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Introduction.

The study of C*-dynamical systems plays an important role in the theory
of C*-algebras. This paper is devoted to a study of covariant representations
of continuous C*-dynamical systems. A C*-dynamical system is a pair (A4, G),
where A is a C*-algebra and G is a locally compact Hausdorff group acting
on A by *-automorphisms. The action of g&G on a= A is denoted by g-a
or ga. If, for all a= A, the map g—g-a of G into A is continuous for the
norm topology of A, we say that the C*-dynamical system (A, G) is contin-
uous. From a continuous dynamical system (A4, G), one can construct the crossed
product C*(G, A), the covariance algebra in the sense of [6]. For a closed
subgroup G, of G, there is a method to construct representations of C¥G, A)
from covariant representations of (A, G,), which are called the induced repre-
sentations ([10], §3). On the other hand, in [8], W. Krieger showed the
construction of a von Neumann algebra from a commutative dynamical system
(M, B, m), G), where (M, B, m) is a measure space and G is a countable
discrete group. This construction coincides with that of the crossed product
when the action of G is free.

In this paper, to study the continuous C*-dynamical system (A4, G), we
try to apply the idea of Krieger’s to the covariant representations of (A, G).
For this purpose, in Section 1, we show the construction of covariant repre-
sentations of (A, G) from representations of A, which is an analogue of the
Krieger’s construction, and then we construct a representation Cent p of
C*(G, A) from a representation p of A. If the action of G on the quasi-dual
A of A is free, Cent p coincides with the induced representation of p. Using
the representation Cent p, we show the construction of a C*-algebra G*A
from (A4, G), which is different from that of the crossed product. In Section
2, we show that, if representations p, and p, of A are quasi-equivalent, then
Cent p, and Cent p, are quasi-equivalent.
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§1. Centrally extended representations.

In the following, A denotes a separable C*-algebra. By Rep A we mean
the set of all non degenerate representations p of A on some separable Hilbert
space 9,, and by Fac A we mean the set of all factor representations. For
representations p; and p, of a C*-algebra, p,=p, means that p, and p, are
equivalent, and p,~p, means that p, and p, are quasi-equivalent (c.f. [5],
2.2.1. and 5.3.2). Let A denotes the quasi-dual (called the quasi-spectrum in
[6], 7.2.2.) of A endowed with the Mackey Borel structure, that is, A is the
set of quasi-equivalence classes of non-trivial factor representations of A, and
the Mackey Borel structure on A is the quotient structure of that of Fac A
for the canonical mapping Fac A— A ([5], 7.2.2). Let G be a second countable
locally compact Hausdorff topological group, and (A4, G) be a continuous C*-
dynamical system. Then G acts on the quasi-dual A of A as follows; for
e A, g-C denotes the quasi-equivalence class of g+m, where © is a repre-
sentation belonging to the quasi-equivalence class { and (g-x)(a)=n(g 'a) for
acsA. For {€A we denote by G the stabilizer of { under G, i.e. G;={g=G;
g-C={}. The stabilizer G, is a subgroup of G. We assume, throughout this
paper, that G is closed in G for all {eA. This is true when A is a GCR-
algebra ([10], p. 280). The couple (x, U) is said to be a covari-
ant representation of (A, G), if = is a representation of A on a Hilbert space
$ and U is a unitary representation of G on the same space § such that
Ulg)n(x)U(g)=n(gx) for x€ A, g=G.

Let v be a left invariant Haar measure on G, and y; be a left invariant
Haar measure on G, As G and G are second countable locally compact
Hausdorff groups, they are Polish spaces and v and y; are standard measures.

For p=Rep A4, let the central decomposition of p be as follows;

9= D,0dm©, o= 00dp,,

where the quasi-equivalence class of o({) is { and g, is a standard measure
on A which is uniquely determined up to equivalence. For every £= A4, we
define $({) and G¢-p({) by the following :

BO={, sp0dul@)=LHGe, %@y

G;-p(C)(a):Sicg-p(C)(a)dv;(g) for all a€A.
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PROPOSITION 1.1. For every L€ A, G- p({) belongs to Fac A and the quasi-
equivalence class of Ge- p(Q) is C.

