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Introduction.

In this paper we shall study foliations with the structure pseudogroup I’
of local automorphisms of a certain 2nd order G-structure. Our purpose is to
prove a vanishing theorem for certain characteristic classes of such [-folia-
tions and to give a geometric construction of examples of these [-foliations.

Let G/U be a semi-simple flat homogeneous space of dim G/U=q in the
sense of Ochiai [12]. It is a connected homogeneous space, on which a semi-
simple Lie group G acts transitively and effectively, and g=Lie G, the Lie
algebra of G, has a graded Lie algebra structure:

a=a-,+8,+¢,, dimg.,=gq,

with u=Lie U=g,+g,. We identify g., with R? by a basis for g¢-,, and then
R? with an open neighbourhood of the origin U in G/U by the imbedding
g-,2x—(exp x)UeG/U. Then we can define an imbedding ¢ of G into the
2nd order frame bundle P%G/U) of G/U by

t(a)=jia) for aeG.

In particular, ¢ identifies U with a Lie subgroup of the structure group G*4g)
of P¥G/U). Let B be a smooth manifold of dim B=q. A U-subbundle Q of
the 2nd order frame bundle P%B) of B is called a 2nd order structure of type
G/U over B. For instance, the image Qs=¢(G) of ¢ is a 2nd order structure
of type G/U over G/U. Let I'=I'(Q) denote the pseudogroup of all local
diffeomorphisms ¢ of B such that the 2nd prolongation ¢‘® leaves @ invariant.
We shall study I-foliations for these pseudogroups /.

For example, the pseudogroup I" of local projective or conformal trans-
formations for a Riemannian metric on a smooth manifold B is obtained in
this way from a certain semi-simple flat homogeneous space (cf. §4). The I~
foliations for these I are the so-called projective and conformal foliations.

In general, for a Lie group L and a Lie subalgebra Y) of Lie L, we define

I;(9)={f|b; f is an L-invariant polynomial on Lie L}.
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In particular, for a Lie subalgebra b of gl(¢)=Lie GL(q), we write Char(§)=
ITery(h). We define a closed subgroup G, of U by

Go={acU;Adag,=g,} .

Then Lie Gy=¢, and the linear isotropy representation p:U—GL(g-,)=GL(q)
of G/U identifies G, with the linear isotropy subgroup in GL(q). Identifying
8o with a Lie subalgebra of gl(g) by p, we set

gi={x=g,; Trx=0}.

Let {[#,C,]} be the Vey basis for H(WO,) (cf. §3), and for a foliation F of
codimension ¢, let [%#,¢,;](F) denote the corresponding characteristic class of &.
With these notations, we have the following vanishing theorem:

Suppose

(1) Spencer cohomology H**(g)={0} ;

(2) Char(g5)CI6(80)-
Then, for each I-foliation &F, we have

[ﬁIEJ]<g):Os

if I#0, i,+1J1=q+2 and 2|]J|=q+1, where t, is the smallest element in I=
(iy, ==, tp) and |J|=j1+ - +4 for J=0y -+, fu)-

The conditions (1), (2) are satisfied for projective foliations (¢=2) and con-
formal foliations (¢=3). Thus our theorem includes vanishing theorems for
rigid classes of Yamato [16], Morita [10].

Kamber-Tondeur constructed examples of such [-foliations as follows.
Assume that G is connected and with the trivial center. Let K, be a maximal
compact subgroup of G, and D a uniform discrete subgroup of G acting on
G/K, properly discontinuously and without fix points. Let & be the G-invariant
foliation of codimension ¢ on G/K, characterized by that the leaf passing
through the origin K, coincides with U/K,. This induces a foliation & on
the compact quotient M=D\G/K, in a natural manner. It is a I'(Qg)-foliation
and called a locally homogeneous foliation of type G/U. Actually Kamber-
Tondeur and Yamato studied locally homogeneous projective resp.
conformal foliations to prove the linear independence of certain characteristic
classes.

In particular, locally homogeneous conformal foliations are related with
Anosov flows in the following way. In this case, G/K, is identified with the
unit tangent bundle T'H?* of the hyperbolic space H?"' of dimension g+1.
The geodesic flow and the canonical Riemannian metric on T'H?"! induce a
flow ¢, and a Riemannian metric g on M respectively. Then ¢, is an Anosov
flow on the Riemannian manifold (M, g) in the following sense: There exist
@ix-invariant subbundles F,, F,, F_ of the tangent bundle TM of M with
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TM=F,&F,.QF. (Whitney sum),
such that

(1) lgwxxll=llx]l for each x€F,, teR;
(2) There exist positive constants C,, C, such that

@ixxl| =Coe “t||x]|  for each xe&F,, t=0,
[ @rac x| =Cpe®1t|| x| for each xeF., t=0.

Here || x|| denotes the length +/g(x,x) of x&TM. Subbundles F,, F,, F. are
called the invariant bundle, contracting bundle, expanding bundle respectively.
Moreover the tangent bundle z(&) for & coincides with the Whitney sum
F,DF,.

In the second half of this note, we shall show that these hold also for a
general locally homogeneous foliation & of type G/U. More precisely, we
shall give a geometric construction of a such foliation & on M=D\G/K,,
identifying G/K, with a closed submanifold of the unit tangent bundle T3S
of a symmetric space S of non-compact type. Furthermore we shall show :-

The geodesic flow on T'S induces an Anosov jlow ¢, on M such that ©(F)=
Fy@F;.

§1. Normal Cartan connections.

In this section we shall recall the notion of a normal Cartan connection @
on a 2nd order structure @ of type G/U, and then define a connection form
® on the “prolongation” of the normal frame bundle of a I'(Q)-foliation by
pulling back w. The form o plays an important role in defining characteristic
homomorphisms for I'(Q)-foliations. -

Let B be a smooth manifold of dimension q. Let G"(¢g)— P"(B)——> B be
the r-th frame bundle of B (cf. Kobayashi [9]). The general linear group
GL(q)=G*(g) will be identified with a subgroup of G"(q) in the canonical way.
Then the natural projection =;: P7(B)— P*(B) for r>s is GL(g)-equivariant and
satisfies w emwi=m,. Let]'(B) denote the pseudogroup of all local diffeomorphisms
of B. For p<l'(B), ¢ denotes the r-th prolongation of ¢. It is a local
G'(¢)-bundle map of P’(B) satisfying m,co" =¢p-m,.

Now we recall the definition of the 7r-th canonical form & on P7(B).
We define first the distinguished element ¢"=P7(R?) by e"=ji(id) and set y"(q)
=T (P"(R?). The natural action of G"(¢) on §""!(¢g) will be denoted by Ad.
We denote the differential of =} :P"(RY)— P(R% for r>s at e¢” by pi:p(g)—
p*(q). For example, p°(q)=R?, v'(¢)=R*+¢l(q), which may be identified with the
Lie algebra of the group of affine automorphisms of R% and p?:p'(g)—p%(q) is
the projection to the first factor. The 7-th canonical form @ is a y~*(q)-
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valued 1-form on P7(B) defined as follows. Let u=jj(f)eP"(B), where f: R?"—
B is a local diffeomorphism defined around 0. Then the correspondence
Jo W)= ji"(fe¢) defines a local diffeomorphism f: P RY— P Y(B) defined
around "' such that f(e"Y)=u’=n"%(u), and the differential & :p"(g)—
T..(P"YB)) of f at ¢""! is independent of the choice of f. Now 8 is defined by

O (X)=ua Y= )X  for XeT,(P(B)).

It satisfies
(1.1 - R*¥*0"=Ad a6 for asG'(g),
(1.2) (=)*@®=pi=le™  for r>s,

where R, means the right translation of P"(B) by a=G"(q). We are mainly
interested in the 2nd canonical form 6®, which is an R?+gl(¢g)-valued 1-form
on P¥B). Let @_,, 8, denote the R%component and gl(¢)-component of #® re-
spectively, so that 8®=6_,+6,. Then we have

(1.3) dé_,+[8,, 6-,1=0.

Let now G/U be a semi-simple flat homogeneous space of dim G/U=¢q as
in Introduction. We set p,=p|G,. Then we have a commutative diagram:

Uc " Gy

1Y )

Go—2 L GL(yp.

