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0. Introduction.

Since E. Brieskorn found exotic spheres as a neighborhood variety of an
isolated singularity of a hypersurface defined by a certain type of polynomial,
various remarkable results have been obtained by many mathematicians. ([2],

[12], [10], [11], [1], [3], [5], [18] etc.) However most of them treat only
isolated singularities of hypersurfaces and few results are known about the
topology of non-isolated singularities. For example, if an analytic function
$f(z_{1}, \cdots , z_{n+1})$ has an isolated critical point at the origin, the local Milnor
fiber is $(n-1)$-connected by Milnor [10] and a fair amount of information can
be obtained from the Milnor number ( $=n$ -th Betti number of the Milnor fiber).

But if $f$ has a non-isolated critical point at the origin, the connectivity of
the fiber goes down so that we have no general method to determine the
respective Betti numbers or even the Euler-Poincar\’e characteristic of the
fiber.

In this paper we study the topology of the singularity of a weighted
homogeneous polynomial which has a non-degenerate Newton boundary. Our
main theorem is a kind of generalization of the above connectivity theorem
of Milnor. This paPer is a continuation of [16] and it consists of the
following sections.

1. Notations and main results.
2. Fundamental groups and monodromy maps.
3. Lifting principle.
4. A special case of Theorem (1.1).
5. Topology of a globally non-degenerate polynomial.
6. Proof of (ii) of Theorem (5.3).

7. Topology of $F$.

*The author is partially suPported by Sakkokai Foundation.
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1. Notations and main results.

We use the following notations throughout this paper.
$Z$ : grouP of integers
$N$ : non-negative integers
$C$ : complex numbers, $R$ : real numbers
$C^{*}:$ $C-\{0\}$

$z^{\nu}=z_{1}^{v_{1}}z_{2}^{\nu_{2}}$ ... $z_{n+1}^{\nu_{n+1}}$ , $|\nu|=\sum_{j=1}^{n+1}\nu_{j}$ for $z\in C^{n+1}$ where $\nu=(\nu_{1}, , \nu_{n+1})$ .

$R^{I}=$ { $x=(x_{1},$ $\cdots$ , $x_{n+1})\in R^{n+1}$ ; $x_{j}=0$ for $j\not\in I$ }

$C^{I}=$ {$z=(z_{1},$ $\cdots$ , $z_{n+1})\in C^{n+1}$ ; $z_{j}=0$ for $j\not\in I$ }

where $I$ is a subset of $\{1, 2, \cdots , n+1\}$ .
m-volume $(P)$ : m-dimensional Euclidean volume of a polyhedron $P$ of $R^{m}$

det $N$ : the determinant of a matrix $N$

$\left(\begin{array}{l}n\\j\end{array}\right)=\frac{n!}{j!(n-j)!}$

$A:=B$ $A$ is $B$ by definition.

Let $f(z_{1}, \cdots , z_{n+1})=\sum_{\nu\in N^{n+1}}c_{\nu}z^{\nu}$ be an analytic function in a neighborhood of

the origin. We denote the Newton boundary of $f$ by $\Gamma(f)$ . (See [7] or [16]

for the definition.) $f$ is called to be non-degenerate in the sense of the Newton

boundary if $\frac{\partial f_{\Delta}}{\partial z_{1}}=\ldots=\frac{\partial f_{\Delta}}{\partial z_{n+1}}=0$ has no solution in $(C^{*})^{n+1}$ for any closed

face $\Delta$ of $\Gamma(f)$ where $f_{\Delta}(z)=\sum_{\nu\in\Delta}c_{\nu}z^{\nu}$ . In this Paper, we use “non-degenerate”

in the above sense unless otherwise stated.

Now let $f(z)=\sum_{j=1}^{m}c_{j}z^{\nu^{j}}$ ( $c_{j}\neq 0,$ $j=1,$ $\cdots$ , m) be a non-degenerate weighted

homogeneous polynomial with the Newton boundary $\Delta$ . Then $\Delta$ is a convex
polyhedron spanned by the vertices $\nu^{1},$ $\cdots$ , $\nu^{m}$ and dim $\Delta=rank\{\nu^{1}, \cdots , \nu^{m}\}-1$

$\leqq n$ . We consider the canonical fibration $f:(C^{*})^{n+1}-f^{-1}(0)\rightarrow C^{*}$ which is
the restriction of the Milnor fibration $f:C^{n+1}-f^{-1}(0)\rightarrow C^{*}$ . Let $F^{*}=$

$\{z\in(C^{*})^{n+1} ; f(z)=1\}$ and $F=\{z\in C^{n+1} ; f(z)=1\}$ be the respective fibers and
let $\rho$ : $F^{*}\rightarrow(C^{*})^{n+1}$ be the inclusion map. Then $F^{*}$ is completely described by
the following theorem.

THEOREM (1.1). Assume that dim $\Delta=n$ . Then
(i) the Euler-Poincar\’e characteristic $\chi(F^{*})$ is $(-1)^{n}(n+1)$ ! $(n+1)$-volume

$(\Delta(0))$ where $\Delta(0)$ is the geometric cone of $\Delta$ and the origin in $R^{n+1}$
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(ii) $\rho$ is an n-equivalence, $i$ . $e$ . $\rho_{\#}$
; $\pi_{j}(F^{*})\rightarrow\pi_{j}((C^{*})^{n+1})$ is bijective for $j<n$ and

surjective for $j=n$ .
By Whitehead theorem, we get:
COROLLARY (1.1.1). $\rho_{*}:$ $H_{j}(F^{*} ; Z)\rightarrow H_{j}((C^{*})^{n+1} ; Z)$ is bijective for $j<n$ and

surjective for $j=n$ .
Let $(a_{1}, \cdots , a_{n+1} ; \text{{\it \’{a}}})\in N^{n+1}\chi N$ be the weight of $fi.e$ . G. C. $M(a_{1}, \cdots , a_{n+1})=1$

and $(a, \nu^{j})=\sum_{k\Leftarrow 1}^{n+1}a_{k}\nu_{k}^{j}=d$ for $j=1,$ $\cdots,$ $m$ where $\nu^{j}=(\nu_{1}^{j}, \cdots , \nu_{n+1}^{j})$ . The monodromy

map $h^{*}:$ $F^{*}\rightarrow F^{*}$ of the above fibration is defined by $h^{*}(z)=(z_{1}\exp\frac{a_{1}}{d}2\pi\sqrt{-1},$ $\cdots$

$z_{n+1}\exp\frac{a_{n+1}}{d}2\pi\sqrt{}--1)$ . Let $\zeta$( $h^{*};$ t) be the zeta function of $h^{*}$ . (See [10] for

definition.)

COROLLARY (1.1.2). (i) $(h^{*})_{*}:$ $H_{j}(F^{*} ; Z)\rightarrow H_{j}(F^{*} ; Z)$ is the identity map
for $j<n$ .

(ii) $\zeta(h^{*} ; t)=(1-t^{d})^{-\frac{\chi(F)}{d}}$ .

COROLLARY (1.2). Let $f(z)$ be a weighted homogeneous p0lyn0mial with a
non-degenerate Newton boundary $\Delta$ . Assume that $r:=\dim\Delta<n$ . Then we can
find a non-degenerate weighted homogeneous p0lyn0mial $f_{N}(z_{1}, \cdots , z_{r+1})$ of $(r+1)-$

variables such that $F^{*}$ is diffeomorphic to $G^{*}\times(C^{*})^{n-r}$ where $G^{*}=\{(z_{1}, \cdots , z_{r+1})$

$\in(C^{*})^{r+1}$ ; $f_{N}(z)=1$}. In particular (i) $\chi(F^{*})=0$ and $\rho$ is an r-equivalence and
(ii) $\zeta(h^{*} ; t)=1$ .

Theorem (1.1) and the above corollaries are proved in \S \S 2\sim 6. The
topology of the Milnor fiber $F$ is studied in \S 7.

2. Fundamental groups and monodromy maps.

In this section we investigate the relation between the fundamental
group $\pi_{1}(F^{*})$ and the monodromy map $(h^{*})_{*}:$ $H_{1}(F^{*} ; Z)\rightarrow H_{1}(F^{*} ; Z)$ . Hereafter
the homology groups are assumed to have $Z$ as the coefficient group. Let
$f(z)$ be a weighted homogeneous polynomial of type ( $a_{1},$

$\cdots$ , $a_{n+1}$ ; d) and we
assume:
(2.1.1) $V^{*}=f^{-1}(0)\cap(C^{*})^{n+1}$ is not empty and
(2.1.2) $F^{*}$ is connected (or $F$ is connected).

Let $A^{*}$ be the Laurent polynomial ring $C[z_{1}, z_{1}^{-1}, \cdots , z_{n+1}, z_{n+1}^{-1}]$ . Then
$\{(2.1.1)+(2.1.2)\}$ is equivalent to:
(2.1.3) $f(z)$ is not a monomial and $f=g^{m}$ for some $g\in A^{*}$ and $m\in Z$ in $A^{*}$

implies $m=1$ and $f=g$ .
LEMMA (2.2). The following are equivalent.

(i) $\pi_{1}((C^{*})^{n+1}-f^{-1}(0))$ is an abelian group.
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(ii) $\pi_{1}(F^{*})$ is abelian and $(h^{*})_{*}:$ $H_{1}(F^{*} ; Z)\rightarrow H_{1}(F^{*} ; Z)$ is the identity map.
Assume that $f$ is irreducible in $A^{*}$ . Then the above conditions are equivalent to:
(iii) $\rho_{\#}$ : $\pi_{1}(F^{*})\rightarrow\pi_{1}((C^{*})^{n+1})$ is bijective where $\rho$ : $F^{*}\rightarrow(C^{*})^{n+1}$ is the inclusion
maP $\cdot$

PROOF. The proof is almost parallel to the proof of Proposition 5 of [14].

From the fibration $f:(C^{*})^{n+1}-f^{-1}(0)\rightarrow C^{*}$ , we get the exact sequence:

(2.2.1)
$0\rightarrow\pi_{1}(F^{*})\rightarrow^{k_{*}}\pi_{1}((C^{*})^{n+1}-f^{-1}(0))\rightarrow\pi_{1}(C^{*})f_{*}\rightarrow 0$

where $k$ is the inclusion map $F^{*}\subset(C^{*})^{n+1}-f^{-1}(0)$ . In the following argument
we fix respective base points in a suitable manner.
$(i)e(ii)$ : Let $\sigma$ be the element of $\pi_{1}((C^{*})^{n+1}-f^{-1}(0))$ which is represented by
$[\sigma_{1}\circ\sigma_{2}]$ where $\sigma_{1}$ is the orbit path of the base point $*$ by the monodromy

map $i$ . $e$ . $\sigma_{1}(t)=(*1\exp\frac{a_{1}}{d}2\pi\sqrt{-1},$ $\cdots$ , $*_{n+1}\exp\frac{a_{n+1}}{d}2\pi\sqrt{-1})(0\leqq t\leqq 1)$ and $\sigma_{2}$

is a fixed path joining $h^{*}(*)$ and $*inF^{*}$ . $\sigma$ induces a canonical cross-section
of $f_{\#}$ in (2.2.1) so that $\pi_{1}((C^{*})^{n+1}-f^{-1}(0))$ is a semi-direct product of $\pi_{1}(F^{*})$

and $\pi_{1}(C^{*})$ via $\sigma$ . Thus to see the equivalence $(i)\Leftrightarrow(ii)$ , we need only the next
commutative diagram

$\pi_{1}(F^{*})\pi_{1}(F^{*})\underline{ad(\sigma)}$

(2.2.2)
$H_{1}(F^{*})H_{1}(1^{\xi}\underline{(h^{*}O)_{*}}|$

$\xi$

$F^{*})$

where ad $(\sigma)$ is defined by ad $(\sigma)\cdot\omega=\sigma^{-1}\omega\sigma$ and $\xi$ is the Hurewicz homomor-
phism. $(iii)\Rightarrow(i)$ : For this direction, it is not necessary to assume that $f$ is
irreducible in $A^{*}$ . Using the homomorphism $\varphi$ which is the composition of

$\tilde{\rho}*$ $\rho_{\#}^{-1}$

$\pi_{1}((C^{*})^{n+1}-f^{-1}(0))\rightarrow\pi_{1}(C^{*})^{n+1}\rightarrow\pi_{1}(F^{*})$ where $\tilde{\rho}$ is the inclusion map
$(C^{*})^{n+1}-f^{-1}(0)C(C^{*})^{n+1}$ , we get a splitting of the exact sequence (2.2.1) $i$ . $e$ .
$\varphi\cdot k_{\#}$ is the identity map. As $\varphi$ is a homomorphism into an abelian group
$\pi_{1}(F^{*})$ , we have that $\varphi(\sigma^{-1}\omega\sigma)=\varphi(\omega)$ for any $\omega\in\pi_{1}((C^{*})^{n+1}-f^{-1}(0))$ . In particular,
$\sigma$ commutes with $k_{\#}\pi_{1}(F^{*})$ and $\pi_{1}((C^{*})^{n+1}-f^{-1}(0))$ is a free abelian group of
rank $n+2$ . $(i)\Rightarrow(iii)$ : Assume that $f$ is irreducible in $A^{*}$ . By the Alexander
duality, $\pi_{1}((C^{*})^{n+1}-f^{-1}(0))\cong H_{1}((C^{*})^{n+1}-f^{-1}(0))$ is freely generated by $e_{1},$

$\cdots$ ,
$e_{n+1},$ $e_{f}$ which are defined in the following way (cf. \S 4 of [15]): Take a small
loop $s_{j}$ $(j=1, \cdots , n+1)$ (respectively $s_{f}$ ) winding once around $L_{j}$ $:=\{z_{j}=0\}$ at
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a regular point of $\bigcup_{j=1}^{n+1}L_{j}\cup\{f=0\}$ (respectively around $\{f=0\}$ at a regular point

in $(C^{*})^{n+1})$ and take paths $l_{j}$ and $l_{f}$ in $(C^{*})^{n+1}-f^{-1}(0)$ which connect $s_{j}$ and $s_{f}$

with the base point respectively. Put $e_{j}=[l_{j}\cdot s_{j}\cdot l_{j}^{-1}]$ and $e_{f}=[l_{f}\cdot s_{j}\cdot l_{J}^{-1}]$ . See
Figure (2.2.3).

