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Some theorems on projective hyperbolicity
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Let $M$ be a manifold with a torsionfree affine connection $\Gamma$. For such a $\Gamma$,
S. Kobayashi has recently introduced in [Ko 4] a pseudo-distance $p$ which
depends only on the projective structure of $\Gamma$, or what is the same thing, on
the normal projective connection induced by $\Gamma$ (cf. [Ko 2], Proposition 7.2 or
[K-Na]). Call $\Gamma$, or simply $M$ when $\Gamma$ is understood, (complete) projective-
hyperbolic if and only if $P$ is a (complete) metric, $i$ . $e$ . $p(x, y)=0\Rightarrow x=y$ for all
$x,$ $y\in M$. Then Kobayashi and T. Sasaki have proved the following theorems:

(A) $([Ko4])$ . If $M$ is a (complete) Riemannian manifold whose Ricci cur-
vature is bounded above by a negative constant, then $M$ is (complete) projective-
$hyPerbolic$ .

(B) ([K-S]). If $M$ is a manifold with a complete torsionfree affine connec-
tion whose Ricci tensor is positive semi-definite, then $P$ is identically zero.

These results are parallel to what is known or what is expected to hold for
the Kobayashi metric on complex manifolds (for (A) see $[K1]$ , Theorem 4.11
on p. 61; for (B) see [G-W 1], Conjecture la on p. 79). By contrast, we shall
prove the following theorems.

THEOREM 1. Let $M$ be a manifold with a torsionfree affine connection whose
Ricci tensor Ric is negative semi-definite. SuPpose for each maximal geodesic
$\gamma:J\rightarrow M$ where $J$ is an open interval in $R,$ $Ric(\dot{\gamma},\dot{\gamma})$ is never identically zero.
Then $M$ is Projective-hyperbolic.

THEOREM 2. Let $M$ be a $comPact$ Riemannian manifold with quasi-negative
Ricci curvature ( $i$ . $e$ . everywhere nonpOsitive Ricci curvature which is in addition
negative in all directions at a Point). Then the grouP of prOjective transforma-
tions is finite.

Theorem 2 extends the theorems of Couty [C] and Kobayashi [Ko 4] who
proved under the assumption of negative Ricci curvature that this group is
discrete and finite, respectively. The analogous fact of Theorem 1 for the
Kobayashi metric on complex manifolds is completely false. For instance, there
are complete Hermitian metrics on $C$ of negative curvature, yet the Kobayashi
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metric of $C$ is identically zero. Theorem 1 has a supplement which guarantees
the completeness of $p$ ; for this statement we need the following counterpart
of Royden’s theorem in the complex case (see [R]).

THEOREM 3. $P$ is the integrated form of an infinitesimal metric P. More
precisely, there exists an uPper semi-continuous map $ P:TM\rightarrow[0, \infty$ ) where $TM$

is the tangent bundle, such that

$p(x, y)=\inf\int_{\dot{\gamma}}P$ ,

where the infimum is taken over all piecewise $C^{\infty}$ curves $\gamma$ joining $x$ to $y$ .
We shall see that this theorem leads to a simple proof of the theorem of

Kobayashi-Sasaki ((B) above). Now the supplement to Theorem 1 may be stated
as follows.

THEOREM 4. (i) Let $M$ be a Riemannian manifold and let $\rho$ denote the
distance from a fixed point $O\in M$. SuppOse for some constant $A>0$,

$Ric(x)\leqq-A/(1+\rho(x)^{2})$

for every $x\in M$, where $Ric(x)$ denotes the Ricci curvatu $re$ of every direction at
$x$ . Then there exists a positive constant $\alpha$ such that for all tangent vectors
$X\in M_{x}$ and for all $x$ ,

$|X|_{P}\geqq\frac{\alpha}{(1+\rho(x)^{2})^{1/2}}|X|$

where $|X|_{P}$ (resp. $|X|$ ) denotes the norm of $X$ with respect to $P$ (resp. the
Riemannian metric). In $pa$ rticular if the Riemannian metric is $comPlete$ , then
$M$ is complete Projective-hyperbolic. (ii) If $M$ is an n-dimensional Riemannian
manifold such that $Ric(x)\leqq-A^{2}$ for some constant $A>0$ , then $A(n-1)^{-1/2}|X|$

$\leqq|X|_{P}$ for all X. If the Riemannian metric is complete and if on the other
hand $Ric(x)\geqq-B^{2}$ for some Positive constant $B$ , then $|X|_{p}\leqq B(n-1)^{-1/2}|X|$ for
all $X$.

The analogue of (i) in the complex case is known ([G-W 2]), Theorem E)

and the first part of (ii) is implicit in Kobayashi’s theorem (A) above. The
complex analogue of the second part of (ii) is a conjecture ([G-W 2]), remark
after Theorem G). Note that (ii) implies that for an n-dimensional Riemannian
manifold of constant Ricci $curvature-A^{2},$ $P$ is just the Riemannian norm multiplied
by $A(n-1)^{-1/21)}$ The final theorem is the projective counterpart of Brody’s
theorem in the complex case ([B]); we refer to \S 1 below for the definition of

1) Note added January 3, 1980: the manuscript of this paper has been in circulation
since May 1978. In the intervening period, the foregoing result has been proven inde-
pendently by S. Kobayashi in his Paper, Projective invariant metrics for Einstein spaces,
Nagoya Math. J., 73 (1979), 171-174.
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a projective map from $R$ to $M$.
THEOREM 5. A compact manifold $M$ with a torsionfree affine connection is

projective-hyPerbolic if and only if there is no (nonconstant) projective map from
$R$ to $M$.

It may not be out of place to make a passing comment on the significance
of this projective pseudo-distance $p$ . The classical theory of projective connec-
tions is an entirely local affair and is totally deficient in global considerations.
To illustrate, let $R^{n}$ be Euclidean space with its canonical flat metric and let
$M$ be the n-dimensional simply-connected space form of curvature $-1$ . Then
the classical theory tells us that $M$ and $R^{n}$ are locally projectively equivalent
(vanishing of the Weyl projective tensor for both), but offers no tool to decide
whether the equivalence could be made global. However, since $M$ is projective-
hyperbolic (Kobayashi’s theorem (A) above) and $p\equiv 0$ on $R^{n}$ , this pseudo-distance
$p$ gives the first global projective invariant that distinguishes $R^{n}$ from M. (See

the Proposition in \S 3 for a more general assertion.) Clearly a more globally-
oriented study of projective connections deserves the attention of geometers.
In this regard, we note that the results of this paper make possible the routine
transplant of many theorems in complex hyperbolic manifolds ($[Ko1]$ and
[Ko 3]) to the projective setting. However, in the absence of a clear picture
as to what theorems of this type are of real geometric interest, we shall refrain
from doing the transplant here. It seems certain that, since the projective
structure is much more rigid than the complex structure, their studies must
ultimately diverge even in the special case of hyperbolic manifolds.

It is not the intention of this paper to discuss projective connections. It
will suffice to cite the following references: Chapter 4 of [C-G], Chapter IV
of [Ko 2], [K-Na] and [Y]. The last item gives a detailed account of the
relationship between the approaches of E. Cartan and the Princeton school, but
it is regrettably inaccessible.

I wish to thank S. S. Chern, Jim Faran and P. A. Griffiths for informative
discussions on the material of this paper. My indebtedness to the friendly
advice of S. Kobayashi, suffice it to say, is properly reflected in the bibliography.

\S 1.

This section briefly recalls the basic definitions with many details left to
[Ko 4], [K-S] and pp. 647-661 of [H], as well as the references there.

Let $M$ be a manifold with a (fixed) torsionless affine connection and $\gamma:J\rightarrow M$

be a geodesic, where $J$ is an interval in $R$ . Assume that $\gamma$ is one-one; then
each $t_{0}\in J$ can be identified with $\gamma(t_{0})$ so that the parameter $t$ of $\gamma$ becomes
identified with the map from $\gamma(J)$ to $J$ such that $\gamma(t)\rightarrow t$ . With this understood,
$t$ is called the affine Parameter of $\gamma$ or of $\gamma(J)$ . Now let $f:J_{1}\rightarrow M$ be another
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parametrization of $\gamma(J)$ ; by definition, $f(J_{1})\subset\gamma(J)$ and $\dot{f(}u$ ), the tangent vector
to $f$ at $f(u)$ , is nowhere zero for each $u\in J_{1}$ . Also assume $f$ is one-one; then
we can identify each $u\in J_{1}$ with $f(u)\in\gamma(J)$ as before. We may now regard $u$

as a function of $t$ ; equivalently, define $u;J\rightarrow J_{1}$ by $u(t)=f^{-1}(\gamma(t))$ . Similarly, $t$

may be regarded as a function of $u:t(u)\equiv\gamma^{-1}(f(u))$ . These conventions will
be used without comments in the following. The reason we spend time to
cover this elementary material is that unless these identifications are firmly
understood, the proofs of the theorems (particularly Theorems 3 and 5) will be
hopelessly confusing.

Let $J_{1}$ be an open interval in $R$ and let $f:J_{1}\rightarrow M$ be a $C^{\infty}$ curve in $M$ (with
$\dot{f}(u)\neq 0$ for every $u\in J_{1}$ always understood). $f$ is a projective map if and only
if (a) $f(J_{1})$ is a subset of (the image of) a geodesic $\gamma:J\rightarrow M$, and (b) if $t$ is
the affine parameter of $\gamma$, then the parameter $u$ of $\beta$ satisfies:

(1) $\{u, t\}=\frac{2}{(n-1)}Ric(\dot{\gamma}(t),\dot{\gamma}(t))$ $(\equiv 2Q(t))$ ,

where $n=\dim M$, Ric is the Ricci tensor of $M$, and $\{u, t\}$ is the Schwarzian
derivative of $u$ with respect to $t$ defined by:

(2) $\{u, t\}\equiv\frac{u^{\prime\prime\prime}(t)}{u’(t)}-\frac{3}{2}(\frac{u^{\prime}(t)}{u’(t)})^{2}$ .

If $f$ is projective, then $u$ is called a projective parameter of $\gamma$ . A projective
parameter is unique up to a fractional linear transformation, $i$ . $e.$ , if $v$ is another
such, then $v=(au+b)/(cu+d)$ , where $a,$ $b,$ $c,$

$d$ are real numbers and $ad-bc\neq 0$ .
Note that it was not assumed that either $f$ or $\gamma$ is one-one in this definition.
However, since $f$ and $\gamma$ are both locally one-one, equation (1) makes sense in
the neighborhood of each $t\in J$, and standard analytic continuation arguments
then give meaning to (1) globally on $J$.