Recall that p, is an injective homomorphism, which is used to identify G, with
the Lie subgroup p(U) of GL(gq). Let U—~Q— B be a 2nd order structure of
type G/U over B and let I'=1(Q). We define a G,-subbundle P of PY(B) by
P==}(Q). It should be noted that for each ¢<I'(Q) the Ist prolongation ¢®
leaves P invariant, since ¢V emi=m}-@®,

Let & be a I-foliation on a smooth manifold M. It is by definition a
maximal family of local submersions f,:U,— B of M such that

(1) {U,}. is an open covering of M;

(2) For each x€U,NU,y there exists 7351 such that y3sefs=f. around x.
Then the kernels of differentials f,x constitute the tangent bundle ©(F) for &,
which is an integrable subbundle of TM. The quotient bundle w(F)=TM/=(F)
will be called the normal bundle for F. We associate to & a smooth foliation
‘g such that 3OF. Here F is defined in the same way as & by replacing /" by
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I'(B). We shall define the »-th frame bundle P(F) for ¥ and the r-th canonical
form 8 on P"(S). '

Take a point o€ B and fix it once for all. Choose a local diffeomorphism
f:R*— B defined around 0 such that f(0)=o0 and ji(f)=@, and then identify
a neighbourhood of 0 in R? with a neighbourhood of 0 in B by means of f. Set

P (&)={ji(f); fe+ defined around x with f(x)=o0}

and define the projection z,: P (%)— M by =,(ji(f))=x. The group G’(q) acts
on P7(%) from the right by

JANIe)=7xlp7"f)  for jilp)EG(q).

Thus we get a smooth G"(g)-bundle GT(q)—»PT(ﬁ)jLM. Note that PY%) may
be identified with the frame bundle of the normal bundle v(&#). The natural
projection =xi:P7(9)—P(F) for r>s is also GL(g)-equivariant and satisfies
nsemy=n, Let f:V—B be a local submersion in J. For each jip)eP(%)
with x€V, there exists a local diffeomorphism ¢: R?— B defined around 0
such that ¢(0)=f(x) and ¢ep=f around x. Then the correspondence ;i (¢)—
Ji(¢) defines a G"(g)-bundle map of P"(%)|V — P"(B), which will be denoted by
f. It satisfies m,of P =ferx,.

Let v=;(f)eP(F) and set v'=n;"(v). For each j; '(¢)=P""Y(Z) near to
v/, there exists a local diffeomorphism ¢ : R?— R? defined around 0 such that
¢d0)=f(y) and ¢ep=f around x. The correspondence j; *(¢)— ji"*(¢) defines
a local smooth map f:P" " (%)—P""(R? defined around v’ with F(v')=e™"
The differential 7: T, (P""Y(%))—1""(q) of f at v’ is independent of the choice
of f. Now 6™ is defined by

O (X)=0(rx; X  for XeT(P(F).
It satisfies also
(1.4) R =Ad a” 6  for acG'(qg),
(1.5) (m)*¥®D = pi=ig™ for r>s.
It is related with 8 by
(1.6) O =fr*gm on P(FH|V

for each local submersion f: V—B in & Actually 0 is characterized by the
property [(1.6),

The following lemma follows from the invariance of Q and P under I'(Q).

LEmMMA 1.1. (Nishikawa-Takeuchi [11]) Let F={f.}. be a I'(Q)-foliation
on M. Then:

1) There exists a unique U-subbundle Q(F) of P¥F) such that Q(F)|U,=
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(f2)1Q for each fo:Us—B in F;

2) There exists a unique Gy-subbundle P(F) of PXZF) such that P(F)|U,=
()P for each f,: U,—B in &;

3) mQ(F)=P(F).

LEMMA 1.2. There exists a smooth G-equivariant section s:P(F)— Q(F) of
the bundle wl: Q(F)— P(F).

ProoF. Recall that U/G, is contractible, since the map (a, x)—aexp x
(a€G,, x=g,) defines a diffeomorphism: G,Xg,~U (Ochiai [12]). Therefore,
the U-bundle Q(%) has a G,-subbundle P,. Then w=nr}|P,: P,—P(F) is a G,-
bundle isomorphism. Set s=w':P(F)—P,CQ(F). It is a required section.

q.e.d.

LEMMA 1.3. Define a subbundle F® of T(P(%)) of codimension g by

FO=A{XeTP(F)); (r)xXE(F)} .
Then, for XeT(P(F)), one has
XEFY ©00(X)=0.

Proofr. Let XeT,(P(Z)) and choose f,:U,—B in ¥ with =,(v)elU,. It
follows from that 0P(X)=0V(fPx X)=0 Yz 14 fPx X)=8"(faxm1xX) for u=
FPw). It follows that IV(X)=0 fxrx X=0r  Xsc(F) e XeF®P, q.e.d.

Now we recall the existence theorem of Tanaka-Ochiai for a Cartan con-
nection on our 2nd order structure Q of type G/U.

THEOREM 1.1. If the Spencer cohomology H?*Yg)=10}, then there exists a
unique normal Cartan connection of type G/U on Q.

See Ochiai for definitions of Spencer cohomology and a normal Cartan
connection. See Tanaka [14], Ochiai for a proof of [Theorem 1.1. We
shall require following properties of a normal Cartan connection w:

(i) w is a g-valued l-form on Q.

(ii) o is invariant under I(Q).

(iii) Let G—Q%=QXyG— B be the group extension of Q by G. Then @
is extended to a unique G-connection form on Q¢ which will be also denoted
by .

(iv) For i=—1,0, 1, let 8;,:g—g; be the projection with respect to the
decomposition : g=g_,+a,+¢, and let w;=0;°® so that

w:w_1+w0+w1 .

We regard g-,+g, as a Lie subalgebra of p'(g)=R?%+gl(g) by the map idP p,,
where the differential of p,: G,—GL(q) is also denoted by p,. Then

0¥ =w_1tw,

on Q, and hence w_,=p}8® on Q.

Now (iv) and imply
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(v) do_;+[@, o_;]=0 on Q.
(vi) Let
1
2= da)—}—?[m, o]
be the curvature of w and decompose it as for @:

Q=2 +2,+82,, =02 (=-101).

Then one has

%) [o-;, £2,1=0,
(1.8) Tr [w-,, £,]=0,
(1.9) Tr £2,=0

on @, where Trx means the trace of x=g,Cgl(g).

In what follows, we assume H?>'(g)={0}. Let G—Q(F)°=Q(F)XyG—M
be the group extension of Q(F) by G. For a local submersion f,:U,— B in
&, the natural extension Q(#)¢|U,— Q¢ of the bundle map f?:Q(P|U,—Q
will be also denoted by f?. Now the I'(Q)-invariance of the normal Cartan
connection @ implies the following lemma.

LEMMA 14. (Nishikawa-Takeuchi [11]) There exists a unique G-connection
form @ on Q(F)® such that f@*@=w on Q(F)¢|U, for each fo:U,— B in <.

Let

(1.10) ~ Q:daﬂ-—%—[w, w]

be the curvature of @ and decompose w and £ as:

w=w_,Fw,to,, w;=0;°w,
‘Q:Q_1+Q0+AQI, Qizﬁi"g.

Then the properties (iv), (v) and (vi) imply the following equalities on Q(%).

(1.11) w-,=pi0®,

(1.12) Q_ =dw-,+[w, w-,]=0,
(1.13) [w-1, £2,]=0,

(1.14) Tr [w_y, 2,7=0,

(1.15) Tr 2,=0.

Choose a smooth G,-equivariant section s:P(ZF)—Q(F) by
Then the pull back s*w, of w, is a Gy-connection form on P(F). We extend
this to a GL(g)-connection form on PY(%) by the homomorphism p,: G,—GL(q)
and denote it by
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502P0<3*0)0) .
The curvature of @, will be denoted by 2,.

LEMMA 15. 1) s*w_,=0 on P(ZF).
2) @, is torsion free in the sense that

do [, 6°1=0.

3) 24X, Y)=0 for each X, YET(PYT)) with nxX, nxY St(F).

ProOF. 1) We have (z))*0V=p® by (1.5). It follows from that
w_;=(z)*0Y on Q(<). This implies 1).

2) Follows from 1), (1.12) and [(1.4).

3) Note first that we may assume that X, YeF®, Taking g,-components

of we get

1
2y=dw,+ 5 [wo, wo]+[0-1, 0,7,

and hence

Q,=s*Q—[s*w_,, s*w,].

Let X, YeF® with veP(ZF) and choose f,: U,— B in & with =,(v)eU,. Then
2,=2*R, on Q(F)|U, by Lemma 1.4, and hence s*Q,=s*fP*2, on P(F)|U,.
Since £, is horizontal and

Tos( D555 X)=FasWose Sx X=F s 15 X=0,

we have (s*2,)(X, Y)=0. On the other hand, 1) and imply
[s*o_y,s*w, ] (X, Y)=0. Thus we get 2,X, Y)=0. q. e. d.
LEMMA 1.6. Define a subbundle F® of T(Q(F)) of codimension q by

FO=AXeT(Q(F); nx XE1(F)} .
Then

1) X, Y)=01if X€F®,

2) w-(X)=0 for each X&F®,

Proor. 1) Let X, YT (Q(F)) and choose f,: U,— B in &F with m,(v)eU,.
Then Q=72*2 on Q(F)| U, by Since £ is horizontal and 7.x( [P+ X)
=f.mxX=0, we have 2(X, ¥)=0.

2) Let XeT,(Q(F)) and set v'=ri(v)e P(F). Note that then (7)) F,P=FP.

We have w_,=(z))*6®, as we have seen in the proof of Now
implies w_,(X)=0. g.e.d.

