right) \cdot \sigma^{-1} \cdot \sigma \cdot \sigma^{\prime-1}\right)\right] \\
& =\left[R\left(\sigma^{\prime} \cdot \sigma^{-1}\right)\right]\left[R\left(\sigma \cdot \phi\left(b_{i}\right) \cdot \sigma^{-1}\right)\right]\left[R\left(\sigma \cdot \sigma^{\prime-1}\right)\right] \\
& =\left[R\left(\sigma^{\prime} \cdot \sigma^{-1}\right)\right] r_{i}\left[R\left(\sigma^{\prime} \cdot \sigma^{-1}\right)\right]^{-1},
\end{aligned}
$$

therefore, r_{i}^{\prime} and r_{i} have the same reduced form.
Lemma 2. If ϕ is isotopic to $\phi^{\prime}, \Pi_{1}(\phi)$ is simply equivalent to $\Pi_{1}\left(\phi^{\prime}\right)$.
Proof. Since $\phi\left(b_{i}\right)$ is freely homotopic to $\phi^{\prime}\left(b_{i}\right)$, the difference between $\left[R\left(\sigma \cdot \phi\left(b_{i}\right) \cdot \sigma^{-1}\right)\right]$ and $\left[R\left(\sigma^{\prime} \cdot \phi^{\prime}\left(b_{i}\right) \cdot \sigma^{\prime-1}\right)\right]$ is an inner-automorphism of $\Pi_{1}(B, p)$ which can be removed by cyclic reductions.

5. $\Pi_{1}(\phi)$ for $T_{1} \cup_{\phi} T_{2} \approx S^{3}$.

We discuss a presentation $\Pi_{1}(\phi)$ of $\Pi_{1}\left(T_{1} \cup_{\phi} T_{2}, p\right)$ in the case that $T_{1} \cup_{\phi} T_{2}$ is homeomorphic to S^{3}. By Suzuki [4], the isotopy class group of all orientationpreserving self-homeomorphisms on T has a finite set of generators which is $\mathbb{E}_{n}=\left\{[\rho],\left[\rho_{12}\right],\left[\omega_{1}\right],\left[\tau_{1}\right],\left[\theta_{12}\right],\left[\xi_{12}\right]\right\}$ for $n>2, \mathscr{E}_{2}=\left\{[\rho],\left[\omega_{1}\right],\left[\tau_{1}\right],\left[\theta_{12}\right],\left[\xi_{12}\right]\right\}$ for $n=2$ or $\mathbb{G}_{1}=\left\{\left[\omega_{1}\right],\left[\tau_{1}\right]\right\}$ for $n=1$, where $[f]$ is an isotopy class of f and $\rho, \rho_{12}, \omega_{1}, \tau_{1}, \theta_{12}, \xi_{12}$ are self-homeomorphisms on T defined in [4]. Let $\mathscr{G}_{n}^{ \pm}$denote a set $\left\{\dot{\rho}, \dot{\rho}^{-1}, \dot{\rho}_{12}, \dot{\rho}_{12}^{-1}, \dot{\omega}_{1}, \dot{\omega}_{1}^{-1}, \dot{\tau}_{1}, \dot{\tau}_{1}^{-1}, \dot{\theta}_{12}, \dot{\theta}_{12}^{-1}, \dot{\xi}_{12}, \dot{\xi}_{12}^{-1}\right\}$ for $n>2$ (similarly for $n=2,1$), where $\dot{\rho}=\rho\left|\partial T, \dot{\rho}_{12}=\rho_{12}\right| \partial T$ and so on. Suppose that ϕ_{θ} is a standard

Heegaard sewing for S^{3} which maps a standard meridian curve system to a standard longitudinal curve system, (cf. ϕ_{0} is $\mu_{1} \cdots \mu_{n}$ in [4]).

Next proposition is due to Suzuki [4],
Proposition 1. For each homeomorphism f of $\mathscr{G}_{n}^{ \pm} \cup\left\{\phi_{0}\right\}$, the induced Π_{1} isomorphism $f_{\#}: \Pi_{1}(\partial T, p) \rightarrow \Pi_{1}(\partial T, p)$ is given as the following table, where $\left\{a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}\right\}$ is a set of generators for $\Pi_{1}(\partial T, p)$ defined as Fig. 1.(a) and the trivial case of $f_{\#}\left(a_{i}\right)=a_{i}$ or $f_{\#}\left(b_{j}\right)=b_{j}$ is omitted from the table;