Figure (2.2.3)

We identify $\pi_{1}(C^{*})\cong Z$ and $\pi_{1}((C^{*})^{n+1})\cong Z^{n+1}$ in a canonical way. Taking
the orientations of $s_{j}$ and $s_{f}$ in a suitable manner, we may assume:
(2.2.4) $f_{\#}(e_{f})=1$ and

(2.2.5) $\tilde{\rho}\#(e_{j})=(0, \cdots , - 1’, \cdots , 0)(j=1,2, \cdots , n+1)$ and $\overline{\rho}_{\#}(e_{f})=0$ .

Let $m_{j}=f_{\#}(e_{j})$ and put $e_{f}^{\prime}=e_{j}-m_{j}e_{f}(j=1, \cdots n+1)$ . Clearly $e_{1}^{\prime},$ $\cdots$ , $e_{n+1}^{\prime}$ generate
a subgroup $N$ of $\pi_{1}(F^{*})$ . However $e_{1}^{\prime},$ $\cdots$ , $e_{n+1}^{\prime}$ and $e_{f}$ are still generators of
$\pi_{1}((C^{*})^{n+1}-f^{-1}(0))$ and (2.2.1) and (2.2.4) implies $N=\pi_{1}(F^{*})$ . Now it is an easy

$\rho_{\#}$

task to see that $\pi_{1}(F^{*})\rightarrow\pi_{1}((C^{*})^{n+1})$ is bijective. Q. E. D.
REMARK (2.3). (iii) implies the irreducibility of $f$ in $A^{*}$ . In fact we

have shown in the argument $(iii)\Rightarrow(i)$ that $\pi_{1}((C^{*})^{n+1}-f^{-1}(0))$ is a free abelian
group of rank $n+2$ . On the other hand the rank of $H_{1}((C^{*})^{n+1}-f^{-1}(0))=n+1+r$

where $r$ is the number of irreducible components of $\{f=0\}$ in $(C^{*})^{n+1}$ by the
Alexander duality.

LEMMA (2.4). Let $f(z)$ be as in Theorem (1.1). Then (2.1.3) is true for $f$.
PROOF. By the assumption dim $\Delta=n,$ $f$ is not a monomial. Assume that

$f=g^{m}$ for some $m>1$ and $g\in A^{*}$ . Then it is not a unit element of $A^{*}$ . Thus
$g^{-1}(0)\cap(C^{*})^{n+1}$ is not empty and any point $z\in g^{-1}(0)\cap(C^{*})^{n+1}$ is a solution of

the $equation\frac{\partial f}{\partial z_{1}}=\frac{\partial f}{\partial z_{2}}=\cdots=\frac{\partial f}{\partial_{Z_{n+1}}}=0$ . This contradicts the non-degeneracy

assumption for $f$. Q. E. D.
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REMARK (2.5). Theorem (1.1) and Corollary (1.2) imply that $f$ is irreducible
in $A^{*}$ if $f$ is a non-degenerate weighted homogeneous polynomial such that
dim $\Delta>0$ .

3. Lifting principle.

In this section we study a technique to reduce Theorem (1.1) to the case

of homogeneous polynomials. Let $f(z)=\sum_{j=1}^{m}c_{j}z^{\nu^{j}}$ be as in Theorem (1.1).

DEFINITION (3.1). $\nu^{f}$ is called an effective vertex of $\Delta$ when the convex
polyhedron spanned by $\nu^{i}(i\neq j)$ is strictly smaller than $\Delta$ . By the definition,
$\Delta$ is spanned by effective vertices of $\Delta$ .

LEMMA (3.2). The fibrations $f:C^{n+1}-f^{-1}(0)\rightarrow C^{*}$ and $f:(C^{*})^{n+1}-f^{-1}(0)\rightarrow C^{*}$

are uniquely determined by $\Delta$ and they do not depend on the Particular choice
of the coefficients.

The proof is more or less a general nonsense argument and is given in
the Appendix. By virtue of this lemma, we may assume hereafter that
$\nu^{j},$ $\cdots$ , $\nu^{m}$ are effective vertices.

Let $N=(b_{j}^{i})=(b^{1}, \cdots , b^{n+1})$ be a matrix in $GL(n+1, Z)$ where $b^{j}$ are column
vectors and define det $N|$ -fold covering $\varphi_{N}$ : $(C^{*})^{n+1}\rightarrow(C^{*})^{n+1}$ by $\varphi_{N}(z)=$

$(z^{b^{1}}, \cdots , z^{b^{n+1}})$ . For the sake of brevity, we assume that $\mu^{j}$ $:=N\nu^{j}$ are contained
in $N^{n+1}$ for $j=1,$ $\cdots$ , $m$ . Here $\nu^{j}$ is considered as a column vector. Putting

$f_{N}(z)=f(\varphi_{N}(z))$ , we can easily see that $f_{N}(z)=\sum_{j=1}^{m}c_{j}z^{\mu^{j}}$ and that $f_{N}$ is a non-

degenerate weighted homogeneous polynomial with the Newton boundary $ N\Delta$

which is spanned by effective vertices $\mu^{1},$ $\cdots$ , $\mu^{m}$ . Let $F_{N}^{*}=f_{N}^{-1}(1)\cap(C^{*})^{n+1}$ and
$\rho_{N}$ : $F_{N}^{*}\rightarrow(C^{*})^{n+1}$ is the inclusion map. Then

LEMMA (3.3). $\rho_{\#}$
; $\pi_{1}(F^{*})\rightarrow\pi_{1}((C^{*})^{n+1})$ is bijective if and only if $(\rho_{N})_{\#}$ :

$\pi_{1}(F_{N}^{*})\rightarrow\pi_{1}((C^{*})^{n+1})$ is bijective.
PROOF. Note that $\rho_{\#}$ and $(\rho_{N})_{\#}$ are always surjective because we can take

elements $e_{1},$ $\cdots e_{n+1},$ $e_{f}$ of $\pi_{1}((C^{*})^{n+1}-f^{-1}(0))$ (respectively of $\pi_{1}((C^{*})^{n+1}-f_{N}^{-1}(0))$)

satisfying (2.2.4) and (2.2.5). The restriction $\varphi_{N}|_{F_{N}^{*}}$ : $F_{N}^{*}\rightarrow F^{*}$ is also a det $N|-$

fold covering map. Thus the assertion is an immediate consequence of the
Five lemma applied in the following:

$0$

$\pi_{1}(F_{N}^{*})\pi_{1}(F^{*})|\underline{(\varphi_{N})_{\#}}-G_{1=}0$

$0-\pi_{1}((C$

$(\rho_{N})_{\#}*)^{n+1})\rightarrow^{(\varphi_{N})_{*}O}\pi_{1}((C^{*}|\rho_{\#}^{\bigcap_{)^{n+1})-c}}\downarrow$

$\cong$

2
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where $G_{i}(i=1,2)$ are finite groups of order det $N|$ defined by the respective
cokernels. Q. E. D.

COROLLARY (3.3.1). (Lifting principle) Under the same assumptiOn as above,
the assertion for $f(z)$ in Theorem (1.1) is equivalent to the correspOnding assertion
for $f_{N}(z)$ .

PROOF. Use the equalities: $\chi(F_{N}^{*})=|\det N|\cdot\chi(F^{*})$ and $(n+1)$-volume $N\Delta(O)$

$=|\det N|\cdot(n+1)$-volume $\Delta(0)$ . Q. E. D.
Returning to the situation in Theorem (1.1), we take

$N=\left\{\begin{array}{lll}a_{1}. & & 0\\0 & a & n+1\end{array}\right\}$

.

Then $f_{N}$ is a homogeneous polynomial of degree $d$ . Thus from now on we
can restrict ourselves to the case that $f(z)$ is a non-degenerate homogeneous
polynomial of degree $d$ . Let $V=\{[z]\in P^{n} ; f(z)=0\}$ and $L_{j}=\{[z]\in P^{n} ; z_{j}=0\}$

and $Y^{*}=P^{n}-V\cup L_{1}\cup\cdots\cup L_{n+1}$ . The monodromy map $h^{*}$ on $F^{*}$ is defined

in this case by the coordinate-wise multiplication of $\exp\frac{2\pi}{d}\sqrt{}\overline{-1}$ and it

naturally induces a free $Z/dZ$-action on $F^{*}$ . Considering the restriction of
$c*$

the Hopf fibration $(C^{*})^{n+1}-f^{-1}(0)\rightarrow Y^{*}$ , we can see that the orbit space of
$F^{*}$ by the above $Z/dZ$-action is nothing but $Y^{*}$ . (Compare Proposition 1, \S 4
of [15].) The following lemma describes the relation between $F^{*}$ and $Y^{*}$ .

LEMMA (3.4).
(i) $d\cdot x(Y^{*})=x(F^{*})$ .
(ii) $\pi_{1}(Y^{*})$ is a free abelian group of rank $n+1$ if and only if $\pi_{1}(F^{*})$ is a

free abelian group of rank $n+1$ .
(iii) $\pi_{i}(Y^{*})=\pi_{i}(F^{*})$ for $i>1$ .

PROOF. We prove only (ii) as the other assertions are obvious. Assume
that $\pi_{1}(F^{*})$ is a free abelian group of rank $n+1$ . Then $\rho_{\#}$ : $\pi_{1}(F^{*})\rightarrow\pi_{1}((C^{*})^{n+1})$

is bijective because $\rho_{\#}$ is always surjective if dim $\Delta\geqq 1$ . Thus by Lemma
(2.2) $\pi_{1}((C^{*})^{n+1}-f^{-1}(0))$ is abelian which implies $\pi_{1}(Y^{*})$ is abelian by the exact
sequence:

$\pi_{1}(C^{*})\rightarrow\pi_{1}((C^{*})^{n+1}-f^{-1}(0))\rightarrow\pi_{1}(Y^{*})\rightarrow 0$ .

Then $\pi_{1}(Y^{*})\cong H_{1}(Y^{*})\cong Z^{n+1}$ by the Lefschetz duality. The opposite direction
is obvious from the fact that $\pi_{1}(F^{*})$ is a subgroup of $\pi_{1}(Y^{*})$ of index $d$ (cf.
Proposition 5, \S 2 of [14].) Q. E. D.
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4. A special case of Theorem (1.1).