§ 2. Characteristic homomorphisms.

In this section we shall define a characteristic homomorphism for I'(Q)-
foliations by the methods of Kamber-Tondeur [6], Morita [10]
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We shall first recall the notion of the canonical filtration of a G-DGA (cf.
Kamber-Tondeur [6]). Let G be a Lie group and

E=3FE?, with the differential d

=0
be a G-differential graded algebra over R, which will be abbreviated to a G-
DGA. The action of G or g=Lie G will be denoted by L(a) (a=G) or L(x)
(x<=4g), and the contraction by x =g will be denoted by i(x). For a Lie subgroup
H of .G and Y=Lie H, we denote the DG subalgebra of E of all H-invariant
elements or )-invariant elements by E# or E' The DG subalgebra of E of all

H-basic elements or §-basic elements will be denoted by Egy or Ey. We define
a decreasing filtration of E by

FP(Q)E*"=FPE*={uc E"™;i(x,) - i(x)u=0 for x;=¢ with »r>n—p}.

Then
FPE=> FPE™

nz0

are G-DG ideals of E with (FPE)F? E)CFP*? E. Thus the quotient algebra
E/FPE becomes a G-DGA in a natural way.
For example, let

W(g)=Ag*& Sg*
be the Weil algebra of g with the graduation
Wre= = Wre),  WrHe=49"QSs*.
Then
F“‘IW(Q)=F2PW(Q)=SZZP Ag*®Q S*g*.

The quotient G-DGA W(g)/F**+*YW(g) will be denoted by W(g),. For a Lie
subgroup H of G, the DGA (W(g),)r will be denoted by W(g, H),. The algebra
W{(g). is identified with the algebra I(g) of g-invariant polynomials on ¢, and
W{(g)s with the algebra I(G) of G-invariant polynomials on g. The differential
d is trivial on W(g),.

Now we come back to a semi-simple flat homogeneous space G/U and
recall some basic facts on G/U (cf. Nishikawa-Takeuchi [117]). There exists
uniquely h,=g, such that

gi={xeq;[hy, x]J=1x} (G=-1,0, 1).
Then G, is characterized by
G(): {(lE U ; Adaho—_—ho} .

It follows that G, leaves each g; invariant, and hence each projection &;: g—g;
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is Gy-equivariant. Moreover, the projection #:g—u defined by the direct sum:
g=¢_,+u is also Gy-equivariant. The group G, and the Lie algebra g, are
identified with a reductive closed subgroup of GL(q) and a reductive algebraic
Lie subalgebra of gl(q) respectively, where ¢g=dim G/U. Let K, be a maximal
compact subgroup of G, Then there exists a Cartan involution z of ¢ with
tho=—h, such that if we set
f={x=sq;x=x},

then K, is given by

K,={aeG,; Adat=t}.
Set

p={rxeg;rx=—x},

t=tNgo, Po=PN\Go ,»

K={asG;Adat=}¥}.
Then one has g=t+yp, g,=%+p, and Lie K=%, Lie K,=%,. The map (a, x)—
aexp x (a€K,, x€),) defines a diffeomorphism: K,Xp,=G,. Moreover the in-
clusion K— G induces a diffeomorphism: K/K,=G/U. Making use of the
Killing form B of g, we define a K-invariant inner product {,> on g by

{x, y>=—B(x,zy) for x, y=g.

In what follows, we shall identify g_, with R? by an orthonormal basis for g_;
with respect to <, >, so that K, may be identified with a subgroup of the
orthogonal group O(g).

Now regard the Weil algebra W(g) of g as a U-DGA and define a U-DGA

W(Q)(q) by

W(8)p=W(g)/F* ()W (q),
and then define

W(g, Ko)p=(W(8)x)x, -

Note that if we identify g_,* and u* with subspaces of g* by means of pro-
jections #_, and @, then F?(u)W{(g) is given by

@D F@W @)=, 3 @ 455 @S's*.

Let I be the ideal of W(g) generated by
(a) af_,eW*2g)=S'g* for acg.,*, where (af_)(E)=af_(&) for E=g;
(b) alf_,, 8,1 W)= A'g* R S'g* for acg_.*, where (a[f_,, 6,])(x Q&)=
alf-.(x), 0,8)] for x, Eg;
(¢) Tr[0., §1eW *g), where (Tr[0., 6,)(xRE=Tr [0_,(x), 6,(6)] for
x, §€6;

(d) Tré,ew>xg), where (Tré)&)=Trb,&) for E=g.
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We shall prove later the following lemma.

LEMMA 2.1. [ is a Gy-DG ideal of W(g).
Thus the ideal I, of W(g) generated by I and F*'(w)W(g) is a G,-DG ideal
of W(g). We define a G-DGA W(g)p by

W(Q)@:W(G)/I(q) s
and then define
W (g, Ko)<q):(W(g)(q))K0 .

Note that the natural projection @ : W(g)¢— W(g)<q) isa G,-DGA homomorphism
and hence it induces a DGA homomorphism w : W(g, KU)@—»W(Q, Ky)»- The
cohomology H(W(q, K,)p) of the DGA W (s, K,)«p is called the characteristic
algebra for I'(Q)-foliations.

Proor oF LEMMA 2.1. Each element in (a), (b), (c), (d) is annihilated
by i(x) (x€g,). For each element a=G, one has L(a)ad-,)=(L(a)a)d_,,
L(a)(alf-,, 6.)=(L(a)a)[0-,, 6,1, L(a)(Tr[0-,, §,)=Tr[0-,, ;] and L(a)(Tr by
=Tréd, Thus it remains to show that I is closed under the differential d of
W(g). Recall that d is characterized by

(2.2) da=da+éa, d&:—iZ x:*Q(ad x)*a

for each a=A'¢*, where a is the element of S'g* corresponding to a;d, is
the Chevalley-Eilenberg differential on Ag*; {x;} is a basis for g; {x;*} is the
dual basis for g*;(ad x;)* is the transpose of ad x;.

(a) d(af_))eW'(g) is computed by to get

(2.3) d(ad-)=—(alf-,, 6,]+alb,, 6-,0),
where a[6,, -, Wt2(g)=A'g*® S'g* is defined by
(alo, 0. (x @E=alf(x), 0-,(&)] for x, E=g.

Take basis {x;}, {y;}, {z:} for ¢-i, 8o, 8. respectively and let {x;*}, {y;*}, {z:*}
be the dual basis for g*. Define a;=g_,* by

aix)=aly; x] for x=g-;.
Then one has

(2.4) alfy, 0.1=3 y Hef).
Thus d(af_)=—al6-,, (Z,]—g yXaf_)el.
(b) Differentiate to get
d(alf-, §oD=—d(@l0y 0. D=—d 3 yXaf) by
=—3(dy ,.*)(a,.a”_1>+; y*d(af-)el.
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(d) d(Trd,)sW**g)=A'9g*RS'¢* is computed by to get
d(Tr 0)(x @ &)
=—Tr([-1(x), &)1+ [0:(x), 6-1(8)]1+[6s(x), 6,(6)])
=—Tr ([0-:(x), 6:(6)]+[0:(x), 0-.(5)D),

and hence
d(Tr 0p)=—(Tr [0, 0,1+ Tr [0, 6_,0),

where Tr [0, §_, ] W**q) is defined by

(Tr [0y, - D(x RE=Tr [0.(x), 0-,(6)] for «x, é=g.
Define t,=g_,* by

tu(x)=Tr [z, x] for xeg_;.
Then one has

Tr [01, 5—1]:§ Zk*(tkg—l)-
Thus d(Tré)=—Tr[6_,, 51]—2k 2t :.0.)el.

(¢) In the same way as (b), we get
d(Tr[6-,, 51])=—§ (dzk*)(tk5-1)+2k} zy*d(t0-)el. g.e.d.

Now assume H*(g)={0} and let & be a I'(Q)-foliation on M. Let k(w):
W(g)— A(Q(F)®) be the Weil homomorphism for the G-connection form o in
Here A(x) means the de Rham complex of *. Recall that k(w) is
the G-DGA homomorphism characterized by

klw)(a)=aw, ko) a@)=a-2 for ac A'g*.

Let j: Q(9)— Q(%)¢ be the inclusion and j* : A(Q(F)%)— A(Q(F)) the restriction.
Define a U-DGA homomorphism [{e): W(g)— A(Q(ZF)) by the composition
k(w) J*
lw): W(g) —> AQ(F)®) — A(Q(F)).