1) Cyclic transformation of handles $\dot{\rho}=f, f^{-1}$

$$
\begin{gathered}
\dot{\rho}_{\#}:\left\{\begin{array}{lll}
a_{i} \longrightarrow a_{i+1} & i=1, \cdots, n & (\bmod n) \\
b_{i} \longrightarrow b_{i+1} & i=1, \cdots, n & (\bmod n)
\end{array}\right. \\
\dot{\rho}_{\#}^{-1}:\left\{\begin{array}{lll}
a_{i} \longrightarrow a_{i-1} & i=1, \cdots, n & (\bmod n) \\
b_{i} \longrightarrow b_{i-1} & i=1, \cdots, n & (\bmod n)
\end{array}\right.
\end{gathered}
$$

2) Interchanging knobs $\dot{\rho}_{12}=f, f^{-1}$

$$
\begin{aligned}
& \dot{\rho}_{12 \#}:\left\{\begin{array}{l}
a_{1} \longrightarrow\left(b_{1}^{-1} a_{1}^{-1} b_{1} a_{1}\right) a_{2}\left(b_{1}^{-1} a_{1}^{-1} b_{1} a_{1}\right)^{-1} \\
a_{2} \longrightarrow a_{1} \\
b_{1} \longrightarrow\left(b_{1}^{-1} a_{1}^{-1} b_{1} a_{1}\right) b_{2}\left(b_{1}^{-1} a_{1}^{-1} b_{1} a_{1}\right)^{-1} \\
b_{2} \longrightarrow b_{1}
\end{array}\right. \\
& \dot{\rho}_{12 \#}^{-1}:\left\{\begin{array}{l}
a_{1} \longrightarrow a_{2} \\
a_{2} \longrightarrow\left(a_{2}^{-1} b_{2}^{-1} a_{2} b_{2}\right) a_{1}\left(a_{2}^{-1} b_{2}^{-1} a_{2} b_{2}\right)^{-1} \\
b_{1} \longrightarrow b_{2} \\
b_{2} \longrightarrow\left(a_{2}^{-1} b_{2}^{-1} a_{2} b_{2}\right) b_{1}\left(a_{2}^{-1} b_{2}^{-1} a_{2} b_{2}\right)^{-1}
\end{array}\right.
\end{aligned}
$$

3) Twisting a knob $\dot{\omega}_{1}=f, f^{-1}$

$$
\begin{aligned}
& \dot{\omega}_{1 \#}:\left\{\begin{array}{l}
a_{1} \longrightarrow a_{1}^{-1} b_{1}^{-1} a_{1}^{-1} b_{1} a_{1} \\
b_{1} \longrightarrow a_{1}^{-1} b_{1}^{-1} a_{1}
\end{array}\right. \\
& \dot{\omega}_{1 \#}^{-1}:\left\{\begin{array}{l}
a_{1} \longrightarrow b_{1}^{-1} a_{1}^{-1} b_{1} \\
b_{1} \longrightarrow b_{1}^{-1} a_{1}^{-1} b_{1}^{-1} a_{1} b_{1}
\end{array}\right.
\end{aligned}
$$

4) Twisting a handle $\dot{\tau}_{1}=f, f^{-1}$

$$
\begin{array}{ll}
\dot{\tau}_{1 \#}: & \left\{a_{1} \longrightarrow b_{1}^{-1} a_{1}\right. \\
\dot{\tau}_{1 \#}^{-1}: & \left\{a_{1} \longrightarrow b_{1} a_{1}\right.
\end{array}
$$

5) Sliding a handle $\dot{\theta}_{12}, \dot{\xi}_{12}=f, f^{-1}$

$$
\begin{aligned}
& \dot{\theta}_{12 \#}:\left\{\begin{array}{l}
a_{1} \longrightarrow a_{1} b_{2}^{-1} a_{2}^{-1} b_{2} \\
b_{2} \longrightarrow a_{2} b_{2} a_{1}^{-1} b_{1} a_{1} b_{2}^{-1} a_{2}^{-1} b_{2}
\end{array}\right. \\
& \dot{\theta}_{12 \#}^{-1}:\left\{\begin{array}{l}
a_{1} \longrightarrow b_{1} a_{1} b_{2}^{-1} a_{2} b_{2} a_{1}^{-1} b_{1}^{-1} a_{1} \\
b_{2} \longrightarrow b_{2} a_{1}^{-1} b_{1}^{-1} a_{1}
\end{array}\right. \\
& \dot{\xi}_{12 \#}:\left\{\begin{array}{l}
a_{1} \longrightarrow b_{1} a_{1} b_{2}^{-1} a_{2}^{-1} b_{2}^{-1} a_{2} b_{2} a_{1}^{-1} b_{1}^{-1} a_{1} \\
a_{2} \longrightarrow a_{2} b_{2} a_{1}^{-1} b_{1}^{-1} a_{1} b_{2}^{-1}
\end{array}\right. \\
& \dot{\xi}_{12 \#}^{-1}:\left\{\begin{array}{l}
a_{1} \longrightarrow a_{1} b_{2}^{-1} a_{2}^{-1} b_{2} a_{2} b_{2} \\
a_{2} \longrightarrow b_{2}^{-1} a_{2} b_{2} a_{1}^{-1} b_{1} a_{1} b_{2}^{-1} a_{2}^{-1} b_{2} a_{2}
\end{array}\right.
\end{aligned}
$$