LEMMA 1. SuppOse $\gamma:J\rightarrow M$ is a geodesic with affine parameter $t$ and
$u:J\rightarrow R$ is any $C^{\infty}$ function satisfying (1). Then $u$ is a strictly monotone
function of $t$ and the maPping $f:u(J)\rightarrow M$ defined by $f(u(t))=\gamma(t)$ is projective.
(Any solution of (1) is a projective parameter of $\gamma’.$)

PROOF. With the various identifications above understood, it suffices to show
that $u^{\prime}$ is never zero. Recall: if $u(t)$ is a given solution of (1), then there exist
linearly independent solutions $y_{1}(t),$ $y_{2}(t)$ of the Jacobi equation:

(3) $y^{\prime}(t)+Q(t)y(t)=0$ ,

such that

(4) $u(t)=y_{1}(t)/y_{2}(t)$ .
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Hence $u^{\prime}(t)=W(y_{1r}y’ ; t)/y_{S}(t)^{2}$ , where $W\langle y_{1},$
$y_{2}$) $\equiv y_{2}y_{1}^{\prime}-y_{2}^{\prime}y_{1}$ is the Wronskian

of (3) and hence is equal to a nonzero constant. The lemma follows. Q. E. D.
In this paper, the symbol $I$ will be reserved exclusively for the open interval

$(-1,1)$ . Define on $I$ the metric:

(5) $dI^{2}=\frac{du^{2}}{(1-u^{2})^{2}}$ .
This is the restriction to $(-1,1)$ of the complete Riemannian metric on the unit
disc of $R^{2}$ with constant curvature $-4$ (Poincar\’e metric). Furthermore, $dI^{2}$ is
homogeneous under the fractional linear maps $u\rightarrow(u+a)/(au+1)$ where $|a|<1$ .
If $\rho(u)$ denotes the distance of $u\in I$ from $0$ with respect to $dI^{2}$ , then

(6) $\rho(u)=\frac{1}{2}$ log $\frac{1+|u|}{1-|u|}$ .

Define a pseudo-distance $p^{\#}$ on $M$ (relative to the given torsionfree affine con-
nection) by:

(7) $P^{\#}(x, y)=\inf\{\rho(u)$ : there exists a projective map $f:I\rightarrow M$

such that $f(O)=x$ and $f(u)=y$}.

The projective pseudo-distance $P$ of Kobayashi is defined by:

(8) $p(x, y)=\inf\sum_{i=1}^{l}p\#(x_{i}, x_{i+1})$ ,

where the infimum is taken over all finite sequences $\{x=x_{1}, x_{2}, \cdots , x_{l}, x_{l+1}=y\}$ ,
with $l$ arbitrary. The motivation for this definition comes from the complex
case (see [Ko 1] and [Ko 3]) as well as from Lemma 11 and 13 in \S 5. $P$ is
a projective invariant of the affine connection and enjoys the usual functorial
properties; for the latter, we refer to [Ko 1], Chapter IV, or [Ko 3], \S 2, as
well as Proposition 3.5 of [Ko 4].

\S 2.

This section defines the infinitesimal projective metric $P$ along the lines of
[R] and proves Theorem 1.

Let $M$ be a manifold with a torsionless affine connection and let $TM$ be its
tangent bundle; thus $TM\equiv\{(x, X):x\in M, X\in M_{x}\}$ . In addition, denote by
$|V|_{b}$ the norm of any tangent vector $V$ of $I$ relative to the metric (5), and by
$|V|$ the ordinary Euclidean norm of $V$. Now dePne $ P:TM\rightarrow[0, \infty$) by:

(9) $P(x, X)=\inf\{|V|_{b}$ : $V$ is tangent to $I$ and there exists a
projective map $f:I\rightarrow M$ such that
$df(V)=X\}$ .
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Since the metric (5) is homogeneous with respect to all fractional linear trans-
formations of $I$ onto itself, it suffices to restrict $V$ in the above definition to be
a tangent vector at the origin $0$ of $I$ ; in that event, $|V|=|V|_{b}$ in view of (5).

Thus we may also define $P(x, X)$ by:

(10) $P(x, X)=\inf\{|V|$ : $V$ is tangent to $I$ at $0$ and there exists
a projective map $f:I\rightarrow M$ such that
$df(V)=X\}$ .

$P$ is called the infinitesimal projective metric. To proceed, let us assume
for the moment the next lemma.

LEMMA 2. $ P:TM\rightarrow[0, \infty$ ) is upper semi-continuous.
We now dePne a new pseudo-distance $p_{1}$ : $ M\times M\rightarrow[0, \infty$) by:

(11) $p_{1}(x, y)=\inf\int_{\dot{\gamma}}P$ ,

where the infimum is taken over all piecewise $C^{\infty}$ curves joining $x$ to $y$ . Lemma
2 insures that the integral in (11) makes sense. Moreover, definition (9) of $P$

makes it clear that if $f:I\rightarrow M$ is a projective map, then $p_{1}(f(a), f(b))\leqq\rho(a, b)$

for every $a,$ $b\in I$, where $\rho$ denotes the distance between $a$ and $b$ with respect to
$dI^{2}$ . By Proposition 3.5 of [Ko 4] (maximality of $P$ among all such projective
pseudo-distances), we obtain:

LEMMA 3. $p_{1}\leqq p$ .
In the next section, we will prove the reverse inequality (and thereby

Theorem 3). But first, we prove Lemma 2 and Theorem 1.
PROOF OF LEMMA 2. Let $ P(x_{0}, X_{0})=\alpha$ . Given $\epsilon>0$, we must produce a

neighborhood $U$ of $(x_{0}, X_{0})$ in $TM$ such that for all $(x, X)\in U$,

(12) $ P(x, X)<\alpha+\epsilon$ .

We will consistently use definition (10) of $P$ (and not (9)) so that the vectors
tangent to $I,$ $V_{1},$ $V_{2}$ etc., that come up below will always be understood to be
tangent vectors at the origin $0$ of $I$. Now let $f_{0}$ : $I\rightarrow M$ be a projective map so
that $df_{0}(V_{0})=X_{0}$ and $|V_{0}|<\alpha+(\epsilon/4)$ . Choose $a\in(O, 1)$ such that $|V_{0}/a|<|V_{0}|$

$+(\epsilon/4)$ . Then define $f_{1}$ : $[$ –1, $1]\rightarrow M$ by $f_{1}(u)=f_{0}(au)$ . Observe that $f_{1}$ is
projective, and (image $f_{1}$ ) $=f_{0}([-a, a])$ . Moreover, writing $V_{1}\equiv V_{0}/a$ , we have:

(13) $df_{1}(V_{1})=X_{0}$ and $|V_{1}|<\alpha+(\epsilon/2)$ .
Now let $S$ be an open neighborhood of the compact set $\Gamma\equiv f_{1}([-1,1])$ such

that the closure of $S$ is compact. By the dePnition of a projective map, there
exists a geodesic $\gamma:[-c, d]\rightarrow M$ such that 7 (0) $=X_{0}$ and $\gamma([-c, d])=\Gamma$. Fur-
thermore, since $f_{1}$ is defined in a neighborhood of [–1, 1], $\gamma$ may also be
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assumed to be defined in a neighborhood of $[-c, d]$ . In the following, we
consider only the case where $\gamma$ is an imbedding; the general case (of $\gamma$ being
an immersion only) can be dealt with by suitable modifications along standard
lines. So suppose $(x, X)$ is sufficiently close to $(x_{0}, X_{0})$ ; then by Theorems 7.1
and 7.2 on p. 22 and p. 25 respectively of [C-L] (cf. also the remark in the
middle of p. 23 in [C-L]), a geodesic starting at $x$ and tangent to $X$ will be
defined on all of $[-c, d]$ and will be uniformly close to $\gamma$ . More precisely,
there is a neighborhood $U$ of $(x_{0}, X_{0})$ in $TM$ and a $C^{\infty}$ map $\Phi:U\times[-c, d]\rightarrow S$

such that for each $(x, X)\in U$, the map $\gamma_{(x,X)}$ : $[-c, d]\rightarrow S$ defined by $\gamma_{(x.X)}(t)$

$\equiv\Phi(x, X, t)$ is a geodesic of $M$ satisfying 7 $(x.X)(0)=X$. Let $t$ be the affine
parameter of each $\gamma_{(x.X)}$ ; then $-c\leqq t\leqq d$ and $t$ has a $C^{\infty}$ extension to an open
interval containing $[-c, d]$ . On $\gamma$, let $u$ be the projective parameter corre-
sponding to $f_{1}$ above; $u$ too has a $C^{\infty}$ extension to an open interval containing
[–1, 1]. Then $u$ satisfies equation (1) with initial conditions $u(O)=0$ and

(14) $u^{\prime}(0)=|V_{1}|/|T_{0}|$ ,

where $V_{1}$ is the vector in (13) and $T_{0}$ is tangent to $[-c, d]$ at $0$ such that
$d\gamma(T_{0})=X_{0}$ .

To return to the geodesics $\gamma_{(x.X)}$ : $[-c, d]\rightarrow S$ , consider the solution $u_{(x.X)}$ of

(15) $\{u_{(x,X)}, t\}=\frac{2}{(n-1)}Ric(\dot{\gamma}_{(x.X)}(t),\dot{\gamma}_{(x.X)}(t))$ ,

with specified initial conditions: $u_{(x.X)}(0)=0,$ $u_{(x,X)}^{\prime}(0)=u^{\prime}(0)$ and $u_{(x.X)}^{\prime\prime}(0)=u^{\prime\prime}(0)$ .
Now (15) is a $C^{\infty}$ perturbation of (1); by Theorems 7.4 and 7.5 on pp. 29-30 of
[C-L], there is a neighborhood of $(x_{0}, X_{0})$ , which may be assumed to be $U$,
such that for all $(x, X)\in U$, the solution $u_{(x.X)}$ of (15) is defined on the whole
interval $[-c, d]$ and such that the $\sup$ norm satisfies $\Vert u-u_{(x.X)}\Vert<\delta$ for any
pre-assigned positive $\delta$ . (All the care in the preceding argument about $u$ being
defined on an open interval containing [–1, 1], etc., is to insure at this point
that the above $\sup$ norm estimate for $u-u_{(x.X)}$ is valid on $[-c, d]$ , and not
just on a compact subset of $(-c, d).)$ In particular, since (image $u$ )$=[-1,1]$ ,

we have that for all $(x, X)\in U$,

(16) $(-1+\delta, 1-\delta)\subset(imageu_{(x.X)})\subset(-1-\delta, 1+\delta)$ .

An appropriate choice of $\delta$ will be made presently.
Now let $f_{(x.X)}$ be the inverse mapping from (image $u_{(x,X)}$ ) to (image $\gamma_{(x.X)}$ ).

(See the discussion at the beginning of \S 1 about these matters.) Then $f_{(x,X)}(0)$

$=x$ . Let $V(x, X)$ and $T(x, X)$ be tangent vectors at the origins of (image $u_{(x.X)}$ )

and $[-c, d]$ respectively, such that $df_{(x,X)}(V(x, X))=X$ and $d\gamma_{(x.X)}(T(x, X))=X$.
Then as in (14), we have:
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(17) $u_{(x,X)}^{\prime}(0)=|V(x, X)|/|T(x, X)|=u^{\prime}(0)$ .
RecaIl now from (14) that $d\gamma(T_{0})=X_{0}$ . $lf(x, X)$ is close to $(x_{\triangleright}X_{\mathfrak{a}})$, then $\gamma_{(x.X}$,
is $C^{\infty}$ close to $\gamma,$ $\Rightarrow d\gamma_{(x.X)}(0)$ is close to $d\gamma(O),$ $\Rightarrow T(x, X)$ is close to $T_{\iota)}$ in norm
Thus a comparison of (14) with (17) shows that, when $U$ is sufficiently small,

(18) $||V_{1}|-|V(x, X)||\leq\epsilon/4$ for all $(x, X)\in U$ .
Next consider the projective map $f_{(x,X)}$ : $(-1+\delta, 1-\delta)\rightarrow S$ (we have here made
use of (16)), where $f_{\{x,X\rangle}(0)=x$ and $df_{(x,X)}(V(x, X))=X$. We choose $\delta$ at this
point to be so small that

(19) $|(1-\delta)^{-1}V(x, X)|<|V(x,$ $ X\rangle$ } $+\epsilon/4$ .
In view of (18), this choice of $\delta$ can be made uniformly in $(x, X)$ . Now define
$g_{(x.X)}$ : $(-1,1)\rightarrow M$ by $g_{(x.X)}(t)=f_{(x,X)}((1-\delta)i)$ . Then $g_{(x,X)}$ is projective,
$g_{(x.X)}(0)=x$ and $dg_{(x.X)}((1-\delta)^{-1}V(x, X))=X$. We conclude from definition (10)

of $P$ that for all $(x, X)\in U$ :

$P(x, X)\leqq\}(1-\delta)^{-1}V(x, X)|$

$<|V(x, X)|+(\epsilon/4)$ (by (19))

$<|V_{1}|+(\epsilon/2)$ (by (18))

$<\alpha+\epsilon$ (by (13)).