Since and imply Nw)F )W (g)={0}, l(®) induces a U-DGA
homomorphism l(w) : W(g)p — A(Q(F)). Moreover, since k(w) maps ab_., al6-,,6,],
Tr[0.,, 6.1, Tré, into aQ_,, alw-1, 2,], Tr [w-;, 2,1, Tr 2, respectively, it fol-
lows from (1.12)-(1.15) that [(w)[={0}. Thus there exists a G,-DGA homomor-
phism () : W(g)(q)—»A(Q(EF)) such that the diagram

;
W) @ a0

w .
l(w)

I/’T'/(G)(q)
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is commutative. This induces a commutative diagram

l
W(g, Koo ——L A(Q(F)/Ko)

mj ~
{(w)

W(g: KO)(q)

of DGA homomorphisms. Since U=Gy,Xg;=K,Xp,Xg;, the bundle U/K,—
Q(ZF)/K,—M has a smooth section ¢ : M— Q(F)/K, (unique up to homotopy).
Let o*: A(Q(F)/K,)— A(M) be the pull back by ¢ and define a DGA homomor-
phism 4(F): W (g, Ky — A(M) by the composition

o-*

~ [(w)
AF): W (g, Ko)gy —> AQ(F)/Ky) —> AM).
The induced GA homomorphim
4(F): HW (3, Ko)p) —> H(M)

is called the characteristic homomorphism for the I'(Q)-foliation &.
On the other hand, making use of the torsion free GL(g)-connection form

@, on PY(9), we can define the characteristic homomorphism for the smooth
foliation & in the following way. Let k(@,): W(gl(¢))— A(P(ZF)) be the Weil
homomorphism for @, Since implies k(@o)F2* YW (gY(q))= {0}, k(@)
induces a GL(q)-DGA homomorphism k(@,): W(gl(¢)),— A(PX%)). The bundle
G*q)/0(q)— P¥(%)/O(q)— M has also a smooth section ¢ : M— P*F)/0(q) (unique
up to homotopy), since G?*(q)/0(q) is contractible. We define a DGA homomor-
phism 4(F) : W(gl(g), O(q)),— A(M) by the composition

- k(@,) (z3)* a*

A(@) : W(glg), 0(g)y —> AP(D)/0(q)) —> AP*(D)/0(q)) —> AM).
Then the induced GA homomorphism

4:(F) : HW (gl(q), 0(q))g) —> H(M)

coincides with the Bott-Haefliger’s characteristic homomorphism for the
smooth foliation <.

§3. Connecting homomerphisms.
In this section we shall define a connecting homomorphism
By : HW (g, 0(q)) —> H(W (g, Ko))  with du(B=4(F)- P

and study @ to prove the vanishing theorem.
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We shall first recall the notion of the Weil homomorphism £(f) and the
difference map A(f) for a splitting @ (cf. Kamber-Tondeur [6]). Let G be a
Lie group and KCHCG Lie subgroups of G. Let i: H—G denote the inclusion
homomorphism. Letg=Lie G, )=Lie H and {=Lie K. In what follows, for a
homomorphism ¢ of Lie groups, its differential will be denoted by the same
letter ¢. Let #:g—1 be a K-equivariant splitting of the exact sequence

1
0 b g 8/h 0.
Then there exists a unique K-DGA homomorphism 2(8): W({H)— W{(g) such that
k(0)=6* (transpose of #) on A'*. It is called the Weil homomorphism for 8.
We define next a linear map A(6): W(g)— W(g) of degree —1 by the composition

2 id @ k(6) W) p
20): W (g) —> W(g) @ W(g) —————— W(@) @ W(g) — W(g),

where A is the universal homotopy operator of Kamber-Tondeur; W(): W(g)—
W () is the DGA homomorphism characterized by that W(;)=i* on A'g*; u is
the algebra multiplication. It is called the difference map for 6§ and satisfies

3.1 A@)1{x)=—1(x)-A(0) for each x<t,
3.2) A@)e L(a)=L(a)-A(6) for each a€K, X
3.3) A@)ed+d-AO)=E@)-W()—id .

These maps have the following properties for filtrations.
LeMMA 3.1. (Kamber-Tondeur [7])

1) ROFPOHW(HCFPr-min@O(H)W(g);
2) AOIPP(g)C Frr-min®:D(HYW (g) ,
where g=dim g/9.

Next we shall recall the definition of Vey basis for H(W(gl(g), O(q)),) (cf.
Godbillon [4]). We define ¢,€I*(GL(q)) (1<j<q) by

det (1q+~§1—{x):1—l—51(x)+c'2(x)+ e 0y x) for xegl(q).

If we denote by &(gq) the space of symmetric matrices in gl(g), we have the
direct sum decomposition: gl(g)=0(¢)+8(q), where o(¢)=Lie O(g). Denote by
0 :gl(g)—0o(q) the projection with respect to the above decomposition, and let
20): W(glig))— W(gl(g)) be the difference map for §. We set

i =—A0)¢; for odd: with 1=i<q.

Then ;€ W(gl(q))o by and dit;=¢; by Let R[¢y, -+, Coly

denote the quotient algebra of the polynomial algebra R[¢,, -, ¢,] modulo the
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ideal of elements of degree=2(¢+1). Then the DGA
WOq:A(ﬁlx 7’_‘3) '”)®R[51) 52) Tty 5(1]!1)

with the differential d(#;)=¢;, d(¢;)=0, may be identified in a natural manner
with a DG subalgebra of W(gl(g), O(g)), such that H(WO,)=H (W (gl(g), O(q)),)-
A basis for H(WQO,) is given as follows. Let J be the set of odd integers i
with 1=<i<q. For a subset I=(i, ---, 1;) of J and a series /=(J;, ==, ju) of
integers with 1=j,= - =5.=q; |JI=5+ - +ji=q, we set

iCy=Ty, -+ Uy,

Let ° be the smallest element in I if [#0, i®=co if [=0, and let ;° be the
smallest element in /g if ]NI+#0, =0 if JNI=0. Then the set

Lase, ;0411241 =57

is a basis for H(WO,) and called the Vey basis. In particular, the class [@;C,]
with °+|J|=g¢+2 is called a rigid class.

Now we come back to a semi-simple flat homogeneous space G/U of
dim G/U=q with H*Yg)={0} and a I'(Q)-foliation &F on M. Let:: U— G be the
inclusion. Consider the G,-equivariant splitting 6:g—u of the exact sequence

i

0—u—sg—g/u—s0.

Let k(@) : W(u)— W(g) be the Weil homomorphism for ¢, which is a G,-DGA
homomorphism. Let W(p): W(gl(g))— W (u) be the DGA homomorphism char-
acterized by that W(p)=p* on A'gl(g)*. We define a DGA homomorphism
D : W(gl(g))— W(g) by the composition

W(p) k(@)

D : W(gl(q) —> W) — W(g).

Since W(p)F* YW (gl(g))CF* YW () and k@F**PWW)CF* (w)W(g) by
1), @ induces a DGA homomorphism @ : W(gl(¢));— W(g8)«. This
induces a DGA homomorphism @ : W(gl(g), 0(q));— W (g, Ko)wp, since p(K;)TO(g).

We define further a DGA homomorphism @ : W(gl(q), O(q))q—>W(g, Ky by
the composition

. " (A
0 : W(sl(g), O(q)g —> W(g, Ko)p —> W(g, Koo -
The induced GA homomorphisms are denoted by

- @* W x ~
Dy : HW(gl(g), O(q))y) —> HW(g, Ko)p) —> H(W (g, Ko)pp) -

THEOREM 3.1. Suppose H>(q)={0}. Then the diagram
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1)
H(W(al(g), 0(g))q) : H(M)

~

1/
i 1)

H(W(g, Ko)o)

is commutative for each I'(Q)-foliation F on M.

PrROOF. Let j:Q(F)— P%*F) be the inclusion map. The map Q(ZF)/K,—
P¥%)/0(q) induced by j will be denoted also by j. We shall first show that
the diagram

k(@,) _ (mh)* B
W(gl(g), O(g)), APY(2)/0(q) A(PY(£)/0()
) j*
W(gx KO)(q) ,A(Q(g)/KO)
l(w)

is commutative in cohomology. We define two DGA homomorphisms &, £;:
W (gl(g))— A(Q(Z)) by

ko—:j*°(7fé)*°k(50), k1:l<w)°@)
and then define a linear map A(k,, k1) : W(gl(q)— A(Q(F)) of degree —1 by the
composition

2 ko @k,
A(ko, k1) W(gl(g) —> W(gl(g) & W(gl(g)

AQ(E) ® AQ(@) > a0,

where 4 is the universal homotopy operator of Kamber-Tondeur and g is the
algebra multiplication. It satisfies

(3.4) Ako, ky)oi(po(x))=—1i(x)A(ko, ky)  for each xe&f,,
(3.5) Ako, ke L(po(a))=L(a) Ak, k) for each aeK,,
(3-6) Z(km k1)°d+d°2(k0, k1>:ko_k1-

We shall prove
3.7 Ako, k)F*PW (gl(g)={0} .

Then this together with implies that A(k,, k,) induces a linear map
ko, k1) W(gl(g), O(q),— A(Q(ZF)/K,) satisfying the same equality as on
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W(gl(g), O(@));- Thus we get the cohomology commutativity of the above
diagram.