6) Standard sewing map for $S^{3} \phi_{0}=f$

$$
\phi_{0 \#}: \begin{cases}a_{i} \longrightarrow a_{i}^{-1} b_{i} a_{i} & i=1, \cdots, n \\ b_{i} \longrightarrow a_{i}^{-1} & i=1, \cdots, n\end{cases}
$$

Next corollary is derived from Proposition 1 by elavorate observations of the above table. The retraction $R: \partial T \rightarrow B$ induces the Π_{1}-homeomorphism $R_{\#}: \Pi_{1}(\partial T, p) \rightarrow \Pi_{1}(B, p)$ presented by $R_{\#}\left(a_{i}\right)=a_{i}$ and $R_{\#}\left(b_{i}\right)=1, i=1, \cdots, n$, where 1 means the unit of $\Pi_{1}(B, p)$.

Corollary 1. (1) For any homeomorphism $f \in \mathscr{G}_{n}^{ \pm}$, the following properties hold:
(a) $\left\{f_{\#}\left(b_{i}\right) \mid i=1, \cdots, n\right\} \backslash\left\{b_{i} \mid i=1, \cdots, n\right\}$.
(b) $\left\{R_{\#} f_{\#}\left(a_{i}\right) \mid i=1, \cdots, n\right\} \backslash\left\{a_{i} \mid i=1, \cdots, n\right\}$.
(c) $R_{\#} f_{\#}\left(b_{i}\right)$ is transformed to 1 by free reductions for each $i=1, \cdots, n$.
(2) $\left\langle a_{1}, \cdots, a_{n} ; R_{\#} \phi_{0 \#}\left(b_{1}\right), \cdots, R_{\#} \phi_{0 \#}\left(b_{n}\right)\right\rangle=\left\langle a_{1}, \cdots, a_{n} ; a_{1}^{-1}, \cdots, a_{n}^{-1}\right\rangle$ is simply trivial.

Let ψ be a Heegaard sewing of genus n with $\psi(p)=p$ and $\psi_{\#}$ be the induced Π_{1}-isomorphism. It will be noticed that for each $\psi_{\#}\left(a_{i}\right)$ (or $\psi_{\#}\left(b_{i}\right)$), $i=1, \cdots, n$, there are infinitely many words in the alphabet $a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}$, which represent $\psi_{\#}\left(a_{i}\right)$ (or $\left.\psi_{\#}\left(b_{i}\right)\right)$. If $2 n$ representative words $r_{1}^{\prime}, \cdots, r_{n}^{\prime}, r_{1}^{\prime \prime}, \cdots, r_{n}^{\prime \prime}$ for $\psi_{\#}\left(a_{1}\right), \cdots, \psi_{\#}\left(a_{n}\right), \psi_{\#}\left(b_{1}\right), \cdots, \psi_{\#}\left(b_{n}\right)$ are given, a representative word for $\psi_{\#}(w)$ is uniquely determined for any word w in the alphabet $a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}$. Then we have the presentation $\left\langle a_{1}, \cdots, a_{n} ; R_{\#} \psi_{\#}\left(b_{1}\right), \cdots, R_{\#} \psi_{\#}\left(b_{n}\right)\right\rangle$ as $\Pi_{1}(\psi)$ by Remark 1 for we may choose the constant map as an arc σ in the definition of $\Pi_{1}(\psi)$. Hereafter, in case of a Heegaard sewing ψ of genus n with $\psi(p)=p$, we assume that $2 n$ certain representative words for $\psi_{\#}\left(a_{1}\right), \cdots, \psi_{\#}\left(a_{n}\right), \psi_{\#}\left(b_{1}\right)$, $\cdots, \psi_{\#}\left(b_{n}\right)$ are given, and by $\Pi_{1}\left(\psi_{\#}\right)$ we denote the corresponding presentation $\left\langle a_{1}, \cdots, a_{n} ; R_{\#} \phi_{\#}\left(b_{1}\right), \cdots, R_{\#} \phi_{\#}\left(b_{n}\right)\right\rangle$. We write these representative words for $\psi_{\#}\left(a_{1}\right), \cdots, \psi_{\#}\left(a_{n}\right), \psi_{\#}\left(b_{1}\right), \cdots, \psi_{\#}\left(b_{n}\right)$ explicitely only if necessary. Let $\psi_{1}, \cdots, \psi_{k}$ be k Heegaard sewing of genus n with p fixed. Since $\left(\psi_{1} \cdots \psi_{k}\right)_{\#}=\psi_{1 \#} \cdots \psi_{k \#}$,
$2 n$ representative words for $\left(\psi_{1} \cdots \psi_{k}\right)_{\#}\left(a_{i}\right)$ and $\left(\psi_{1} \cdots \psi_{k}\right)_{\#}\left(b_{i}\right), i=1, \cdots, n$, are uniquely determined by those of $\psi_{j \#}\left(a_{1}\right), \cdots, \psi_{j \#}\left(a_{n}\right), \psi_{j \#}\left(b_{1}\right), \cdots, \psi_{j \#}\left(b_{n}\right), j=1, \cdots, k$. We denote the corresponding presentation $\Pi_{1}\left(\left(\psi_{1} \cdots \psi_{k}\right)\right)$ by $\Pi_{1}\left(\psi_{1 \#} \cdots \psi_{k \#}\right)$.