In this section we study the case that $\Delta$ has $(n+1)$ effective vertices in

the situation of Theorem (1.1). Let $f(z)=\sum_{=,J0}^{n+1}c_{j}z^{\nu^{j}}$ and put $M=(\nu_{k}^{j})\in GL(n+1, Z)$

and put $N=|\det M|\cdot M^{-1}\in GL(n+1, Z)$ . Then it is easy to see that $f_{N}(z)$

$=c_{1}z_{1}^{p}+\cdots+c_{n+1}z_{n+1}^{p}$ where $p=|\det M|$ .
Let

$V_{N}=\{[z]\in P^{n} ; f_{N}(z)=0\}$ , $L_{j}=\{[z]\in P^{n} ; z_{j}=0\}$

and $Y_{N}^{*}=P^{n}-V_{N}\cup L_{1}\cup\cdots\cup L_{n+1}$ . It is clear that the hypersurfaces $V_{N},$ $L_{1},$ $\cdots$ ,
$L_{n+1}$ are in a general position in the sense of [15]. Thus by Theorem 4 of
[15], $\pi_{1}(Y_{N}^{*})$ is an abelian group of rank $n+1$ and $\pi_{j}(Y_{N}^{*})=0$ for $1<j<n$ . As
for the Euler characteristic, we get $\chi(Y_{N}^{*})=(-1)^{n}p^{n}$ by a slight calculation

using $\chi(V_{N})=(n+1)-\frac{1}{p}\{1+(-1)^{n}(p-1)^{n+1}\}$ (cf. [13]). Combining Lemma (3.4)

and Corollary (3.3.1), we conclude that Theorem (1.1) is true for the above
case.

This is the first step of the proof of Theorem (1.1) which is carried out
by the induction on the number of effective vertices in \S \S 5-6.

5. Topology of a globally non-degenerate polynomial.

Let $g(u)=\sum_{j=1}^{m}b_{j}u^{\mu^{j}}$ be a Laurent polynomial in $n$ variables $u_{1},$
$\cdots$ , $u_{n}$ . The

$suPPort$ of $g$ is the convex polyhedron in $R^{n}$ which is spanned by $\mu^{j}$ for
which $b_{j}\neq 0$ and we denote it by $S(g)$ . We say that $g$ is globally non-degener-

ate on $\Xi$ if the equation $g_{\Xi}(u)=\frac{\partial g_{\Xi}}{\partial u_{1}}(u)=\ldots=\frac{\partial g--}{\partial u_{n}}(u)=0$ has no solution

in $(C^{*})^{n}$ where $g_{\Xi}(u)=$
$\sum_{-,\mu^{j\in}-}.b_{j}u^{\mu^{j}}$ . When the minimal plane $L(\Xi)$ containing

$\Xi$ does not pass through the origin, $g_{\Xi}(u)$ becomes a weighted homogeneous

polynomial and $g--(u)$ can be written as $\sum_{i=1}^{n}m_{i}u_{l}\frac{\partial g--}{\partial u_{i}}$ for some $m=(m_{1}, \cdots , m_{n})$

$\in Q^{n}-\{0\}$ . Thus the global non-degeneracy on $\Xi$ is nothing but the non-
degeneracy on $\Xi$ in the sense of [7]. However if $L(\Xi)$ contains the origin,

the $equation\frac{\partial g_{\Xi}}{\partial u_{1}}(u)=\ldots=\frac{\partial g--}{\partial u_{n}}(u)=0$ may have solutions in $(C^{*})^{n}$ for any

coefficients but it has no solution in $(C^{*})^{n}\cap g_{-}^{-1}-(0)$ for generic coefficients. (See
Lemma (5.2) below and Theorem 6.1 of [7].)

DEFINITION (5.1). We say that $g$ is a globally non-degenerate Laurent
polynomial if $g$ is globally non-degenerate on each face of $S(g)$ . Unless other-
wise stated, the face of a polyhedron is closed.
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Let $f(z)=L^{m}\backslash c_{j}z^{\nu^{j}}j\Rightarrow 1$ be a homogeneous Polynomial of degree $d$ with the

Newton boundary $\Delta$ . Define a polynomial $\pi f(u)$ by $\pi f(u_{1}, \cdots , u_{n}, 1)$ . Then
we have

LEMMA (5.2). (i) $f(z)$ is a non-degenerate homogeneous pOlynOmial if and
only if $\pi f(u)$ is a globally non-degenerate polynomial.
(ii) $n$ ! n-volume $S(\pi f)=(n+1)$ ! $(n+1)$ -volume $\Delta(0)/d$ .

PROOF. Let $\pi;R^{n+1}\rightarrow R^{n}$ be the projection $(x_{1}, \cdots , x_{n+1})-,(x_{1}, \cdots , x_{n})$ .
$S(\pi f)$ is spanned by $\pi(\nu^{j})$ and $\pi;\Delta\rightarrow S(\pi f)$ is a piecewise linear homeomorphism.

Let $\Xi$ be a closed face of $\Delta$ . Then $f_{\Xi}(z)=\frac{1}{d}\sum_{i=1}^{n+1}z_{i}\frac{\partial f_{\Xi}}{\partial z_{i}}$ and $g_{\pi-}-(u)=$

$\frac{1}{d}\sum_{i=1}^{n}u\frac{\partial g_{\pi\Xi}}{l\partial u_{i}}+\pi(\frac{\partial f_{\Xi}}{\partial z_{n+1}})(u)$ where $g=\pi f$. Therefore (i) is obvious from the

definition. To prove (ii), we may assume by the linearity of the corresponding
volumes that $\Delta$ is spanned by $(n+1)$ vertices $\nu^{1},$ $\cdots$ , $\nu^{n+1}$ .
Then

$(n+1)$ ! $(n+1)$-volume $\Delta(0)=|$ det $(_{\nu_{n+1}^{1},,\nu_{n+1}^{n+1}}^{\nu_{1}^{1},\cdots.\cdot.\cdot.\cdot.’\nu_{1}^{n+1}}\cdot\cdot.\cdot]|$

$=|$ det $\left\{\begin{array}{lll}\nu_{1}^{1}, & \cdots & ,\nu_{1}^{n+1}\\\vdots & & \\\nu_{n}^{1}, & \cdots’ & \nu_{n}^{n+1}\\d, & \cdots’ & d\end{array}\right\}|$ because $|\nu^{i}|=d$

$=d$ . det $(\nu_{f}^{i}-\nu_{j}^{n+1})|,$ $1\leqq i,$ $j\leqq n$

$=d\cdot n$ ! n-volume $\pi\Delta$ . Q. E. D.
Now using Lemma (3.4) and Corollary (3.3.1) we have no difficulty to show

that Theorem (1.1) is equivalent to the following:
THEOREM (5.3). Let $g(u)$ be a globally non-degenerate pOlynOmial such that

dim $S(g)=n$ . Then
(i) $\chi((C^{*})^{n}-g^{-1}(0))=(-1)^{n}n$ ! n-volume $S(g)$ .
(ii) If $n\geqq 1$ , $\pi_{1}((C^{*})^{n}-g^{-1}(0))$ is a free abelian group of rank $n+1$ and
$\pi_{j}((C^{*})^{n}-g^{-1}(0))=0$ for $1<j<n$ .

Let $g(u)=\sum_{f=1}^{m}b_{j}u^{\mu^{j}}$ be as in Theorem (5.3). Let $A$ be an affine transfor-

mation of $R^{n}$ defined by $ Ax=Nx+\lambda$ where $N\in GL(n, Z)$ and $\lambda\in Z^{n}$ and let

$g_{A}(u)=\sum_{j=1}^{m}b_{j}u^{A^{\mu^{j}}}$

LEMMA (5.4). The assertion for $g(u)$ in Theorem (5.3) is equivalent to the
corresponding assertion for $g_{A}(u)$ .
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PROOF. The parallel translation by $\lambda$ does not change the space in Theorem
(5.3) and the volume of the support. Thus we may assume $\lambda=0$ . Let $f(z)$ be
a non-degenerate homogeneous polynomial such that $\pi f=g$ . Let $Y^{*}=(C^{*})^{n}$

$-g^{-1}(0),$ $F^{*}=f^{-1}(1)\cap(C^{*})^{n+1},$ $Y_{N}^{*}=(C^{*})^{n}-g_{N}^{-1}(0)$ and $F_{\tilde{N}}^{*}=f_{\tilde{N}}^{-1}(1)\cap(C^{*})^{n+1}$ where

$\tilde{N}=\left\{\begin{array}{l}N,0\\0,1\end{array}\right\}\in GL(n+1, Z)$ . Then $\pi f_{\tilde{N}}=g_{N}$ and the assertion is immediate from

Corollary (3.3.1) and Lemma (3.4). Q. E. D.
DEFINITION (5.5). A Laurent polynomial $g$ is said to be regular if for any

face $\Xi$ of $S(g)$ of dimension less than $n,$ $L(\Xi)$ does not pass through the
origin where $L(\Xi)$ is the plane of dimension dim $\Xi$ containing $\Xi$ .

LEMMA (5.6). For any Laurent polynomial $g(u)$ , we can find a vector $\lambda\in Z^{n}$

so that $g_{\lambda}(u)=g(u)\cdot u^{\lambda}$ is regular.
This is obvious from the dePnition.
LEMMA (5.7). Assume that $g(u)$ is a regular globally non-degenerate

polynomial such that dim $S(g)=n$ . Then $g(u)$ has $n$ ! n-volume $S(g)$ critical
points in $(C^{*})^{n}$ counting the multiplicity. The corresPonding critical values are
non-zero. Moreover if we choose nice coefficients, all the critical Points become
simple.

PROOF. Let $f(z)$ be a non-degenerate homogeneous polynomial of degree
$d$ with the Newton boundary $\Delta$ such that $\pi f=g$ . Let $\alpha\in(C^{*})^{n}$ be a critical
point of $gi$ . $e$ .

(5.7.1) $\frac{\partial g}{\partial u_{1}}(\alpha)=\ldots=\frac{\partial g}{\partial u_{n}}(\alpha)=0$ , $\alpha\in(C^{*})^{n}$ .

Then by the global non-degeneracy of $g,$ $g(\alpha)\neq 0$ . The solutions of (5.7.1) in
$(C^{*})^{n}$ is obtained from the solutions of

(5.7.2) $\frac{\partial f}{\partial z_{1}}(\beta)=\ldots=\frac{\partial f}{\partial z_{n}}(\beta)=0$ , $\beta\in(C^{*})^{n+1}$

by the correspondence $\beta->\alpha=(\beta_{1}/\beta_{n+1}, \cdots , \beta_{n}/\beta_{n+1})$ . Let us consider the
equation

(5.7.2; t) $\beta_{1}\frac{\partial f}{\partial z_{1}}(\beta)=\ldots=\beta_{n}\frac{\partial f}{\partial z_{n}}(\beta)=0$ and $\beta_{n+1}\frac{\partial f}{\partial z_{n+1}}(\beta)=t$ .

The vector $e_{n+1}=(0, \cdots , 0,1)\in R^{n+1}$ is regular for $\Delta$ in the sense of [16] by

the regularity of $g$ . By Lemma (4.3) and Lemma (4.3) (in the Appendix) of
[16], (5.7.2; 1) has $(n+1)$ ! $(n+1)$-volume $\Delta(0)$ solutions in $(C^{*})^{n+1}$ counting the
multiplicity. However by the regularity of $e_{n+1}$ , all the solutions must be
contained in $(C^{*})^{n+1}$ . Let $s=\{\beta^{1}, \cdots , \beta^{q}\}$ be the solutions of (5.7.2; 1). As $S$

is clearly invariant under the monodromy $Z/dZ$-action, let $\beta^{1},$ $\cdots$ , $\beta^{q/d}$ be the
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representatives of the respective orbits. We assert that $\beta^{1},$ $\cdots$ , $\beta^{q/d}$ correspond
to mutually distinct solutions of (5.7.1) and this correspondence is surjective.
By the argument of Lemma (4.3) of [16], the solutions of (5.7.2; t) for $t\neq 0$

are $\beta^{j}\zeta_{k}(t)$ where $j=1$ , – , $q/d$ and $\zeta_{k}(t)$ ($k=1,$ $\cdots$ , d) are the d-th roots of $t$ .
As $\beta^{j}\zeta_{k}(t)$ corresponds to $\alpha^{j}=(\beta_{1}^{j}/\beta_{n+1}^{j}, \cdots , \beta_{n}^{j}/\beta_{n+1}^{j})$ and $\alpha^{j}$ are clearly mutually
distinct, the assertion is obvious. Now we assume the coefficients are suffi-
ciently generic so that $\beta^{1},$ $\cdots$ , $\beta^{q}$ are simple and in particular $q=(n+1)$ ! $(n+1)-$

volume $\Delta(0)$ . The simplicity of $\alpha^{j}(j=1, \cdots , q/d)$ is obtained from the simpli-
city of $\beta^{j}$ as follows.