Recall (cf. Kamber-Tondeur [6]) that each element of AF*@*VW(gl(q)) is
the sum of elements of the form

w(al Rl-1Qay) (e, R1-1& ar)(ﬁl .és Q7T Te)s

with weW(gl(g) @ W(sl(q), ai, Bi 7:i€6U(@)*, r+s+it=g+1. Since the sub-
bundle F® of T(Q(ZF)) defined in has the codimension g, it suffices
for the proof of to show that for each a=gl(g)* and v Q(ZF) one has

(ke @ k)a@1-1Qa)(X)=0 for X&FP,
koa)X, Y)=0 for X, YeF®,
k(a) X, YV)=0 for X, YEFY.
For X F one has
ko(a)(X)=(k(@o)a)(mixX)=a(@(7}x X))
=a(po(s¥0e)) (T X)=a(powo(sx735 X)) -
Let v=s(u)exp A with u=nrli(v), A=g,. Then, since
Th((Rexp )5 X — 5535 X ) =36 X — 35 X =0,

we find Beg; such that (R 4)%' X — s« X=B¥.), where B* is the fundamental
vector field on Q(<) generated by B. Evaluating @ at the both sides, one has
Ad(exp A)o(X)—w(sxmixX)=B. Taking g,-components we get [A, w-,(X)]+
@o(X)—wo(sxmlse X)=0. Now implies wo(sxmixX)=wy(X), and hence
koa)(X)=a(p,wX)). On the other hand, one has

ky(a)(X)=(k(@)k(@)W (0)a)(X)=(k(w)0* p*a)(X)

=(0*p*a)(@(X))=a(pbu(X))=a(p.w.(X)) .

Thus one has
(ko @ k)@ @ 1—1 & a))(X)=k(a)(X)—k(a)(X)=0.
Let X, YeF®?. Since ni X, nlsY € FP, one has
ko(@(X, V)=a(@(xheX, 11:Y)=0

by Furthermore by one has

k(@) (X, YV)=a(p02(X, Y))=0.
Thus we have done.

Now take a smooth section ¢: M—Q(ZF)/K, and define a smooth section
& : M—PXF)/0(q) by 6=j°06. Then we may use these sections to define 4(F)
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and 4(F), and hence the following diagram is commutative in cohomology.

_ k(@o) - (mh)* - a*
A(F): W(gl(g), 0(g))q ——> AP(F)/0(g)) ——— A(PA(F)/0()) —A(M)
o 7* /.
- lw)
(/)] W(a, Ko)cp A(Q(F)/ K,)
(og
Hw)
AF): Wg, K)o
This implies the theorem. g.e.d.

We use the notation in Introduction for invariant polynomials. Moreover,
for a Lie subalgebra %) of gl(g), let Pont() denote the subalgebra of I(f)) gen-
erated by polynomials Tr x2* with 1<k =<[q/2]. Then we have the following

THEOREM 3.2. 1) Suppose Char(g))CTIs(gs). Then @y[@6,]1=0 if

1) I+#0, *+|Jl=q+2;
2) 21J1zq+1.

2) Suppose Pont(gh)TIg(al). Then @x[é,]1=0 if 2|J|=q+1.
The first statement 1) together with implies the vanishing
theorem in Introduction. For the proof of this theorem we need the following

two lemmas.
LEMMA 3.2. We define ¢, 1*(G,) by

1
cl(x)—“—“g Tr po(x) for x€4q,.

Then Char(gy)CIg(al) if and only if Char(g,)CIs(go) mod ¢ J(G,).

PROOF. Let i,:go—@, 1: 6o— ¢ be the inclusions, and let pj=p,| gt : 66— gl(g).
Suppose Char (g,)C1s(g,) mod ¢,/(G,). Then, for each ¢=I(GL(q)) there exists
f€I(G) such that p¥¢=i%f mod c,/(G,). Restricting the both sides on gj, we
get pi*c=i¢*f. This shows Char(g))C1a(g7).

Assume conversely Char(g))CIg(g;). The decomposition: g,=Rh,Pg} im-
plies I(go)=R[c,]R®I(g;). Thus for each ¢€I(GL(qg)) there exists f=Char (g})
and g€I(G,) such that p¥¢=1® f+c.g, and hence p§¢=1Q f mod ¢,/(G,). From
the assumption, there exists f€I(G) such that i}*f=f. Now i*/—1®f vanishes
on g, and hence #¥f=1Q®f mod ¢,I(G,). Thus p*¢=i*¥f mod ¢,/(G,). This shows
Char (go)CIs(g,) mod ¢ I(Gy). g.e.d.

LEMMA 3.3. The restriction homomorphism: I(U)—I(G,) is an isomorphism.
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PrROOF. The decomposition: u=g,+g, induces .the identification: Su*=
Sg*®Sa*, and hence
Stuk= > S'gf¥ @ S’¢t.

T+s=p

Since the operator L(h,) is the scalar —s on S'g¥®S%q*, we have I(U)C
I(G,)®1. Conversely, since L(g)g¥=1{0} we have I(G,)Q1CI(U). Thus we get
I(U)=I(G,)R1, which implies the lemma. q.e.d.

PrOOF OF THEOREM 3.2. 1) We have p§¢,=c, from definitions. It follows
from Lemmas B.2, B3 that p*I(GL(g))Ci*I(G) mod(p*¢,)I(U). Hence there
exist f,€I*(G) and g,=I*"'""P(U) such that p*¢,=1*f;4+(p*¢,)g,. It follows

O )=kO)p*C,=kO)i*f,+(R(0)p*C)(k(0)g.)
=kOWQO) f,+D(CDkO)g,=F;+dw,+P(EDk@) g, ,

where w,=2A(0) f,, by [3:3] Note that w,=W(g)x, by It follows
Q@ ,Cy)=D(@,) fr+P(@)dw,+P(@,E)k@)g, .

Here

3.8) frEF W (g),

and implies

(3.9) wsEFWW(g),

(3.10) k@) g, eF7 )W (g),

(3.11) DE)e FPWW(g for 1=j=q.

Now and the condition (2) implies @(i;)f,€F* (u)W(g), and hence
O(ai;) f,=0 in W(g)p. If we write I,=(y, =+, 1, -, 13) for I=<p=<Fk, we have

d(0(@ w,)= %3 id)(ﬁlp)Q(C—ip)in O(adw, .

Here @(i;,)0(C: )w,F'»* 7 ()W (g) by with i,+ (]| =+ =¢+],
and hence @(@,;,)0(; )w,=0 in W(g)p. But O(a)wseW(g)k, since ;<
W(gl(q)ow. Thus (i) dw, is exact in W(g, Ko). Furthermore, one has

A D(u,u )k (0)g )= P(u,E)kO)gs+ X + @(ityit 1 ,)P(Ci)k(0)gy -

Here @(ait;,)0(c: k(6)g,€F» - (W (g) by and i,/ —1=
i°+|J]—1=¢+1 by the condition (1), and hence the second terms=0 in W(g),.
Since @(it,i1,)k(0)g,EW(g)k, P(@:C)k(0)g, is also exact in W(g, Ky)¢p. These
prove that @i ,C,) is exact in W (g, Ko)p-
2) Follows from the same arguments as 1). g.e.d.
REMARKS. 1) We may apply our method to /'(Q)-foliations with trivial
normal bundles to show the vanishing of all rigid classes.
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2) and the second statement of [Theorem 3.2 imply a vanish-
ing theorem for Pontrjagin classes: If H*'(g)={0} and Pont (gj)TIs(g}), then
[¢,1(F)=0 for each J with 2|]J|=q+1. This has been also proved by Nishikawa-
Takeuchi under a less restrictive condition: Pont (f,)C1s(f,).

§4. Characteristic algebras.

In this section we shall study the structure of the characteristic algebra
H(W<Q, KO)(q))'

We shall first recall some facts on the cohomology of a G-DGA (cf.
Kamber-Tondeur [6]). Let G be a Lie group such that g=Lie G is reductive.
We assume the following conditions:

(4.1) I(G)=1(g),
4.2) (Ag*)e=(Ag*)*.

Let K be a Lie subgroup of G with finite components such that f=Lie K is
reductive in g, and let :: K—G be the inclusion. Then there exists a K-
equivariant splitting 6:g—1t of the exact sequence

i
0 f g a/t 0.

Choose a such splitting 6@ and fix it once for all. Let P(g)C(4g*)* be the
graded subspace of all primitive elements, and P(g, )CP(g) the Samelson sub-
space for the reductive pair (g, f). Set

I*(g)= 2 I**(g), I*(G)=I(G)NI*(g),

>0
I(g, H={rel(g); i*/=0}.

Note that we have I*(G)=I%(g) and I(K) is an I7(G)-module by the restriction
1*. We assume that the reductive pair (g, f) is a special Cartan pair in the
sense that there exists a transgression z: P(g)—I"(g) such that zP(g, f) generates
the ideal I(g, I). For example, a symmetric pair (g, f) is always a special
Cartan pair. A transgression = such that zP(g, H)CI(g, ¥) is said to be adapted
to (g, ). Choose an adapted transgression ¢ and fix it once for all.