Using Corollary 1, we can show next key lemmata.
Lemma 3. Let ψ be a Heegaard sewing of genus n with $\psi(p)=p$. Suppose that for any homeomorphism $f \in \mathscr{F}_{n}^{ \pm}, 2 n$ representative words for $f_{\#}\left(a_{i}\right)$ and $f_{\#}\left(b_{i}\right)$, $i=1, \cdots, n$, are given by the table of Proposition 1. Then $\left\{R_{\#} \psi_{\#} f_{\#}\left(b_{i}\right) \mid i=1, \cdots, n\right\}$ $\searrow\left\{R_{\#} \psi_{\#}\left(b_{i}\right) \mid i=1, \cdots, n\right\}$ holds for any choice of $2 n$ representative words for $\psi_{\#}\left(a_{i}\right)$ and $\psi_{\#}\left(b_{i}\right), i=1, \cdots, n$.

Proof. Suppose that $f_{\#}\left(b_{i}\right)$ is presented as a word $r_{i}\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}\right)$ in the alphabet $a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}$. According to $R_{\#} \psi_{\#} f_{\#}\left(b_{i}\right)=r_{i}\left(R_{\#} \psi_{\#}\left(a_{1}\right), \cdots\right.$, $\left.R_{\#} \psi_{\#}\left(a_{n}\right), R_{\#} \psi_{\#}\left(b_{1}\right), \cdots, R_{\#} \psi_{\#}\left(b_{n}\right)\right)$ and (a) of Corollary 1. (1), we have $\left\{R_{\#} \psi_{\#} f_{\#}\left(b_{i}\right) \mid\right.$ $i=1, \cdots, n\} \backslash\left\{R_{\#} \phi_{\#}\left(b_{i}\right) \mid i=1, \cdots, n\right\}$ because of the commutativity of simple transformations and homomorphisms.

Lemma 4. Let ψ be a Heegaard sewing of genus n with $\psi(p)=p$. If $\Pi_{1}\left(\psi_{\#}\right)$ $=\left\langle a_{1}, \cdots, a_{n} ; R_{\#} \psi_{\#}\left(b_{1}\right), \cdots, R_{\#} \psi_{\#}\left(b_{n}\right)\right\rangle$ is simply trivial, $\Pi_{1}\left(f_{\#} \psi_{\#}\right)$ is also simply trivial for any homeomorphism $f \in \mathscr{G}_{n}^{ \pm}$, where $2 n$ representative words for $f_{\sharp}\left(a_{i}\right)$ and $f_{\#}\left(b_{i}\right), i=1, \cdots, n$, are given by the table of Proposition 1.