This proves (12) and hence the lemma. Q. E. D.
PROOF OF THEOREM 1. We first prove the theorem assuming that the Ricci

tensor is everywhere negative definite ; the essential idea of the proof is already
contained in this special case. Let $G$ be a Riemannian metric and let $\Uparrow X\Uparrow$

denote the G-norm of a tangent vector $X$. In view of Lemma 3, it suffices to
show that for any $x_{0}\in M$, there exists a neighborhood $U$ of $x_{0}$ and a positive
constant $\alpha$ such that

(20) $ P(x, X)\geqq\alpha\# X\#$ for all $XeM.,$ $x\in U$.

Let $B$ be a closed ball around $x_{0}$ of radius $ 2\epsilon$ (relative to $G$) which is compact.
Choose $U$ to be closed ball of radius $\epsilon$ around $x_{0}$ . Let $\gamma:(-c, d)\rightarrow M$ be a
geodesic of the given torsionfree affine connection such that $\gamma(0)\in U$ and $\Vert\dot{\gamma}(0)\Vert$

$=1$ . On this $\gamma$, we shall produce a particular projective parameter which can
be estimated. Using the notations of equations (1) $-(4)$ , let $y_{1}(t)$ and $y_{2}(t)$ be
solutions of (3) satisfying the initial conditions: $y_{1}(0)=0,$ y\’i(O)=l; $y_{2}(0)=1$ ,
$y_{2}^{\prime}(0)=0$. Since $Q(t)<0,$ $y_{2}^{r/}\geqq 0$ everywhere so that $y_{2}\geqq 1$ . Define $u(t)=y_{1}(t)/y_{z}(t)$ .
Then $u(t)$ is a projective parameter on $\gamma$ and the arguments following (4) show
that $u^{\prime}(t)=1/y_{2}(t)^{2}$ . Since $u^{\prime}(O)=0$ ,
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(21) $u(t)=\int_{0}^{t}1/y_{2}^{2}$ for all $te(-c, d)$ .
It remains to estimate $y_{2}$ on $(-c, d)$ . By a standard compactness argument,
there exist constants $\eta$ and $\xi$ such that for all geodesics $\gamma$ with $\gamma(0)\in U$ and

$\Vert\dot{\gamma}(0)\Vert=1$ , we have $r([-\eta, \eta])\subset B$ and $\frac{1}{(n-1)}Ric(\dot{\gamma}(t),\dot{\gamma}(t))\leqq-\xi$ for all $te$

$[-\eta, \eta]$ . The latter uses the negative definiteness of $Ric$ . Let $\varphi:R\rightarrow[0,$ $\infty\rangle$

be a $C^{\infty}$ function with support in $[-\eta, \eta]$ , equal to $\xi$ in $[-\eta/2, \eta/2]$ , and $\leqq\xi$

everywhere. $Then-Q(t)\geqq\varphi(t)$ for all $t$ , where $Q(t)$ is as in (1). We compare
$y_{2}(t)$ , which is the solution of (3), with the solution $z(t)$ of

(22) $y^{\chi}(t)-\varphi(t)y(t)=0$ ,

such that $z(t)$ satisfies the initial conditim $z(O)=1,$ $z^{\prime}(O)=0$ . Then $-Q(t)\geqq\varphi(t)$

implies $y_{2}(t)\geqq z(t)$ wherever $y_{2}(t)$ is defined. Moreover, since $z(t)\geqq 1$ (by (22)

and $\varphi\geqq 0$), integrating (22) leads to $ z^{\prime}(t)=\int_{0}^{t}\varphi z\geqq\int_{0}^{t}\varphi\geqq\frac{1}{2}\xi\eta$ for all $ t\geqq\eta$ . Using

the same argument for $ t\leqq-\eta$ , we obtain:

(23) $ z^{\prime}(t)\geqq\frac{1}{2}\xi\eta$ for $ t\geqq\eta$

$\leqq-\frac{1}{2}\xi\eta$ for $ t\leqq-\eta$ .

In particular, $z(t)\geqq\max\{1,$ $\frac{1}{2}\xi\eta(|t|-\eta)\}$ for all $t\in R$, so that $\int_{0}^{\infty}1/z^{2}\equiv C(\eta, \xi)<\infty$ ,

where $C(\eta, \xi)$ is a positive constant depending only on $\xi$ and $\eta$ . Summarizing,
we have:

(24) $u(O)=0,$ $u^{\prime}(O)=1$ and $|u(t)|<C(\eta, \xi)<\infty$ .
To proceed with the proof of Theorem 1, we need the following lemma.
LEMMA 4. Let $\gamma:(-c, d)\rightarrow M$ be a geodesic in a manifold $M$ with a tor-

sionfree affine connection. SuppOse there exists a prOjective parameter $u$ on $\gamma$

satisfying (24), then $P(\gamma(O),\dot{\gamma}(0))\geqq 1/C(\eta, \xi)$ .
PROOF. For brevity, denote $C(\eta, \xi)$ simply by $C_{0}$ . According to definition

(10) of $P$, it suffices to prove that if $f:I\rightarrow M$ is a projective map such that
$f(I)\subset(image\gamma),$ $f(O)=\gamma(O)$ , and $df(V)=\dot{\gamma}(0)$ , then $|V|\geqq 1/C_{0}$ .

Suppose $f$ as above and suppose $|V|=1/k$ . We will show $k\leqq C_{0}$ . Let
$g:(-k, k)\rightarrow M$ be defined by $g(v)=f(v/k)$ and let $v$ be the projective parame-
ter on $\gamma$ corresponding to $g$ . Then $v(O)=0,$ $v^{\prime}(O)=1$ and $v(t)\uparrow k,$ $v(t)\downarrow(-k)$ as
$t\uparrow d$ and $t\downarrow-c$ respectively. Assume $k>C_{0}$ and we shall deduce a contradic-
tion. Since projective parameters are unique up to fractional linear transforma-
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tions, $v=(a_{1}u+a_{2})/(a_{3}u+a_{4})$ for constants $\{a_{i}\}$ such that $a_{1}a_{4}-a_{2}a_{3}\neq 0$ . Since
$u(O)=v(O)=0,$ $a_{2}=0$ ; since $u^{\prime}(O)=v^{\prime}(O)=1,$ $a_{1}=a_{4}$ . Thus

\langle 25) $v=u/(\alpha u+1)$ for some $\alpha\in R$ .
If $k>C_{0}$ , then there exists $t_{1}\in(0, d)$ such that $v(t_{1})>C_{0}$ . Since $u(t)$ is strictly
monotone on $(-c, d)$ (see Lemma 1) and $u^{\prime}(O)=1,$ $u(t)$ is positive for $t\in(O, d)$

and negative for $t\in(-c, 0)$ . In particular, $0<u(t_{1})<C_{0}$ by (24). Evaluating (25)

at $t_{1}$ then leads to $\alpha<0$ . However, since also $v(t)\downarrow(-k)$ as $t\downarrow-c$, there is a
$t_{2}\in(-c, 0)$ such that $v(t_{2})<-C_{0}$ . Also $-C_{0}<u(t_{2})<0$, by (24). Then evaluating

\langle 25) at $t_{2}$ leads to $\alpha>0$ . Contradiction. Q. E. D.
Lemma 4 shows that for all $x\in U$ and for all $X\in M_{x}$ such that $\Vert X\Vert=1$ ,

$P(x, X)\geqq 1/C(\eta, \xi)$ . Since $P(x, \beta X)=|\beta|P(x, X)$ , this shows that (20) is valid
with $\alpha=1/C(\eta, \xi)$ . Theorem 1 has thus been proved if the negative definiteness
of Ric is assumed.

The proof of Theorem 1 under the general assumption of the theorem is
merely a technical variation on the preceding argument. Briefly it goes as
follows. Notation as before, we wish to prove that given $x_{0}\in M$, there exists
a neighborhood $U$ of $x_{0}$ on which (20) is valid. To this end, let $\pi$ : $SM\rightarrow M$

be the unit sphere bundle of $M$ (relative to the Riemannian metric $G$ above).

Take a coordinate neighborhood $W$ of $x_{0}$ such that $\pi^{-1}(W)$ is diffeomorphic to
$W\times S^{n-1}$ ($S^{n-1}=unit$ sphere in $R^{n}$); identify $\pi^{-1}(W)$ with $W\times S^{n-1}$ . Take any
unit vector $(x_{0}, X_{1})$ at $x_{0}$ . We claim that there is a neighborhood $W_{1}$ of $x_{0}$ in
$W$, a neighborhood $N_{1}$ of $X_{1}$ in $S^{n-1}$ and positive numbers $t_{1},$ $\epsilon_{1}$ which possess
the following property: for each $(y, Y)eW_{1}\times N_{1}$ , let $\gamma:(-a, b)\rightarrow M$ be the
maximal geodesic (relative to the given affine connection of $M$ ) such that $\dot{\gamma}(0)$

$=Y$ ; then $Ric(\dot{\gamma}(t),\dot{\gamma}(t))<0$ on either $[t_{1}, t_{1}+\epsilon_{1}]$ , or on $[-t_{1}-\epsilon_{1}, -t_{1}]$ , or on
both. Indeed, if $\gamma_{1}$ : $(-a_{1}, b_{1})\rightarrow M$ is the maximal geodesic such that $\dot{\gamma}_{1}(0)=X_{1}$ ,

then $Ric(\dot{\gamma}_{1}(t^{*}),\dot{\gamma}_{1}(t^{*}))<0$ for some $t^{*}\in(-a_{1}, b_{1})$ by hypothesis. There is then
a compact neighborhood $K$ of $(\gamma_{1}(t^{*}),\dot{\gamma}_{1}(t^{*}))$ in $TM$ on which Ric $<0$ . By the
continuous dependence of solutions of ordinary differential equations on initial
conditions, there is a neighborhood $W_{1}\times N_{1}^{*}$ of $(x_{0}, X_{1})$ in $TM$ such that for
each $(y, Y)\in W_{1}\times N_{1}^{*}$ , the maximal geodesic $\gamma:(-a, b)\rightarrow M$ with $\dot{\gamma}(0)=Y$ has
the property that $(\gamma(t^{\prime}),\dot{\gamma}(t^{\prime}))\in K$ for some $t^{\prime}$ close to $t^{*}$ . Now dePne $W_{1}\times N_{1}$

$\equiv SM\cap(W_{1}\times N_{1}^{*})$ . The required positive numbers $t_{1},$
$\epsilon_{1}$ can then be obtained

by a straightforward argument.
By the compactness of $S^{n-1}$ , there exist a finite number of such neighbor-

hoods $\{W_{i}\times N_{i} : i=1, \cdots , k\}$ such that $U_{t=1}^{k}N_{i}=S^{n-1}$ . Let $U=\bigcap_{i}W_{i}$ . Then
there exist positive numbers $t_{0},$