$0\neq\det\{\partial(z_{i}\frac{\partial f}{\partial z_{i}})/\partial_{Z_{k}}\}$ $(z=\beta^{j})$

$=\det(_{\beta_{n}^{j}\frac{\partial^{2}f}{\partial_{Z_{n}}\partial_{Z_{1}}}(\beta^{j}),,\beta_{n}^{j}\frac{\partial^{2}f}{\partial z_{n}\partial z_{n}}(\beta^{j})}\beta_{1}^{j}\frac{\partial^{2}f}{\partial_{Z_{1}}.\partial_{Z_{1}}}.(\beta^{j}),..\cdot.\cdot\cdot.\cdot\cdot.\cdot\cdot.\cdot’.\beta_{1}^{j}\frac{\partial^{2}f}{\partial_{Z_{1}}.\partial_{Z_{n}}}.(.\beta^{j}).]\cdot d\frac{\partial f}{\partial z_{n+1}}(\beta^{J})$

$=\det\frac{\partial^{2}g}{\partial u_{i}\partial u_{k}}(\alpha^{j})$ . non-zero complex number.

To get the first equality, we have used the equality $\frac{\partial f}{\partial_{Z_{i}}}=\frac{1}{d-1}\sum_{k=1}^{n+1}z_{k}\frac{\partial^{2}f}{\partial_{Z_{i}}\partial_{Z_{k}}}$ .
Thus $\alpha^{j}$ are simple. To show that the number of the solutions of (5.7.1) is
independent of the coefficients, we note that the local sum of the multiplicities
is constant under a small deformation of the coefficients by virtue of Rouche’s
principle. Now Lemma (5.7) is an immediate consequence of Lemma (4.3) and
Lemma (4.3) of [16] and Lemma (5.2). Q. E. D.

The following lemma is one of the key steps of the proof of Theorem
(5.3).

LEMMA (5.8). Let $g(u)$ be as in Lemma (5.7) and we suppose, by a parallel
translation if necessary, that $S(g)$ is included in { $x\in R^{n}$ ; $x_{i}\geqq 1$ for $i=1,$ $\cdots$ , $n$}.
Then the family of hypersurfaces $\{g^{-1}(\eta)\}$ , $\eta\in C^{*}$ , are controlled by the spheres
$S_{R}=\{u\in C^{n} ; \Vert u\Vert^{2}=|u_{1}|^{2}+\cdots+|u_{n}|^{2}=R^{2}\}$ near the infinity in the following sense:
For any $0<\epsilon<1$ , there is a positive number $R(\epsilon)$ so that $g^{-1}(\eta)$ intersects trans-
versely with the spheres $S_{R}$ for any $\epsilon<|\eta|<\epsilon^{-1}$ and $R>R(\epsilon)$ .

PROOF. Assume the non-existence of $R(\epsilon)$ as above for some $\epsilon$ . We aPply
the Curve selection lemma ([10]) to the real algebraic variety $W$ and an open
set $U$ where $U=\{[z]\in P^{n} ; z_{1}z_{2}\cdots z_{n+1}\neq 0, \epsilon^{2}\cdot|z_{n+1}|^{2d}<|f(z)|^{2}<\epsilon^{-2}|z_{n+1}|^{2d}\}$ and

$W=\{[z]\in P^{n}$ ; ( $\frac{\partial f}{\partial z_{1}},$ $\cdots$ , $\frac{\partial f}{\partial z_{n}}$) and $(\overline{z}_{1}, \cdots , \overline{z}_{n})$ are linearly dependent over
$C\}$ . Here $f(z_{1}, \cdots , z_{n+1})$ is a fixed homogeneous polynomial of degree $d$ such
that $\pi f=g$ . It is clear that $W\cap U$ correspond bijectively to the set { $u\in(C^{*})^{n}$ ;
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$\epsilon<|g(u)|<\epsilon^{-1},$ $g^{-1}(g(u))$ and $S_{||uN}$ are not transverse at $u$ } by $z\rightarrow u=(z_{1}/z_{n+1},$ $\cdots$

$z_{n}/z_{n+1})$ . We can find a curve $u(s)(0\leqq s\leqq 1)$ expanded in a Laurent series

$u(s)=(\alpha_{1}s^{a_{1}}+\cdots \ldots \alpha_{n}s^{a_{n}}+ )$

such that (i) $\alpha=(\alpha_{1}, \cdots , \alpha_{n})\in(C^{*})^{n}$ , (ii) $a_{0}$ $:=minimum\{a_{1}, \cdots , a_{n}\}$ is a negative
integer, (iii) $\epsilon<|g(u(s))|<\epsilon^{-1}$ for $s\neq 0$ and

(iv) $\frac{\partial g}{\partial u_{i}}(u(s))=\lambda(s)\overline{u}_{i}(s)$ ($i=1,$ $\cdots$ , n) for some $\lambda(s)\in C$ .

(ii) say that $\Vert u(s)\Vert\rightarrow\infty$ when $s\rightarrow 0$ . By (iv) $\lambda(s)$ can be automatically
expanded in a Laurent series and $\lambda(s)\neq 0$ by Lemma (5.7). For a Laurent
series $p(s)=\sum_{j\geq m}p_{j}s^{j},$

$p_{m}\neq 0$, we call $m$ the order of $p(s)$ and denote it by

ord $p(s)$ . Let $d(a)=minimum\{(x, a)=\sum_{j=1}^{n}x_{j}a_{j} ; x\in S(g)\}$ and let $\Delta_{a}=\{x\in S(g)$ ;

$(x, a)=d(a)\}$ . $d(a)$ is clearly an integer. Let $I=\{1\leqq i\leqq n;a_{i}=a_{0}\}$ . Comparing
the orders of both side of (iv) we get:

(5.8.1) ord $\{u_{i}(s)\frac{\partial g}{\partial u_{i}}(u(s))\}=ord\lambda(s)+2a_{i}$ , $i=1,$ $\cdots$ , $n$ .

On the other hand, ord $\{u_{i}(s)\frac{\partial g}{\partial u_{i}}(u(s))\}\geqq d(a)$ and the equality holds if and

only if $\partial g_{\Delta a}/\partial u_{i}(\alpha)\neq 0$ . By the global non-degeneracy and the regularity as-
sumption for $g(u)$ , there exists an $i_{0},1\leqq i_{0}\leqq n$ , such that $\partial g_{\Delta_{a}}/\partial u_{i_{0}}(\alpha)\neq 0$ . From
these arguments and (5.8.1), we get:

(5.8.2) $d(a)=ord\lambda(s)+2a_{0}$ and

(5.8.3)
$\alpha_{i}\partial g_{\Delta_{a}}/\partial u_{i}(\alpha)=\left\{\begin{array}{ll}\lambda_{0}|\alpha_{i}|^{2}, & i\in I\\0 & otherwise\end{array}\right.$

where $\lambda_{0}$ is the leading coefficient of $\lambda(s)$ . Assume $d(a)=0$ . Then we get

$\frac{dg(u(s))}{ds}=\sum_{i}\frac{\partial g}{\partial u_{i}}(u(s))\cdot\frac{du_{i}(s)}{ds}=a_{0}\lambda_{0}\sum_{i\in I}|\alpha_{j}|^{2}\cdot s^{-1}+higher$ terms. Integrating

this, we get a contradiction to (iii). Thus $d(a)\neq 0$ but in this case we get $g(u(s))$

$=\lambda_{0}\frac{a}{d(a)}\sum_{i\in I}|\alpha_{i}|^{2}\cdot s^{d(a)}+higher$ terms which contradicts (iii) again.

Q. E. D.
Let $\epsilon_{n}(n=1,2, \cdots)$ be a monotone decreasing sequence such that $0<\epsilon_{n}<1$

and $\lim_{n\rightarrow\infty}\epsilon_{n}=0$ and let $R_{n}$ be a monotone increasing sequence so that $(\epsilon_{n}, R_{n})$

satisfies the assertion in Lemma (5.8). We can construct a controlled plane
field $\xi$ of the map $ g:C^{n}-g^{-1}(\Sigma)\rightarrow C-\Sigma$ in the following sense where $\Sigma$ is the
set of the critical values of $g$ . (i) $\dim_{R}\xi(u)=2$ and $dg_{u}$ : $\xi(u)\rightarrow T_{g(u)}(C-\Sigma)$
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is bijective for $u\in C^{n}-g^{-1}(\Sigma)$ and (ii) $\xi(u)\subset T_{u}S_{Nu\#}$ for $u$ such that $\epsilon_{n}<|g(u)|<\epsilon_{n}^{-1}$

and $\Vert u\Vert>R_{n}$ . By the construction of $\xi,$ $\xi$ is integrable over any paths and
therefore we get the following lemma using the same argument as in [4].

LEMMA (5.9). Under the same assumptiOn as in Lemma (5.8), $g:C^{n}-g^{-1}(\Sigma)$

$\rightarrow C-\Sigma$ is a locally trivial fib ration.
Let $g(u)$ be as in Lemma (5.8) and let $Y^{*}=C^{n}-g^{-1}(0)$ . Let $\mu^{1},$ $\cdots$ , $\mu^{p}$ be

the points of $S(g)\cap N^{n}$ . Let $U=\{c=(c_{1}, \cdots , c_{p})$ ; the polynomial $\sum_{j=1}^{p}c_{j}u^{\mu^{j}}$ is

globally non degenerate with the support $S(g)$}. By a standard argument, $U$

is a non-empty Zariski open set of $C^{p}$ . (Theorem 6.1 of [7] and Lemma (5.2).)

In particular $U$ is connected. Thus the following lemma says that $Y^{*}$ is
uniquely determined by $S(g)$ up to a diffeomorphism.

LEMMA (5.10). Let $g_{t}(u)(0\leqq t\leqq 1)$ be an analytic family of polynomials such
that the correspOndjng coefficients stay in U. Then (i) the critical Points of $g_{t}$

in $(C^{*})^{n}$ are contained in a compact set of $(C^{*})^{n}$ , independent of $t$, so that the
correspOndjng critical values stay unifonn $ly$ in a compact set of $C^{*}$ . (ii) $g_{t}^{-1}(\eta)$

$(0\leqq t\leqq 1)$ are uniformly controlled by the spheres $S_{r}$ in the sense of Lemma (5.8).
(iii) $C^{n}-g_{0}^{-1}(0)$ is diffeomorphic to $C^{n}-g_{1}^{-1}(0)$ .

PROOF. (i) is derived from Lemma (5.7) because critical points of $g_{t}$ in
$(C^{*})^{n}$ move continuously in $t$ by Rouch\’e’s principle ([10]), (ii) is proved by
the exact same argument as in Lemma (5.8). (iii) is an immediate consequence
of (ii). (See also the proof of Lemma (6.5).) Q. E. D.

Now we have sufficient information to discuss the topology of $Y^{*}$ . We
may assume that the critical points of $g$ in $(C^{*})^{n}$ are all simple and let
$\tilde{\Sigma}=\{\alpha^{1}, \cdots , \alpha^{r}\}$ be the critical points of $g$ where $r=n$ ! n-volume $S(g)$ and let
$\Sigma^{*}=\{\rho_{1}, \cdots , \rho_{\gamma^{\prime}}\}$ be non-zero critical values of $g$ . Take $\epsilon>0$ so that the disks
$D_{j}=\{\eta\in C;|\eta-\rho_{j}|\leqq\epsilon\}$ $(j=0,1, \cdots , r^{\prime})$ are mutually disjoint where $\rho_{0}=0$ . Take
simple paths $L_{j}$ which join $\epsilon\in D_{0}$ and $D_{j}$ so that $\Gamma:=S_{0}\cup(L_{1}\cup D_{1})\cup\cdots\cup$

$(L_{r^{\prime}}\cup D_{r^{\prime}})$ is contractible to $S_{0}$ where $S_{0}=\partial D_{0}=\{\eta||\eta|=\epsilon\}$ . See Figure (5.11).
By Lemma (5.9), $Y^{*}$ is deformed into $g^{-1}(\Gamma)$ . Let us first consider the space

$\Gamma$ : Figure (5.11)
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$g^{-1}(D_{j})$ . Let $\rho_{j}^{\prime}$ be the end point of $L_{j}$ lying on $\partial D_{j}$ and let $I_{j}$ be the line
segment $\overline{\rho_{j}\rho_{j}^{\prime}.}$ By virtue of the simplicity of $\alpha^{k}$ , we can take a local coordi-
nate $w=(w_{1}, \cdots , w_{n})$ in a neighborhood of $u=\alpha^{k}$ so that $\alpha^{k}$ corresponds to the
origin of the coordinate $w$ and $g(w)=w_{1}^{2}+\cdots+w_{n}^{2}+g(\alpha^{k})$ . Let $B_{k}(\delta)$ be a
small disk $\{w;\Vert w\Vert\leqq\delta\}$ . Assuming that $\delta$ is small enough and $\epsilon$ is sufficiently
smaller than $\delta$, we can see that (i) $S(\alpha^{k}):=\{w;w_{1}^{2}+\cdots+w_{n}^{2}=\rho_{j}^{\prime}-\rho_{j}$ where
$\rho_{j}=g(\alpha^{k})$ and argument $(w_{i})=argument(\rho_{j}^{\prime}-\rho_{j})$ for $i=1,$ $\cdots$ , $n$ } is an embed-
ded $(n-1)$-sphere in $g^{-1}(\rho_{j}^{\prime})\cap B_{k}(\delta)$ and (ii) $D(\alpha^{k})=\{w;g(w)\in I_{j}$ and argument $(w_{i})$

$=argument(\rho_{f}^{\prime}-\rho_{j})$ for $i=1,$ $\cdots$ , $n$ } is an embedded n-disk in $g^{-1}(I_{j})$ which
bounds $S(\alpha^{k})$ in a canonical way.