Proof. The set of relators of $\Pi_{1}\left(f_{\#} \psi_{\#}\right)$ is $\left\{R_{\#} f_{\#} \psi_{\#}\left(b_{i}\right) \mid i=1, \cdots, n\right\}$. Let $r_{i}\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}\right)$ be the given representative word for $\psi_{\#}\left(b_{i}\right)$ in the alphabet $a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}$, where $i=1, \cdots, n$. Because of $R_{\#} f_{\#} \psi_{\#}\left(b_{i}\right)=r_{i}\left(R_{\#} f_{\#}\left(a_{1}\right)\right.$, $\left.\cdots, R_{\#} f_{\#}\left(a_{n}\right), R_{\#} f_{\#}\left(b_{1}\right), \cdots, R_{\#} f_{\#}\left(b_{n}\right)\right)$ and (c) of Corollary 1. (1), $R_{\#} f_{\#} \phi_{\#}\left(b_{i}\right)$ is transformed to $r_{i}\left(R_{\#} f_{\#}\left(a_{1}\right), \cdots, R_{\#} f_{\#}\left(a_{n}\right), 1, \cdots, 1\right)$ by free reductions. Since $R_{\#} \psi_{\#}\left(b_{i}\right)=r_{i}\left(a_{1}, \cdots, a_{n}, 1, \cdots, 1\right)$ for each $i=1, \cdots, n,\left\{r_{i}\left(a_{1}, \cdots, a_{n}, 1, \cdots, 1\right) \mid\right.$ $i=1, \cdots, n\}$ is the set of relators for $\Pi_{1}\left(\psi_{\#}\right)$. Since $\Pi_{1}\left(\psi_{\#}\right)$ is simply trivial from our assumption, it holds that $\left\{R_{\#} f_{\#} \psi_{\#}\left(b_{i}\right) \mid i=1, \cdots, n\right\} \backslash\left\{R_{\#} f_{\#}\left(a_{i}\right) \mid i=1\right.$, $\cdots, n\}$. Therefore, by (b) of Corollary 1.(1), we can conclude that $\Pi_{1}\left(f_{\#} \psi_{\#}\right)$ is also simply trivial.

The following is due to Waldhausen [5] and Suzuki [4].
Proposition 2. A sewing space $T_{1} \bigcup_{\phi} T_{2}$ by a Heegaard sewing ϕ of genus n is homeomorphic to S^{3} if and only if ϕ is isotopic to a composed homeomorphism $f_{k} \cdots f_{1} \phi_{0} g_{1} \cdots g_{m}$, where $f_{i}, g_{j} \in \mathscr{G}_{n}^{ \pm}$.

Proof. The sufficiency of the condition is obvious because two homeomorphisms $f=f_{k} \cdots f_{1}$ and $g=g_{1} \cdots g_{m}$ can be extended to self-homeomorphisms on T respectively. We show the necessity of it. Suppose that $h^{\prime}: T_{1} \cup_{\phi_{0}} T_{2} \rightarrow S^{3}$ and $h^{\prime \prime}: T_{1} \cup_{\phi} T_{2} \rightarrow S^{3}$ are homeomorphisms, then ($\left.S^{3} ; h^{\prime}\left(T_{1}\right), h^{\prime}\left(T_{2}\right)\right)$ and ($S^{3} ; h^{\prime \prime}\left(T_{1}\right), h^{\prime \prime}\left(T_{2}\right)$) are Heegaard splittings of S^{3} with genus n. By the uniqueness of Heegaard splittings of S^{3} due to Waldhausen [5], there is a homeomorphism $h: S^{3} \rightarrow S^{3}$ such that $h h^{\prime \prime}\left(T_{i}\right)=h^{\prime}\left(T_{i}\right), i=1,2$. A homeomorphism $\bar{h}=$ $h^{\prime-1} h h^{\prime \prime}: T_{1} \bigcup_{\phi} T_{2} \rightarrow T_{1} \bigcup_{\phi_{0}} T_{2}$ satisfies $\bar{h}\left(T_{i}\right)=T_{i}(i=1,2)$ and so $\phi=\left(\bar{h}^{-1} \mid \partial T_{1}\right)$
$\phi_{0}\left(\bar{h} \mid \partial T_{2}\right)$. We may assume that \bar{h} is orientation-preserving (if not, change h^{\prime}), that is, $\bar{h}^{-1} \mid T_{1}: T_{1} \rightarrow T_{1}$ and $\bar{h} \mid T_{2}: T_{2} \rightarrow T_{2}$ is orientation-preserving. By Suzuki [4], $\bar{h}^{-1} \mid \partial T_{1}$ and $\bar{h} \mid \partial T_{2}$ are isotopic to composed homeomorphisms $f_{k} \cdots f_{1}$ and $g_{1} \cdots g_{m}$ respectively, where $f_{i}, g_{j} \in \mathfrak{G}_{n}^{\prime} \pm$.