Let
E=3 E?, with the differential d

p20

be a G-DGA such that dim E?<co for each p=0 and
4.3) E¢=E?,

Assume a G-DGA homomorphism k:W(g)—FE is given. Note that then %
induces a DGA homomorphism £:I(G)—E;. We set
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and define a differential d4 on A(E) by

di(y @ D)=1Q kry for yeP(g 1),
dil@uw)=1Q du for uekg,

to get a DGA A(E). Then we can define a DGA homomorphism « : A(E)— Ex by

aly @ )=—kA@)ry for yeP(g ¥,
a(l@ u)=u for ueE;CEg.

Let ay: H(A(E))— H(Eg) denote the induced GA homomorphism. On the other
hand, we can define a DGA homomorphism S:I(K)— Ex by

B(N=kk©O)f) for fel(K).

Let B«:I(K)— H(Eg) denote the induced GA homomorphism. Choose next a
graded linear splitting v: I(K)/I*(G)I(K)—I(K) of the exact sequence

0 — I'(G)I(K) —> I(K) —> I(K)/I*"(G)I(K) —> 0.

Finally let p: H(Ex)QH(Eg)— H(Ex) be the algebra multiplication. Then we
have the following

THEOREM 4.1.  pe(ax@ Pxev): HAE)QUK)/IHG)I(K))— H(Eg) is a grad-
ed linear isomorphism.

COROLLARY. If further 1*:I(G)—I(K) is surjective, then asx:H(A(E))—
H(Ey) is a GA isomorphism.

We shall apply to G=G,, K=K, and E=W(g). Assume the
condition

(Z) (Go?)’TGoC G,

where G,?CGL(gq) denotes the Zariski-connected real algebraic group with
Lie Go?=g, and (G,?)" the identity-component of G,%. Then G, satisfies the
conditions [(4.1), [(4.2), (4.3). Let i’: K,— G, be the inclusion and ' :g,—%, the
K,-equivariant projection with respect to the decomposition: g,=¥%+b,. The
pair (g, ;) is a symmetric pair, and hence it is a special Cartan pair. Choose
an adapted transgression z:P(g,)—1%(g,). Composing the natural projection:
W(g)—»W(g)<q> to the G,-DGA homomorphism %(@,): W(g,)—W(g), we get a
G,-DGA homomorphism £(6,): W(go)aW(g)(@. We set

A=AP (g, 1) QW (g, Gy,  where W(g, Go)ip=(W(8))e,
with the differential d4; defined by

di(y @ D=1 E(ﬁo)fy for yeP(g, o),
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dil Q@ uw)=1R dw for weW(g, Go)p -
Let a: A—W(g, Ky) be the DGA homomorphism defined by
a(y @1)=—k(0)A0 )y  for yEP(g, 1),
al Q@ w)y=w for weW(g, Gow
and let B8:I1(K;)— W (g, Ky)y be the DGA homomorphism defined by
B=E@)R@)f for feI(K,).
Choose a graded linear splitting v : I(K,)/I*(G,)I(K,)— I(K,) of the exact sequence
0 — I (G)I(K,) —> I(K,) —> I(Ky)/I*(Gy)I(K,) —> 0.

Then we have the following .

THEOREM 4.2. Assume G, satisfies the condition (Z). Then pe(ax® Bsev):
H(AP(go, 1YW (g, Go)ep) UKD/ THG)(Ky)— H(W (g, Ko)p) is a graded linear
isomorphism. If further i'* . 1(G,)—I(K,) is surjective, then ax: H(AP(g,, 1)
W(g, Go)(q))—»H(W(g, Ko) ) is a GA isomorphism.

REMARK. The characteristic algebra H(W(g)<q)) for I'(Q)-foliations with
trivial normal bundles is isomorphic with the cohomology algebra H(A) of the
DGA A defined by

A=AP(g) Q@ W (s, 8)w>, where W(g, 6o)o>=W(@w)s, >
with the differential d, defined by

daly @1)=1QkO)ry for y=P(g),
d1dRQw)=1R dw for weW(g, g

(cf. Kamber-Tondeur [6)).
ExaMPLE 1. Let G=GL(q+1)/R*1,, and

al b .
U:{<01 ; )eGL(q—I—l)}/R loss -
Then g=38l(g+1),

a 0
90:{ ; Begl(g), a=—Tr B},
0 B

0 O 0 &
g-1= ;xER“}, 912{ );tEERq},
x 0 0 O
0 0
.a():{ ; B E?:I(q)} ,
0 B
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a O
02{( ) ;beGL(g), aeR*}/R*qu.
0 b
+1 0
Koz{( );beo<q>} yacamey
0 b

The homomorphism p,: G,—GL(q) is given by

Let

a 0
mod R*1,4,—> a™b,
0 o

and hence po: Go—> GL(g), po: Ko—> 0(g). 1t follows that (G,2)°=G,=G,,
*: I(G,)—I(K,) is surjective and Char (g})C/lg(gl). Moreover H*(g)={0} for
g=2. In this case, I'(Q) is the pseudogroup of local projective transformations
of a torsion free connection on a smooth manifold B of dim B=g.

EXAMPLE 2. Let
0S)={a=sGL(g+2);'aSa=S},

where
s=[ s, " s-(1’ ), rts=q, rzs=0
‘ h 1 78 s T8 _ls » r S_'Q) _—_—S: ’
and let
CO(r, s)={aeGL(g);Ja>0 with *aS, ;a=aS,.;}.
Set
G=0(S)/{x 1442},
al b
U=, )=o) yacs ey
Then

g={Xegl(¢g+2); XS+ XS=0},
(44
Go= B ;CKER, tBSr,s_i'Sr,sB:O ’
—

5/ Sll

]

o ‘* x' €RT —
N )V rere|] Sl
‘tx/ —tx |

a

0
{ B ); tBST,nLSr,sB:O} ’
0
b

-

g1
go=
G,

a_1> ; a€R¥, S, b=S,, s}/{ilqﬁ} :
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Let
i/ +1
Koz{( b ) ; beo<r>><0<s>} yasswey
+1

The homomorphism p,: G,—GL(g) is given by

a
( b 1) mod {1445} —> a~'b,
a-

and hence pO:GO—:—>CO(r, s), pO:KoiO(r)xO(s). We have
GZ={asGL(g) ;3 a=R* with *aS, ;a=aS,,},

and hence (G,%)°CG,CG,?. It is seen that i/*:I(G,)—I(K,) is surjective for
s<1 and Char(g))CIs(al). Moreover H>'(g)={0} for ¢=3. In this case, I'(Q)
is the pseudogroup of local conformal transformations of a pseudo-Riemannian
metric of signature (r, s) on a smooth manifold B of dim B=q.

Thus, in projective and conformal cases, H(W (g, K,)p) is isomorphic with
H(AP(g,, 1) QW (g, Go)«p), which may be determined by means of the theory
of Weyl on tensor invariants (cf. Morita [10]).

§5. Locally homogeneous foliations.

In this section we shall give a geometric construction of locally homoge-
neous foliations by means of the notion of asympote geodesics.

Let (S, g) be a simply connected complete Riemannian manifold of dim S=2
with non-positive sectional curvatures. We denote by d the Riemannian
distance of (S, g). For a vector x in the unit tangent bundle TXS, g)=T1S,
let 7, : R—S denote the geodesic of (S, g) with 7,(0)=x. We denote by ¢, the
geodesic flow on T'S:

. (x)=r1) for t€R, x€T'S.

Let I(S, g) be the group of isometries of (S, g). The natural action of
I(S, g) on the tangent bundle 7S of S will be denoted by

T (x)=a-x for a<li(S, g), xTS.

The group I(S, g) leaves T'S invariant and commutes with the geodesic flow
¢. on T'S, i.e., one has

(5.1) GioTa=ta°¢:  for acI(S, g), t<R.

Let x, yeT'S. For teR, let 7,(s(t)) be the foot of the unique perpendicular
from 7,.(¢) to the geodesic r,. Then the following facts are known (Cartan

3D:
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1) There exists Llim d(r (1), 7,(s())) in R*\J {0}, where R* denotes the set
— 400

of non-negative real numbers;
2) If }“P d(r(t), r,(s(t)))€R*, then the function s(f) is a monotone func-

tion of ¢ and tends to oo as t— oo,
We define a function p:T'SXT!'S—R*U{co} as follows. Let x, yeT'S.
If tlirn d( (1), 7,(s(t))eR* and s(¢) is a monotone increasing function of ¢,
—+oo

then we set p(x, y)ztljg d( (1), 7,(s(1))). Otherwise, we set p(x, y)=co. Itis
clear from the definition that

(52) o(ex, N=p(x, giy)=p(x, y) for tER,

(5.3) ola-x, a-y)=p(x, y) for a<I(S, g).