Figure (5.12)

By the standard argument for the topology of the isolated singularities of
hypersurfaces (cf. [10]), $g^{-1}(D_{j})$ is deformed into $g^{-1}(I_{j})$ and $g^{-1}(I_{j})$ has the
homotopy type of the space $g^{-1}(\rho_{j}^{\prime})\cup(\cup D(\alpha^{k}))$ where the union is taken for
$k$ such that $g(\alpha^{k})=\rho_{j}$ . Let $E=g^{-1}(S_{0})$ . Because $g^{-1}(L_{j})$ is diffeomorphic to
$g^{-1}(\epsilon)\times[0,1]$ , we obtain:

LEMMA (5.13). Under the above notations, $Y^{*}$ has the homotopy type of the
sPace which is obtained from $E$ by attaching $n!$ n-volume $S(g)$ n-cells $D(\alpha^{k})$

along $S(\alpha^{k})$ .
COROLLARY (5.13.1). The Euler-Poincar\’e characteristic $\chi(Y^{*})$ is $(-1)^{n}\cdot n$ !

n-volume $S(g)$ .
This is an immediate consequence of $\chi(E)=0$ which is due to the fact that

$E$ is a fibration over the circle. This proves (i) of Theorem (5.3). Let $Y^{*}(\eta)$

be a generic fiber $g^{-1}(\eta)(\eta\neq 0, \eta\not\in\Sigma^{*})$ . Then
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COROLLARY (5.13.2). $\pi_{j}(Y^{*}(\eta))\cong\pi_{j}(Y^{*})$ for $j=2,$ $\cdots$ , $n-2$ .
PROOF. Observe that $\pi_{j}(Y^{*}(\eta))=\pi_{j}(E)$ for any $j\neq 1$ and $\pi_{j}(E)=\pi_{j}(Y^{*})$ for

$j<n-1$ . Thus the assertion is obvious.
REMARK (5.14). The above argument can be displaced by Morse theory

using the Morse function $\xi(u):=\log|g(u)|$ . The critical points of $\xi$ are
exactly $\alpha^{1},$ $\cdots$ , $\alpha^{r}$ and the simplicity of $\alpha^{j}$ implies that $\alpha^{j}$ is a non-degenerate
critical point of $\xi$ having the Morse index $n$ .

6. Proof of (ii) of Theorem (5.3).

In this section, we prove (ii) of Theorem (5.3) by the induction on the
number of the effective vertices of $S(g)$ . Let $g(u)=\sum_{j=1}^{m}c_{j}u^{\mu^{j}}$ be as in Lemma
(5.8). We assume that $\mu^{1},$ $\cdots$ , $\mu^{m}$ are effective vertices of $S(g)$ . The case
that $m=n+1$ is already proved by Lemma (3.4) and the section 4. Thus we
assume that $m>n+1$ . By the assumption that dim $S(g)=n$ , we can find a
vertex, say $\mu^{m}$ , of $S(g)$ so that the convex polyhedron in $R^{n}$ which is spanned
by $\mu^{1},$

$\cdots,$ $\mu^{m-1}$ is of dimension $n$ . We consider an analytic family $g_{t}(u)$ :
$=g_{0}(u)+tc_{m}u^{\mu^{m}}(0\leqq t\leqq 1)$ where $g_{0}(u)$ is $\sum_{f=1}^{m-1}c_{j}u^{\mu^{j}}$ . We can assume that $g_{t}(u)$

is non-degenerate for each $0\leqq t\leqq 1$ . Taking a suitable affine translation if
necessary, we may suppose:
(6.1) $\Gamma_{-}(g_{1})\subset\Gamma_{-}(g_{0})$ and
(6.2) $g_{0}(u)$ and $g_{t}(u)(t\neq 0)$ are regular
where $\Gamma_{-}(g_{0})$ is the geometric cone of $\Gamma(g_{t})$ and the origin of $R^{n}$ .

The following pictures illustrate the necessary transformation.
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The procedure II is done in the following manner. Take a $n$-simplex $\Delta_{n}$

with vertices $\mu^{m}$ and $\nu^{1},$ $\cdots$ , $\nu^{n}$ where $\nu^{j}$ ($j=1,$ $\cdots$ , n) are contained in
$ Q^{n}\cap$ { $the$ interior of $S(g)$}. Let $A$ be the affine transformation over $Q$ defined

by $A\mu^{m}=\mu^{m}$ and $A\nu^{j}=\mu^{m}+e_{j}$ where $e_{j}=(0, \cdots , \vee 1f\ldots , 0)$ . Taking a suitable

integer $r$, we define an affine transformation over $Z$ by $rA=\left\{\begin{array}{ll}r. & 0\\0 & r\end{array}\right\}\cdot A$ . The

affine transformation defined by the composition of I and II satisfies the con-
dition (6.1). After this process we may choose a suitable parallel translation
to get an adequate transformation.

LEMMA (6.3). If we choose nice coefficients $\{c_{j}\},$ $g_{t}$ has $n$ ! n-volume $S(g_{1})$

simple critical points in $(C^{*})^{n}$ for $t\neq 0$ sufficiently small so that (i) $n$ ! n-volume
$S(g_{0})$ of them converge to the simPle critical Points of $g_{0}$ in $(C^{*})^{n}$ and (ii) the
rest converge to the origin when $t$ goes to $0$ .

PROOF. Remember the correspondence of the critical point $g_{t}$ in $(C^{*})^{n}$

and the solution of $z\frac{\partial f_{t}}{\partial z_{1}}=\cdots=z_{n}\frac{\partial f_{t}}{\partial z_{n}}=0$ and $z_{n+1}\frac{\partial f_{t}}{\partial z_{n+1}}=1$ where $f_{t}(z)=$

$g_{t}(z_{1}/z_{n+1}, \cdots , z_{n}/z_{n+1})\cdot z_{n+1}^{a}$ is a fixed homogeneous polynomial of degree $d$ . Let
$\Delta$ and $\Delta_{0}$ be the respective Newton boundaries of $f_{t}(t\neq 0)$ and $f_{0}$ . Then
clearly $\Delta_{0}=S(g_{0})$ . Let $\nu^{1},$ $\cdots$ , $\nu^{m}$ be the corresponding vertices of $\Delta(\pi\nu^{j}=\mu^{j})$ .
Let $ s=\{\Xi;\Xi$ is a closed face of $\Gamma(g_{0})$ of dimension $n-1$ such that $\Xi$ is not
contained in $\Gamma(g_{1})$ and let $\tilde{S}$ be the set of the corresponding face of $\Delta_{0}$ . In the
proof of Lemma (4.3) of [16], we have proved that for any $\tilde{\Xi}\in\tilde{s}$ there are
$(n+1)$ ! $(n+1)$-volume $\tilde{\Xi}(\nu^{m})$ solutions of (5.7.2; 1) for $f_{t}$ which disappear in
the infinity when $t\rightarrow 0$ and which are parametrized in a following Laurent
series:
(i) $z(s)=(\beta_{1}s^{a_{1}}+\cdots, \cdots , \beta_{n+1}s^{a_{n+1}}+ )$ and $t=s^{b}$ where $a=(a_{1}, \cdots , a_{n+1})$ and
$b$ are uniquely determined uP to the multiplication of a positive integer by

$(a, \nu^{k})=\sum_{j=1}^{n+1}a_{j}\nu_{j}^{k}=0$ for $\nu^{k}\in\tilde{\Xi}$ and $b=-(a, \nu^{m})=-\sum_{j=1}^{n+1}a_{j}\nu_{j}^{m}>0$ . (ii) $\beta=(\beta_{1},$ $\cdots$ ,

$\beta_{n+1})$ moves in the solutions of (5.7.2; 1) for $ f_{1,(\nu)}\sim$ where $\tilde{\Xi}(\nu^{m})$ is the cone
of $\tilde{\Sigma}$ and $\nu^{m}$ . Remembering the correspondence of the solutions of (5.7.2; 1)

and of (5.7.1), we have no difficulty to translate (i) and (ii) into the words of
$g_{t}$ . Let $\Xi$ be the face of $\Gamma(g_{0})$ in $S$ which corresponds $\tilde{\Xi}$ . Then there are
$n!$ n-volume $\Xi(\mu^{m})$ critical points of $g_{t}$ which are parametrized in the
following way.
$(i)^{\prime}$ $u(s)=(\alpha_{1}s^{p_{1}}+\cdots \ldots , \alpha_{n}s^{p_{n}}+ )$ and $t=s^{b}$ where $p=(p_{1}, \cdots , p_{n})$ is
$(a_{1}-a_{n+1}, \cdots , a_{n}-a_{n+1})$ and $b=-(a, \nu^{m})>0$ and (ii)’ $\alpha=(\alpha_{1}, \cdots , \alpha_{n})$ moves in
the solutions of (5.7.1) for $g_{1,\Xi(\mu^{m)}}$ .

The above condition (i) says that $\sum_{j=1}^{n}p_{j}\nu_{j}^{k}=-a_{n+1}d$ for $\nu^{k}\in\tilde{\Xi}$ and $\sum_{j=1}^{n}p_{j}\nu_{j}^{m}=$
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$-a_{n+1}d-b$ . Thus the hypersurface: $\sum_{j=1}^{n}p_{j}x_{j}=-a_{n+1}d$ contains $\Xi$ and $b>0$

implies that $p_{i}>0$ for $i=1,2,$ $\cdots$ , $n$ .
See Figure (6.3.1).

Figure (6.3.1)

LEMMA (6.4). The family of hypersurfaces $\{g_{t}(\eta)\}(0\leqq t\leqq 1)$ are uniformly
controlled by sPheres near the infinity in the sense of Lemma (5.8).

PROOF. The proof is almost parallel to the proof of Lemma (5.8). Assuming
that the assertion is not true, we can use the Curve Selection lemma to find
Laurent series:
$u(s)=(\alpha_{1}s^{a_{1}}+\cdots, \cdots , \alpha_{n}s^{a_{n}}+ ),$ $ t(s)=t_{0}s^{b}+\cdots$ and $\lambda(s)=\lambda_{0}s^{c}+\cdots$ such that
(i) $\alpha=(\alpha_{1}, \cdots , \alpha_{n})\in(C^{*})^{n},$ $\lambda_{0}\in C^{*}$ and $0\leqq t(s)\leqq 1i$ . $e$ . $b\geqq 0$ and (ii) $a_{0}$ $:=minimum$

$\{a_{1}, \cdots , a_{n}\}<0$ and (iii) $\epsilon<|g_{t(s)}(u(s))|<\epsilon^{-1}$ for some $0<\epsilon<1$ and (iv) $\frac{\partial g_{t(s)}(u(s))}{\partial u_{i}}$

$=\lambda(s)\cdot\overline{u}_{i}(s)$ for $i=1,$ $\cdots$ , $n$ .
$\lambda_{0}\neq 0$ is due to Lemma (6.3). Assume that $b=0$ . $i$ . $e$ . $t(s)\rightarrow t_{0}\neq 0$ . We get a
contradiction to (iii) by exactly the same argument as in the proof of Lemma
(5.8). Assume that $b>0$ . Let $d(a)=minimum\{(a, \mu^{1}), \cdots , (a, \mu^{m})\}$ and let
$\Delta_{a}=\{\mu^{i}|(a, \mu^{i})=d(a)\}$ .

Assertion: $\mu^{m}$ is not contained in $\Delta_{a}$ . Assume this for a while and let
$I=\{1\leqq i\leqq n;a_{i}=a_{0}\}$ . By a similar argument as in Lemma (5.8), we get:

(6.4.1) $d(a)=b+a_{0}$ and

(6.4.2) $\alpha_{l}\frac{\partial g}{\partial u_{t}}(\alpha)=\left\{\begin{array}{ll}\lambda_{0}|\alpha_{i}|^{2} & for i\in I\\0 othe & wise.\end{array}\right.$

Proceeding as the proof of Lemma (5.8), the case $d(a)=0$ gives a con-
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tradiction ord $\{\frac{dg_{t(s)}}{ds}(u(s))\}=-1$ to (iii) and the case $d(a)\neq 0$ induces a con-

tradiction ord $\{g_{t(s)}(u(s))\}=d(a)$ again to (iii).