6. Proof of Theorem.

Let ϕ be a sewing map such that $T_{1} \cup_{\phi} T_{2}$ is homeomorphic to S^{3}. Because of the last of Section 3 and Remark 2, we may assume that $\left\langle a_{1}, \cdots, a_{n} ; r_{1}, \cdots, r_{n}\right\rangle$ is $\Pi_{1}(\phi)$. By Proposition 2 and Lemma 2, $\Pi_{1}(\phi)$ is simply equivalent to $\Pi_{1}\left(f_{k \#} \cdots f_{1 \#} \phi_{0 \sharp} g_{1 \#} \cdots g_{m \#}\right)$, where $f_{i}, g_{j} \in \mathscr{S}_{n}^{\ddagger}$. By Lemma 3, the set of relators of $\Pi_{1}\left(f_{k \#} \cdots f_{1 \#} \phi_{0 \#} g_{1 \#} \cdots g_{m \#}\right)$ is transformed to that of $\Pi_{1}\left(f_{k \#} \cdots f_{1 \#} \phi_{0 \#}\right)$ by simple transformations. By Corollary 1.(2) and Lemma 4, $\Pi_{1}\left(f_{k \#} \cdots f_{1 \#} \phi_{0 \#}\right)$ is simply trivial. Therefore Theorem is proved.

7. Supplemental Remark.

Our Theorem is a kind of existence theorem. It is natural to think of the possibility of making it algorithmic. For example, we may ask if it is possible to omit the permission of free expansions at first step according to "up to simple equivalence". One natural way is to make the notion of "simply trivial" stronger by ordering the application of simple transformations as follows;

Definition 5. A presentation $\left\langle a_{1}, \cdots, a_{n} ; r_{1}, \cdots, r_{n}\right\rangle$ is said to be strongly simply trivial if $\left\{r_{i} \mid i=1, \cdots, n\right\}$ can be transformed to $\left\{a_{i} \mid i=1, \cdots, n\right\}$ by applying a finite sequence of simple transformations which satisfies the condition that S_{1}) must always be applied before the other three simple transformations S_{2}), S_{3}) and S_{4}) being done if it is applicable.

Example 2. (1) A presentation $\left\langle a_{1}, a_{2} ; a_{1} a_{2} a_{2}^{-1} a_{1} a_{2}, a_{2} a_{1} a_{2}^{-1} a_{1}^{2} a_{2}\right\rangle$ is strongly simply trivial.
(2) The presentation $\left\langle a_{1}, a_{2}, a_{3}, a_{4} ; r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, r_{4}^{\prime}\right\rangle$ of Example 1 is simply trivial but not strongly simply trivial.

At first, we have attacked the following questions.
QUESTION 1. Is any presentation associated with a Heegaard diagram for S^{3} strongly simply trivial?

A weak form of the above question is the following;
Question 2. Is any presentation associated with a Heegaard diagram for S^{3} simply trivial?

As noticed before, $\Pi_{1}(\phi)=\left\langle a_{1}, \cdots, a_{n} ; r_{1}, \cdots, r_{n}\right\rangle$ is not uniquely determined for a Heegaard sewing ϕ but its reduced form $\left\langle a_{1}, \cdots, a_{n} ; \tilde{r}_{1}, \cdots, \tilde{r}_{n}\right\rangle$, where each \tilde{r}_{i} is obtained from r_{i} by cyclic reductions, is unique for ϕ up to S_{2}) and S_{3}). Next question is stronger than Question 2 and weaker than Question 1.

Question 3. Is the reduced form $\tilde{\Pi}_{1}(\phi)$ for any Heegaard sewing ϕ simply trivial if $T_{1} \cup_{\phi} T_{2}$ is homeomorphic to S^{3} ?

Unfortunately, these are false in case of genus $n>2$. In case of genus 2 , which is the original case of T. Homma and M. Ochiai's discovery, it is open yet in the sense of the above Question 1 although we expect "yes".