Furthermore, it is known (Karpelevi¢ [8]) that the function p:7T'SXT!S—
R*U {oo} satisfies the axioms of the “pseudo-distance”, i.e., one has

1) p(x, y»)=p(y, x);
) plx, »)+py, 2)=p(x, 2);
(3 px, x1)=0.

Let x, yeT'S. If p(x, y)€R", then the geodesic 7, 7, are said to be asymptote
and the vectors x, y are said to be a-equivalent, which will be denoted by
x~y. It follows from the above (1), (2), (3) that x~y is an equivalence rela-
tion on T'S. An a-equivalence class XCT'S is called an a-component. We
denote by A(S) the set of all a-components of T'S. It follows from [5.2), (5.3)
that ¢, == for t€ R, X< J(S) and that a-XJA(S) for a€l(S, g), X A(S),
and hence I(S, g) acts on <A(S) in a natural manner.

In what follows, we assume that (S, g) is a Riemmanian symmetric space
of non-compact type. Let G be the identity-component /%S, g) of I(S, g) and
g=Lie G. In general, for H=g, A€R we set

glad H, H)={Xeg;[H, X]=2X}.

Let x=T*'S. We denote by h,(t)eG for t=R the transvection based on the
geodesic 7,|[0, t], and then by H,=g the element corresponding to the one
parameter subgroup {h,(?);t<R} of G, so that h,(t)=exp tH,. Set

K.,={aeG;a-x=2x},
u,= 2 glad Hy, 2),

220
U,={a=sG;Adau,=u,}.

Then we have Lie U,=u,. With these notations, we have the following
LEMMA 5.1. (Karpelevi¢ [8]) Let x, y&T'S.



144 M. TAKEUCHI

1) If x~y, then there exists acG such that a-x=y.
2) For a=G, one has _
a-x~xeacelU,.

Now we take a point oS and a vector x,=7.S, and fix them once for
all. We set
U: U.T:O ’ KO‘:K.’L‘O ’ HO:H.ZO ’
K={aeG;a0=0}.

Then K is a maximal compact subgroup of G and one has an identification:
S=G/K. Let u=Lie U, f,=Lie K,, t=Lie K and define

y={Xeg; B(X, H)=1{0}},

where B denotes the Killing form of g. Then H,=p and one has the Cartan
decomposition: g=¥+bp, and hence p is identified with 7,S. Let X,=A(S) be
the a-component containing x, and set

B={a-%,; ac G} CA(S),
M=\ xCT'S.

¥€EB

We denote by ¢: M— B the natural projection, which satisfies
Pla-x)=a-¢(x) for a€G, xeM.

The following theorem describes the structure of these sets M, B, &¥,.

THEOREM 5.1. 1) The subset MCT'S is a closed connected submanifold of
T'S, which is diffeomorphic with G/K, It is invariant under the action of the
geodesic flow ¢,.

2) The a-component X, is a connected closed submanifold of TS, which 1is
diffeomorphic with U/K, and S.

3) The set B has the structure of a compact connected smooth manifold which

1§ diffeomorphic with G/U and K/K,, such that the fibering 5{’0—+M£B is dif-
feomorphic with the smooth fibering U/Ky— G/K,—G/U.

ProoOF. [Lemma 5.1, 1) implies that G acts transitively on M. This implies
1) except the closedness of M. implies also that %, is a submanifold
of T'S which is diffeomorphic with U/K,. Moreover G acts transitively on B
and one has a- X=X, a< U, by Lemma 5.1, 2). Thus B is identified with G/U
as the sets. We define the structure of a smooth manifold on B from that of G/U.

Take a maximal abelian subalgebra a in p with H,=a, and choose a
lexicographic order > on the dual space of a such that y(H,)=0 for each
positive root 7. Denoting by g, the root space for a root 7, we define

n=> g, o= 8y
7>0 >0, 7(Hp)=0
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g+= ar
THP>0

The connected Lie subgroups of G generated by n, n,, g., a are denoted by
N, N, G,, A respectively. Set

Go=1{a=eG;AdaH,=H,}.

Then we have Iwasawa decompositions: G=KAN and G,=K,AN,. Moreover
it is known (Takeuchi that U=G,G., (semi-direct) and UnK=K, Thus
one has U=G,G,=K,AN,G,=K,AN and G=KU. It follows that U/K,=AN
~G/K=S and K/K,=G/U.

It remains to show the closedness of M and X, in T'S. Since the map
AN>s—soeS is a diffeomorphism, the map ¢: ANXTIS—T'S defined by

o(s, x)=s-x for s AN, xT!.S

is a diffeomorphism. Then one has M=@(ANXK-x,) and X,=@(ANX {x.}),
which implies the required closedness. g.e.d.
Since the choice of x, is arbitrary, we have the following
COROLLARY. Each a-component in TS is a closed submanifold of T*S which
is diffeomorphic with S.

Now the fibering X,— M —(é»B defines a G-invariant smooth foliation & on
M such that each leaf of & is an a-component in T'S. Take a uniform discrete
subgroup D of G acting on G/K, properly discontinuously and without fixed
points (cf. Borel [2]). Then & induces in a natural way a foliation on the
quotient D\M, which will be called a locally homogeneous foliation associated
to the symmetric space S. We denote by I'(G) the pseudogroup of all local
diffeomorphisms of B which is extendable to the action of an element of G.
Then it is seen that the above locally homogeneous foliation is a I'(G)-foliation
on D\M.

§6. Canonical Riemannian metrics on tangent bundles.

In this section we shall compute the Riemannian metric on M induced by
the canonical Riemannian metric on T:S.

We shall first recall the definition of the canonical Riemannian metric g7
on the tangent bundle 7'S of a general Riemannian manifold (S, g). Let =#:
TS—S be the natural projection, and let xTS with n(x)=p<S. We denote
by V. the kernel of (7x),: To(TS)—T,S and by ¢,: V,—T(TS) the inclusion.
Note that V,=T,(T,S)=T,S. The connection map x,:T(TS)—V, is a
splitting of the exact sequence

(n*)x

(4
0—> V, —> To(TS) —> T,S —>0.
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Thus the map &é—x,&+(74).5 (€T ,(TS)) defines a linear isomorphism ¢, :
TATS)-V, BT, S=T,SPT,S. The canonical Riemannian metric g¥ on T ,(TS)
is defined to be the inner product which corresponds by ¢, to the orthogonal
direct sum g®g on T,SPT,S.

The connection map «, in the above definition is defined as follows. Let
V be the Riemannian connection for g. For £=T . (TS) choose a smooth curve
x(¢) in TS such that x(0)=x and x’(0)=& Then p(t)==n(x(t)) is a smooth
curve in S such that p(0)=p and p’(0)=r4& Since x(¢) is a smooth vector
field along p(t), we can differentiate it by mx&. Now x,(§) is defined by

£x(E)=Vrsx()ET (T, S)=V.
It is seen that this does not depend on the choice of a curve x(¢) and that
Kzetz=1d.
The canonical Riemannian metric g7 on TS is invariant under I(S, g), so
that the induced Riemannian metric g7 on TS is also invariant under I(S, g).
Now we come back to our Riemannian symmetric space (S, g) of non-

compact type and compute the G-invariant Riemannian metric g7 on M induced
by the canonical Riemannian metric on T'S. Let

(S, 8)=(Sy, g)X -+ X(Ss, &9)
be the de Rham decomposition of (S, g), and let
G=G,;X -+ XGs,
6=0: D Dgs,
p=p,+ -+ +D;

be the corresponding decompositions. Then, for each 2 (1=k=<s) there exists
¢ >0 such that go|PeXPr=ciB:|PsrXbs, where B, denotes the Killing form
of g,. Thus the symmetric bilinear form ¢,B,P - ©cs;B;s on g coincides with
go on p. This form will be denoted by (,). It is G-invariant and non-
degenerate. Let 7 be the Cartan involution of g associated to the Cartan
decomposition: g=f+p. We define an inner product {,> on g by

X, VY>=—(X,zY) for X, Yeg.

It satisfies CAd X, Ad kY )=<(X, V) for k=K and (X, tY)=<X, Y). Weset
g,=g(ad H,, ) for A=R and define

gx= 261,
AF0
L=TNax,  D«=DPN0x,
4= 262, g-= 282,
A>0 A<L0
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Po=P"Go, m=Po+gx .

Then we have the following orthogonal decompositions with respect to ¢, >.

g=@ot+ 2 §2=0o+ 8+ +0-
A#0

=f4+p=%+m,
go="to+Do,
g% =0+ +0-=Te+Dx,
I=%+t,  p=Do+Dx,
m=p,+g++g-.

Note that K, leaves p,, g; (A1#0) invariant, and hence it leaves g,, g_, m in-
variant. We shall identify m with T, M. The f-component and p-component
of Xeg with respect to the decomposition: g=ft+p will be denoted by X, and

X, respectively.