Now we prove the assertion. Let $ P=\{\Xi;\Xi$ is a face of $\Gamma(g_{1})$ of dimension
$n-1$ containing $\mu^{m}$ }. For $\Xi\in P$, let $a_{1}(\Xi)x_{1}+\cdots+a_{n}(\Xi)x_{n}=d(\Xi)$ be the
equation of the hyperplane of $R^{n}$ containing $\Xi$ such that $a_{i}(\Xi)$ ($i=1,$ $\cdots$ , n)

are positive integers and G. C. M. $(a_{1}(\Xi), \cdots, a_{n}(\Xi))=1$ . Let $P^{*}$ be the cone
spanned by the vectors $a(\Xi)=(a_{1}(\Xi), \cdots , a_{n}(\Xi))$ for $\Xi\in P$ and let $P^{\prime}=\{a\in R^{n}$ ;
$(a, \mu^{m})\leqq(a, \mu^{j})$ for $j=1,$ $\cdots$ , $m-1$}. By the definition of $P^{*},$ $P^{\prime}\supset P^{*}$ . Because
$P^{\prime}$ is a convex set, we can see easily that $P^{\prime}=P^{*}$ . Assume that $\mu^{m}\in\Delta_{a}$ .
Then the dePnition of $\Delta_{a}$ implies $a\in P^{\prime}$ hence $a\in P^{*}$ . But this is impossible
by (ii). Q. E. D.

Now we are ready to prove (ii) of Theorem (5.3). Take $\eta_{0}>0$ so that the
absolute values of non-zero critical values of $g_{0}$ are greater than $2\eta_{0}$ . By
Lemma (6.3) we can take $\epsilon>0$ so that for any critical point $\gamma_{t}$ of $g_{t}$ in $(C^{*})^{n}$

$(0\leqq t\leqq\epsilon),$ $g_{t}(\gamma_{t})\neq 0,$
$\eta_{0}$ , and $\gamma_{t}$ is simple. Let $Y_{i}^{*}=(C^{*})^{n}-g_{i}^{-1}(0)$ and $Y_{i.\eta_{0}}^{*}$

$=\{u\in(C^{*})^{n} ; |g_{i}(u)|\geqq\eta_{0}\}$ for $i=0,$ $\epsilon$ . $Y_{0,\eta 0}^{*}$ is a deformation retract of $Y_{0}^{*}$ .
Let $W=\{(u, t)\in C^{n}\times[0, \epsilon];|g_{t}(u)|\geqq\eta_{0}\}$ . Let $\eta_{1}$ be a positive number such
that the critical values of $g_{t}(0\leqq t\leqq\epsilon)$ are contained in $D_{\eta_{1}}$ $:=\{\eta\in C;|\eta|\leqq\eta_{1}\}$ .
Let $\pi_{1}$ ; $W\rightarrow C\times[0, \epsilon]$ be the map $(u, t)\leftrightarrow(g_{t}(u), t)$ and let $\pi_{2}$ ; $W\rightarrow[0, \epsilon]$ be the
Projection map. It is easy to see that (i) $\pi_{2}$ is a submersion and (ii) $\pi_{1}|\partial W\cup W\eta_{1}$

is a submersion where $W_{\eta_{1}}=W\cap\{|g_{t}(u)|\geqq\eta_{1}\}$ . Thus we can construct a
connection vector field $v$ for $\pi_{2}$ such that (a) $d\pi_{1}(v(u, t))=\partial/\partial t$ for $(u, t)\in$

$W_{\eta_{1}}\cup\partial W$ where $\partial/\partial t$ is the unit vector of $[0, \epsilon]$ in the positive direction and
(b) $v(u, t)$ is tangent to $S_{Uu||}\times[0, \epsilon]$ when $\Vert u\Vert$ is sufficiently large with respect
to $|g_{t}(u)|$ . Then it is obvious that $v$ is completely integrable and therefore
$Y_{0.\eta_{0}}^{*}$ is diffeomorphic to $Y_{\epsilon,\eta 0}^{*}$ via the integration of $v$ . On the other hand
by the same argument as in Lemma (5.13), we can show without any difficulty
that $Y_{\epsilon}^{*}$ is homotopically obtained by attaching $n$ ! n-volume $(S(g_{1})-S(g_{0}))$

n-cells to $Y_{e.\eta_{0}}^{*}$ . Thus we get:
LEMMA (6.5). $Y_{\epsilon}^{*}$ has the homotoPy type of the space which is obtained by

attaching $n!$ n-volume $(S(g_{1})-S(g_{0}))$ n-cells to $Y_{0}^{*}$ .
COROLLARY (6.5.1). $\pi_{i}(Y_{0}^{*})\rightarrow\pi_{i}(Y_{\epsilon}^{*})$ is bijective for $i<n-1$ and surjective

for $i=n-1$ .
Now (ii) of Theorem (5.3) is a direct consequence of the inductive as-

sumption and Corollary (6.5.1), Lemma (5.4) and Lemma (5.10). This also
finishes the proof of Theorem (1.1).

PROOF OF COROLLARY (1.1.2). $(h^{*})_{*}:$ $H_{1}(F^{*} ; Z)\rightarrow H_{1}(F^{*} ; Z)$ is the identity
map by Lemma(2.2). Thus $(h^{*})^{*}:$ $H^{1}(F^{*} ; Z)\rightarrow H^{1}(F^{*} ; Z)$ is also the identity map
by the Universal Coefficient theorem. Because $H^{j}(F^{*} ; Z)$ is generated by
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$H^{1}(F^{*} ; Z)$ as an algebra for $j<n$ , the monodromy action on $H^{j}(F^{*} ; Z)$ is
trivial for $j<n$ . Again by the Universal Coefficient theorem, $(h^{*})_{*}:$ $H_{j}(F^{*} ; Z)$

$\rightarrow H_{j}(F^{*} ; Z)$ is the identity map for $j\leqq n-1$ , proving (i). Let $F_{j}(F^{*})$ be the
fixed points of $(h^{*})^{j}$ : $F^{*}\rightarrow F^{*}$ . Then $ F^{j}(F^{*})=\emptyset$ for $j\neq 0$ modulo $d$ and $F_{j}(F^{*})$

$=F^{*}$ for $j=kd(k\in N)$ . Thus by the definition of [10],

$\zeta(h^{*} ; t)=\exp\sum_{k=1}^{\infty}\frac{t^{k}}{k}\chi(F_{k}(F^{*}))=\exp\sum_{j=1}^{\infty}\frac{t^{(lj}}{dj}\chi(F^{*})=(1-t^{d})^{-\frac{\chi(F^{*})}{d}}$

Q. E. D.
PROOF OF COROLLARY (1.2). Let $\nu^{1},$ $\cdots$ , $\nu^{m}$ be the vertices of $\Delta$, and let

$M$ be the subgroup of $Z^{n+1}$ generated by $\nu^{1},$ $\cdots$ , $\nu^{m}$ . We can find a matrix
$N\in SL(n+1, Z)$ such that $N$ maps $M$ into the subgroup $Z^{r+1}=\{\nu\in Z^{n+1}$ ; $\nu_{j}=0$

for $j>r+1$}. Then $F_{N}^{*}$ is diffeomorphic to $F^{*}$ by $\varphi_{N}$ and $F_{N}^{*}$ clearly has the
desired property. Now (i) of Corollary (1.2) is obvious and (ii) is proved by
the exact same way as the proof of Corollary (1.1.2).

7. Topology of $F$.
Let $f(z_{1}, \cdots , z_{n+1})$ be a weighted homogeneous polynomial of type $(a_{1},$ $\cdots$ ,

$a_{n+1}$ ; d) with a non-degenerate Newton boundary. In this section, we study
the topology of the Milnor fiber $F=\{z\in C^{n+1} ; f(z)=1\}$ using the results in
\S \S 1-6. For a non-emPty subset $I\subset\{1, \cdots , n+1\},$ Put $Ff=F\cap(C^{*})^{I}=\{z\in F$ ;
$z_{i}\neq 0$ if and only if $i\in I$}. Then $\bigcup_{I}Ff$ gives a cannonical stratiPcation of $F$.
By the additivity of the Euler-Poincar\’e characteristic and by Theorem (1.1)

we obtain the following theorem. (cf. Theorem (7.6) below):

THEOREM (7.1). $\chi(F)=(-1)^{n}\nu(\Delta(0))+1$ where $\nu(\Delta(0))$ is the Newton number
of $\Delta(0)$ .

For the definition of the Newton number, we refer to [7] or [16]. Recall

that the monodromy map $h:F\rightarrow F$ is defined by $h(z)=(z_{1}\exp\frac{a_{1}}{d}2\pi\sqrt{-1},$ $\cdots$ ,

$z_{n+1}\exp\frac{a_{n+1}}{d}2\pi\sqrt{-1})$ . The zeta function of $h$ can be computed directly along

the dePnition of [10] using Theorem (1.1). To make the computation easier,
we take the following viewpoint.

Let $\varphi:X\rightarrow X$ be a diffeomorphism of a differential manifold $X$. The zeta
function of $\varphi$ can be dePned by an alternating product

$\zeta(\varphi;t)=P_{0}(t)^{-1}\cdot P_{1}(t)\cdots P_{n}(t)^{(-1)^{n-1}}$

where $n=\dim X$ and $P_{i}(X)$ is the determinant of the linear transformation
$id-t\varphi_{*}:$ $H_{i}(X;R)\rightarrow H_{i}(X;R)$ . Assume that $X_{1}$ and $X_{2}$ are $\varphi$-invariant sub-
manifolds of $X$ such that $X=X_{1}\cup X_{2}$ and $X_{1}\cap X_{2}$ is also a smooth submanifold.
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Let $\varphi_{i}=\varphi|X_{i}(i=1,2)$ and $\varphi_{12}=\varphi|X_{1}\cap X_{2}$ . Then the zeta function has the
following additivity Property.

LEMMA (7.2).
$\zeta(\varphi;t)=\zeta(\varphi_{1} ; t)\cdot\zeta(\varphi_{2} ; t)/\zeta$( $\varphi_{12}$ ; t)

PROOF. This is an immediate consequence of the following exact sequences
and commutative diagrams using a splitted short exact sequence technique.

$-----\geq H_{j}(X_{1}\cap X_{2} ; R)-H_{j}(X_{1} ; R)\oplus H_{j}(X_{2} ; R)-H_{J}(X;R)=----$

$|(\varphi_{12})_{*}$

$\cap$
$(\varphi_{1})_{*}\oplus(\varphi_{2})_{*}\downarrow|$

$\cap$
$\downarrow^{\varphi*}$

$-----\geq H_{j}(X_{1}\cap X_{2} ; R)-H_{j}(X_{1} ; R)\oplus H_{j}(X_{2} ; R)-H_{j}(X;R)\rightarrow----$

Q. E. D.

By the definition of the monodromy map $h$ and $Ff,$ $F$? is invariant by $h$ and
we put $h_{I}^{*}=h|F_{I}^{*}$ . By the same argument as in the proof of Corollary (1.1.2),

we get from Theorem (1.1) and Corollary (1.2):
$\chi(Ff)$

LEMMA (7.3). $\zeta(h\} ; t)=(1-t^{d_{I}})\overline{a_{I}}$ where $d_{I}$ is defined by $d/b_{I},$ $b_{I}$ being
the greatest common divisor of $\{a_{i}\},$ $i\in I$ .