A counter example in the case $n=3$ is the following;
Example 3. A Heegaard sewing ϕ is a composed homeomorphism on ∂T of genus 3 defined as $\phi=f \phi_{0} g$, where f and g are the composed homeomorphisms of $\dot{G}_{3}^{ \pm}$given as follows:

$$
\begin{aligned}
& f=\left(\dot{\rho} \dot{\rho}_{12}^{-1} \dot{\rho}^{-1} \dot{\rho}_{12}^{-1} \dot{\rho}^{-1} \dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-1} \dot{\theta}_{12} \dot{\xi}_{12} \dot{\rho} \dot{\rho}_{12} \dot{\rho} \dot{\rho}_{12} \dot{\rho}^{-1} \dot{\rho}_{12}^{-1} \dot{\rho}^{-1}\right. \\
& \dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-1} \dot{\theta}_{12} \dot{\xi}_{12} \dot{\rho} \dot{\rho}_{12} \dot{\rho}^{-1} \dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-1} \dot{\theta}_{12} \dot{\xi}_{12} \dot{\tau}_{1}^{-5} \dot{\rho} \dot{\rho}_{12}^{-1} \dot{\rho}^{-1} \dot{\theta}_{12}^{-1} \\
& \dot{\xi}_{12}^{-1} \dot{\theta}_{12} \dot{\xi}_{12}^{2} \dot{\theta}_{12} \dot{\rho} \dot{\rho}_{12} \dot{\rho}^{-1} \dot{\tau}_{1}^{-2} \dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-1} \dot{\theta}_{12} \dot{\xi}_{12} \dot{\theta}_{12} \dot{\xi}_{12}^{-1} \dot{\theta}_{12}^{-1} \\
& \dot{\xi}_{12} \dot{\theta}_{12} \dot{\rho} \dot{\rho}_{12}^{-1} \dot{\rho}^{-1} \dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-2} \dot{\theta}_{12}^{-1} \dot{\xi}_{12} \dot{\theta}_{12} \dot{\rho} \dot{\rho}_{12} \dot{\rho}^{-1} \dot{\tau}_{1}^{-1} \dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-1} \\
& \left.\dot{\theta}_{12} \dot{\xi}_{12} \dot{\theta}_{12} \dot{\rho}\right)\left(\dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-1} \dot{\theta}_{12}^{-1} \dot{\tau}_{1}^{2} \dot{\theta}_{12}^{-1} \dot{\xi}_{12} \dot{\theta}_{12}\right) \\
& g=\left(\dot{\rho}^{2} \dot{\omega}_{1}^{-1} \dot{\rho}^{-1} \dot{\omega}_{1}^{-1} \dot{\rho}^{-1} \dot{\omega}_{1}^{-1} \dot{\rho}^{-1} \dot{\tau}_{1}^{-2} \dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-1} \dot{\theta}_{12} \dot{\tau}_{1}^{-1} \dot{\xi}_{12}^{-1} \dot{\theta}_{12}^{-1}\right. \\
& \dot{\xi}_{12} \dot{\theta}_{12} \dot{\rho} \dot{\rho}_{12}^{-1} \dot{\rho}^{-1} \dot{\tau}_{1}^{-2} \dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-1} \dot{\theta}_{12} \dot{\xi}_{12}^{-1} \dot{\theta}_{12}^{-1} \dot{\xi}_{12} \dot{\theta}_{12} \dot{\rho} \dot{\rho}_{12} \dot{\rho}^{-1} \\
& \dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-1} \dot{\theta}_{12} \dot{\xi}_{12} \dot{\theta}_{12}^{-1} \dot{\xi}_{12} \dot{\theta}_{12} \dot{\tau}_{1}^{-6} \dot{\xi}_{12}^{-1} \dot{\theta}_{12} \dot{\xi}_{12} \dot{\theta}_{12} \dot{\rho} \dot{\rho}_{12}^{-1} \dot{\rho}^{-1} \\
& \dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-1} \dot{\tau}_{1}^{-2} \dot{\xi}_{12}^{-2} \dot{\theta}_{12}^{-1} \dot{\xi}_{12} \dot{\theta}_{12} \dot{\rho} \dot{\rho}_{12} \dot{\rho}^{-1} \dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-1} \dot{\theta}_{12} \dot{\xi}_{12} \dot{\theta}_{12}^{-1} \\
& \left.\dot{\xi}_{12} \dot{\theta}_{12} \dot{\tau}_{1} \dot{\rho}\right)\left(\dot{\rho}^{-1} \dot{\omega}_{1}^{-1} \dot{\tau}_{1}^{2} \dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-1} \dot{\theta}_{12} \dot{\xi}_{12}^{-1} \dot{\theta}_{12}^{1} \dot{\xi}_{12} \dot{\theta}_{12} \dot{\rho}\right. \\
& \left.\dot{\rho}_{12}^{-1} \dot{\rho}^{-1} \dot{\tau}_{1}^{-2} \dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-1} \dot{\theta}_{12} \dot{\xi}_{12} \dot{\theta}_{12} \dot{\rho} \dot{\rho}_{12} \dot{\rho}^{-1} \dot{\theta}_{12}^{-1} \dot{\xi}_{12}^{-1} \dot{\theta}_{12} \dot{\xi}_{12} \dot{\omega}_{1} \dot{\rho}\right)
\end{aligned}
$$