$\epsilon_{0},$

$\delta_{0}$ such that for every unit vector $(x, X)\in$

$U\times S^{n-1}(i. e. \Vert X\Vert=1)$ , if $\gamma:(-a, b)\rightarrow M$ is the maximal geodesic satisfying $\dot{\gamma}(0)$

$=X$, then $Ric(\dot{\gamma},\dot{\gamma})>-\delta_{0}$ on some $[t^{\#}, t^{\#}+\epsilon_{0}]$ or $[-t^{\#}-\epsilon_{0}, -t^{\#}]$ , where $t^{\#}\leqq t_{0}$ .
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Let us say $Ric(\dot{\gamma},\dot{\gamma})<-\delta_{0}$ on $[t^{*}, t^{\#}+\epsilon_{0}]$ for a fixed $\dot{7}$ . Construct a $C^{\infty}$ function
$\varphi:R\rightarrow[0, \infty)$ with support in $[t_{0}, t_{0}+\epsilon_{0}]$ (caution: here, it is $t_{0}$ , not $t^{\#}$ ), such

that $\varphi\leqq\delta_{0}/(n-1)everywhered^{ll}\Re_{\leftarrow}^{\Re}$ and $\varphi=\delta_{0}/(n-1)$ on $[t_{0}+\frac{1}{3}\epsilon_{0},$ $i_{0}+\frac{2}{3}\epsilon_{0}]$ . The

solution $z(t)$ of $y^{\prime\prime}-\varphi y=0$ which satisfies $z(O)=1,$ $z^{\prime}(O)=0$ then also satisfies:

$z(t)\geqq 1$ everywhere, $z(t)\equiv 1$ on $(-\infty, t_{0}$], and $z(t)\geqq\frac{\delta_{0}\epsilon_{0}}{3(n-1)}(t-t_{0}-\epsilon_{0})$ on
$[t_{0}+\epsilon_{0}, \infty)$ (cf. (22) and (23) above). In particular,

$\int_{0}^{\infty}1/z^{2}=C(t_{0}, \epsilon_{0}, \delta_{0})<\infty$

where $C(t_{0}, \epsilon_{0}, \delta_{0})$ is a positive constant depending only on $t_{0},$
$\epsilon_{0}$ and $\delta_{0}$ . Let

$y_{1}(t),$ $y_{2}(t)$ be solutions of (3) such that $y_{1}(0)=0,$ $y_{1}^{\prime}(0)=1;y_{2}(0)=1,$ $y_{2}^{\prime}(0)=0$ .
Let $u_{0}(t)\equiv y_{1}(t)/y_{2}(t)$ be the projective parameter on $\gamma$ so that (21) is valid
with $u$ replaced by $u_{0}$ . It is an elementary argument to show that $y_{2}(t)\geqq z(t)$

for all $t\in(-a, b)$ so that $\int_{0}^{\infty}1/y_{2}^{2}\leqq C(t_{0}, \epsilon_{0}, \delta_{0})$ . Summarizing, we have:

$u_{0}(0)=0,$ $u_{0}^{\prime}(0)=1,$ $-\infty<u_{0}(t)\leqq C(t_{0}, \epsilon_{0}, \delta_{0})$ .
Now dePne a new projective parameter $u$ on $\gamma$ by:

$u(t)=\frac{2Cu(t)}{-u(t)+2C}$ ,

where $C\equiv C(t_{0}, \epsilon_{0}, \delta_{0})$ . Then

$u(O)=0,$ $u^{\prime}(O)=1$ , $|u(t)|\leqq 2C$ .
Applying Lemma 4, we see that $P(\gamma(O),\dot{\gamma}(0))\geqq 1/(2C)$ . It follows that (20) is

valid with $\alpha=\frac{1}{2}C(t_{0}, \epsilon_{0}, \delta_{0})$ and with the choice of $U$ above. Q. E. D.

It remains to give a geometric condition that would guarantee that $Ric(\dot{\gamma},\dot{\gamma})$

is never identically zero as stipulated by Theorem 1. Among many complicated
alternatives, we take the simplest one. Let convex neighborhoods be understood
in the sense of J. H. C. Whitehead ([K-No], p. 149). The following is a direct
consequence of Theorem 1.

PROPOSITION. Let $M$ be a manifold with a torsionfree affine connection.
Let $K$ be a disjoint union of comPact sets such that each is contained in a
convex neighborhood. If the Ricci tensor is negative semidefinite on $M$ and
negative definite on $M-K$, then $M$ is Projective-hyperbolic.

A Cartan-Hadamard manifold is by definition a complete simply-connected
Riemannian manifold whose sectional curvature is nonpositive. On the basis of
Lemmas 2 and 4, it is also straightforward to prove the following.
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PROPOSITrON. Every bounded domain in a Cartan-Hadamard manifald, with
the induced metric, is projective-hyperbolic.

\S 3.

This section proves Theorem 3. Following the proof will be found some
immediate coroIlaries of this theorem as well as a simple proof of (B) at the
beginning of this paper (Theorem of $[K-S]\rangle$.

PROOF OF THEOREM 3. By Lemma 3, it suffices to prove $p\leqq p_{1}$ . The line
of attack is that of Royden [R] (pp. 131-132); the details are of course differ-
ent. Let $\gamma:[0,1]\rightarrow M$ be a $C^{\infty}$ curve ( $\dot{\gamma}(u)\neq 0$ being understood for each $u$ ),

and let a positive number $\epsilon$ as well as an $s\in[0,1]$ be given. Note that by the
upper semi-continuity of $P$ (Lemma 2) and the Lebesgue bounded convergence
theorem, there exists a positive continuous function $ h:[0,1]\rightarrow$ ( $0$, oo) such that:

(26) $h(t)>P(\gamma(t),\dot{\gamma}(t))$ for all $te[0,1]$ ,

(27) $\int_{Q}^{1}h<\int_{\alpha}^{1}P(\gamma(t),\dot{\gamma}(t))dt+\epsilon$ .

Fix this $h$ . We claim: for $\epsilon$ and $s$ as given, there exists an open interval
$I_{s}\equiv(s-t_{0}, s+t_{0})$ for some $t_{0}>0$ such that $p(\gamma(s), \gamma(t))\leqq(1+\epsilon)h(s)|s-t|$ for all
$t\in I_{s}$ .

To prove this claim, let $W$ be a convex neighborhood of $x\equiv\gamma(x)$ in $M$ and
let $\{w^{i}\}$ denote geodesic coordinates normal at $x$ and such that $w^{i}(x)=0$ for
$i=1,$ $\cdots$ , $n$ . We regard $W$ as part of Euclidean space $R^{n}$ by declaring $\{w^{i}\}$ to
be the ordinary coordinate functions on $R$“ ; after re-scaling, one may also
assume $\dot{\gamma}(s)$ to be a unit vector at the origin, $i$ . $e$ . $|\dot{\gamma}(x)|=1$ . Choose $t_{0}>0$ such
that $\gamma(I_{s})\subset W$, where $I_{s}\equiv(s-t_{0}, s+t_{0})$ as above. There will be other restric-
tions on $t_{0}$ . For each $t\in I_{s},$ $\gamma(t)\in W$ and, by the convexity of $W$, there $is$ a
unique geodesic of the given connection $\xi_{t}$ : $[0, v_{t}]\rightarrow W$ such that $\xi_{t}(0)=x$ ,
$\xi_{t}(v_{t})=r(t)$ , and $|\dot{\xi}_{t}(0)|=1$ . Note that $\xi_{t}$ is a radial line segment with unit
tangent vectors in the Euclidean coordinate system $\{w^{i}\}$ and that

$v_{t}=|\gamma(t)|=|\dot{\gamma}(s)(t-s)+O(|t-s|^{z})|$ .

Recall that $|\dot{\gamma}(s)|=1$ . Thus we may assume $f_{0}$ is so small that

(28) $v_{t}\leqq(1+\epsilon)^{1/S}|t-s|$ for all $t\in I_{s}$ .
Now choose a neighborhood $N$ of $(\gamma(s),\dot{\gamma}(s))$ in $TM$ so that for all $(y, Y)$

$\in N,$ $P(y, Y)<h(s)$ . This is guaranteed by (26) and Lemma 2. Now restrict $t_{0}$

to be so small that for the geodesic $\xi_{t}$ above, $\dot{\xi}_{t}(0)eN$ whenever $t\in I,$. Th $is$ is
possible because: $|\dot{\xi}_{t}(0)|=|\dot{\gamma}(s)|=1$ and since each $\xi_{t}$ is the radial line segment
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in the coordinate system $\{w^{i}\}$ joining $0(=x)$ to $\gamma(t),$ $\xi_{\iota}(C\rangle$
$\rightarrow\dot{\gamma}(s\rangle$ as $t\rightarrow s$. in

particular,
$P(x,\dot{\xi}_{t}(0))<h(s)$

for all $t\in I_{s}$ .
Now extend $\xi_{t}$ to a maximaI geodesic $\xi_{t}^{*}$ : $J\rightarrow M$. By definition (10) of $P$,

there exists a projective map $\beta:I\rightarrow M$ such that $flI$) $\subset\xi_{t}^{*}(J),$ $f(O)=x$ and $df(V)$

$=\xi_{t}(0)$ , where $|V|\leqq P(x,\dot{\xi}_{t}(0))+\delta$ , and $\delta$ is any Pre-assigned number. It follows
that $|V|\leqq h(s)+\delta$ . Since $h>0$ , we may choose $\delta$ so smaIl that

(29) $|V|<(1+\epsilon)^{\iota_{13}}h(s)$ .
Let $u_{t}\in I$ be the number satisfying $f(u_{t})=\xi_{t}(v)=\gamma(t)$ , where $v_{t}$ and $t$ are as
above. By the definition of $P$ (cf. (6) $-(8)$):

$p(\gamma(s), \gamma(t))\leqq\frac{1}{2}$ log $\frac{1+u_{t}}{1-u_{t}}=u_{t}+O(|u_{t}|^{3})$ .

Let $u$ be the projective parameter corresponding to $f$ and consider $u$ as a
function $u(v)$ of the affine parameter $v$ of $\xi_{t}^{*}$ . Then $u(v)$ satisfies: $ u(O\rangle$$=0$,
$u^{\prime}(O)=|V|$ and $u(v)=u$ . Hence,

$u_{t}=u(v_{t})=|V|v_{t}+O(|v_{t}|^{2})$ ,

so that
$p(\gamma(s), \gamma(tJ)\leqq|V|v_{t}+O([v_{t}[2)$ .