In the case of dim $\Delta_{I}<|I|-1(\Delta_{I}=\Delta\cap R^{I})$ , the above lemma says $\zeta(h_{I}^{*} ; t)=1$

because $\chi(F_{I}^{*})=0$ by Corollary (1.2). Now let $F(k)=$ {$z\in F;z_{i}\neq 0$ for $i\leqq k$ } and
$F_{k}(k-1)=F(k-1)-F(k)$ . By the dePnition, $F^{*}=F(n+1)\subset F(n)\subset\cdots\subset F(1)\subset F(O)$

$=F$ and $F_{k}(k-1)$ is a codimension 1 submanifold of $F(k-1)$ and we can write
$F_{k}(k-1)=\bigcup_{J}F_{J}^{*}$ where $J$ moves in the subsets of $\{1, \cdots , n+1\}$ containing

$\{1, 2, \cdots , k-1\}$ such that $J\exists\ni k$ . Of course $F_{k}(k-1)$ is an empty set if $f|_{z_{k}=0}=0$ .
LEMMA (7.4). $F_{k}(k-1)$ has a trivial normal bundle in $F(k-1)$ .
PROOF. As a polynomial function on a non-singular algebraic variety has

finite critical values (Corollary (2.8) of [10]), we can take a positive number
$R$ so that $F_{t}^{*}$ intersects the spheres $S_{r}(r\geqq R)$ transversely for each $I\subset\{1,$ $\cdots$ ,
$n+1\}$ . Let $F^{\prime}=F\cap B(R),$ $F(k-1)^{\prime}=F(k-1)\cap B(R),$ $F_{k}(k-1)^{\prime}=F_{k}(k-1)\cap B(R)$ ,
etc. where $B(R)=\{z\in C^{n+1} ; \Vert z\Vert\leqq R\}$ . Because $F_{I}^{*\prime},$ $F_{k}(k-1)^{\prime},$ $F(k-1)^{\prime}$ and $F^{\prime}$

are deformation retracts of $F_{I}^{*},$ $F_{k}(k-1),$ $F(k-1)$ and $F$ respectively, we need
only prove that $F_{h}(k-1)^{\prime}$ has a trivial normal bundle in $F(k-1)^{\prime}$ . Let $\pi_{k}$ :
$F^{\prime}\rightarrow C$ be the projection map $z\mapsto z_{k}$ . Take $\epsilon>0$ so that $\pi_{k}^{-1}(\eta)(|\eta|\leqq\epsilon)$ intersect
transversely with $Fl^{\prime}$ and $\partial F_{I}^{*\prime}=F_{I}^{*}\cap S_{R}$ for which $F_{I}^{*\prime}$ is not contained in
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$\pi_{k}^{-1}(0)$ . Now construct a smooth connection plane field $\xi$ of $\pi_{k}$ ; $\pi_{k}^{-1}(D_{\epsilon})\rightarrow D_{\epsilon}$

where $D_{\epsilon}=\{\eta\in C;|\eta|\leqq\epsilon\}$ , satisfying (i) for $Ff^{\prime}$ such that $Ff^{\prime}$ (\ddagger $\pi_{k}^{-1}(0)$ and
$z\in Ff^{\prime},$ $\xi(z)\subset T_{z}Ff^{\prime}$ and (ii) $\xi(z)\subset T_{z}S_{R}$ for $z\in S_{R}\cap F^{\prime}$ . By the integration of
$\xi$, we get a trivialization $\varphi;\pi_{k}^{-1}(D_{\epsilon})\rightarrow\pi_{k}^{-1}(0)\times D.$ which preserves the closure
of each stratum $Ff^{\prime}$ such that $Ff^{\prime}\not\subset\pi_{k}^{-1}(0)$ invariant. Thus $F(k-1)^{\prime}$ is invariant
by $\varphi$ and the restriction of $\varphi$ to $N:=\pi_{k}^{-1}(D_{\epsilon})\cap F(k-1)^{\prime}$ gives a desired triviali-
zation $\psi:N\rightarrow F_{k}(k-1)^{\prime}\times D_{\epsilon}$ . Q. E. D.

As $N$ and $F_{k}(k-1)^{\prime}$ are invariant by the monodromy map $h$ , the map

$h_{\psi}$ $:=\psi h\psi^{-1}$ : $F_{k}(k-1)^{\prime}\times D_{\epsilon}\rightarrow F_{k}(k-1)^{\prime}\times D_{\epsilon}$ can be written as $h_{\psi}(z, \eta)=(\alpha_{\eta}(z)$ ,

$\exp\frac{a_{k}}{d}2\pi\sqrt{-1})$ for $(z, \eta)\in F_{k}(k-1)^{\prime}\times D_{\text{\’{e}}}$ where $\alpha_{\eta}$ is a family of diffeomor-

phisms of $F_{k}(k-1)^{\prime}$ parametrized smoothly by $\eta\in D_{\epsilon}$ : so that $\alpha_{0}=h|_{F_{k}(k-1)^{\prime}}$

where $h|_{F_{k}(k-1)^{\prime}}$ is the restriction of $h$ to $F_{k}(k-1)^{\prime}$ . Then clearly $(\alpha_{\eta})_{*}$

$=(h|_{F_{k}(k-1)\prime})_{*}$ for $\eta\in D_{\epsilon}$ . Thus we get
COROLLARY (7.4.1).

(i) $\zeta(h|_{N} ; t)=\zeta(h|_{F_{k}(k- 1)^{\prime}} ; t)$ .
(ii) $\zeta(h|_{N-F_{k}(k-1)^{\prime}} ; t)=1$ .

PROOF. (i) is obvious. (ii) is derived from the following commutative
diagrams where II is due to the K\"unneth’s formula.

$(h|_{N- F_{k}(k- 1)})_{*}$

$H_{j}(N-F_{k}(k-1)^{\prime})\ovalbox{\tt\small REJECT} H_{j}(N-F_{k}(k-1)^{\prime})$

$\cong\downarrow^{\psi_{*}}$

I
$\cong|\psi_{*}$

$(h_{\varphi^{\prime}})_{*}$

$H_{j}(F_{k}(k-1)^{\prime}\times(D_{\epsilon}-0))-H_{j}(F_{k}(k-1)^{\prime}\times(D_{\text{\’{e}}}-0))$

$ H_{J}(F_{k}(\downarrow$$ k-1)^{\prime})\oplus H_{j- 1}(F_{k}(k-1)^{\prime})H_{j}(F_{k}(k-1)^{\prime})\oplus H_{j- 1}(F_{k}\underline{k_{j}\oplus k_{j- 1}II}\downarrow$

$(k-1)^{\prime})$

where $k_{j}$ and $k_{j-1}$ are induced homomorphisms by $h|_{F_{k}(k-1)^{\prime}}$ on $H_{j}(F_{k}(k-1)^{\prime})$

or $H_{j-1}(F_{k}(k-1)^{\prime})$ respectively. Thus the assertion (ii) is clear from diagram
II. Q. E. D.

Applying Lemma (7.2.) to $F(k-1)^{\prime}=F(k)^{\prime}\cup N$, we obtain the following
inductive formula.

LEMMA (7.5).

$\zeta(h|_{F(k-1)}jt)=\zeta$( $h|_{F(k)}$ ; t) $\cdot\zeta(h|_{F_{k}(k-1)} ; t)$ .

Now we are ready to prove:
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THEOREM (7.6).

$\zeta(h;t)=\coprod_{I\neq g}(1-t^{d_{I}})^{-\chi_{(Ff)/d_{I}}}$

Here we assume that $\chi(\emptyset)=0$ for the empty set.
PROOF. We prove by the induction on $(n+1)-k$ that:

(7.6.1) $\zeta(h|_{F(k)} ; t)=\prod_{I\supset\{1.\cdot\cdot k\}}..(1-t^{d_{I}})^{-\chi_{(F}}T)/d_{I}$

Case $k=n+1$ is nothing but Lemma (7.3) for $I=\{1, \cdots , n+1\}$ . Assume that
(7.6.1) is true for $k\geqq s$ . Then by Lemma (7.5) we get

$\zeta(h|_{F(s-1)} ; t)=\zeta$( $h|_{F(s)}$ ; t) $\cdot\zeta$ ( $h|_{F_{s}(s-1)}$ ; t)

$=\prod_{I\supset\{1.S\}}...(1-t^{d_{I}})^{-xF})/a_{I}.\coprod(1-t^{a_{J}})^{-\chi_{(F_{j}^{*d_{J}}}}J_{-}311,\cdots,s-1\}J\not\equiv 3s$

$=\prod_{I\supset\{1,\cdots}.$

$(1-td_{I})^{f)/}-\chi(Fd_{I}$

where the second equality is derived from the inductive assumption for
$f|_{z_{S}=0}$ . Q. E. D.

Now we consider the homological structure of $F$. Let $e(\Delta)$ be the rank
of the kernel of $\rho_{*}:$

$H_{r}(F^{*})\rightarrow H_{r}((C^{*})^{n+1})$ where $\rho$ : $F^{*}\rightarrow(C^{*})^{n+1}$ is the inclusion
map and $ r=\dim\Delta$ . Then $e(\Delta)$ is $(n+1)$ ! $(n+1)$-volume $\Delta(0)-1$ if $r=n$ and in
the case of $r<n,$ $e(\Delta)=(r+1)$ ! $(r+1)\sim volumeN\Delta(O)-1$ where $N$ is as in the
proof of Corollary (1.2).

LEMMA (7.8). (i) $\rho_{*}:$ $H_{j}(F^{*})\rightarrow H_{j}((C^{*})^{n+1})$ is bijective for $j<r$ and surjective

for $j=r$ . For $n\geqq j>r$, the image of $\rho*is$ of dimension $\left(\begin{array}{ll}n & +1\\ & j\end{array}\right)-\left(\begin{array}{l}n-r\\j-r-1\end{array}\right)$ .

(ii) The dimension of the kernel of $\rho_{*}:$ $H_{j}(F^{*})\rightarrow H_{j}((C^{*})^{n+1})$ is

$\left\{\begin{array}{ll}0 & for j<r\\e(\Delta) & for j=r\end{array}\right.$

$(e(\Delta)\cdot\left(\begin{array}{l}n-r\\j-r\end{array}\right)$ for $n\geqq j>r$ .

PROOF. The case $r=n$ is an immediate consequence of Theorem (1.1).

Assume $r<n$ and take a matrix $N\in SL(n+1;Z)$ as in the proof of Corollary
(1.2). As $f_{N}(z)$ is a weighted homogeneous polynomial of variables $z_{1},$

$\cdots$ , $z_{r+1}$ ,
$F_{N}^{*}=G_{N}^{*}\times(C^{*})^{n-r}$ where $G_{N}^{*}=\{(z_{1}, \cdots , z_{r+1});f_{N}(z)=1\}$ . Then the assertion is
easily derived from the following diagram.
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$H_{J}((J^{\backslash }N\times(C^{*})^{il-T})^{\frac{(\varphi_{N})_{*}\cong}{\underline(\varphi_{N})_{*}\cong\Omega}H_{j}(}H_{j}((C^{*})^{n+1})H_{j}((C\downarrow_{*}(\rho_{N})_{*}|$

$F^{*})$

$\rho*$

$*)^{n+1})$

where $\rho_{N}$ is the inclusion map and $\varphi_{N}$ is defined as in \S 3. Q. E. D.
Let $\Delta_{i}=\Delta\cap\{x_{i}=0\}$ and let $I=\{1\leqq i\leqq n+1;\Delta_{i}\neq\emptyset\}$ .
LEMMA (7.9). Assume that dim $\Delta>1$ . Then $\pi_{1}(F)$ is a free abelian group

of rank $(n+1)-|I|$ . In particular, $F$ is simPly connected if and only if
$I=\{1,2, \cdots n+1\}$ .

PROOF. Note that $i$ is contained in $I$ if and only if $F_{i}$ $:=\{z\in F;z_{i}=0\}$ is
not empty. Let $J=\{1, \cdots , n+1\}-I$ and consider the commutative diagram

$\pi_{1}(F^{*})\underline{a}\pi_{1}(F)$

$\pi_{1}(\downarrow$$(C^{*})^{n+1})\underline{c}\pi_{1}((\rho\#|$
$b$

$C^{*})^{J})$

where $b$ and $c$ are homomorphisms induced by the respective projection maps.
As $c$ is clearly surjective, $b$ is also surjective. Let $e_{i}$ $(i=1, \cdots , n+1)$ be the

canonical generators of $\pi_{1}(F^{*})$ as in \S 2 such that $\rho_{\#}e_{i}=(0, \cdots , 1i\ldots , 0)$ . We
have that $a(e_{i})=0$ for $i\in I$ by the definition of $I$. Thus $\pi_{1}(F)$ is generated by
$e_{j}(j\in J)$ which can not have any relation by the surjectivity of $b$ . Namely
$b$ is a bijection. Q. E. D.