PrOOF. For ge Gy, we have p({)=g-p({). Let ¥, p({) be the representa-
tion P,0; of A, where p;=p({) for every i (c.f. [5], 2.2.3.). Since 9, is
separable, ¥, p(0)=¥,-g-p) (5], 5.3.8.). Thus we have

[ R Q=] R pOdre(e).
As

Ji R0 pO()= - Uz @ pL0)

and

[ R0 0(Ddue()= - G- (0,

we have Wo (2600 @ p(0)= R, G- p(L). Therefore we get o(0)= G- p(d).
Q.E.D.
Let G/G¢ be the set of left cosets of G by G;. As G is assumed to be
closed in G, G/G¢ is a locally compact Hausdorff space by the quotient topo-
logy, and it is second countable. The group G acts continuously on G/G¢
by left multiplication. There exist a non-zero quasi-invariant measure A; on
G/G; which is uniquely determined up to equivalence, and a continuous
function X;>0 on GXG/G¢ such that

oo FDAR2XD=( | A, Daacth)

for every continuous function f on G/G; with compact support and for all
heG, where (h-2)(E)=2(h~*-E) for every integrable subset E of G/G; ([3],
Chap. 7, §2, n°5). For geG, put g¢=g-G=G/Gq.

Let L; be the unitary representation of G; on L*G¢, vo)@%9,«y which is
determined by (Lg(h)f)Xg)=f(h"'g) for f€ LG, v0) @D, and heGe. Then
(Ge-p(£), Ly) is a covariant representation of (A, Gy). Let (II°({), U*(£)) be
the covariant representation of (A, G) induced by (G¢-p(), Ly) with respect
to the measure A on G/G¢ (c.f. [10], §3). That is, let H? be the space of
all L¥Gg, vo) @9, -valued measurable functions » on G satisfying the con-
ditions;

) p(st)=L(t=y(s)  for seG, teGy,
@) Joy0c IPONPARL <+

The integral in (2) is well-defined by ||5(st)[|=| Lt )n(s)=ln(s)ll for tGe.
For all a€ A and heG, I1°(Q)a) and U°({)h) are operators on the Hilbert
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space Hf defined by (I1°({)(a)nXg)=g- G p({)a)y(g) and
(U)X g)=%Lh, h=*g)**p(h~'g)  for all neHf and geG.

Since G is a Polish topological group and G is a closed subgroup, there
exists a Borel cross section @, of G/G; in G ([1], Proposition 3.2, p. 14).
Then, there exists an isomorphism ¥; of the Hilbert space L¥G/Ge, A)
QLA Ge, vO)@9,y onto the Hilbert space Hf defined by  T(f)(s)
:L((S_l@g(g))f(é) for fE LZ(G/GQ 2;)@ L2(Gg, v¢)®=§§>p<o and seG (, p. 110)
If fields {—LXG/Ge, A7) and {— L¥ G, vy) are p,-measurable fields of Hilbert
spaces on A, the field {— L¥G/Gy 2)Q LY Gy, v)Q@9, is p,-measurable.
Then, by the isomorphisms (%), the field {— H¢ is a p,-measurable field of
Hilbert spaces.

DEFINITION 1.2. A C*-dynamical system (A4, G) is called centrally meas-
urable, if there exist, for every {&A, measures A; and y; which have the
following properties;
1°. 2¢ is a non-zero quasi-invariant measure on G/Gg and vy, is a left invari-
ant Haar measure on G¢;
2°. {—~L¥G/Gy 2y and {— L¥Gg vy) are p,-measurable fields of Hilbert
spaces on A ;
3°. for every p€Rep A, {—1I°({) and {—~U”{) are p,-measurable fields of
operators on A with respect to the structure of the pp-measurable field {— H?
whose construction is described just before.

This notion makes sense as we have the following proposition.

PROPOSITION 1.3. For a C*-dynamical system (A, G), if theve exists a closed
subgroup H of G such that the stabilizer G is H for every (€A, then (A, G)
is centrally measurable.

Proor. Let {V,}u_, (resp. {Wn}n-1) be a relatively compact open basis
of H (resp. G/H), and Xy, (resp. Xw,) be the characteristic function of each
set. Then {{—X% }5_. (resp. {{—Xw }n-1) forms a fundamental subset of the
¢,-measurable field {— L*(H, vg) (resp. {— L*G/H, 2y)) where vy is a Haar
measure on H and Ay is a quasi-invariant measure on G/H. Let {{— x, (O},
be a fundamental subset of y,-measurable field {—9,. Then {{— T (U
Xy, Q@ x:(O)}m.n.1-1 is a fundamental subset of the y,-measurable field {— H?.
For a€A, put AL R)=(o)Xha)x Q)| x(O)Xy av, (). Then the function
¢—f(&, h) is p,-measurable on A and the function A—f({, h) is continuous
on V,nV,CH. Therefore the function