Recall that $v_{t}$ is small if $t_{0}$ is small (cf. (28)). Our final restriction on $t_{0}$ is
that it be so small that $h(s)v_{t}+O(|v_{t}|^{2})\leqq(1+\epsilon)^{1/3}v_{\iota}h(s)$ . This together with
($ 29\rangle$ now lead to:

$p(\gamma(s), \gamma(t))\leqq(1+\epsilon)^{2/3}v_{t}h(s)$

$\leqq(1+\epsilon)h(s)|t-s|$ ,

by virtue of (28). This proves the claim.
The proof of Theorem 3 can now be concluded following the idea of [R]

pp. 131-2. Indeed, by (27) and by the continuity of $h$ , there exists an $\eta>0$

such that if $0<t_{0}<t_{1}<\ldots<t_{k}=1$ is any subdivision of $[0,1]$ with $ t_{i+1}-t_{\mathfrak{t}}<\eta$

for all $i$ , then

(30) $\sum_{i=1}^{k}h(s_{i})(t_{t}-f_{i-I})<f_{\dot{\gamma}}^{P+\epsilon}$

where $s_{i}\in(t_{i-1}, t_{i})$ for each $i$ . Now in the above claim, there is no loss of
generality in assuming that each $I_{s}$ has length less than $\eta$ . By the compact-
ness of $[0,1]$ , there exist $(m+1)$ points $0=s_{0}<s_{1}<\ldots<s_{m}=1$ whose correspond-
ing intervals $\{I_{\iota}, I_{n}\}$ as guaranteed by the claim cover $[0,1]$, and are
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$ir$redundant in the sense that $I_{i^{(}}\iota I_{j}$ for any $i\neq j$ . It follows that $ I_{i-1}\cap I_{i}\neq\emptyset$ for
all $i$ . Now pick $t_{i}\in I_{i-1}\cap I_{i}$ for each $i$ so that $Si- l<t_{i}<s_{i}$ ; note that $0<t_{1}<$

$<t_{m}<1$ and $ t_{i}-t_{i-1}<\eta$ . By the claim, we have:

$p(\gamma(s_{i}), \gamma(s_{i-1}))\leqq p(\gamma(s_{i}), \gamma(t_{i}))+p(\gamma(t_{i}), \gamma(s_{i-1}))$

$\leqq(1+\epsilon)\{h(s_{i})(s_{i}-t_{i})+h(s_{i- 1})(t_{i}-s_{i-1})\}$ .
Account being taken of (3), it follows that

$p(\gamma(0), \gamma(1))\leqq\sum_{i}p(\gamma(s_{i}), \gamma(s_{i-1}))$

$\leqq(1+\epsilon)\sum_{i}h(s_{i})(t_{i+1}-t_{i})$

$<(1+\epsilon)\{\int_{\dot{\gamma}}P+\epsilon\}$ .

Since $\epsilon$ is arbitrary, $p(\gamma(O), \gamma(1))\leqq\int_{\dot{\gamma}}P$ for every $C^{\infty}$ curve $\gamma$ . If $\gamma$ were a piece-

wise $C^{\infty}$ curve instead, then the same argument applied to each $C^{\infty}$ segment
separately would yield the same inequality. By (11), this implies $p\leqq p_{1}$ .

Q. E. D.
The rest of this paper consists of applications of Theorem 3. An immediate

one is the following proof of (B) at the beginning of this paper, namely, the
theorem of Kobayashi-Sasaki ([K-S]). First a lemma:

LEMMA 5. Let $y_{1}(t)$ and $y_{2}(t)$ be solutions of $y^{\prime\prime}+Qy=0$ on $R$ which satisfy
$y_{1}(0)=0,$ $y_{1}^{\prime}(0)=1;y_{2}(0)=1,$ $y_{2}^{\prime}(0)=0$ . If $Q(t)\geqq 0$ for all $t\in R$, then there exists
an interval $(-a, b)\subset R$ such that the function $u(t)\equiv y_{1}(t)/y_{2}(t)$ maps $(-a, b)$

onto $R$.
PROOF. It follows from the proof of Lemma 1 that $u(t)$ is strictly increas-

ing. Consider $u(t)$ on $[0, \infty$). If $Q(t)\equiv 0$ on $[0, \infty$ ), $u$ maps $[0, b$) onto $[0, \infty$),

where $ b=\infty$ . If $Q(t_{0})>0$ for some $t_{0}>0$, then an elementary argument shows
that $y_{2}(t)$ has a first zero at some $b>0$ . Sturm’s separation theorem implies
that $y_{1}(t)>0$ on $(0, b)$ . Thus in this case, $u$ also maps $[0, b$) onto $[0, \infty$).
Similarly, $u$ maps some $(-a, 0$] onto $(-\infty, 0$]. Q. E. D.

PROOF OF (B). From the known relationship between equations (1) and (3),

Lemma 5 implies that given any maximal geodesic $\gamma:R\rightarrow M$ in the manifold
$M$, there is a projective map $f:R\rightarrow M$ such that $f(O)=\gamma(O)$ . By (10), this means
$P(\gamma(O),\dot{\gamma}(0))=0$ . Since $\gamma$ is arbitrary, $P\equiv 0$ on $TM$ and hence $p\equiv 0$ on $M$ (Theo-

rem 3). Q. E. D.
Given a manifold $M$ with a torsionless affine connection, $M$ (or more pre-

cisely, the affine connection) is Projective-hyperbolic at $x\in M$ if and only if there
exists a neighborhood $U$ of $x$ and a positive constant such that $P(y, Y)\geqq\alpha|Y|$
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for all $y\in U$, and all $Y\in M_{y}$ , where $|Y|$ denotes the norm of $Y$ relative to
some Riemannian metric on $M$. With this defined, Theorem 2 of [R] on p. 133
(and essentially also its proof) is now valid for the projective pseudo-distance $p$ .
This includes the projective analogue of the theorem of Eisenman-Kiernan ([E],
[Ki]) to the effect that hyperbolicity is equivalent to tightness (in the sense of
[W-1]). It also includes the following:

LEMMA 6. A manifold $M$ with a torsionfree affine connection is projective-
hyperbolic ( $i$ . $e.,$ $p$ is a metric) if and only if $M$ is projective-hyPerbolic at each
$x\in M$.

The proof of Theorem 1 above implies the following fact:
LEMMA 7. Let $M$ be a manifold with a torsionless affine connection such

that its Ricci tensor is negative semi-definite. If Ric is negative definite at some
$x$ , then $M$ is projective-hyperbolic at $x$ .

From the proof of Theorem 1 and from (B) ([K-S]), we can deduce im-
mediately :

PROPOSITION. Let $\Gamma_{1}$ and $\Gamma_{2}$ be two torsionfree affine connections on a
manifold $M$ such that $\Gamma_{1}$ is complete and has positive semi-definite Ricci tensor
while $\Gamma_{2}$ has negative semi-definite tensor which is not identically zero. Then
$\Gamma_{1}$ and $\Gamma_{2}$ are not projectively equivalent.

QUESTION. If $M$ is a manifold with a complete torsionfree affine connection
which is not projective-hyperbolic, does there exist an $(x, X)\in TM$ such that
$P(x, X)=0$ ? (Theorem 5 answers this affirmatively if $M$ is in addition compact.
In general, there is some heuristic evidence to show that the answer may be
negative.)

\S 4.

This section is devoted to the proof of Theorems 2 and 5, both being con-
cerned with compact manifolds.

PROOF OF THEOREM 2. According to an observation in [W-2], the hypo-
thesis of the theorem implies that the group $G$ of projective transformations of
$M$ is discrete; this is a mild improvement of a theorem of Couty ([C], p. 209)

to the effect that the same conclusion holds if everywhere negative Ricci cur-
vature is assumed. It thus suffices to prove that $G$ is compact.

Let $H$ be the points of $M$ at which $M$ is projective-hyperbolic (see definition
at the end of the last section). By Lemma 7 and by the assumption of quasi-
negative Ricci curvature, $H$ is a nonempty open set. In view of Theorem 3,
the restriction of the projective pseudo-distance $p$ of $M$ to $H$ is a metric, $i$ . $e$ .
for all $x,$ $y\in H,$ $p(x, y)=0\Rightarrow x=y$ . An argument of [R] (specifically, $(iv)\Rightarrow(v)$

in Theorem 2) furthermore proves that the restriction of $P$ to $H$ induces the
usual topology on $H$. Let $x_{0}\in H$ and let $CH$ denote the complement of $H$ in $M$.
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If $ p(x_{o}, CH)=2\epsilon$ for some positive $\epsilon$ , then define $H_{\mathfrak{v}}=\{y\in H:p(y, CH)\geqq\epsilon\}$ ; $H_{0}$

is a closed subset of $M$ with interior. We claim that the number of components
of $H_{9}$ is finite.

If not, then there exists a sequence $\{x_{i}\}$ of points in $M$ such that no two
of them belong to the same component of $H_{0}$ . We may assume that $x_{i}$ con-
verges to some $x\in M$. Let $\gamma$ be a piecewise $C^{\infty}$ curve joining $x_{i}$ to $x_{f}(i\neq j)$

and let $\pi_{i}$ be the first point on $\gamma$ leaving the component of $x_{i}$ and $\pi_{j}$ be the
last point on $\gamma$ entering the component of $x_{j}$ . Then the length of $\gamma$ with respect
to $P$ between $x_{i}$ and $\pi_{i}$ is at least $\epsilon$ by the definition of $H_{0}$ ; similarly the

length of $\gamma$ from $x_{j}$ to $\pi_{j}$ is at least $\epsilon$ . Thus $\int_{\dot{\gamma}}P\geqq 2\epsilon$ and hence $ p(x_{i}, x_{j})\geqq 2\epsilon$

if $i\neq j$ (Theorem 3). Now $ P:TM\rightarrow[0, \infty$) is upper semi-continuous and $M$ is
compact. Hence for some positive constant $A$ , $P(y, Y)\leqq A|Y|$ , where $|Y|$

denotes the Riemannian norm of $Y$. Theorem 3 again tells us that $ p(x, y)\leqq$

$Ad(x, y)$ for all $x,$ $y\in M$, where $d$ denotes the Riemannian distance function.
For $x$ as above, define $U=\{y\in M:d(y, x)\leqq\epsilon/(2A)\}$ . Then for all $y,$ $y^{\prime}\in U$,
$ p(y, y^{\prime})\leqq Ad(y, y^{\prime})\leqq Ad(y, x)+Ad(y^{\prime}, x)\leqq\epsilon$ . However, for all sufficiently large
$i,$ $j,$ $x_{i},$ $x_{j}\in U$ while $ p(x_{i}, x_{j})\geqq 2\epsilon$ . This contradiction proves the claim.

With respect to $p,$ $H_{0}$ is then a compact metric space with a finite number
of components. Its group of isometry $I(H_{0})$ is therefore compact with respect
to the compact-open topology (theorem of van Dantzig-van der Waerden; cf.
Corollary 4.10 on p. 50 of [K-No]). Now if $f\in G$ (the group of projective
transformations of $M$), then $f$ preserves $P$ and $p$ , and hence $f(H_{0})\subset H_{0}$ . The
restriction $f|H_{0}$ is therefore an element of $I(H_{0})$ and the map $\tau;G\rightarrow I(H_{0})$

defined by $\tau(f)=f|H_{0}$ is a continuous homomorphism. Let $y$ be an interior
point of $H_{0}$ ; then $\tau(f)$ determines the behavior of $f$ at $x$ up to any number of
derivatives. Since the second order jet of a projective transformation at one
point determines completely the transformation everywhere, $\tau(f)$ determines $f$

and hence $\tau$ is injective. We are now in a position to prove that $G$ is a com-
pact group.

If $G$ is noncompact, let $\{g_{i}\}$ be an infinite sequence of distinct elements of
$G$ . By deleting a subsequence if necessary, we may assume that $\tau(g_{i})$ converges
to some element in the compact group $I(H_{0})$ . In particular, the sequence $\{\tau(h_{ij})\}$

where $h_{ij}=g_{i}g_{j}^{-1}$ converges to the identity $e$ of $I(H_{0})$ in the sense that given
a neighborhood $N$ of $e$ , there is an $i_{0}$ such that $i,$ $j\geqq i_{0}\Rightarrow\tau(h_{ij})\in N$. We claim
that this implies $h_{ij}$ converges in $G$ to the identity $e_{0}$ of $G,$ $i$ . $e.,$ $e_{0}$ is the
identity map $M\rightarrow M$. Assuming this for the moment, we see that (since $G$ has
the discrete topology) for some $i_{1},$ $i,$ $j\geqq i_{1}\Rightarrow h_{ij}=e_{0}$ . Thus $g_{i}=g_{i_{1}}$ for all $i\geqq i_{1}$ .
This contradicts the fact that the sequence $\{g_{i}\}$ is distinct. Hence $G$ is compact.