and a corresponding Heegaard diagram ($\partial T ; C_{0}, \phi\left(C_{0}\right)$) is as shown in Fig. 3 up to isotopy. Then both $\tilde{\Pi}_{1}(\phi)$ and the presentation associated with the Heegaard diagram of Fig. 3 coincide with $\left\langle a_{1}, a_{2}, a_{3} ; a_{1} a_{2}^{2}, a_{3} a_{1}^{-1} a_{3} a_{2}^{-1} a_{1}^{-3}, a_{3} a_{2}^{-1} a_{1}^{-1} a_{2} a_{1}^{-1}\right\rangle$ which is not simply trivial, though $T_{1} \cup_{\phi} T_{2}$ is homeomorphic to S^{3} by Proposition 2 and so Fig. 3 is a Heegaard diagram for S^{3}.

Remark 3. (1) Such a counter example to our Questions was firstly found by M. Ochiai in the case $n=5$, though his aim is different from ours. Example 1 is also a counter example in the case $n=4$ made of Ochiai's one by slight modifications. Later, he attained his aim in case of genus 4 in [3], which is again available for our aim in the case $n=4$.
(2) Example 3 can be easily modified for $n>3$ by using connected sums with a standard Heegaard diagram for S^{3} of genus 1.

A Heegaard diagram ($\partial T ; C_{1}, C_{2}$) has two presentations associated with it, that is, one is obtained by reading the intersections $C_{1} \cap C_{2}$ along curves of C_{2}

$\left(\partial T ; C_{0}, \phi^{\prime}\left(C_{0}\right)\right)$ where $C_{0}=\left\{c_{1}, c_{2}, c_{3}\right\}, \phi^{\prime}$ is isotopic to ϕ and $\phi^{\prime}\left(C_{0}\right)=\left\{\phi^{\prime}\left(c_{1}\right), \phi^{\prime}\left(c_{2}\right), \phi^{\prime}\left(c_{3}\right)\right\}$

Fig. 3.

$\left(\partial T ; C_{1}, C_{2}\right.$) where $C_{1}=\left\{c_{1},{ }_{1} c_{2},{ }_{1} c_{3},{ }_{1} c_{4}\right\}$ $C_{2}=\left\{{ }_{2} c_{1},{ }_{2} c_{2},{ }_{2} c_{3},{ }_{2} c_{4}\right\}$
Fig. 4.
and the dual one is got by reading them along those of C_{1}. Next example is a Heegaard diagram for S^{3} of genus 4 such that both presentations associated with it are counter examples to Question 2.

Example 4. A Heegaard diagram ($\partial T ; C_{1}, C_{2}$) is as shown in Fig. 4. Two presentations associated with it are $\left\langle a_{1}, a_{2}, a_{3}, a_{4} ; a_{4}^{3} a_{1} a_{2}, a_{1} a_{4} a_{1}, a_{3} a_{1}^{-1} a_{4} a_{1} a_{2}\right.$, $\left.a_{3} a_{4}^{-1} a_{3} a_{2}\right\rangle$ by reading along C_{2} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4} ; a_{2} a_{3} a_{1} a_{3}^{-1} a_{2}, a_{3} a_{1} a_{4}, a_{4} a_{3} a_{4}\right.$, $\left.a_{1}^{2} a_{4}^{-1} a_{2} a_{3} a_{1}\right\rangle$ by reading along C_{1} which are not simply trivial.

Remark 4. Recently, O. Morikawa has made such an example for genus 3 in his master thesis.

References

[1] J.S. Birman, Heegaard Splittings, Diagrams and Sewings for Closed, Orientable 3-Manifolds, Lecture notes for CBMS conference at Blacksburg, Va., Oct. 8-12, 1977.
[2] W. Magnus, A. Karrass and D. Soliter, Combinatorial group theory, Interscience publishers, 1966.
[3] M. Ochiai, A counterexample to a conjecture of Whitehead and Volodin-KuznetsovFomenko, J. Math. Soc. Japan, 31 (1979), 687-691.
[4] S. Suzuki, On homeomorphisms of a 3-dimensional handlebody, Canad. J. Math., 29 (1977), 111-124.
[5] F. Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology, 7 (1968), 197-203.

Takeshi Kaneko
Institute of Mathematics University of Tsukuba Sakura-mura, Niihari-gun Ibaraki 305 Japan

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 454003), Ministry of Education.