LEMMA 6.1. For Xeg we define a smooth curve p(t) in S by p(t)=(exp tX)o.
For Yep=T,S, let Y(t) denote the smooth vector field along p(t) defined by
Y(t)=(exptX)-Y. Then

VY ()=[X, Y].

PrROOF. Let Y* denote the vector field on S generated by Y. Then

Y*pu= (exp sY exp t X0)| =0,

7d7,
ds
where expsYexpt X=exptX(exptX) 'expsYexpt X=exptXexps[Ad(exptX)'Y].
Thus
Y*,,=(exp tX)-[Ad(exp tX)"'V],
—(exp tX)-(Y—t[X, YI+(£*/2)[X, [X, YI]— -,
=Y (t)—t(exp tX)-[X,, YI+t¥exp tX)-Z(1),

where Z(t) is a smooth curve in p. It follows
VXpY*p(t):vXpY(t>—[Xh Y:l)

where Vy,Y*,,,=0 since (S, g) is symmetric. This proves the lemma.
g.e.d.
LEMMA 6.2. We identify the injective map ¢z,: T M—T,SPT,S with the
Mmap @z,:m—p@Dy. Then

SDIO(X):[XI’ HO]GBXp fOT' Xem.

PrROOF. Since (74)., X=X,, it suffices to show that &, (X)=[X,, H,]. We
define a smooth curve x(#) in T'S with x(0)=ux,, x'(0)=XcT, M by x(t)=
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(exp tX)-H,. Then implies
Kzo(X)=Vx,x(t)=[Xy, H,]. g.e.d.

Note that ad H, induces linear isomorphisms fx—p« and py—¥,, and hence
(ad H,)? induces a linear automorphism of ¥y, which is symmetric positive
definite with respect to <, >.
THEOREM 6.1. Let X, Yem=T, M. Then X, Y, &t and g"(X, Y) is given by
g7(X, V)=<(ad Hp)*X,, Yi>+<X,, YV}
If further Xeg;, then
gT(Xr Y):'22<Xb Y!>+<Xp; Yp>

ProoF. That X,, Y, follows from the decomposition: m=*%.++ps).
By one has

g'(X, Y)=(Xy HJ], [Y:, HD+(X,, Y7)
=([H,, X,], [H,, Y ))+(X,, V3)
=—((ad H)*X,, Y)+(X,, 1))
=<(ad H)*X,, Y +<(X,, V).

If Xeg;, then [H,, X,]=2X,, [Hy,, X,J=4X, and hence (ad H,)2X,=4?X,. This
implies the second statement. g.e.d.
COROLLARY. 1) gT(p,, gx)={0}.
2) g¥(X, Y)=(X, V> for X, Yebp,.
3) If Xeg,; A#0), Yeg, (u#0), then

1
S @HIXX, V> 2=

gT(X, Y):\ —%—(ZZ—IXX, Y> A+ p=0

0 otherwise.

Proor. 1) Let Xe&p, Yegye. Then X,=Xe<bp, and Y,=pe. Now <y, Dy
= {0} implies g7(X, Y)=0.

2) Follows from X,=X, Y,=Y.

3) We have

X=1/2)X+7X), Y. =1/2(Y+7Y),
X,=(1/2)(X—7X), Y,=Q1/2)(Y—<Y).
It follows from Y eg., that
Xy, Yo=1/H KX, YO+LX, YV )+<{cX, YO+ X, 7V}
=(1/2){{X, Y>+<LX, zY)}
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(1/2¢X, Yy A=p
=: (1/2XX, zY>  2+p=0
0 otherwise,
Xy, Yio=(/H KX, YO—LX, cV>—{eX, V) +<(cX, Y)}
=(1/2) KX, Y>—<X, Y}

(1/2¢X, Y> A=
=1 —(1/2KX, c¥>  A+p=0
0 otherwise.

These together with the above theorem imply the third assertion. g.e.d.

§7. Locally homogeneous foliations and Anosov flows.

In this section we shall study the flow ¢, on M induced by the geodesic
flow on T'S.

Recall that K, leaves p, and g; (A#0) invariant. This implies that for
each eigenvalue A of ad H,, there exists a unique G-invariant subbundle F; of
TM such that
Po 1=0

g2 A#0.

Define
F=>86F,;, F=>®@F;,
A>0 A0

which are G-invariant subbundles of TM such that (F.).,=g¢.. Note that F,, F.
and F,DF, are integrable subbundles of TM, since g,=%,+p,, g. and u=t,+p,
+g, are Lie subalgebras of g.

LEMMA 7.1. gT((Fi)z (Fu)z)=1{0} at each point xeM i1f 2+ p.

Proor. Follows from [Corollary] of [[heorem 6l1 and the G-invariance of

gt q.e.d.

LEMMA 7.2. 1) Each F; is invariant under ¢.x.
2) Let £€(F;); nEWF)s (x€M). Then

87(pus, Puxm)=e A0, ) for tER.
In particular, we have

gH(gué, puam)=e*1g" (&, 1) if A=p,

g7(p1xé, Pear)=0 if Ap>0, A% p.

PrRoor. We shall show first that for &=(F;), with x=a-x,&M. a€G,
one has
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923;*&:2- lt(Ta exptHoa"l)*S .

Set X=(r)x¢=g,m. Then
d
¢z*52¢z*(7a>*X: K@Sz((a exp sX)- xo)|s=0,

where by one has
¢.((a exp sX)- xo)=(a exp sX)-¢:;(x,)=(a exp sX exp tHy)" x,
=(a exp tH,(exp tH,)'exp sXexp tH)- x,
=(a exp tH,exp s[Ad(exp tHy)*X]) x,

=(aexp tHy,expse *X) x,.
It follows
PixE=(74 expLH())*e_“X:e—“(fa expzyo)*(fa)¥1§

:e-“(faexpLHou‘l)*s .

Now 1) follows from the G-invariance of F;. The assertion 2) follows from the
G-invariance of g7 and Lemma 71. g.e.d.

THEOREM 7.1. The flow ¢, on (M, g") induced by the geodesic flow on TS
is an Anosov flow, whose invariant bundle, contracting bundle, expanding bundle
are given by F,, F,, F_ respectively. Moreover, the Whiitney sum F,DBF, co-
incides with the tangent bundle ©(F) for the foliation F on M defined by the
natural fibering ¢ M— B.

Proor. Let C, be the smallest positive eigenvalue of ad H, and let C,=1.
Then the flow ¢, together with subbundles F,, F,, F_ satisfies the conditions
for an Anosov flow stated in Introduction, in virtue of The second
statement follows from [Theorem 5.1, 3). g.e.d.

COROLLARY. The flow ¢, on M, the Riemannian metric g¥ on M, the sub-
bundles F,, F., F. of TM and the smooth foliation F on M, which are all G-
invariant, induce a flow on D\M, a Riemannian metric on D\M, subbundles of
T(D\M) and a locally homogeneous foliation on D\M. Then the same results as

in Theorem 7.1 hold for them.
We shall state here on the relationship between our locally homogeneous

foliations and semi-simple flat homogeneous spaces. Let
x0:x1+"'+x3) xkETSkl
H0:H1+ "l‘Hs: erpk

be the decompositions corresponding to the de Rham decomposition: (S, g)=
(S1, g X - X(Ss, g5)- We assume

(*) H,+0 and ad H, has only one positive eigenvalue 4, for each k.

We set
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X0=AT' 2+ o AT ET,S,
so that the corresponding H,<p is given by
(=A7'Hy+ - +47'H;.
We define a new Riemannian metric g’ on S by

g'=2g.D - DAigs.

Then (S, g’) is also a Riemannian symmetric space of noncompact type with
x,eTXS, g’). Moreover one has

IS, g)=G, Uy=U, Ky=K,.

Write g, x,, H, for these g’, x}, H; and make our construction starting from
these new metric g and unit vector x,. Then eigenvalues of ad H, are 0, 1,
—1, and G/U is a semi-simple flat homogeneous space. The decomposition

TM=F,@QF,DF-

is the orthogonal Whitney sum with respect to the metric g7, in virtue of
Corollary] of [Theorem 6.I. Furthermore one has I'(G)CI'(Qg) in general, and
I'G)=r(Qg) if H>Yg)={0} (cf. Ochiai [1Z]). Thus our locally homogeneous
foliation on D\M is a I'(Qs)-foliation.

For example, the hyperbolic space H?*' of dimension g+ 1 satisfies the con-
dition (%), and one has M=T*'H?"! in this case. Our locally homogeneous folia-
tion associated to H?' is nothing but the locally homogeneous conformal
foliation of Yamato [15]. In particular, in the case ¢=1, it is the foliation
given by Roussarie. Our flow ¢, on D\T'H?*'=T'(D\H?"") coincides with the
original Anosov flow constructed by Anosov [1]. It should be noted that in
this case each maximal integral submanifold of the integrable subbundle F,
of T(T*H*Y) is diffeomorphic with a horocycle of the hyperbolic space H?*.
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