To prove the preceding claim and hence the theorem, it suffices to show:
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LEMMA 8. Let $M$ be a manifold with a torsionfree affine connectim and let
$\{f_{i}\}$ be a sequence of prOjective transformations. SuppOse on a nonempty open
set $S$ of $M,$ $\{f_{i}\}$ converges (in the compact-open topology) to the identity map of
S. Then $\{f_{i}\}$ converges everywhere to the identity map of $M$.

PROOF. In this proof only, we let $P$ be the projective structure of $M$

defined by the given affine connection; thus $P$ is a principal subbundle of the
second order frame bundle $P^{2}(M)$ ($[Ko2]$ , p. 142). For each diffeomorphism
$h:M\rightarrow M$, let $j^{8}h$ denote the naturally induced map of $P^{2}(M)\rightarrow P^{2}(M)$ by $h$

($[Ko2]$ , p. 139). Then $\{j^{2}f_{i}\}$ is a sequence of diffeomorphisms of $P$ onto itself
preserving the absolute parallelism of $P$ defined by the normal projective con-
nection on $P$ ($[Ko2]$ , p. 143); in the language of [Ko 2], each $j^{2}f_{i}$ is an
automorphism of the {1}-structure of $P$ defined by the connection forms.
Moreover, the hypothesis of the lemma implies that $j^{2}f_{i}$ converges to the
identity map on $P|S$ ( $=the$ subset of $P$ over $S$). It is straightforward to show
that $j^{2}f_{i}$ in fact converges to the identity map of $P$ on all of $P$ (cf. Lemma 1
on p. 15 of [Ko 2]). In particular, $f_{i}$ converges to the identity map on $M$.

Q. E. D.
We remark that the proof of Theorem 2 also shows that the following is

valid.
PROPOSITION. Let $M$ be a compact manifold with a torsionfree affine con-

nection whose Ricci tensor is negative semidefinite and in addition negative

definite at a point. Then the group of projective transfor mations (and in par-
ticular the group of affine transformations) is a comPact Lie group.

In the proof of Theorem 5 below, the key observation is Lemma 9. This
lemma has had a rather curious history which deserves some comments. It
first appeared in Landau’s 1929 paper [L], \S 4 on pp. 618-619, in the context of
holomorphic functions on the unit disc. Apparently without being aware of
Landau’s work, Brody in his thesis [B] proved the same lemma for holomor-
phic mappings from the unit disc with the same technique and exploited it
with great effectiveness in proving (among other things) the complex counter-
part of Theorem 5 of the present paper. Independently and concurrently,
Zalcman [Z] had arrived at this lemma for meromorphic functions on the unit
disc again with the same proof as Landau, and used it to characterize normal
families of meromorphic functions on the disc; with a trivial change of termi-
nology, Zalcman’s arguments would have proved Brody’s theorem. However,

the credit of fully realizing the scope of this method is indisputably Brody’s.
Zalcman was aware of Landau’s work; see [Z] for further detail.

PROOF OF THEOREM 5. If there is (nonconstant) projective map $f:R\rightarrow M$,

then $P(f(t),\dot{f}(t))\equiv 0$ for all $t$ . Conversely, we shall prove that not being pro-
jective-hyperbolic implies the existence of such an $f$. Put some Riemannian
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metric $on_{t}^{f}M$ and denote the norm of $X$ in this metric by $|X|$ . By the com-
$pactness_{\&}^{V}of_{\iota}^{\prime}M$ and the upper semi-continuity of $P$, there is a positive constant
$A$ such that:

(31) $P(x, X)\leqq A|X|$ for all tangent vectors $X$.
Suppose $M$ is not projective-hyperbolic. By Lemma 6, there exists a sequence
$\{(x_{n}, X_{n})\}$ in $TM$ such that $P(x_{n}, X_{n})\rightarrow 0$ . By (31) and (10), this implies the
existence of a sequence of projective maps $f_{n}$ : $I\rightarrow M$ such that

(32) $|\dot{f}_{n}(0)|>n$ for all $n$ .
We now need the following renormalization lemma.

LEMMA 9. Let $h:I\rightarrow M$ be a prOjective map. If for some positive constant
$c,$ $|h(0)|>c$ , then there exists a projective map $k:I\rightarrow M$ such that: (i) $|\dot{k}(0)|$

$=c$ , (ii) $|\dot{k}(u)|(1-u^{2})\leqq c$ for all $u\in I$, and (iii) $k(I)\subset h(I)$ .
PROOF OF LEMMA 9. We follow \S 4 of [L] closely. Let $s<1$ . Replacing

$h(u)$ by $h(su)$ for $s$ sufficiently close to 1 if necessary, we may assume that $h$

is defined on [–1, 1] and that $|\dot{h}(O)|>c$ is still valid. Now for each $t\in[0,1]$ ,

define $h_{t}$ : $I\rightarrow M$ by $h_{l}(u)=h(tu)$ . Furthermore, define:

$M_{t}=\max_{u\in I}|\dot{h}_{l}(u)|(1-u^{2})$ .

Since also $M_{t}=t\max|\dot{h}(tu)|(1-u^{2}),$ $M_{t}$ is a continuous function of $t$ . Moreover,
$M_{0}=0$ and $M_{1}=\max|\dot{h}|>c$ . Hence $M_{s}=c$ for some $s\in(O, 1)$ , and hence for some
$u_{0}\in I$ ,

$c=M_{s}=|\dot{h}_{s}(u_{0})|(1-u_{0}^{2})$ .
Let $\varphi:I\rightarrow I$ be defined by $\varphi(u)=(u+u_{0})/(1+uu_{0})$ and let $ k=h_{s^{\circ}}\varphi$ . Then
$k:I\rightarrow M$, $k$ is projective, and $(1-u^{2})|\dot{k}(u)|=|\dot{h}_{s}(\varphi(u))||\varphi^{\prime}(u)|(1-u^{2})=$

$|\dot{h}_{s}(\varphi(u))|(1-\varphi(u)^{2})\leqq M_{s}=c$ . Also $|\dot{k}(0)|=|\dot{h}_{s}(u_{0})|(1-u_{0}^{2})=M_{s}=c$ . Q. E. D.
To continue from (32), define for each $n$ a map $f_{n}^{*}$ : $(-n, n)\rightarrow M$ by $f_{n}^{*}(v)$

$=f_{n}(v/n)$ . Then $|f_{n}^{*}(0)|>1$ . By Lemma 9, there exists a sequence $g_{n}$ such

that $g_{n}$ : $(-n, n)\rightarrow M,$ $g_{n}$ is projective, $|\dot{g}_{n}(0)|=1$ and $|\dot{g}_{n}(v)|(\frac{n^{2}-v^{2}}{n^{2}})\leqq 1$ for

all $v\in(-n, n)$ . Following the scheme in [B], we shall show that on each
closed interval $[-n, n](n\geqq 1)$ , a subsequence of $\{g_{n}\}$ converges uniformly to a
projective map. Repeating the argument successively for [–1, 1], [–2, 2], $\cdots$

and passing to a subsequence at each step, we obtain a sequence of projective
maps which converges uniformly on compact subsets to a projective map from
$R$ to $M$. It suffices to do this in detail for [–1, 1]. To this end, we begin
with the larger interval [–2, 2].

On [–2, 2], $|g_{n}(0)|=1$ for each $n$ and, considering only those $n\geqq 3$ from
now on, we get:
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(33) $|\dot{g}_{n}(v)|\leqq 2$ for all $n$ , for all $v\in[-2,2]$ .
Thus $\{g_{n}\}$ is an equi-continuous family on [–2, 2] and therefore a subsequence
$\{g_{i}\}$ converges uniformly to some $g:[-2,2]\rightarrow M$. We will show that $g$ is a
Projective map on [–1, 1] (and hence $C^{\infty}$ there).

By the definition of a projective map, there exists for each $i$ a geodesic
$\xi_{i}$ : $R\rightarrow M$ such that $g_{i}([-2,2])\subset\xi_{i}(R)(\xi_{i}$ is defined on $R$ because the connec-
tion is complete). Normalize $\xi_{i}$ by: if $x_{i}\equiv g_{i}(0)$ , then $\xi_{i}(0)=x_{i}$ and $|\xi_{i}(0)|=1$ .
Let $x\equiv g(O)$ . Then $x_{i}\rightarrow x$ and (again passing to subsequence if necessary) $\xi_{i}(0)$

converges to some $X\in M_{x}$ such that $|X|=1$ . Let $\xi:R\rightarrow M$ be the maximal
geodesic such that $\xi(0)=X$. By the $C^{\infty}$ dependence of solutions of ordinary
differential equations on initial data, $\xi_{i}\rightarrow\xi(C^{\infty})$ uniformly on compact sets (the

symbol $(C^{\infty})$ is to signify that the convergence is for all derivatives). For each
$i$, define the intervals $[-a_{i}, b_{i}]\subset R$ by: $a_{i},$ $b_{i}$ are the smallest numbers such
that $g_{i}([-2,2])=\xi_{i}([-a_{i}, b_{i}])$ . Since $\xi_{i}\rightarrow\xi$ uniformly on compact sets,
$g([-2,2])\subset\xi(R)$ . Thus we can similarly define $[a, b]$ such that $g([-2,2])=$

$\xi([-a, b])$ . It follows that $a_{i}\rightarrow a$ and $b_{i}\rightarrow b$ . Given an $\epsilon>0$ , there exists an $i_{0}$

such that

(34) $[-a+\epsilon, b-\epsilon]\subset[-a_{i}, b_{i}]$ for all $i\geqq i_{0}$ .
Let $v_{i}$ be the projective parameter on $\xi_{i}$ corresponding to $g_{i}$ . Thus

$v_{i}$ : $[-a_{i}, b_{i}]\rightarrow[-2,2],$ $v_{i}(0)=0,$ $|v_{i}^{\prime}(0)|=1$ and for each $t\in[-a+\epsilon, b-\epsilon]$ ,

$|v_{i}^{\prime}(t)|=|\dot{\xi}_{i}(t)|/|\dot{g}_{i}(v_{i}(t))|$

(cf. (14)). Note that the set $ K\equiv$ { $(\xi_{i}(t),\dot{\xi}_{i}(t))$ : all $i$ and all $t\in[-a+\epsilon,$ $b-\epsilon]$ } is
a relatively compact subset of $TM$ because $\xi_{i}\rightarrow\xi(C^{\infty})$ uniformly on $[-a+\epsilon, b-\epsilon]$ .
Thus there is a $B>0$ such that $|\xi_{i}(t)|\geqq B$ for all $i\geqq i_{0}$ and $t\in[-a+\epsilon, b-\epsilon]$ .
In view of (33), we have:

(35) $|v_{i}^{\prime}(t)|\geqq B/2$ for all $i\geqq i_{0},$ $t\in[-a+\epsilon, b-\epsilon]$ .
As in the proof of Lemma 1, each $v_{i}(t)$ can be expressed as a quotient

$\alpha_{t}(t)/\beta_{i}(t)$ , where $\alpha_{i}(t)$ and $\beta_{i}(t)$ are solutions of:

(36) $y^{\prime}(t)+\frac{1}{(n-1)}Ric(\xi_{i}(t), \xi_{t}(t))y(t)=0$ .