Assume that $\Delta_{n+1}\neq\emptyset$ and let $N$ be a tubular neighborhood of $F_{n+1}^{*}$ as in
Lemma (7.4). $(F_{n+1}^{*}=F_{n+1}(n))$ . We identify $\partial N$ with $F_{n+1}^{*}\times S^{1}$ . Let $\rho_{n+1}$ : $F_{n+1}^{*}\times S^{1}$

$\rightarrow(C^{*})^{n+1}$ be the cannonical map dePned by $(z, \eta)-\rangle$ $(z_{1}, \cdots , z_{n}, \eta)$ and let
$k$ : $F_{n+1}^{*}\times S^{1}\rightarrow F^{*}$ be the inclusion map via the above identification. Then we
have:

LEMMA (7.10). $k_{*}:$ $H_{j}(F_{n+1}^{*}\times S^{1})\rightarrow H_{j}(F^{*})$ is injective for $j<\dim\Delta_{n+1}$ . For
dim $\Delta_{n+1}\leqq j<\dim\Delta$, the kernel of $(\rho_{n+1})_{*}:$ $H_{j}(F_{n+1}^{*}\times S^{1})\rightarrow H_{j}((C^{*})^{n+1})$ coincides
with the kemel of $k_{*}$ .

PROOF. By the proof of Lemma (7.4), we have a commutative diagram
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Thus the assertion is obvious by Lemma (7.8). Q. E. D.
For $\{i_{1}, \cdots , i_{s}\}\subset\{1, \cdots , n+1\}$ , we define $\Delta_{i_{1}\ldots..1}$. by $\Delta\cap\{x_{\iota_{j}}=0;j=1, \cdots , s\}$ .

Now we have no difficulty in proving the following connectivity criterion.
THEOREM (7.11). Assume that dim $\Delta_{i_{1},\ldots.i_{j}}>s-2j$ for any $j\geqq 0$ and

$(i_{1}, \cdots , i_{j})\subset\{1, \cdots , n+1\}$ . Then $F$ is s-connected. (Here dim $\emptyset=-1$ by the
definition.)

PROOF. The case $s=0$ or 1 is due to Theorem (1.1) and Corollary (1.2)
and Lemma (7.9). Assume $s>1$ . We consider the filtration

$F^{*}\subset F(n)\subset F(n-1)\subset\cdots\subset F(1)\subset F$ .
First we consider the exact sequence:

$\delta_{j+1}$

$A_{n}$ : $\rightarrow H_{j+1}(F(n), F^{*})\rightarrow H_{j}(F^{*})\rightarrow H_{j}(F(n))\rightarrow H_{j}(F(n), F^{*})\rightarrow\cdots$ .
Let $N_{n+1}$ be a tubular neighborhood of $F_{n+1}^{*}$ in $F(n)$ and we identify $\partial N_{n+1}$ with
$F_{n+1}^{*}\times S^{1}$ as in Lemma (7.10). By the excision property, we get

$H_{j+1}(F(n), F^{*})=H_{j+1}(N_{n+1}, \partial N_{n+1})=H_{j-1}(F_{n+1}^{*})\otimes\tilde{e}_{n+1}\subset H_{j+1}(\partial N_{n+1})$

where $\tilde{e}_{n+1}$ is the canonical generator of $H_{1}(S^{1})$ . The last isomorphism is
obtained from the homology exact sequence of the pair $(N_{n+1}, \partial N_{n+1})$ and the
K\"unneth’s formula. It is easy to see that $\delta_{j}=k_{*}|H_{j-1}(F_{n+1}^{*})\otimes\tilde{e}_{n+1}$ under the
above identification where $k$ is the composition of $F_{n+1}^{*}\times S^{1}\cong\partial N\subset F^{*}$ . There-
fore $\delta_{j}$ is injective for $j<\dim\Delta_{n+1}+2$ and $H_{j}(F(n))=H_{j}(F^{*})/k_{*}(H_{j-1}(F_{n+1}^{*})\otimes\tilde{e}_{n+1})$

for $j\leqq s$ by Lemma (7.10). Let $(C^{*})^{k}=\{z\in C^{n+1}$ ; $z_{i}\neq 0,1\leqq i\leqq k$ and $z_{k+1}=\ldots=$

$z_{n+1}=0\}$ and let $p_{k}$ ; $F(k)\rightarrow(C^{*})^{k}$ be the canonical projection. Let $e_{i}(i=1,$ $\cdots$ ,
$i$

$n+1)$ be the canonical generators of $H_{1}((C^{*})^{n+1})$ corresponding to $(0, \cdots , 1, \cdots , 0)$

under the identification $H_{1}((C^{*})^{n+1})=Z^{n+1}$ via K\"unneth’s formula. Then the
image of $ H_{j-1}(F_{n+1}^{*})\otimes e_{n+1}\sim$ by $(\rho_{n+1})_{*}$ is the submodule generated by $ e_{i_{1}}\otimes e_{i_{2}}\otimes\cdots$

$\otimes e_{i_{j-1}}\otimes e_{n+1},1\leqq i_{1}<i_{2}<--$ $<i_{j-1}\leqq n$ for $j\leqq s$ . Thus $(P_{n})_{*}:$ $H_{j}(F(n))\rightarrow H_{j}((C^{*})^{n})$

is bijective for $j\leqq s$ .
Now we prove that $(p_{k})_{*}:$ $H_{j}(F(k))\rightarrow H_{j}((C^{*})^{k})$ is bijective for $j\leqq s$ by the in-
duction on $(n+1)-k$ . Consider the exact sequence

$\delta_{j+1}$

$A_{k-1}$ : . $\rightarrow H_{j+1}(F(k-1), F(k))\rightarrow H_{j}(F(k))\rightarrow H_{j}(F(k-1))\rightarrow\cdots$ .
Let $N_{k}$ be a trivial tubular neighborhood of $F_{k}(k-1)$ in $F(k-1)$ so that $\partial N_{k}$
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is diffeomorphic to $F_{k}(k-1)\times S^{1}$ . By the same argument as above, we have
a natural isomorphism $H_{j+1}(F(k-1), F(k))\cong H_{j-1}(F_{k}(k-1))\otimes\tilde{e}_{k}$ which makes the
following diagram commutative.

Here $k$ is the inclusion map $F_{k}(k-1)\times S^{1}\cong\partial N_{k}CF(k)$ . Let $q_{k}$ : $F_{k}(k-1)\times S^{1}$

be the map defined by $(z, \eta)->(z_{1}, \cdots , z_{\hslash-1}, \eta)$ . By the proof of Lemma (7.4),

the diagram

is commutative. By the inductive hypothesis on $F_{k}(k-1),$ $(q_{k})_{*}:$ $H_{j-1}(F_{k}(k-1))$

$\otimes\delta_{k}\rightarrow H_{j}((C^{*})^{k})$ is injective for $j-1\leqq s-2$ . Therefore we get from $A_{k-1}$ that
$H_{j}(F(k-1))=H_{j}(F(k))/Image(\delta_{j+1})$ and $(p_{k-1})_{*}:$ $H_{j}(F(k-1))\rightarrow H_{j}((C^{*})^{k-1})$ is bi-
jective for $j\leqq s$ . Here we have used the fact that $(p_{k-1})_{*}$ in the above dia-
gram is surjective for any $j\leqq s+1$ by the following commutative diagram:

$H_{j}(F$

$H_{j}((C\ovalbox{\tt\small REJECT}$

$(k-1))$ $H_{j}(F(k))$

$(p_{k-1})_{*}$ $|(p_{k})_{*}$

$*)^{k- 1})-H_{j}((C^{*})^{k})$

Therefore $H_{j-1}(F_{k}(k-1))\rightarrow H_{j-1}((C^{*})^{k-1})$ is surjective for $j\leqq s$ by the induction’s
hypothesis on the dimension of the total space. This proves the assertion
and Theorem (7.11) by the Hurewicz theorem. Q. E. D.

REMARK (7.12). The conditions in Theorem (7.11) is not a necessary
condition. The necessary condition in the words of $\Delta$ is rather delicate and
we do not dare to clarify it in this Papper. Here are a few examples.

EXAMPLE 1. Let $f(z_{1}, \cdots , z_{n+1})=\sum_{i=1}^{n+1}z_{1}z_{2}\cdots\check{z}_{i}\cdots z_{n+1}(n\geqq 2)$ . Then $F$ is

simply connected and $H_{2}(F)=Z$ if $n>2$ . The Euler-Poincar\’e characteristic
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$\chi(F)$ is $(-1)^{n}n$ .
EXAMPLE 2. Let $f(z)=\sum_{1\leqq i_{1}<i_{2}<\cdots<i_{r}\leqq n+1}z_{i_{1}}z_{i_{2}}\cdots z_{t_{r}}$ and $r<n$ . Then dim $\Delta=n$ .

dim $\Delta_{i}=n-1,$ $\cdots$ , dim $\Delta_{i_{1}i_{2}\cdots i_{n-r}}=r$ and dim $\Delta_{i_{1}\ldots.,i_{n-r+1}}=0$ . Thus by Theorem
(7.11), $F$ is $(2n-2r+1)$-connected for $r>n/2+1$ . For $r\leqq n/2+1,$ $F$ is $(n-1)-$

connected.
EXAMPLE 3. Let $f(z_{1}, \cdots , z_{2n})=z_{1}z_{2}+z_{3}z_{4}+\cdots+z_{2n-1}z_{2n}$ . Then Theorem

(7.11) says only that $F$ is $(n-2)$-connected. However $F$ is in fact $(2n-2)-$

connected because $F$ has the homotopy type of $(2n-1)$ dimensional sphere.
Thus the condition in Theorem (7.11) is not a necessary condition.

Appendix.

PROOF OF LEMMA (3.2). Let $f(z)$ be as in Lemma (3.2). Let $\nu^{1},$ $\cdots$ , $\nu^{p}$ be
the integral points of $\Delta$ and for each $c=(c_{1}, \cdots , c_{p})\in C^{p}$ , we define a poly-

nomial $f_{c}(z)$ by $\sum_{j=1}^{p}c_{j}z^{d}$ . Let $U=$ { $c\in C^{p}$ ; $\Gamma(f_{c})=\Delta$ and $f_{c}$ is non-degenerate}.

As $U$ is a non-empty Zariski open set (Theorem 6.1 of [7] and Appendix about
the non-degeneracy condition [16]), we may only prove the following lemma.

LEMMA A. Let $p(t)(0\leqq t\leqq 1)$ be an analytic path in $U$ and let $f_{t}(z)=f_{p^{(t)}}(z)$ .
Then the $hyPersurfacesf_{t}^{-1}(\eta)(\eta\in C^{*})$ are uniformly controlled by the spheres
$S_{r}$ near the infinity in the sense of Lemma (5.8). In particular we have equiv-
alences of the fib rations $\varphi_{1}$ and $\varphi_{2}$ :

PROOF. Assuming that the assertion is not true, we can use the Curve
Selection lemma to find Laurent series $z(s)=(\alpha_{1}s^{a_{1}}+\cdots, \cdots , \alpha_{n+1}s^{a_{n+1}}+ )$ ,
$ t(s)=t_{0}s^{b}+\cdots$ and $\lambda(s)=\lambda_{0}s^{c}+\cdots(0\leqq s\leqq 1)$ such that (i) $\alpha=(\alpha_{1}, \cdots , \alpha_{n+1})\neq 0$

and $a_{0}$ $:=minimum\{a_{1}, \cdots , a_{n+1}\}<0$, (ii) $f_{t(s)}(z(s))$ converges to a non-zero

constant. (iii) $\frac{\partial f_{t(s)}}{\partial z_{j}}(z(s))=\lambda(s)\overline{z}_{j}(s)$ for $j=1,$ $\cdots$ , $n+1$ and (iv) $0\leqq t(s)\leqq 1$ . Let

$d(a)=minimum\{\sum_{i=1}^{n+1}a_{i}x_{i}$ ; $x\in\Delta\}and$ let $\Delta_{a}=\{x\in\Delta;\sum_{t=1}^{n+1}a_{i}x_{i}=d(a)\}$ . Let $I=\{1\leqq i$
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$\leqq n+1;a_{i}=a_{0}\}$ . By the non-degeneracy assumption of $f_{t(s)}$ we get

$\alpha_{\iota_{\partial_{i}^{\frac{f_{\Delta}}{z}(\alpha)=\{}}}\underline{\partial}_{a}0otherwise\lambda_{0}|\alpha_{i}|^{2}for$

$i\in I$

and $d(a)=c+2a_{0}$ . Now the exact same argument as in the proof of Lemma
(5.8) gives a contradiction to (ii). Let $W=\{(x, t)\in C^{n+1}\times I|f_{t}(x)\neq 0\}$ and let
$\pi$ : $W\rightarrow I$ be the projection map. Then we can construct an integrable connec-
tion vector field $v$ on Wsuch that (i) $v(f_{t}(x))=0$ for any $(x, t)\in Wand$ (ii) $v$ is
tangent to $W_{J}=\{(x, t)\in C^{J}\times I|f_{t}(x)\neq 0\}$ for any $J\subset\{1, \cdots , n+1\}$ . Then the
assertion is obtained by the usual argument.
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