CHSH J& mydvr(h)=(H- p(CX(a) Ay, @ x|ty @ x:(0)

is p,-measurable on A. We use the notation mentioned before Definition 1.2
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omitting the index {. As $—@(s) is a Borel cross section of G/H into G,
there exist a set of Ay-measure zero NCW,\W, and a sequence of compact
sets {K,} which is a partition of W, ~\W. —N such that $— @($) is continuous
on K; for all i. The function $—(@(s)-H- p({)(a)Xy,Q x|y, Q@ x. (L) is
then continuous on K; for all i and for all & A. Therefore the function

Eo | () H- pOX@ily, @ 1) e @ (0D ()

is p,-measurable on A. Hence, the function
& 33 (00)- H- p(OX @)t © 5O 2y @ 10D d2u(S)

=¥ )V ,, @2y, @ x:ENN ¥ ¥ e R Uy @ 20:(0)))

is p,-measurable. It follows that the field {—1I1°({) is p,-measurable on A.
It is clear that the field {—U?({) is y,measurable on A, as vi=vy and Ac=Ay
for all L€ A. Q.E.D.

From now on, we assume that (A, G) is centrally measurable. Then we
can define &,, II* and U? as follows;

%=\ Hedp1o(0);
1e={" 1°©dp,©);

Ue={ Ur©dp,© .

Since (II°(0), U*(£)) is a covariant representation of (4, G) on H¢ for every
e A, (II°, U®) is a covariant representation of (4, G)on &,. LYG, A) denotes
the set of all Bochner integrable A-valued measurable functions on G which
is the Banach *-algebra with the product and the involution defined by

(s )@y=| x(Wh- y(h-g)ds(h)

xX(g)=4(g) g (x(g™)*

for all x, ye L¥G, A) and g=G, where 4 is the modular function of G with
respect to v. The crossed product C¥(G, A) of A by G is the enveloping C*-
algebra of L¥G, A) (c.f. [107, p. 273).

DEFINITION 1.4. Let Cent p be the unique representation of the crossed
product C*(G, A) such that ‘
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Cent p(x)=| IT°(x(@)U*(g)dx(e)

for all xe LG, A) (c.f. [6], Theorem 3). The representation Cent p is called
the centrally extended representation of C*(G, A) for p.

For x€ LG, A), define | x|lx+=sup ,erep 4 Cent p(x)l.

PROPOSITION 1.5. The above ||-|x is a norm on LYG, A).

Proor. It is sufficient to show that | x|4+=0 implies x=0. Let {W,} be
a countable decreasing fundamental system of relatively compact open neigh-
borhoods of the unit e€G. Let ¢, be a nonnegative real-valued continuous
function on G such that supp ¢,C W, and |¢,],=1, where |||, denotes the
L*-norm. Let {u,} be an approximate unit of A, and u,¢$, be an element of
LY G, A) defined by (u.¢.)g)=¢.(g)u, for geG. The function x*(u,d,) is
continuous on G, and we have 711112 | x%(urdn)—x]:=0 for every x&L'(G, A)

Suppose now [ x|«=0. Then, for every p<Rep A4, we get
[Cent p(x*(urdn))| =[ICent p(x)|-[[Cent p(u,¢,)II=0.

Put y=x+(u,$,). Note that y(g) is continuous. We shall show y=0.

Let p be a factor representation of A and { be the quasi-equivalence
class of p. Then we have Cent p(y)=0. As the group is second countable,
we have a countable family 7” of continuous functions with compact support
on G¢ in which we can find, corresponding to each pair of a compact set K
and a relatively compact open set U containing K, a function ¢ taking 1 on
K, 0 outside U and the values between 0 and 1 everywhere. Let Y be a
similar family with respect to G/G; instead of G.. In what follows, functions
¢1, ¢, are chosen from Y and ¢, ¢, are chosen from V. We have now, for
NED,,

0=(Cent P(y) w&(¢1®¢1® 77) | wC(Sﬁz ®¢'Z® 77))

=[ o0 K& & R)HHOLICe: o@D LADL) 2 Dl N r @ 1) 6, @7)

X ¢ g h)Go(R)dALR)dM(g) .

Then we have
(1) Ongxc(g, g7 h) MO )Gr p(3(@) Le( D h) g Dl g™ h))p1 @ )] D7)
X gi(g™h)dw(g)

=[5 e g Ry @i)s o)y Mg i Dlg ) g B()s)
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X Pa(s)dve(s)dx(g),

for heG/G; except for a 2-null set which can be taken common for all
¢1ET, ¢y, $.€7. By [9], Lemma 1.1, we can assume that, for each compact
subset K of G, (D;(K) has a compact closure. Put supp ¢,=K, supp ¢,=K; and
supp ¢,—K,. Put

alg, W=X{g, g7 h) ", B(g, h, $)=(P(h)s- p(3(&)7n| )
and

t(g, h, $)=0g *h) g Dc(h)s .