Normalize $\beta_{i}$ by setting $\beta_{i}(0)=1$ . Then $v_{i}(0)=0$ implies $\alpha_{i}(0)=0$ . A simple
calculation (cf. [H], p. 648) leads to $\alpha_{i}^{\prime}(0)=1$ and $\beta_{\ell}^{\prime}(0)=-v_{i}^{\prime\prime}(0)$ . We wish to
show that $\alpha_{i}$ and $\beta_{i}$ are separately convergent. The case of $\beta_{i}$ is more difficult
so we do it first. By the argument after equation (4), $v_{i}^{\prime}(t)=1/\beta_{i}(t)^{2}$ . By (35),

we get:



98 H. WU

(37) $|\beta_{i}(t)|\leqq\sqrt{2}/\sqrt{B}$ for all $i\geqq i_{0},$ $t\in[-a+\epsilon, b-\epsilon]$ .

We estimate $\beta_{i}^{\prime\prime}$ on $[-a+\epsilon, b-\epsilon]$ as follows. Let $C$ be the upper bound of the
function $X\rightarrow|Ric(X, X)|$ on the relatively compact set $K$ above. Since each $\beta_{i}$

satisfies (36), we obtain:

(38) $|\beta_{i}^{ff}(t)|\leqq\frac{\sqrt{2}C}{(n-1)\sqrt{B}}$ for all $i\geqq i_{0},$ $t\in[-a+\epsilon, b-\epsilon]$ .

Now let $\Vert h\Vert$ denote the sup norm of any function on $[-a+\epsilon, b-\epsilon]$ . Denote
the length of $[-a+\epsilon, b-\epsilon]$ by $l$ . Then an elementary argument using the
Taylor expansion gives:

$\Vert\beta_{i}^{\prime}\Vert\leqq\frac{1}{l}\{2\Vert\beta_{i}\Vert+\frac{1}{2}l^{2}\Vert\beta_{i}^{\prime\prime}\Vert\}$ .

Together with (37) and (38), this implies that $\{\beta_{i}\}$ is a sequence with uniformly
bounded first derivatives on $[-a+\epsilon, b-\epsilon]$ ; in particular, $\{\beta_{i}\}$ is an equi-con-
tinuous family. Since $\beta_{i}(0)=1$ , a subsequence of $\{\beta_{i}\}$ (to be still denoted by
$\{\beta_{i}\})$ is uniformly convergent on $[-a+2\epsilon, b-2\epsilon]$ to a continuous function $\beta$ .
Since $\beta_{i}^{\prime\prime}+\frac{1}{(n-1)}Ric(\xi_{i}, \xi_{i})\beta_{i}=0$ , taking limit as $ i\rightarrow\infty$ in the space of distri-

butions yields:

(39) $\beta^{\prime\prime}+\frac{1}{(n-1)}Ric(\dot{\xi},\dot{\xi})\beta=0$

in the sense of distributions. Since $Ric(\dot{\xi},\dot{\xi})$ is a $C^{\infty}$ function of $t$ , the regularity
theorem of ordinary differential equations implies $\beta$ is $C^{\infty}$ . Note that $\beta(0)=1$ .

We claim: $\beta$ is nowhere zero on $[-a+3\epsilon, b-3\epsilon]$ . Suppose $\beta$ vanishes at
$x_{0}\in[-a+3\epsilon, b-3\epsilon]$ . Since $\beta$ is not the zero solution of (39), $\beta^{\prime}(x_{0})\neq 0$ . Thus
$\beta$ changes sign near $x_{0}$ . Since $\beta_{i}\rightarrow\beta$ uniformly on the larger interval
$[-a+2\epsilon, b-2\epsilon]$ , each $\beta_{i}$ also changes sign near $x_{0}$ for $i$ large. Thus for such
$i,$ $\beta_{i}$ vanishes in $(-a+2\epsilon, b-2\epsilon)$ , which implies that $v_{i}(=\alpha_{i}/\beta_{i})$ is not $C^{\infty}$ in
$(-a+2\epsilon, b-2\epsilon)$ because $\alpha_{i}$ is nonzero at the points where $\beta_{i}$ vanishes. This
is a contradiction and the claim is proved. Thus $\beta$ is a positive $C^{\infty}$ function
on $[-a+3\epsilon, b-3\epsilon]$ .

Finally, define $\alpha;[-a+2\epsilon, b-2\epsilon]\rightarrow R$ as the solution of $y^{\prime\prime}+\frac{1}{(n-1)}Ric(\xi,\dot{\xi})y$

$=0$ with initial condition $\alpha(0)=0,$ $\alpha^{\prime}(0)=1$ . Recall that each $\alpha_{i}$ satisfies (36) with
the same initial condition $\alpha_{i}(0)=0,$ $\alpha_{i}^{\prime}(0)=1$ for all $i\geqq i_{0}$ . Since $Ric(\xi_{i}, \xi_{i})\rightarrow$

$Ric(\xi,\dot{\xi})(C^{\infty})$ uniformly on $[-a+2\epsilon, b+2\epsilon]$ , it follows from the basic theory of
ordinary differential equations that $\alpha_{i}\rightarrow\alpha(C^{\infty})$ uniformly on the smaller interval
$[-a+3\epsilon, b-3\epsilon]$ . Now define $ v=\alpha/\beta$ . Then $v:[-a+3\epsilon, b-3\epsilon]\rightarrow[-2,2],$ $v$
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is a projective parameter on $\xi$ (Lemma 1) and $v_{i}\rightarrow v$ $(C^{\infty})$ uniformly on
$[-a+3\epsilon, b-3\epsilon]$ . Since for all $i\geqq i_{0}$ , $v_{i}([ a_{i}, b_{i}])=[-2,2],$ (34) implies that
for $\epsilon$ sufficiently small, $v_{i}([-a+3\epsilon, b-3\epsilon])\supset[-3/2,3/2]$ . In particular, the
projective map $g^{\#}$ which corresponds to $v$ is defined on [–1, 1], and each $g_{i}$

of the subsequence of (33) converges uniformly to $g^{\#}$ on [–1, 1]. By unique-
ness of limit, $g^{\#}$ equals the $g$ previously defined. Thus we have proved that
the uniform limit of $\{g_{i}\}$ is a projective map on [–1, 1]. Q. E. D.

REMARK. The preceding proof in fact also proves the following theorem:
if $P(x, X)=0$ for some $(x, X)\in TM$ and if the hypotheses of Theorem 5 are in
force, then there is a projective map $f:R\rightarrow M$ such that $f(R)$ lies in the unique
maximal geodesic through $x$ and tangent to $X$.

\S 5.

We finally prove Theorem 4. This requires a sequence of lemmas. It may
be remarked that a proof of part (ii) will be given without using any kind of
Schwarz lemma.

LEMMA 10. Let $\varphi:R\rightarrow[0, \infty$) be a given function which is $C^{\infty}$ , even $(i$ . $e$ .
$\varphi(t)=\varphi(-t)$ for all t) and not identically zero, and let $u$ be the natu ral param-
eter on I. Then there exists a unique $C^{\infty}$ function $s:I\rightarrow R$ such that: (i) $s(I)$

$=R$, (ii) $s^{\prime}>0$ , (iii) $s$ is odd, $i$ . $e$ . $s(-u)=-s(u)$ and (iv) $\{s, u\}=\varphi(s)(ds/du)^{2}$ .
PROOF. Let $s$ denote the natural parameter of $R$ . Let $y_{1},$ $y_{2}$ be the solu-

tions of $y^{\prime}(s)-\frac{1}{2}\varphi(s)y(s)=0$ satisfying $y_{1}(0)=0,$ $y_{1}^{\prime}(0)=1;y_{2}(0)=1,$ $y_{2}^{\prime}(0)=0$ .
Define $u_{0}(s)=y_{1}(s)/y_{2}(s)$ . Then $u_{0}(0)=0$ and $u_{0}^{\prime}(s)=1/y_{2}(s)^{2}$ (cf. (3), (4), (22)).

Since $\varphi\geqq 0,$ $y_{2}\geqq 1$ . Hence $u_{0}$ is a $C^{\infty}$ function on $R$ such that $u_{0}^{\prime}>0$ . The same
argument which led to (24) also shows that $y_{2}(s)>\epsilon s$ on $[a, \infty$ ), where $a,$ $\epsilon$ are

some positive constants. Thus for all $ s\geqq 0;u_{0}(s)=\int_{0}^{s}u_{0}^{\prime}<\int_{0}^{\infty}u_{0}^{\prime}=\int_{0}^{\infty}1/y_{2}^{2}\equiv A<\infty$

for some $A>0$ . By the evenness of $\varphi,$ $u_{s}(s)>-A$ for all $s\leqq 0$ . Note also that
$\{u_{0}, s\}=-\varphi$ .

Now define $u=u_{0}/A$ . Thus $u:R\rightarrow I$ and $u$ has the following properties:

(40) $u(R)=I,$ $u^{\prime}>0,$ $u(O)=0,$ $\{u, s\}=-\varphi$ and $u(s)=-u(-s)$ .
Let $s:I\rightarrow R$ denote the inverse function of $u$ . Then this $s$ satisfies all the
assertions of the lemma in view of

(41) $\{s, u\}=-\{u, s\}(ds/du)^{2}$ .
It remains to prove the uniqueness of $s$ . We shall prove the equivalent

statement that any $u:R\rightarrow I$ satisfying (40) is unique. Since $\{u, s\}=-\varphi$ , we
may write $u=y_{1}/y_{2}$ where $y_{1}$ and $y_{2}$ are solutions of $y^{\prime}-\frac{1}{2}\varphi y=0$ . Normalize
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$y_{2}$ by setting $y_{2}(0)=1$ . Then (cf. (36) and the argument following it): $y_{1}(0)=0$ ,

and $y_{2}^{\prime}(0)=-u^{\prime\prime}(0)=0$ because $u$ is odd. This shows that $y_{2}(0)$ and $y_{2}^{\prime}(0)$ are
determined by (40) and hence so is $y_{2}$ itself. Suppose we can show $y_{1}^{\prime}(0)$ is
determined by $y_{2}$ , then coupled with $y_{1}(0)=0$ , this would show $y_{1}$ is determined
by (40) and hence $u$ itself would be determined by (40). To compute $y_{1}^{\prime}(0)$ , we
follow the argument after (4) to conclude that $u^{\prime}(s)=y_{1}^{\prime}(0)/y_{2}(s)^{2}$ . Hence for

$s\geqq 0,$ $u(s)=\int_{0}^{s}[y_{1}^{\prime}(0)/y_{2}(t)^{2}]dt$ . Since $u(s)\uparrow 1$ as $s\uparrow 1,$ $y_{1}^{\prime}(0)=(\int_{0}^{\infty}1/y_{2}^{2})^{-1}$ Q. E. D.

The following is a direct consequence of Lemma 10 and a simple computa-
tion; it brings out the special property of the metric $dI^{2}$ in (5) and (6).

LEMMA 11. The function which is the odd extension to I of the function
$s_{0}=\frac{1}{2}\log\frac{1+u}{1-u}$ on $[0,1$ ) is the unique solution in Lemma 10 corresp0nding to

$\varphi\equiv 2$ . Furthermore, $dI^{2}=[s_{0}^{\prime}(u)du]^{2}$ .
The next lemma is the projective counterpart of Proposition 5.7 in [G-W 2].

LEMMA 12 (Schwarz Lemma I). Let $s:I\rightarrow R$ be the unique solution in

Lemma 10 corresp0nding to $\varphi(s)=\frac{A}{1+s^{2}}$ , where $A$ is a positive constant. Let

$t:I\rightarrow R$ satisfy $t(O)=0,$ $t^{\prime}(u)>0$ , and $\{t, u\}\geqq\frac{A}{1+t^{2}}(\frac{dt}{du})^{2}$ . Then $t^{\prime}\leqq s^{\prime}$ .
PROOF. Define $h=t^{\prime}/s^{\prime}$ ; we must show $h\leqq 1$ . Using the standard trick

originating with Ahlfors (cf. [Ko 1], p. 4 or [G-W 2], proof of Proposition 5.7),

we may assume that $h$ assumes an interior maximum at $u_{0}\in I$ . Hence
$(\log h)^{\prime}(u_{0})=0$ and $(\log h)^{\prime\prime}(u_{0})\leqq 0$ . It follows that at $u_{0}$ :

$0=(\log h)^{\prime}=t^{\prime}/t^{\prime}-s^{\prime}/s^{\prime}$

$0\geqq(\log h)^{\prime}=\{t, u\}-\{s, u\}+\frac{1}{2}(t^{\prime}/t^{\prime})^{2}-\frac{1}{2}(s^{\prime}/s^{\prime})^{2}$

$=\{t, u\}-\{s, u\}$

$=\frac{A(t^{\prime})^{2}}{1+t^{2}}-\frac{A(s^{\prime})^{2}}{1+s^{2}}$ ,

so that $(t^{\prime})^{2}/(1+t^{2})\leqq(s^{\prime})^{2}/(1+s^{2})$ at $u_{0}$ . Suppose $h(u_{0})=a>1$ . Then at
$u_{0}$ : $a^{2}/(1+t^{2})\leqq 1/(1+s^{2}),$ $\Rightarrow 1+a^{2}s^{2}<1+t^{2},$ $\Rightarrow a^{2}s(u_{0})^{2}<t(u_{0})^{2}$ . But since $t^{\prime}\leqq as^{\prime}$

on $I$ and $f(O)=s(0)=0$ , $t^{2}\leqq a^{2}s^{2}$ on $I$ . This is a contradiction. So $a\leqq 1$ and
$t^{\prime}\leqq s^{\prime}$ . Q. E. D.

LEMMA 13 (Schwarz Lemma II). Let $t:I\rightarrow R$ satisfy $t(0)=0,$ $t^{\prime}(u)>0$ and

$\{u, t\}\leqq-A^{2}$ . Then $t^{\prime}(u)\leqq\frac{\sqrt{2}}{A(1-u^{2})}$ for all $u\in I$ .
PROOF. This is essentially proved in (4.1) of [Ko 4]. In the present frame-

work, the hypothesis implies $\{t, u\}\geqq A^{2}(dt/du)^{2}$ (cf. (41)). Also, the odd func-
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tion $s_{1}(u)$ which equals $\frac{1}{\sqrt{2A}}\log\frac{1+u}{1-u}$ on $[1, 0$) is the solution in Lemma 10

corresponding to $\varphi\equiv A^{2}$ . Then exactly the same proof as in Lemma 12 applies
here. Q. E. D.

We are now in a position to prove Theorem 4. First prove part (i). Sup-
pose $\rho$ denotes distance from a fixed $O\in M$ and by hypothesis:

(41) $Ric(x)\leqq\frac{-A}{1+\rho(x)^{2}}$ for all $x\in M$ .

Let $x\in M$ and let $X\in M_{x},$ $|X|=1$ . Let $\gamma:J\rightarrow M$ be the geodesic such that
$7(0)=X$. If $f:I\rightarrow M$ is a projective map such that $df(V)=X$, where $V$ is a
tangent vector at the origin $0$ of $I$, then according to (10) it suffices to prove
that for some positive constant $\alpha,$ $\alpha$ independent of $(x, X)$ :

$|V|\geqq\frac{\alpha}{(1+\rho(x)^{2})^{1/2}}$ .

Let $u$ be the projective parameter corresponding to $f$ and let $t$ denote the
affine parameter of $\gamma$ . Then the function $t(u)$ satisfies: $t(O)=0,$ $t^{\prime}>0$ and $|V|$

$=u^{\prime}(O)=1/t^{\prime}(O)$ . Thus it reduces to proving:

(42) $t^{\prime}(0)\leqq\beta(1+\rho(x)^{2})^{1/2}$

for some positive constant $\beta$ which is independent of $(x, X)$ . Now $\{u, t\}=$

$\frac{2}{(n-1)}Ric(\dot{\gamma}(t),\dot{\gamma}(t))$ . DePne a constant $\lambda\equiv(1+2\rho(x)^{2})$ and let $t_{0}(u)\equiv\sqrt{2/\lambda}t(u)$ .

We claim:

(43) $\{t_{0}, u\}\geqq\frac{A/(n-1)}{1+t_{0}^{2}}(\frac{dt_{0}}{du})^{2}$ .

The idea of the proof of (43) is essentially that used in proving Theorem $E$ of
[G-W 2], and it goes as follows. Since the triangle inequality implies $\rho(\gamma(t))^{2}$

$\leqq 2[\rho(x)^{2}+d(\gamma(0), \gamma(t))^{2}]\leqq 2\rho(x)^{2}+2t^{2}$ , we have from (41) that

$Ric(\dot{\gamma}(t),\dot{\gamma}(t))\leqq\frac{-A}{\lambda+2t^{2}}\leqq\frac{-A/\lambda}{1+t_{0}^{2}}$ .

Thus $\{f_{0}, u\}=\{t, u\}=-\{u, t\}(dt/du)^{2}$ (by (41))

$=\frac{2}{(n-1)}Ric(\dot{\gamma}(t),\dot{\gamma}(t))(\frac{dt}{dt_{0}})^{2}(\frac{dt_{0}}{du})^{2}$

$\geqq\frac{A/(n-1)}{1+t_{0}^{2}}(\frac{dt_{0}}{du})^{2}$ ,

which is (43).
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Now according to Lemma 12, $t_{0}^{\prime}(u)\leqq s^{\prime}(u)$ , where $s(u)$ is the unique solution
$A/(n-1)$

in Lemma 10 corresponding to $\varphi(s)=-$ . This function $s(u)$ is of course
$(1+s^{2})$

independent of $(x, X)$ . Thus $t^{\prime}(0)\leqq\frac{1}{\sqrt{}^{-}2^{-}}(1+2\rho(x)^{2})^{1/2}s^{\prime}(0)\leqq s^{\prime}(0)(1+\rho(x)^{2})^{1/2}$ . This

is (42) with $\beta=s^{\prime}(O)$ .
To prove part (ii) of Theorem 4, first assume $Ric(x)\leqq-A^{2}$ for all $x\in M$.

Standard arguments using the Schwarz Lemma II (Lemma 13) prove immedi-
ately that $P(x, X)\geqq A/\sqrt{n-1}$ for all unit vector $X$. It may be of some interest
to prove this inequality directly without recourse to the Schwarz lemma. Thus
let $X\in M_{x},$ $|X|=1$ , and let $\gamma:(-a, b)\rightarrow M$ be the maximal geodesic such that

$7(0)=X$. If $y_{1},$ $y_{2}$ are solutions of $y^{\prime\prime}+\frac{1}{(\prime n-1)}Ric(\dot{\gamma},\dot{\gamma})y=0$ satisfying $y_{1}(0)=0$ ,

$y_{1}^{\prime}(0)=1,$ $y_{2}(0)=1,$ $y_{2}^{\prime}(0)=0$ , then the function $u(t)\equiv y_{1}(t)/y_{2}(t)$ on $(-a, b)$ is a
projective parameter of $\gamma$ such that $u(O)=0,$ $u^{\prime}(O)=1$ and $u^{\prime}(t)=1/y_{2}(t)^{2}$ for all

$t\in(-a, b)$ . Compare $y_{2}$ with the solution $z(t)$ of $z^{\prime\prime}-A^{2}z=0\underline{1}$ which
$(n-1)$

satisfies $z(O)=1,$ $z^{\prime}(O)=0$ ; then the inequality $Ric(x)\leqq-A^{2}$ implies that $y_{2}(t)\geqq z(t)$

for all $t\geqq 0$ . Since $z(t)=\cosh(\frac{A}{\sqrt{n-1}}t)$ , we see that for all $t\geqq 0$ ,

$u(t)=\int_{0}^{t}1/y_{2}^{2}\leqq\int_{0}^{t}1/z^{2}$ .

$\leqq\int_{0}^{\infty}sech^{2}(\frac{A}{\sqrt{n-1}}s)ds=\frac{\sqrt{n-1}}{A}$ .

A similar argument for $t\leqq 0$ shows that $u(t)\geqq-\sqrt{n-1}/A$ for $t\leqq 0$ . Thus
$|u(t)|\leqq\sqrt{n-1}/A$ . By Lemma 4, $P(x, X)=P(\gamma(O),\dot{\gamma}(0))\geqq A/\sqrt{n-1}$, as desired.

Finally, assume $M$ is complete and $Ric(x)\geqq-B^{2}$ for all $x\in M$, and we must
show $P(x, X)\leqq B/\sqrt{n-1}$ for every unit vector $X\in M_{x}$ , for every $x\in M$. Let
$\gamma:R\rightarrow M$ be the geodesic such that $\gamma(0)=X$ and let $f:I\rightarrow M$ be a projective
map such that $df(V)=X$ and $f(I)\subset\gamma(R)$ , where $V$ is tangent to $I$ at $0$ . Then
$|V|=u^{\prime}(0)$ , where $u$ is the projective parameter on $\gamma$ corresponding to $f$. We
may therefore reformulate (10) as $P(x, X)=\inf|u^{\prime}(0)|$ , where the infimum is
taken over all projective parameters $u$ on $\gamma$ such that $u(O)=0$ and $u(R)\supset I$ . It
suffices to produce one such $u$ which satisfies $|u^{\prime}(0)|\leqq B\sqrt{n-1}$ . First define a
projective parameter $u_{0}=y_{1}/y_{2}$ , where $y_{1}$ and $y_{2}$ are solutions of $y^{\prime}+$

$\frac{1}{(n-1)}Ric(\dot{\gamma},\dot{\gamma})y=0$ which satisfy $y_{1}(0)=0,$ $y_{1}^{\prime}(0)=1,$ $y_{2}(0)=1,$ $y_{2}^{\prime}(0)=0$ . Then

$u_{0}(0)=0$ and $u_{0}^{\prime}=1/y_{2}^{2}$ , so that as $t\uparrow\infty,$ $u_{0}(t)\uparrow\int_{0}^{\infty}1/y_{2}^{2}$ . Comparing $y_{2}$ with the

solution $\zeta$ of $\zeta^{\prime\prime}-\frac{1}{(n-1)}B^{2}\zeta=0$ which satisfies $\zeta(0)=1,$ $\zeta^{\prime}(0)=0$ and using the
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inequality $Ric(x)\geqq-B^{2}$ , we obtain as in the last paragraph: $ u_{0}(t)\uparrow\int_{0}^{\infty}1/y_{2}^{2}\geqq$

$\int_{0}^{\infty}sech^{2}\frac{B}{\sqrt{n-}1^{-}}tdt=\sqrt{n-1}/B$ , as $ t\uparrow\infty$ . Similarly, as $t\downarrow-\infty,$ $u_{0}(t)\downarrow-\int_{0}^{\infty}1/y_{2}^{2}$

$\geqq-\sqrt{n-1}/B$ . Define now the projective parameter $u$ on $\gamma$ by $u(t)=$

$(B/\sqrt{n-1})u_{0}(t)$ . Then $u(R)\supset I$ and $u^{\prime}(O)=B/\sqrt{n-1}$ because $u_{0}^{\prime}(0)=1$ .
Q. E. D.
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