Consider the following function on K,;

s alg, MBe, b, pg Wp(te, b, Ndne).

The integrand vanishes outside the compact set @C(fz)KzK{l@c(K)“l. Since
¢(ts) is an equi-continuous function of s for

t=0(g " h) g7 @ (h) € OLK) (DR, O (K)™) ' (),

the function we are considering is continuous on K, As this is true for any
¢.€7, (1) implies that

@) [ ate. mBte, b, Hp.e7 WpKg, hy )dr(g)=0

for almost all A€ G/G; and all s€G.

Suppose that there exist g,€G, h€G/G; and s€G,; for which (2) holds
such that B(go, h, s)=(D(h)s- p(3(go))n|7)+0. We may suppose, without loss
of generality, that there exist 0>0, and a relatively compact open neigh-
borhood U of g, such that Re (g, h, s)>d for all g€U. Take a compact
set KC{g'heG/Gy; geU} such that @, is continuous on K, and then an
element g,= K such that, for every neighborhood O of g, in G/G;, ONK is
not of A;-measure zero. Let g,=U be such that g,"'hA=g, and t,=G; be such
that g,=@(h)st,'@(g,)"". Then we can choose a neighborhood V, of @ (g,)
in G and a relatively compact neighborhood V, of t, in G which satisfy
O (h)sV,"'V,'CU. Since @, is continuous on K, there exists a neighborhood
O of g, in G/G¢ such that @,(ONK)CV, and that @,O) has a compact closure
in G. As 2{(0ONK)>0and v(V,)>0, we have v(@(h)sV, 'O (ONK))>0. Let
Xonx (resp. Xy,) be the characteristic function of ONK (resp. V,). We have

® |,ate, WRe e, b, Monxla ity (t(g, b, Ndu(g)

>inf {a(g, h); g€ Dh)sV, ' BLONK) 8- u(Dh)s V. BONK)™)
>0.
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There exist then families (¢,) of functions in Y and (¢n) in T such that, as

n—’OO,

| ,ata, MRe 8lg, b, pule Wpult(e, b, Ndu(e)

—{ alg, WRe Blg, h, onxlg™ Wty (t(g, b, )du(g).

This is absurd under the conditions (2) and (3). Therefore we have
(D(h)s- p(¥(2)n|7)=0 for all geG, almost all h€G/Gy and all s€Gy.

Since the inverse image of a set of A;-measure zero under the canonical
map of G onto G/G¢ is of v-measure zero ([3], Chap. 7, §2, n°5, Theorem 1),
we have (¢-p(y(g))n|n)=0 for almost all t=G. As the complement of a set
of y-measure zero is dense in G, we have (p(¥(g))717)=0. So we conclude
that p(¥(g))=0 for all g&G and p&Fac 4, that is, x*(u,¢$,)=y=0.

We hence have seen that if [|x[+=0 then x*(u,$,)=0 for any n. As
lim x*(u,$,)=x, this implies x=0, which was to be established. Q.E.D.

By PProposition 1.5, we have the following result.

THEOREM 1.6. Let G*A be the completion of L*G, A) by the norm |-|lx.
Then GxA is a C*-algebra.

REMARK 1.7. The C*-algebra G*A is called the quasi-reduced crossed prod-
uct of A by G, and the norm ||« is called the quasi-reduced norm.

For a representation p of A, Ind p denotes the representation of C*G, A)
induced from the covariant representation (p, id.) of (A4, {e}), where id. is the
trivial representation of the trivial group {e}. The reduced norm |-|, is the
norm on LG, A) defined by, for x&€ LX(G, A), | x[.=Sup perep 4IInd p(x)|. The
reduced crossed product C¥G, A) of A by G is the completion of LY¥G, A)
by the reduced norm (c.f. [11], p. 171). Suppose that G is freely acting on
A, that is, Gr=1{e} for all {=A. Then we have Centp=Ind p and GxA
=C,*G, A).

§2. Some properties of centrally extended representations.

In this section, we study some properties of centrally extended representa-
tions. Especially we show that, if representations p, and p, of A are quasi-
equivalent, then Cent p, and Cent p, are quasi-equivalent.

We assume throughout that (A, G) is centrally measurable. Note that,
for e L¥G/Gy, 2)Q LY Gy, v)Q@9, @, We get

VAT a@) T()($)=0(3)Gr- (L) a)n(s)
and
T U QM) T $)=A(h, h728) 2L De($) R D h$))p(h™15) .
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PROPOSITION 2.1. For p, r€Rep A, if p=n=, Cent p is equivalent to Cent .
PROOF. Let pzszp(C)dyP(C) and ﬂZS;ﬂ(C)dﬂz(C) be the central decom-

position of p and z#. Then g, and p, are equivalent, and p({)==({) for al-
most all (& A. As A is separable, there exists a p--measurable field of unitary
operators {—v(0)EX(D,w, Drw) such that p(C)(a)=v()'z(L)(a)v(£) for ac A
and almost all €A ([5], 84.2). If we put v()=I L2car v QUo(), we have
G- p(ONa)=v(0) G- n(CXa)w(Q) for all a< A. Put V©O=(dpp/dpe)" O 2o, 20
Ruv). As the field {— V() is measurable on A, we can define V by

V:S; V(©)dp,(5). Then V is a unitary operator of Sii L¥G/Ge, 1)@ LG, vo)

[}
X9, dp, (L) onto SZ L¥G/Gg, )@ LGy, v @D dp(0). Let ¥% be the iso-
morphism of L¥G/Gg, A)Q L¥ Gy, v0) @9, onto HZ and ¥7 be the similar iso-
morphism with respect to z. Then V0=S; vz V(C)cW@“ldyp(C) is a unitary

operator of &, onto &;. We find by an easy computation that I7°(a)=
Voll=(a)V, for ac€ A, and U*(h)=V;'U"(h)V, for heG, so that Cent p(x)
=V;! Cent z(x)V, for xeG*A. Q.E.D.

LEMMA 2.2. For p€Rep A, let E be a projection of p(A)'. Then there
exists a projection E of (Cent p(G*A)) such that Cent (pg)=(Cent p)z.

PROOF. Let p:S; pQ)dy,(£) be the central decomposition of p. Let D,

be the algebra of diagonalizable operators of S;@p(odyp(C), and Z,, be the

center of p(A)’. Since D,=Z, Cp(A)” and A is separable, we have

oA = p©(4)" g, ©

5], 84.1). As g, is standard on 4, p(A)':S:ip(c)<A)'dp,,(c) (@], Chap. 11, § 3,
Theorem 4). Therefore there exists a p,-measurable field {— E({) on A such
that each E() is a projection of p(0)(A) and E=SZE(C)dp,,(C). Let C(E)E Z, e
be the central support of E in Z,4. By D,=Z,, there exists a y,-meas-

urable set F of A such that C(E):SZXF(C)Ibp(C)dﬂP(C)’ We may consider
PE:SZ P(C)E(c)d(xFﬂ(,)(C) as the central decomposition of pr. Then, we have

5= 5@t )©) and UPr={ UP5Qd(ept,)O.
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Let next M; be the left regular representation of G; and denote by K
the space of all L*G¢, vo)-valued measurable function f on G satisfying the
conditions;

€)) S(st)=M(t~1)f(s) for seG and teGye;
) [0 1FONdRL(5) < o0

Then we have H=K:®9,q and L;=M;®ls,- By the definition, for
n€H{E=KQE()P,, We have

5 (a)p=I1*C(a) U x, @ EQ)y

and

UEQ(m)p=Ur QMU x, QEQ)7 .
Now we define a projection E on !, by E:SZ(IKC®E(C))d(xpyp)(@. Since

Xr(QEQ=E(), for almost all {€ A, we have EN:S:i(IKC(X)E(C))dp,,(C). We also

have that £<Cent p(GxA)'. Since II°e=I]°FE and U’r= U¢E, we can conclude
that Cent (pg)=(Cent p)z. Q.E.D.

PROPOSITION 2.3. For p;€Rep A, let p=@Zp:;. Then Cent p is equivalent
to @iz, Cent p,.

ProOOF. There exists a family of projections {E;}7, of p(A4)" such that
EE;=0 for i#j and 2i,E;=Is,, and such that p;=pg, for each i. By Pro-
position 2.1, we have Cent p;=Cent (pg,). By for each i, there
exists a projection E, of Cent p(G*A)" such that Cent (pg,)=(Cent p)3,. Thus
we get @y, Cent p,=@7.(Cent p)z,. Since Z?:léi:[gp, we have

@z.Cent p;=(Cent p);3,=Cent p.
Q.E.D.
THEOREM 24. For p,;, p.€Rep A, if p.=p., Cent p, is quasi-equivalent to
Cent p,.

PROOF. As $,, and 9,, are separable, we have R, p,=¥, p, (5], 5.3.8).
By Propositions 2.1 and this means that

¥, (Cent p)=Cent (R, p;)=Cent (Ry- p)= W, (Cent p,).
Thus we have Cent p;~Cent p,. Q.E.D.
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